甘肃省张掖市临泽县第二中学八年级数学下册 3.41 分式方程(一)教案 北师大版【精品教案】
北师版八年级数学分式方程教案

教学目标:1.理解什么是分式方程;2.能够解分式方程;3.能够应用分式方程解决实际问题。
教学重点:1.理解分式方程的含义;2.掌握解分式方程的方法。
教学难点:1.运用分式方程解决实际问题。
教学准备:教学课件、白板、黑板、笔、课后练习题。
教学过程:一、引入新知(5分钟)1.学生回顾一下分式的定义和运算规则;2.引导学生思考,如果等式中包含了分式,我们该如何解决?二、探究分式方程(10分钟)1.通过例题引导学生理解什么是分式方程;2.解释分式方程和整式方程的区别;3.回顾一下如何解整式方程,并与解分式方程进行对比。
三、解分式方程的基本方法(25分钟)1.第一种方法:通分法;a)通过实例引导学生掌握通分法的步骤;b)练习几道简单的例题。
2.第二种方法:消去法;a)通过实例引导学生掌握消去法的步骤;b)练习几道简单的例题。
3.学生通过比较两种方法的异同以及适用情况,总结解分式方程的基本方法。
四、应用分式方程解决实际问题(30分钟)1.引导学生分析一些实际问题,如人工成本、水泥用量等;3.学生尝试自己解决一些实际问题。
五、总结与拓展(5分钟)1.对本节课的内容进行思考,学生主动回答问题;2.对分式方程的解法进行总结;3.作业布置:完成课后练习题。
教学延伸:1.分组讨论:学生分成小组,每组选择一个实际问题,并设计自己的分式方程;2.拓展训练:提供一些难度较高的分式方程,让学生进行解答。
教学反思:本节课通过引入新知、探究分式方程、解分式方程的基本方法以及应用分式方程解决实际问题几个环节,全面而系统地讲解了分式方程的知识点。
通过让学生参与课堂讨论和练习,培养了他们解决实际问题的能力。
同时,通过拓展训练,激发了学生的思维和兴趣。
八年级数学下册《分式》教案北师大版

八年级数学下册《分式》教案北师大版一、教学目标知识与技能:1. 理解分式的概念,掌握分式的基本性质和运算法则。
2. 能够运用分式解决实际问题,提高解决问题的能力。
过程与方法:1. 通过观察、操作、思考、交流等过程,培养学生的抽象思维能力和逻辑推理能力。
2. 学会用数形结合的方法,理解分式的几何意义。
情感态度与价值观:1. 激发学生对数学的兴趣,培养学生的探究精神和合作意识。
2. 感受数学与实际生活的联系,提高学生运用数学知识解决实际问题的能力。
二、教学内容第一课时:分式的概念及基本性质1. 学习分式的定义,理解分式中的分子、分母、分式值等概念。
2. 掌握分式的基本性质,如分式的正负性、分式的相等性、分式的乘除法等。
第二课时:分式的运算1. 学习分式的加减法运算,掌握运算法则。
2. 学习分式的乘除法运算,掌握运算法则。
第三课时:分式的应用1. 运用分式解决实际问题,如面积计算、浓度问题等。
2. 培养学生的应用能力和解决问题的能力。
第四课时:分式的几何意义1. 学习分式在几何中的应用,如面积的计算、比例的求解等。
2. 培养学生的数形结合思想,提高抽象思维能力。
第五课时:分式的综合练习1. 巩固分式的概念、运算和应用。
2. 提高学生的综合运用能力和解决问题的能力。
三、教学方法采用问题驱动法、案例教学法、合作学习法等,引导学生主动探究、合作交流,培养学生的抽象思维能力和逻辑推理能力。
四、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 作业完成情况:检查学生作业的完成质量,巩固学习成果。
3. 单元测试:进行单元测试,了解学生的掌握情况,为下一步教学提供依据。
五、教学资源1. 教材:北师大版八年级数学下册。
2. 课件:制作精美的课件,辅助教学。
3. 练习题:提供适量的练习题,巩固所学知识。
4. 教学工具:黑板、粉笔、多媒体设备等。
六、第六课时:分式的拓展与深化1. 学习分式的进一步性质,如分式的分解、分式的有理化等。
甘肃省张掖市临泽县第二中学八年级数学下册 2.3.1 运用公式法(一)教案 北师大版

运用公式法(一)教案知识与技能目标:1.使学生了解运用公式法分解因式的意义。
2.使学生掌握用平方差公式分解因式。
3.使学生了解,提公因式法是分解因式的首先考虑的方法,再考虑用平方差公式分解因式。
过程与方法目标:1.通过对平方差公式特点的辨析,培养学生的观察能力。
2.训练学生对平方差公式的运用能力。
情感态度与价值观目标:1.在引导学生逆用乘法公式的过程中,培养学生逆向思维的意识。
2.同时让学生了解换元的思想方法。
教学重点让学生掌握运用平方差公式分解因式.教学难点将某些单项式化为平方形式,再用平方差公式分解因式;培养学生多步骤分解因式的能力.教学方法师生共同讨论法.教师引导,主要由学生分组讨论得出结果.教具准备教学过程Ⅰ.创设问题情境,引入新课在前两节课中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式.如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本节课我们就来学习另外的一种因式分解的方法——公式法.Ⅱ.讲授新课1.请看乘法公式(a +b)(a -b)=a2-b2(1)左边是整式乘法,右边是一个多项式,把这个等式反过来就是a2-b2=(a +b)(a -b)(2)左边是一个多项式,右边是整式的乘积.判断,第二个式子从左边到右边是否是因式分解?2.公式讲解观察式子a2-b2,找出它的特点.是一个二项式,每项都可以化成整式的平方,整体来看是两个整式的平方差.如果一个二项式,它能够化成两个整式的平方差,就可以用平方差公式分解因式,分解成两个整式的和与差的积.如x2-16=(x)2-42=(x +4)(x -4);9m2-4n2=(3m)2-(2n)2=(3m +2n)(3m -2n)。
北师大课标版八年级数学下册教案分式方程

●课题§3.4.1 分式方程(一)●教学目标(一)教学知识点1.通过对实际问题的分析,感受分式方程刻画现实世界的有效模型的意义.2.通过观察,归纳分式方程的概念.(二)能力训练要求1.体会到分式方程作为实际问题的模型,能够根据实际问题建立分式方程的数学模型,并能归纳出分式方程的描述性定义.(三)情感与价值观要求在建立分式方程的数学模型的过程中培养能力和克服困难的勇气,并从中获得成就感,提高解决问题的能力.●教学重点能根据实际问题的数量关系列出分式方程,归纳出分式方程的定义.●教学难点能根据实际问题中的等量关系列出分式方程.●教学方法尝试——归纳相结合教科书中提供了多个实际问题,教师鼓励学生尝试,利用具体情境中的数量关系列出分式方程,归纳分式方程的定义.●教学过程Ⅰ.创设情境,引入新课[师]在这一章的第一节《分式》中,我们曾研究过一个“固沙造林,绿化家园”的问题.打开课本.当时,我们设原计划每月固沙造林x公顷,那么原计划完成一期工程需要个月,实际完成一期工程用了个月.根据题意,可得方程-=4.(1)我们说,分母中含有字母,我们现在知道它们是不同于整式的代数式——分式.可是,我们也是第一次遇到这样的方程,它和我们学过的一元一次方程一样能刻画现实世界,是一种反映现实世界的数学模型.接下来,我们再来看几个这样的例子.Ⅱ.讲授新课列出刻画现实世界的数学模型——方程.[师][师]在这个问题中涉及到了哪几个基本量?它们的关系如何?[生]涉及到三个基本量:总产量,每公顷试验田的产量,试验田的面积.其中总产量=每公顷试验田的产量×试验田的面积.[师]你能找出这一问题的所有等量关系吗?[生]第一块试验田的面积=第二块试验田的面积. (a)[生]还有一个等量关系是:第一块试验田每公顷的产量+3000 kg=第二块试验田每公顷的产量(b)[师]我们接着回答下面的问题:如果设第一块试验田每公顷的产量为x kg,那么第二块试验田每公倾的产量是多少kg呢?[生]根据等量关系(b),可知第二块试验田每公顷的产量是(x+3000)kg.[生]根据题意,利用等量关系(a),可得方程:=. (2)[师],的实际意义是什么呢?[生]它们分别表示第一块试验田和第二块试验田的面积.[师]有没有别的方法列出方程呢?同学们可以以小组为单位讨论,交流.我们看哪一个组思维最敏捷.[生]根据等量关系(a),我们可以设两块试验田的面积都为x公顷,那么表示第一块试验田每公顷的产量,表示第二块试验田每公顷的产量,根据等量关系(b)可列出方程:+3000=(3)[师]接下来,我们再来看一个问题[师]我们先来审题,找到题中的等量关系.[生]由题意,可知:实际参加活动的人数=原定人数×2倍. (c)[生]还有一个等量关系为:原计划每个同学平均分摊的费用=实际每个同学平均分摊的费用+4元. (d)[师]同学们已经过审题,找到了题中的等量关系,接下来该干什么呢?[生]设出未知数,列出方程,将具体实际的问题转化为数学模型.[师]你很棒!下面同学们就分组来完成刚才这位同学所说的,你有几种列方程的方法呢?讨论后,各小组可选代表回答上面的问题.[生]我代表第一小组回答.设原定是x人,那么每人平均分摊元;人数增加到原来人数的2倍后,每人平均分摊元,根据题意,利用等量关系(d),得方程:-4=.(4)[生]我们组没有按照以上的设法,而是设原定每人平摊y元,那么原定人数为人;实际参加活动的每个同学平摊(y-4)元,那么实际参加活动的人数为人,根据题意,利用等量关系(c),得方程:2×=. (5)[师]上面两个组的回答都很精彩,祝贺他们.(鼓掌)从同学们的表现不难看出,用方程这样的数学模型刻画现实世界的情境,同学们掌握得很好.下面我们再来用方程来解决一个几何问题,刻画一个几何模型.图3-2如右图,在等腰三角形ABC中,底边BC=2a,高AD=h,求内接正方形PQR S的边长.[师生共析]由于SPQR是正方形,SR∥BC,AE⊥SR,所以AE是△ASR的高且ED=SR=正方形SPQR的边长,△ASR的高AE可表示为AD与正方形边长的差.由SR∥BC,可得△ASR∽△ABC,于是有:=(相似三角形对应高的比等于相似比).所以可设正方形的边长为x,由= 得:=.(其中a、h为常数)(6)[师]你还能找出图中的相似三角形吗?你还能用它的性质列出方程吗?同学们可以在小组内讨论、交流.[生]从上图中可知SPQ R是正方形,所以R Q⊥BC,又因为AD⊥BC,所以AD∥R Q,△ADC∽△R QC.可得=.即=.所以,设内接正方形的边长为2x,根据题意,得=.(a、h为常数).(7)[师]你们表现得真棒!观察方程:-=4 (1)=(2)+3000=(3)-4=(4)2×=(5)=(其中a、h是常数)(6)上面所得到的方程有什么共同特点?[生]不难发现方程中的未知数都含在分母中,不是一元一次方程.[师]是的.这就是我们今天要认识的一种新的方程——分式方程即分母中含有未知数的方程.Ⅲ.随堂练习1.已知鱼塘中有x千克鱼,每千克鱼的捕捞费用是元.现从鱼塘中捕捞101千克鱼花了捕捞费用200元,求x满足的方程.分析:题中的等量关系是:101千克鱼×每千克鱼的捕捞费用=200元.解:x满足的方程是:101×=200.2.补充练习某商场有管理人员40人,销售人员80人,为了提高服务水平和销售量,商场决定从管理人员中抽调一部分人充实销售部分,使管理人员与销售人员的人数比为1∶4,那么应抽调的管理人员数x满足怎样的方程?解:抽调管理人员x人后,管理人员有(40-x)人,销售人员有(80+x)人,则=.Ⅳ.课时小结这节课我们从现实情境问题中建立方程这一重要的数学模型,认识了一种新的方程——分式方程.Ⅴ.课后作业1.习题3.62.预习下一部分——分式方程的解法.Ⅵ.活动与探究如右图,△ABC是一块锐角三角形余料,边BC=120 mm,高AD=80 mm,要把它加工成矩形零件PQMN,使矩形的一边在BC上,其余两个顶点分别在AB、AC上,并求PN=2PQ时,PN 的长是多少?[过程]由于PQMN是矩形,所以AE⊥PN,这样△APN的高可写成AD—ED=AD-PQ,又PN∥BC,因此△APN∽△ABC,于是可找到PN与已知条件的关系. 图3-3[结果]设PQ=x mm,则PN=2x mm.PN∥BC→△APN∽△ABC→=,即=160x=9600-120x,x==34所以PN=2x=68(mm)●板书设计§3.4.1 分式方程(一)归纳:分母中含有未知数的方程叫做分式方程.。
甘肃省张掖市临泽县第二中学八年级数学下册3.32(分式加减)课件(二)北师大版

布置作业
P77——1,2,3,4 P86——4
3
x
1
; 3
解:原式= x 3 x2 9
x3 x2 9
=
x3x3 6
x2 9
x2 9
3、 1 1 ; a2 4 a 2
解: 原式
1a 2
a2 4
a a2
1 4
练习提高
4、用两种方法计算: ( 3x
x x2 4 )
x2 x2 x
1 x3 x 3 x2 9
11
(4)
, a2 4 a 2
解: 1 1 a2 4 a2 4
a
1
2
a
a2
2a
2
a2 a2 4
练习提高
1、异分母的分式相加减,先通分,化为同分母的分式, 然后再按同分母分式的加减法法则进行计算。
2、
x
1
解:(1)原计划修建需
1120 天
实际修建需
x
1120 天
x 10
(2)实际修建比原计划缩短了
1120 x
1120 x 10
11200
xx 10
(天)
课时小节
这节课在上节课的基础上,进一步学习了
异分母的分式加减法,使我们对分式的加减法有了一个比较清楚的 了解。
知道异分母分式相加减的法则,那就是:先通分,化为同分母的分式,
y 6y3 2x 12xy2
x 4x2 3y2 12xy2
(2) x
5
y
,
八年级数学下册《3.4 分式方程》教案(1) 北师大版

《3.4 分式方程(1)》教案中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。
一、教材分析:本节课讲的是中国书法艺术主要是为了提高学生对书法基础知识的掌握,让学生开始对书法的入门学习有一定了解。
书法作为中国特有的一门线条艺术,在书写中与笔、墨、纸、砚相得益彰,是中国人民勤劳智慧的结晶,是举世公认的艺术奇葩。
早在5000年以前的甲骨文就初露端倪,书法从文字产生到形成文字的书写体系,几经变革创造了多种体式的书写艺术。
1、教学目标:使学生了解书法的发展史概况和特点及书法的总体情况,通过分析代表作品,获得如何欣赏书法作品的知识,并能作简单的书法练习。
2、教学重点与难点:(一)教学重点了解中国书法的基础知识,掌握其基本特点,进行大量的书法练习。
(二)教学难点:如何感受、认识书法作品中的线条美、结构美、气韵美。
3、教具准备:粉笔,钢笔,书写纸等。
4、课时:一课时二、教学方法:要让学生在教学过程中有所收获,并达到一定的教学目标,在本节课的教学中,我将采用欣赏法、讲授法、练习法来设计本节课。
(1)欣赏法:通过幻灯片让学生欣赏大量优秀的书法作品,使学生对书法产生浓厚的兴趣。
(2)讲授法:讲解书法文字的发展简史,和形式特征,让学生对书法作进一步的了解和认识,通过对书法理论的了解,更深刻的认识书法,从而为以后的书法练习作重要铺垫!(3)练习法:为了使学生充分了解、认识书法名家名作的书法功底和技巧,请学生进行局部临摹练习。
三、教学过程:(一)组织教学让学生准备好上课用的工具,如钢笔,书与纸等;做好上课准备,以便在以下的教学过程中有一个良好的学习气氛。
(二)引入新课,通过对上节课所学知识的总结,让学生认识到学习书法的意义和重要性!(三)讲授新课1、在讲授新课之前,通过大量幻灯片让学生欣赏一些优秀的书法作品,使学生对书法产生浓厚的兴趣。
2、讲解书法文字的发展简史和形式特征,让学生对书法作品进一步的了解和认识通过对书法理论的了解,更深刻的认识书法,从而为以后的书法练习作重要铺垫!A书法文字发展简史:①古文字系统甲古文——钟鼎文——篆书早在5000年以前我们中华民族的祖先就在龟甲、兽骨上刻出了许多用于记载占卜、天文历法、医术的原始文字“甲骨文”;到了夏商周时期,由于生产力的发展,人们掌握了金属的治炼技术,便在金属器皿上铸上当时的一些天文,历法等情况,这就是“钟鼎文”(又名金文);秦统一全国以后为了方便政治、经济、文化的交流,便将各国纷杂的文字统一为“秦篆”,为了有别于以前的大篆又称小篆。
北师大版八下分式方程word教案3篇

课题:3.3.1 分式的加减法(一)教学目标:(一)教学知识点1.同分母的分式的加减法的运算法则及其应用.2.简单的异分母的分式相加减的运算.(二)能力训练要求1.经历用字母表示数量关系的过程,发展符号感.2.会进行同分母分式的加减运算和简单的异分母分式的加减运算,并能类比分数的加减运算,得出同分母分式的加减法的运算法则,发展有条理的思考及其语言表达能力.(三)情感与价值观要求1.从现实情境中提出问题,提高“用数学”的意识.2.结合已有的数学经验,解决新问题,获得成就感以及克服困难的方法和勇气. 教学重点:1.同分母的分式加减法.2.简单的异分母的分式加减法.. 教学难点:当分式的分子是多项式时的分式的减法.教学过程:教学补充一、创设问题,引入新课[师]上一节我们学习了分式的乘除法运算法则,学会了分式乘除法的运算,这节课我们先来看下面的问题:问题一:某人用电脑录入汉字文稿的效率相当于手抄的3倍,设他手抄的速度为a 字/时,那么他录入3000字文稿比手抄少用多少时间?问题二:从甲地到乙地有两条路,每条路都是3 km ,其中第一条路是平路,第二条路有1km 的上坡路,2 km 的下坡路。
小丽在上坡路的骑车速度为v km/h ,在平路上的骑车问题一解:问题二(1)解: (1) (2) (3) 二.、讲授新课(一).同分母的加减法想一想(会分数的加减,就会分式的加减)1、同分母分数加减法的法则是什么?2、你认为3、猜一猜, 同分母的分式应该如何加减?【同分母的分数加减法的法则】同分母的分数相加减,分母不变,分子相加减.【同分母的分式加减法的法则】同分母的分式相加减,?5251:=+如课题:3.3.2 分式的加减法(二)教学目标:(一)教学知识点1.异分母的分式加减法的法则.2.分式的通分.(二)能力训练要求1.经历异分母分式的加减运算和通分的过程,训练学生的分式运算能力,培养数学学习中转化未知问题为已知问题的能力.2.进一步通过实例发展学生的符号感.(三)情感与价值观要求1.在学生已有数学经验的基础上,探求新知,从而获得成功的快乐2.提高学生“用数学”意识.教学重点:1.掌握异分母的分式加减运算.2.理解通分的意义.教学难点:1.化异分母分式为同分母分式的过程.2.符号法则、去括号法则的应用.教学过程:教学补充一、复习引入【异分母的分式加减的法则】先通分,把异分母分式化为同分母的分式,然后再按同分母分式的加减法法则进行计算。
甘肃省张掖市临泽县第二中学八年级数学下册《分式》课件 北师大版

解集相同,则
0≤ 3 2x ≤1. 5
2x 1 2
x6 3Leabharlann 23x 83
3
x 1 4
x
1
1 2
2x 6 3x 2
2
3(
x
1)
1
x
1
8
4
5a 1 3(a 1)
1 2
a
1
7
3 2
a
一 判断下列各分式中x取什么值时,分式的 值为0?x取什么值时,分式无意义
x2 (x 3)(1 x)
6.已知关于x的不等式(3a-2)x+2<3
的解集是x>- 1 ,则a=___
4
解下列不等式
1
4 3
x-4(1-x)<32( 6
x-2).
x
a 2
已8.知若不a等<式0,组则2不x3等1 的1x 解 a3集的为解x>集2是,则a=
x a
若不等式组 3x 1 0
4 3x 5
与不等式组
x a x b
甲、乙两人各走14千米,甲比乙早
半小时走完全程.已知甲与乙速度 的比为8∶7,求两人的速度各是多 少?
1 x 3 2
x2
x 2 x 2 25
二 化简
2x 6 (x 3) x2 x 6
4 4x x2
3 x
3 x (x 2 5 )
2x 4
x2
(x2 1)( 1 1 1) x 1 x 1
1
2
3
1 y2 1 2y y2 1 2y y2
车间有甲、乙两个小组,甲组的工作率 比乙组的高25%,因此甲组加工2000个 零件所用的时间比乙组加工1800个零件 所用的时间还少30分钟,问两组每小时 各加工多少零件?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.41 分式方程(一)教案总体说明本节共三个课时,它分为分式方程的认知,分式方程的解答,以及分式方程在实际问题中的应用。
彼此之间由浅入深。
是“实际问题——分式方程建模——求解——解释解的合理性”过程。
本章在前面几节陆续介绍了分式,分式的乘除,分式的加减,为本节解分式方程打下了扎实的基础。
同时应注意对学生进行过程性评价,要延迟评价学生运算的熟练程度,允许学生经过一定时间达到《标准》要求的目标,把评价重点放在对算理的理解上。
一、学生知识状况分析学生的知识技能基础:学生在小学以及七年级学过解应用题,以及在本章第三节所讲述的分式加减时所引入的问题的提出及问题的解答。
对实际问题进行建模有初步地了解,具备分析问题,处理问题的能力。
学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些问题建模活动,解决了一些简单的现实问题,感受到找出问题等量关系的作用。
获得了解决实际问题所必须的一些数学活动经验基础。
同时在以前的数学学习中学生已经经历了很多合作学习的经验,具备了一定的合作与交流的能力。
二、教学任务分析教学时要有意识地进一步提高学生的阅读理解能力,鼓励学生从多角度思考问题,解释所获得结果的合理性。
对于常用的数量关系,虽然学生以前大都接触过,但在本节的教学中仍要注意复习、总结,并抓住用两个已知量表示第三个量的表达式,引导学生举一反三,进一步提高分析问题与解决问题的能力。
为此,本课时的教学目标是:知识与技能:(1)通过对实际问题的分析,感受分式方程刻画现实世界的有效模型的意义。
(2)通过观察,归纳分式方程的概念。
(3)体会到分式方程作为实际问题的模型,能够根据实际问题建立分式方程的数学模型,并能归纳出分式方程的描述性定义。
过程与方法:采用的是尝试——归纳相结合的方法,根据开始提出的多个实际问题。
教师鼓励学生进行尝试,利用具体情境中的等量关系列出分式方程,归纳出分式方程的定义。
情感与态度:在建立分式方程的数学模型的过程中培养能力和克服困难的勇气,并从中获得成就感,提高解决问题的能力。
三、教学过程分析本节课设计了6教学环节:小麦实验田问题——高速公路问题——电脑网络培训问题——捐款问题——管理问题——课时小节。
第一环节 小麦实验田问题活动内容有两块面积相同的小麦试验田,第一块使用原品种,第二块使用新品种,分别收获小麦9000kg 和15000kg 。
已知第一块试验田每公顷的产量比第二块少3000kg ,分别求出这两块试验田每公顷的产量。
你能找出这一问题中的所有等量关系吗?如果设第一块实验田每公顷的产量为x k g ,那么第二块试验田每公顷的产量是___________kg.根据题意,可得方程:_______________________________________________活动目的为了让学生经历从实际问题抽象、概括分式方程这一“数学化”的过程,体会分式方程的模型在解决实际生活问题中作用,设置了这么一个例题,关键是引导学生努力寻找问题中的所有等量关系,发展学生分析问题、解决问题的能力。
教学效果:在第一问中,同学们七嘴八舌,得到了许多等量关系。
1、第一块实验田的面积=第二块实验田的面积。
2、每公顷的产量土地面积总产量=。
3、第一块实验田每公顷的产量=+kg 3000第二块试验田每公顷的产量。
感觉到每人都能想一点,但都不全。
第三问得到也有多种方案。
例1、3000150009000+=x x ,2、1500030009000+=x x 这时教师就应适时引导9000,9000x x ,300015000+x ,150003000+x 每步的实际意义是什么?这样帮学生排除了第二种形式。
第二环节 高速公路问题活动内容从甲地到乙地有两条长路:一条是全长600km 的普通公路,另一条是全长480km 的高速公路。
某客车在高速公路上行驶的平均速度比在普通公路上快45h km /,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间。
这一问题中有哪些等量关系?如果设客车由高速公路从甲地到乙地所需的时间为 xh ,那么它由普通公路从甲地到乙地所需的时间为 _________________h 。
根据题意,可得方程_______________________________________________-活动目的再次让学生经历从实际问题抽象、概括分式方程这一“数学化”的过程,体会分式方程的模型作用,设置了这么一个例题,关键是引导学生努力寻找问题中的所有等量关系,发展学生分析问题、解决问题的能力。
教学效果:这次讨论的声音比第一次要少些,可能感觉比上一题容易。
找出的等量关系有(1)600km=客车在普通公路上行驶的平均速度⨯客车由普通公路从甲地到乙地的时间。
(2)480 km=客车在高速公路上行驶的平均速度⨯客车由高速公路从甲地到乙地的时间。
(3)客车在高速公路上行驶的平均速度减去客车在普通公路上行驶的平均速度h km /45=(4)由高速公路从甲地到乙地的时间⨯=21由普通公路从甲地到乙地的时间。
同样注意引导学生每一步的实际意义。
第三环节 电脑网络培训问题活动内容王军同学准备在课外活动时间组织部分同学参加电脑网络培训,按原定的人数估计共需费用300元。
后因人数增加到原定人数的2倍,费用享受了优惠,一共只需要480元,参加活动的每个同学平均分摊的费用比原计划少4元,原定的人数是多少?这一问题中有哪些等量关系?如果设原定是x 人,那么每人平均分摊______________元。
人数增加到原定人数的2倍后,每人平均分摊_________________元。
根据题意,可得方程_______________________________________________-.活动目的由浅入深,出了一道比上题难度大一点的问题。
还是为了训练学生找出问题中的所有等量关系,发展学生分析问题、解决问题的能力。
教学效果:这次学生讨论的声音又大了点,找出了如下的等量关系(1) 实际参加活动的人数=原定人数2⨯。
(2) 原计划每个同学平均分摊的费用=实际每个同学平均分摊的费用+4元。
根据题意:xx 2480300=4+第四环节 捐款问题这个题目不要求学生讨论。
让学生独立完成。
活动内容为了帮助遭受自然灾害的地区重建家园。
某学校号召同学们自愿捐款。
已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款恰好相等。
如果设第一次捐款人数为x 人,那么x 满足怎样的方程?活动目的这次让学生独立思考,不再借助别人的力量。
根据前面几题的练习,看同学们对找等量关系到底掌握了多少。
特别关注那些后进生。
以便及时调整教学进度。
教学效果:这次不允许讨论,学生花的时间比上二题多些。
当然有的学生还是反应很快,还有一部分学生则花了有5分钟的时间。
在这个班,说明学生之间的差异还是很大的。
第五环节管理问题活动内容某商场有管理人员40人,销售人员80人,为了提高服务水平和销售量,商场决定从管理人员中抽调一部分人充实销售部分,使管理人员与销售人员的人数比为1:4,那么应抽调的管理人员数x满足怎样的方程?活动目的这个例题还是采取独立思考的原则,主要是针对刚才教师发现上一题做慢,做错的同学。
努力引导他们找到问题中的等量关系。
教学效果:再次提醒刚才做错的和做的很慢的同学。
让他们找到等量关系。
由于我的提醒和同学们的注意力高度集中,从检查的效果来看,比上一次大有进步。
第六环节课时小节活动内容对于一个现实问题⇒找到它的等量关系⇒建立分式方程分母中含有未知数的方程叫做分式方程同时注意每一步的实际意义。
活动目的让学生感受到在实际问题中,一定要找到它的等量关系,最好是越多越好。
根据等量关系来列方程,这个方程不是唯一的,今天的分式方程就是以前没有接触过的。
同时培养学生有条理的思考及其语言表达能力。
教学效果:小节最好由同学们讨论,再派代表来叙述。
而不是让老师说。
教师只是顺势把学生的话进行一个归纳。
关注学生从现实生活中发现并提出数学问题的能力,关注学生能否尝试用不同方法寻求问题中数量关系,并用分式方程表示,能否表达自己解决问题的过程。
大家基本都知道核心是找到等量关系,从而找到它的方程。
布置作业:P87——随堂练习第一题P88——习题3.6——1,2,3四、教学反思1、教材只是为教师提供最基本的教学素材,教师完全可以根据学生的实际情况进行适当调整。
这些问题的提出要根据本班学生的实际情况,学生能力强的,就要找一些难度大的。
学生能力弱的,就要找一些难度小的。
还可以因势利导的编一些与同学们生活息息相关的例子。
当然,这些问题的提出都必须以现实生活为背景。
不要出一些与实际生活不符的纯理论问题。
2、课堂上要把激发学生学习的积极性放在首位,多让学生说,帮助学生培养发展有条理的思考及其语言表达能力。
同时要多注意困难学生的疑问。
不要让一些思维活跃的学生的回答代替了其他同学的思考。
使小组学习更有实效性。
3、列分式方程解决应用问题要比列一次方程(组)稍复杂一些。
教学是要引导学生抓住寻找等量关系,恰当选设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量等关键环节,细心分析问题中的数量关系。
一定要在这方面多花时间,要让你“会”转化为学生“会”。
只要学生脑子里有分析这种问题的“意识”这节课才有收获。