单管放大器、负反馈放大器的研究
负反馈放大电路的实验报告

负反馈放大电路的实验报告负反馈放大电路的实验报告引言负反馈放大电路是电子工程领域中常见的一种电路结构,它通过将一部分输出信号反馈到输入端,以达到提高电路性能的目的。
本实验旨在通过搭建负反馈放大电路并进行实验验证,深入理解负反馈放大电路的原理和应用。
实验原理负反馈放大电路是通过将一部分输出信号反馈到输入端,形成一个反馈回路,从而改变电路的输入-输出关系。
其中最常见的一种负反馈方式是电压负反馈,它通过将输出电压与输入电压之间的差异进行放大,从而实现对电路增益的调节。
实验步骤1. 准备实验所需的电路元件和仪器设备,包括放大器、电阻、电容等。
2. 根据实验要求,搭建负反馈放大电路。
3. 连接信号源和示波器,确保电路正常工作。
4. 调节放大器的参数,如增益和带宽,观察输出信号的变化。
5. 测量并记录实验数据,包括输入信号的幅值、输出信号的幅值、增益等。
6. 对实验结果进行分析和总结,验证负反馈放大电路的性能。
实验结果与分析通过实验我们得到了一系列实验数据,并进行了分析和总结。
首先,我们观察到在负反馈放大电路中,输出信号的幅值相对于输入信号的幅值有所减小。
这是因为负反馈放大电路通过将一部分输出信号反馈到输入端,降低了电路的增益,从而实现了对信号的调节。
其次,我们还观察到在负反馈放大电路中,输出信号的频率响应更加平坦。
这是因为负反馈放大电路通过反馈回路,降低了电路的频率响应,使其更加稳定。
这对于一些需要稳定输出信号的应用场景非常重要。
此外,我们还发现负反馈放大电路可以提高电路的线性度。
通过调节反馈回路的参数,我们可以使输出信号更加接近输入信号,从而减小非线性失真。
这对于音频放大器等需要高保真度的应用非常重要。
结论通过本次实验,我们深入理解了负反馈放大电路的原理和应用。
负反馈放大电路通过将一部分输出信号反馈到输入端,实现了对电路增益、频率响应和线性度的调节。
这种电路结构在电子工程领域中具有广泛的应用,如音频放大器、运算放大器等。
模电实验(附答案)

实验一 晶体管共射极单管放大器一、实验目的1.学会放大器静态工作点的调式方法和测量方法。
2.掌握放大器电压放大倍数的测试方法及放大器参数对放大倍数的影响。
3.熟悉常用电子仪器及模拟电路实验设备的使用。
二、实验原理图2—1为电阻分压式工作点稳定单管放大器实验电路图。
偏置电阻R B1、R B2组成分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。
当在放大器的输入端加入输入信号后,在放大器的输出端便可得到一个与输入信号相位相反、幅值被放大了的输出信号,从而实现了电压放大。
三、实验设备1、 信号发生器2、 双踪示波器3、 交流毫伏表4、 模拟电路实验箱5、 万用表四、实验内容1.测量静态工作点实验电路如图1所示,它的静态工作点估算方法为:U B ≈211B B CCB R R U R +⨯图1 共射极单管放大器实验电路图I E =EBEB R U U -≈Ic U CE = U CC -I C (R C +R E )实验中测量放大器的静态工作点,应在输入信号为零的情况下进行。
1)没通电前,将放大器输入端与地端短接,接好电源线(注意12V 电源位置)。
2)检查接线无误后,接通电源。
3)用万用表的直流10V 挡测量U E = 2V 左右,如果偏差太大可调节静态工作点(电位器RP )。
然后测量U B 、U C ,记入表1中。
表1测 量 值计 算 值U B (V ) U E (V ) U C (V ) R B2(K Ω) U BE (V ) U CE (V ) I C (mA ) 2.627.2600.65.22B2所有测量结果记入表2—1中。
5)根据实验结果可用:I C ≈I E =EER U 或I C =C C CC R U U -U BE =U B -U EU CE =U C -U E计算出放大器的静态工作点。
2.测量电压放大倍数各仪器与放大器之间的连接图关掉电源,各电子仪器可按上图连接,为防止干扰,各仪器的公共端必须连在一起后接在公共接地端上。
单管放大器实验报告实验总结

竭诚为您提供优质文档/双击可除单管放大器实验报告实验总结篇一:单管放大电路实验报告单管放大电路一、实验目的1.掌握放大电路直流工作点的调整与测量方法;2.掌握放大电路主要性能指标的测量方法;3.了解直流工作点对放大电路动态特性的影响;4.掌握射极负反馈电阻对放大电路特性的影响;5.了解射极跟随器的基本特性。
二、实验电路实验电路如图2.1所示。
图中可变电阻Rw是为调节晶体管静态工作点而设置的。
三、实验原理1.静态工作点的估算将基极偏置电路Vcc,Rb1和Rb2用戴维南定理等效成电压源。
开路电压Vbb?Rb2Vcc,内阻Rb1?Rb2Rb?Rb1//Rb2则IbQ?Vbb?VbeQRb?(??1)(Re1?Re2),IcQ??IbQVceQ?Vcc?(Rc?Re1?Re2)IcQ可见,静态工作点与电路元件参数及晶体管β均有关。
在实际工作中,一般是通过改变上偏置电阻Rb1(调节电位器Rw)来调节静态工作点的。
Rw调大,工作点降低(IcQ 减小),Rw调小,工作点升高(IcQ增加)。
一般为方便起见,通过间接方法测量IcQ,先测Ve,IcQ?IeQ?Ve/(Re1?Re2)。
2.放大电路的电压增益与输入、输出电阻?u???(Rc//RL)Ri?Rb1//Rb2//rbeRo?Rcrbe式中晶体管的输入电阻rbe=rbb′+(β+1)VT/IeQ ≈rbb′+(β+1)×26/IcQ(室温)。
3.放大电路电压增益的幅频特性放大电路一般含有电抗元件,使得电路对不同频率的信号具有不同的放大能力,即电压增益是频率的函数。
电压增益的大小与频率的函数关系即是幅频特性。
一般用逐点法进行测量。
测量时要保持输入信号幅度不变,改变信号的频率,逐点测量不同频率点的电压增益,以各点数据描绘出特性曲线。
由曲线确定出放大电路的上、下限截止频率fh、fL和频带宽度bw=fh-fL。
需要注意,测量放大电路的动态指标必须在输出波形不失真的条件下进行,因此输入信号不能太大,一般应使用示波器监视输出电压波形。
模拟电子技术实验内容的设计要求及设计方法

模拟电子技术实验内容的设计要求及设计方法实验一单管放大电路一.实验目的1.熟悉放大电路的基本工作原理。
掌握静态工作点Q,电压放大倍数Au,输入电阻ri,输出电阻ro的测量方法。
2.熟悉电路参数变化对静态工作点的影响及放大电路的频率特性的测量方法。
3.学习各类仪器的使用方法。
实验时间4小时。
二.设计一个静态工作点稳固的单管放大电路设计要求:静态工作点Uce=6V Ic=2mA 电源电压Vc=12V1.选取Rb1,Rb2,Rc,Re,C1,C2,Ce2.电压放大倍数空载Au= =100~150倍有载Au= =50~75倍三.实验内容1.测静态工作点Uce Ic。
2.测动态参数:加输入信号电压Us=50-100mV f=1KHz正弦波。
用示波器观察输出波形Uo,在不失确实条件下用晶体管毫伏表测量:Us Ui Uo UolUo—不加负载Rl时输出电压Uol—加负载Rl时输出电压3. 计算:Au= Uo/ Ui (无载)Au’= Uol/ Ui (有载)ro=(Uo/Uol-1) Rl四.深入的内容1.信号源的频率1KHz,Us保持不变,定性观察Rb1.Rc.RL的变化对静态工作点的影响,对Au与波形失确实影响,条件分别如下:(a)Rb1变化时,Rc、RL保持原先的数值不变。
(b)Rc变化时,Rb1、RL保持原先的数值不变。
(c)RL变化时,Rb1、Rc保持原先的数值不变。
2.测量电路的幅频特性幅频特性是指输入信号的频率与输出电压的关系曲线。
保持信号源Us的幅度不变,改变信号源Us的频率f,用晶体管毫伏表测量输出电压Uol。
五.设计与实验方法1.在设计静态工作点稳固的放大电路参数时应保证满足I2≥10Ib,Vb≥(3-5)Ube条件。
2.在做实验之前做好准备工作:检查每一根导线是否导通;检查三极管的好坏;测量各电阻的阻值,检查可调电阻(100K的电位器)的阻值是否可调,注意测量电阻的阻值时不能在电路里测量电阻,更不能在电路通电的状态下测量电阻;检查电容的好坏,可用万用表电容挡测量各电容的电容值,大容量的电容(电解电容)可用万用表电阻挡测量其充放电的过程,有充放电的过程说明电容是好的;检查学习机上的电源是否是12V;用示波器检查信号发生器是否输出正弦信号。
负反馈放大电路实验报告

模拟电路实验实验报告负反馈放大电路负反馈放大器一、实验目得K进一步了解负反愦放大器性能得影响。
2、进一步掌握放大器性能指标得测量方法。
实验设备1•示波器2・函数信号发生器3 •交流毫伏表4 •直流稳压电源一只5.万用表6.实验箱二、实验原理放大器中采用负反馈,在降低放大倍数得同时,可以使放大器得某些性能大大改善。
所谓负反馈,就就是以某种方式从输出端取出信号,再以一定方式加到输入回路中。
若所加入得信号极性与原输入倍号极性相反,则就是负反馈。
根据取岀信号极性与加入到输入回路得方式不同,反馈可分为四类:串联电压反馈、串联电流反馈、并联电圧反馈与并联电流反馈。
如图3 7所示。
从网络方框图来瞧,反馈得这四种分类使得基本放大网络与反馈网络得联接在输入、输从实际电路来瞧,反馈信号若直接加到输入端,就是并联反惯,否则就是串联反馈,反馈信号若直接取自输出电压,就是电压反馈,否则就是电流反馈。
1、负反馈时输入、输出阻抗得影响负反馈对输入、输出阻抗得影响比较复杂,不同得反馈形式,对阻抗得影响也不一样,一般而言■凡就是并联负反馈,其输入阻抗降低:凡就是串联负反馈,其输入阻抗升高;设主网络得输入电阻为Ri,则串联负反惯得输入电阻为R^={1+FA V)Ri设主网络得输入电阻为R。
,电压负反馈放大器得输出电阻为R O F可见,电压串联负反馈放大器得输入电阻增大(1+AvF)倍,而输出电阻则下降到V(l+AvF)2、负反馈放大倍数与稳定度负反馈使放大器得净输入信号有所减小,因而使放大器增益下降,但却改善了放大性能. 提髙了它得稳定性。
反惯放大倍数为A沪(Ay为开环放大倍数)反馈放大倍数稳崔度与无反馈放大器放大倍数稳定度有如下关系:式中Avf /Avf称负反馈放大器放大倍数得稳世度。
称无反馈时得放大器放大倍数得稳定度。
可见,负反惯放大器比无反馈放大器放大倍数提高了(1+ A V F)倍。
3、负反馈可扩展放大器得通频带。
4、负反馈可减小输出信号得非线性失真三.实验内容、步骤及结果:K调整静态工作点,按图3—2接线。
负反馈放大器实验报告

负反馈放大器【实验目的】1、 加深负反馈对放大器工作性能影响的认识。
2、 掌握负反馈放大器性能指标的测试方法。
【实验仪器】双踪示波器、低频信号发生器、万用表、直流稳压电源 【实验原理】 1、 基本概念及分类负反馈放大器就是采用了负反馈措施(即将输出信号的部分或全部通过反馈网络送回输入端,以消弱原输入信号)的放大器。
负反馈放大器有电压串联、电压并联、电流串联和电流并联四种基本组态。
如图1所示的方框图有:图 1 负反馈放大器方框图01f f x A A x AF==+ 1B AF =+B 称为反馈深度。
当1D时,1f A F≈2、 负反馈放大器对性能的影响 (1)放大倍数的稳定性提高11f fA AA AF A∆∆=•+ (2)通频带扩展为原有的(1+AF )倍。
(3)减少非线性失真及抑制噪声。
(4)对输入、输出电阻的影响。
串联负反馈输入电阻增加,并联负反馈输入电阻减小;电压负反馈输出电阻减小,电流负反馈输出电阻减少,电流负反馈输出电阻增大。
【实验内容及步骤】 实验电路如图2所示:图 2 负反馈放大器实验电路1、 调整各级静态工作点2、 测量负反馈对放大倍数稳定性的影响(1) 测量基本放大器放大倍数的变化量。
(2) 测量负反馈放大器放大倍数的变化量。
(3) 计算相对变化量。
3、 观测负反馈放大器扩展通频带的作用。
4、 测量负反馈对输入电阻的影响。
【数据记录】实验数据记录在表1中:表格 1【数据分析与处理】由记录的数据可以看出,有反馈时:6.25%21.587A A ∆== 无反馈时:203046.58%A A ∆== 可见增益稳定性提高了,但并不理想,考虑到实验条件,示波器显示不准,读数有误差应为主要原因。
【总结】由这次试验可明显得到以下结论: 1、 引入负反馈会牺牲增益;2、引入负反馈后增益的稳定性提高了;3、引入负反馈能大大扩宽通频带;4、引入负反馈能增大输入电阻。
负反馈放大电路实验报告总结

负反馈放大电路实验报告总结
负反馈放大电路是一种能够有效提高放大器性能的电路。
通过引入反馈信号,可以减小放大器的非线性失真、提高增益稳定性和频带宽度等。
本次实验中,我们通过搭建简单的负反馈放大电路,验证了负反馈的作用和效果。
实验步骤:
首先搭建一个基本的放大电路,包括一个晶体管、电源、输入信号和输出装置。
然后,在电路中引入一个反馈回路,将输出信号与输入信号进行比较,从而控制放大器的增益。
最后调节反馈回路的参数,观察放大器的性能变化。
实验结果:
通过实验,我们发现负反馈放大电路能够有效提高放大器的性能。
在没有反馈时,放大器的增益较高,但存在非线性失真和频带受限等问题。
而在引入反馈信号后,放大器的增益减小,但失真程度明显降低,频带宽度也得到了扩展。
我们还观察到反馈回路的参数对放大器性能的影响。
当反馈电阻较小,反馈信号影响较小,放大器的增益仍然较高;当反馈电阻较大,反馈信号影响较大,放大器的增益显著减小。
因此,在实际应用中,需要根据具体情况选择合适的反馈回路参数。
总结:
负反馈放大电路是一种简单有效的电路,对于提高放大器的性能具有重要作用。
实验中,我们通过搭建电路、调节参数等方式,验证了负反馈的作用和效果,并发现了反馈回路参数对放大器性能的影响。
这对于我们在实际应用中设计和优化电路具有重要的指导意义。
第五章放大器中的负反馈

例1设计一个负反馈放大器,要求闭环放大倍数Af=100,当开环 放大倍数A变化±10%时,Af的相对变化量在±0.5%以内,试确 定开环放大倍数A及反馈系数kf值。 解 因为
∆Af 1 ∆A = Af 1 + Ak f A ∆A / A 10% F = 1 + Ak f ≥ = = 20 ∆Af / Af 0.5% A Af = 1 + Ak f
由图(b)可知, 由于输出电压vo波形上大下小, vf波形自然也是上 大下小, 而v'i=vi-vf,相减的结果使得v'i波形变成上小下大, 通常称基 本放大器输入信号v'i的失真为预失真。 而这种预失真的信号经过放大后, 可以得到接近于不失真的信 号。 这里需要指出的是,必须在保持相同输出电压的情况下, 这种 比较才有意义。为此必须在负反馈放大器前增加一级或数级放大器 来提高输入信号vi, 这正是为减小非线性失真所付出的代价。 反馈放大器的非线性失真之所以减小, 是因为基本放大器输入 , 端得到了预失真的信号, 而这正是因为输出电压有非线性失真的缘 故。从上面分析来看, 要想使输出电压绝对不失真是不可能的。
电压并联负反馈
(a) 电压串联负反馈; (b) 电流并联负反馈; (c) 电压并联负反馈; (d) 电流串联负反馈
R2:电压并联负反馈 RE:直流电流串联负反馈
VCC RB C1 + 反馈网络 + . v′i RE . vf Rof RC . ic + C2
. vi
RL
电流串联负反馈
VCC RB C1 + + . v′i RE + C2 vf . RL + . vo -
电压反馈 电流反馈
Rof → 0 Rof → ∞
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单级放大器、负反馈放大器的研究
一、实验目的
1、巩固常用电子仪器的使用方法和所学的理论 2、掌握放大器静态工作点的测量方法
3、掌握放大器的Au 、Ri 、R0、通频带的测量方法 二、实验工作原理
如图1所示的分压偏置电路
(1)、V V EQ
3~1= , (2)
、V EQ =I EQ R E (3)、I EQ ≈I CQ =
E
EQ R V
(4)、BQ I R R Vcc
I )105(2
11-=+=
(5)、
L R Rc )5~1(=、
(6)、i
l L U i U u u K u u K 000
,==
(7)、低频放大器输入阻抗Ri 的测量 图1 共射放大器
如图2示,在信号源和放大器之间加入已知的电阻R ,R=1K ,分别测出us 和ui,由
i R =
i
i i u =
R
u u u i s i -=R u u u i s i -,故i R =R
u u u i
s i
-
图2 输入阻抗的测量图
(8)、低频放大器输出阻抗RO 的测量
如图3示,o L O L ol u R R R u +=
,则O R =(1-ol
o u u
)RL
图3 输入阻抗测量图
三、实验内容
1.线路说明 如图4所示,将实验箱中三极管放大器部分的B1-B3、C -C ’、E -F 相连,构成单级放大器形式;将实验箱中三极管放大器部分的B1-B3、C -C ’相连,构成负反馈放大器形式。
R 是为测放大器的输入阻抗而设。
图4 实验线路图
2.静态工作点的调试 调节RP1,用万用表的直流电压档测V EQ ,分别使V EQ =1.5V 、1.6V 、1.7 V ,并测出V BQ ,V CQ ,算出V BEQ 、V CEQ ,根据关系式V EQ =I EQ R E ,算出I EQ ,又根据I CQ ≈I EQ ,求得I CQ ,完成表1
3、电压放大倍数的测量
(1).基本放大器电压放大倍数的测量
将实验箱中三极管放大器部分的B1-B3、C -C ’、 E -F 相连,接成单级放大器形式。
调节信号源使其输出有效值ui =10mv 左右,f=1kHz 。
YB1602信号源调节过程:首先将信号发生器的幅度旋钮旋至最小,仔细慢慢向右调节,用晶体管毫伏表(档位置:30 mv/div )(或用数字万用表的交流电压档)测量得信号的有效值为10mv,若一直超过10 mv,那么将衰减开关置于20dB(相当于衰减了10倍),再仔细调节直到使ui=10 mv 左右。
DDS 信号源调节过程:开机默认f=1kHz ,选中“幅度”,输入数字10,按“mVrm ”按钮。
将信号加至放大器的输入端
u i , 用示波器监测输出端的波形,用晶体管毫伏表(置于
3v/div 处)测量输出端的电压uo=? ( uo 是指负载R L 断开时的输出电压, uol 是指负载R L
接入时的输出电压)。
将负载接入电路即连接D -L1,RL =2K,并测量l u 0,并记录l u 0=?根据
i
l L U i U u u K u u K 000
0,==
可求得0U K 和L U K 0,完成表2。
⑵.负反馈放大器电压放大倍数的测量
去掉短接EF 两点短接线,基本放大器就变成负反馈放大器。
重复3.(1)测量过程,记录相应的Uo'、Uol',计算出Kuo'、Kuol',完成表3
4.放大器输出阻抗的测量:
⑴.基本放大器输出阻抗的测量: 根据表2的数据,再由O R =(
1-ol
o
u u )RL ,可求得Ro ,将其填入表2相应的位置。
⑵.负反馈放大器的输出阻抗的测量:
根据表3的数据,再由O R =(1-ol
o
u u )RL ,可求得R /o ,将其填入表3相应的位置。
5.输入阻抗的测量 (1).基本放大器输入阻抗的测量
将实验箱中三极管放大器部分的B1-B3、C -C ’、 E -F 相连,接成单级放大器形式。
将信号(us=10mv 左右、f=1kHZ) 加至放大器的输入端u s ,此时用晶体管毫伏表测出i u ,根据 i R =
R u u u i
s i
- ,计算Ri ,完成表4
基本放大器输入阻抗表4
⑵.负反馈放大器输入电阻的测量
去掉短接EF两点短接线,基本放大器接成负反馈放大器形式,重复5.(1)测量过程,完成表5。
负反馈放大器输入电阻表5
四、实验器材
五、实验要求
复习书中有关单管放大器及负反馈放大器的内容。