2019-2020年八年级数学下册 22.9平面图形的镶嵌同步练习 冀教版

合集下载

数学22.9《平面图形的镶嵌》课件2(冀教版八年级下)

数学22.9《平面图形的镶嵌》课件2(冀教版八年级下)
22.9 • 平面图形的镶嵌
好漂亮的地板!这 是怎么铺设的?一点空 隙也没有.
我们经常能见到各种建筑物的地 板,观察地板,就能发现地板常用各 种正多边形地砖铺砌成美丽的图案
用一些形状、大小完全相 同的一种或几种平面图形进行 拼接,彼此之间不留空隙,不 重叠地把平面的一部分完全覆 盖,这就是平面图形的镶 嵌.(也叫平面图形的密铺)
∠1+∠2+∠3=?
(4)用边长相同的正六边形能否镶嵌? 结论:用边长相同的正六边形可以镶嵌
பைடு நூலகம்一想
镶嵌平面图案需要的什么条件?
拼接在同一个点的各个角的和 恰好等于360度
13 2
要用几个形状、大小完全相同 的图形不留空隙、不重叠地镶 嵌一个平面,需使得拼接点处 的各角之和为360°.
你还能找到能镶嵌的其他正多边形吗?
要用正多边形镶嵌成一个平面的关键是看:这 种正多边形的一个内角的倍数是否是360°, 在正多边形里,正三角形的每个内角都是 60°,正四边形的每个内角都是90°,正六 边形的每个内角都是120°,这三种多边形的 一个内角的倍数都是360°,而其他的正多边 形的每个内角的倍数都不是360°,所以说: 在正多边形里只有正三角形、正四边形、正六 边形可以镶嵌,而其他的正多边形不可镶嵌.
想做一做
剪出一些形状、大小完全相同 的任意三角形纸板,拼拼看,它们 能否镶嵌成平面图案?
问题 剪出一些形状、大小完全相同 的任意四边形纸板,拼拼看,它 们能否镶嵌成平面图案?
问题
如果用其中两种正多变形镶嵌,哪 两种正多变形能镶嵌成平面图案?
我们可以利用多边形设计一些美丽的 图案.
2
1
3
3
4 13
注意:各种图形拼接后要既 无缝隙,又不重叠

冀教版八年级数学下册第22章测试题及答案

冀教版八年级数学下册第22章测试题及答案

冀教版八年级数学下册第22章测试题及答案22.1 平行四边形的性质一、选择题1.平行四边形不一定具有的性质是()A.对角线互相平分B.对边平行C.对角线互相垂直D.对边相等2.如图,在平行四边形ABCD中,对角线AC,BD交于点O,图中全等三角形有()A.5对B.4对C.3对D.2对(第2题图)(第3题图)3.如图,在平行四边形ABCD中,对角线AC,BC相交于点O,已知△BOC与△AOB的周长之差为3,平行四边形ABCD的周长为26,则BC的长度为()A.5 B.6 C.7 D.84.已知平行四边形ABCD的一条边长是5,则两条对角线的长可能是()A.6和16 B.6和6 C.5和5 D.8和185.将一张平行四边形纸片折一次,使得折痕平分这个平行四边形的面积,则这样的折纸方法有()A.1种B.2种C.3种D.无数种6.在平行四边形ABCD中,若∠A=30°,AB边上的高为8,则BC=()A.B.C.8 D.167.在平行四边形ABCD中,∠A的平分线交BC于点E,若CD=10,AD=16,则EC为()A.10 B.16 C.6 D.138.如图,在平行四边形ABCD中,若∠A=45°,,则AB与CD之间的距离为()A B C D.3(第8题图)(第9题图)(第10题图)9.如图,在平行四边形ABCD中,已知AC=3cm,若△ABC的周长为8cm,则平行四边形的周长为()A.5cm B.10cm C.16cm D.11cm10.如图,已知在平行四边形ABCD中,AB=6,BC=4,若∠B=45°,则平行四边形ABCD的面积为()A.8 B.C.D.24二、填空题11.平行四边形的对角线_________.12.如图,在平行四边形ABCD中,对角线AC,BD交于点O,若AO=4,BO=3,则CO=______,BD=________.(第12题图)(第13题图)(第14题图)13.如图,在平行四边形ABCD中,两条对角线交于点O,有△AOB≌△_______,△AOD≌△_______.14.如图,在平行四边形ABCD中,两条对角线交于点O,若AO=2cm,△ABC的周长为13cm,则平行四边形ABCD的周长为______cm.15.在平行四边形ABCD中,对角线AC,BD交于点O,若△AOB的面积为3,则平行四边形ABCD的面积为______.16.平行四边形的两组对边分别_________.17.夹在两平行线的平行线段_______,夹在两平行线间_______相等.18.在ABCD中,若AB=3cm,AD=4cm,则它的周长为________cm.19.已知平行四边形ABCD的周长为26,若AB=5,则BC=________.20.在平行四边形ABCD中,若AB:BC=2:3,周长为30cm,则AB=______cm,BC=______cm.三、解答题21.如图,在平行四边形ABCD中,AD⊥BD,AD=4,DO=3.(1)求△COD的周长;(2)直接写出Y ABCD 的面积.(第21题图)22.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,M,N在对角线AC上,且AM=CN,求证:BM∥DN.(第22题图)参考答案一、1.C 2.B 3.D 4.B 5.D 6.D 7.C 8.B 9.B 10.B二、11.互相平分12.4,8 13.COD,COB 14.18 15.12 16.相等17.相等,的垂线段18.14 19.8 20.6,9三、21.(1)(2)2422.提示:证△ABM≌△CDN,得∠BMA=∠DNC,于是∠BMN=∠DNM,所以BM∥DN.22.2 平行四边形的判定一.选择题(共6小题)1.如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD的面积为()(第1题图)A.6 B.12 C.20 D.242.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,E、F是对角线AC上的两点,给出下列四个条件:①AE=CF;②DE=BF;③∠ADE=∠CBF;④∠ABE=∠CDF.其中不能判定四边形DEBF 是平行四边形的有()(第2题图)A.0个B.1个C.2个D.3个3.下列说法中错误的是()A.平行四边形的对角线互相平分B.有两对邻角互补的四边形为平行四边形C.对角线互相平分的四边形是平行四边形D.一组对边平行,一组对角相等的四边形是平行四边形4.如图,在四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定四边形ABCD为平行四边形的是()(第4题图)A.AB∥CD,AD∥BC B.OA=OC,OB=ODC.AD=BC,AB∥CD D.AB=CD,AD=BC5.下列不能判定一个四边形是平行四边形的是()A.两组对边分别平行的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.一组对边平行另一组对边相等的四边形是平行四边形D.对角线互相平分的四边形是平行四边形6.在下列条件中,不能确定四边形ABCD为平行四边形的是()A.∠A=∠C,∠B=∠DB.∠A=∠B=∠C=90°C.∠A+∠B=180°,∠B+∠C=180°D.∠A+∠B=180°,∠C+∠D=180°二.填空题(共6小题)7.如图,四边形ABCD的对角线相交于点O,AO=CO,请添加一个条件(只添一个即可),使四边形ABCD是平行四边形.(第7题图)8.如图,已知四边形ABCD,对角线AC,BD交于点O,AB=CD,请添加一个条件(只添一个即可),使四边形ABCD是平行四边形.(第8题图)9.将两块相同的含有30°角的三角尺按如图所示的方式摆放在一起,则四边形ABCD为平行四边形,请你写出判断的依据.(第9题图)10.如图,四边形ABCD中,AB=CD,对角线AC,BD相交于点O,AE⊥BD于点E,CF⊥BD于点F,连接AF,CE,若DE=BF,则下列结论:①CF=AE;②OE=OF;③四边形ABCD是平行四边形:④图中共有四对全等三角形.其中正确结论是(填序号)(第10题图)11.如图,AD∥BC,要使四边形ABCD成为平行四边形还需要添加的条件是(只需写出一个即可)(第11题图)12.如图,在▱ABCD中,E,F是对角线BD上的两点,要使四边形AFCE是平行四边形,则需添加的一个条件可以是.(只添加一个条件)(第12题图)三.解答题(共12小题)13.如图,点E是平行四边形ABCD边CD上的中点,AE、BC的延长线交于点F,连接DF.求证:四边形ACFD为平行四边形.(第13题图)14.在▱ABCD中,∠DAB与∠DCB的角平分线AE,CF分别与对角线BD交于点E与点F,连接AF,CE.求证:四边形AECF是平行四边形.(第14题图)15.如图,在四边形ABCD中,AC、BD相交于点O,O是AC的中点,AB∥DC,AC=10,BD=8.(1)求证:四边形ABCD是平行四边形;(2)若AC⊥BD,求平行四边形ABCD的面积.(第15题图)参考答案一.1.D 2.B 3.B 4.C 5.C 6.D二.7.BO=DO.(答案不唯一)8.AB∥CD或AD=BC(答案不唯一)9.两组对边分別平行的四边形是平行四边形;两组对边分別相等的四边形是平行四边形一组对边平行且相等的四边形是平行四边形(写出一种即可)10.①②③11.AD=BC或AB∥CD 12.BF=DE 三.13.证明:∵在▱ABCD中,AD∥BF.∴∠ADC=∠FCD.∵E为CD的中点,∴DE=CE.在△ADE和△FCE中,,∴△ADE≌△FCE(ASA)∴AD=FC.又∵AD∥FC,∴四边形ACFD是平行四边形.14.证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∠DAB=∠DCB,∴∠ADB=∠DBC.∵AE平分∠DAB,CF平分∠DCB,∴∠DAE=∠DAB,∠BCF=∠DCB,∴∠DAE=∠BCF,∵∠DAE=∠DCF,∠ADB=∠DBC,AD=BC. ∴△DEB≌△BFC,∴AE=CF,∠DEA=∠CFB,∴∠AEF=∠CFE,∴AE∥CF.又∵AE=CF,∴四边形AECF是平行四边形.15.证明:(1)∵AB∥DC,∴∠OAB=∠OCD,∠AOB=∠COD,又∵AO=CO,∴△AOB≌△COD,∴OD=OB,∴四边形ABCD是平行四边形.(2)∵AC⊥BD,∴平行四边形ABCD是菱形,∴平行四边形ABCD的面积为S=AC×BD=40.22.3 三角形的中位线一.选择题1.如图,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=7,则MN的长度为()(第1题图)A.B.2 C.D.32.如图,在△ABC中,AB=AC,E,F分别是BC,AC的中点,以AC为斜边作Rt△ADC,若∠CAD=∠CAB=45°,则下列结论不正确的是()(第2题图)A.∠ECD=112.5°B.DE平分∠FDCC.∠DEC=30°D.AB=CD3.如图,D,E分别是△ABC的边AB,AC上的中点,如果△ADE的周长是6,则△ABC的周长是()(第3题图)A.6 B.12 C.18 D.244.在△ABC中,AB=3,BC=4,AC=2,D、E、F分别为AB、BC、AC中点,连接DF、FE,则四边形DBEF的周长是()(第4题图)A.5 B.7 C.9 D.11二.填空题5.如图,已知在△ABC中,D、E分别是AB、AC的中点,BC=6cm,则DE的长度是cm.(第5题图)6.如图:在△ABC中,AB=13,BC=12,点D,E分别是AB,BC的中点,连接DE,CD,如果DE=2.5,那么△ACD的周长是.(第6题图)7.如图,在△ABC中,∠ACB=60°,AC=1,D是边AB的中点,E是边BC上一点.若DE平分△ABC 的周长,则DE的长是.(第7题图)8.在△ABC中,点E,F分别是边AB,AC的中点,点D在BC边上,连接DE,DF,EF,请你添加一个条件,使△BED与△FDE全等.(第8题图)9.如图,在四边形ABCD中,P是对角线BD的中点,E、F分别是AB、CD的中点,AD=BC,∠FPE=100°,则∠PFE的度数是.(第9题图)10.如图,Rt△ABC中,∠C=90°,BC=6,AC=8,D、E分别为AC、AB的中点,连接DE,则△ADE 的面积是.(第10题图)三.解答题(共12小题)11.如图,已知△ABC中,D为AB的中点.(1)请用尺规作图法作边AC的中点E,并连接DE(保留作图痕迹,不要求写作法);(2)在(1)的条件下,若DE=4,求BC的长.(第11题图)12.如图,已知△ABC,AD平分∠BAC交BC于点D,BC的中点为M,ME∥AD,交BA的延长线于点E,交AC于点F.(1)求证:AE=AF;(2)求证:BE=(AB+AC).(第12题图)13.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3(1)求证:BN=DN;(2)求△ABC的周长.(第13题图)14.如图,在Rt△ABC中,∠C=90°(1)求作:△ABC的一条中位线,与AB交于D点,与BC交于E点,(保留作图痕迹,不写作法)(2)若AC=6,AB=10,连接CD,则DE=,CD=.(第14题图)15.观察探究,完成证明和填空.如图,四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,顺次连接E、F、G、H,得到的四边形EFGH叫中点四边形.(1)求证:四边形EFGH是平行四边形;(2)如图,当四边形ABCD变成等腰梯形时,它的中点四边形是菱形,请你探究并填空:(第15题图)当四边形ABCD变成平行四边形时,它的中点四边形是;当四边形ABCD变成矩形时,它的中点四边形是;当四边形ABCD变成菱形时,它的中点四边形是;当四边形ABCD变成正方形时,它的中点四边形是;(3)根据以上观察探究,请你总结中点四边形的形状由原四边形的什么决定的?16.在△ABC中,AC=BC,∠ACB=90°,点D为AC的中点.(1)如图1,E为线段DC上任意一点,将线段DE绕点D逆时针旋转90°得到线段DF,连接CF,过点F作FH⊥FC,交直线AB于点H.判断FH与FC的数量关系并加以证明;(2)如图2,若E为线段DC的延长线上任意一点,(1)中的其他条件不变,你在(1)中得出的结论是否发生改变,直接写出你的结论,不必证明.(第16题图)参考答案一.1.C 2.C 3.B 4.B二.5.3 6.18 7.8.D是BC的中点9.40°10.6三.11.解:(1)作线段AC的垂直平分线MN交AC于E,点E就是所求的点.(第11题答图)(2)∵AD=DB,AE=EC,∴DE∥BC,DE=BC,∵DE=4,∴BC=8.12.证明:(1)∵DA平分∠BAC,∴∠BAD=∠CAD,∵AD∥EM,∴∠BAD=∠AEF,∠CAD=∠AFE,∴∠AEF=∠AFE,∴AE=AF.(2)作CG∥EM,交BA的延长线于G.∵EF∥CG,∴∠G=∠AEF,∠ACG=∠AFE,∵∠AEF=∠AFE,∴∠G=∠ACG,∴AG=AC,∵EM∥CG,∴=,∵BM=CM,∴BE=EG,∴BE=BG=(BA+AG)=(AB+AC).(第12题答图)13.(1)证明:∵AN平分∠BAC∴∠1=∠2∵BN⊥AN∴∠ANB=∠AND=90°在△ABN和△ADN中,∵,∴△ABN≌△ADN(ASA),∴BN=DN.(2)解:∵△ABN≌△ADN,∴AD=AB=10,又∵点M是BC中点,∴MN是△BDC的中位线,∴CD=2MN=6,故△ABC的周长=AB+BC+CD+AD=10+15+6+10=41.14.解:(1)如答图.(第14题答图)(2)∵DE是△ABC的中位线,∴DE=AC,∵AC=6,∴DE=3,∵AB=10,CD是Rt△斜边上的中线等于斜边的一半,∴CD=5.15.(1)证明:连接BD,如答图.∵E、H分别是AB、AD的中点,∴EH是△ABD的中位线.∴EH=BD,EH∥BD.同理得FG=BD,FG∥BD.∴EH=FG,EH∥FG.∴四边形EFGH是平行四边形.(2)填空依次为平行四边形,菱形,矩形,正方形;(3)中点四边形的形状是由原四边形的对角线的关系决定的.(第15题答图)16.解:(1)FH与FC的数量关系是FH=FC.证明如下:延长DF交AB于点G.由题意,知∠EDF=∠ACB=90°,DE=DF,∴DG∥CB,∵点D为AC的中点,∴点G为AB的中点,且,∴DG为△ABC的中位线,∴.∵AC=BC,∴DC=DG,∴DC﹣DE=DG﹣DF,即EC=FG.∵∠EDF=90°,FH⊥FC,∴∠1+∠CFD=90°,∠2+∠CFD=90°,∴∠1=∠2.∵△DEF与△ADG都是等腰直角三角形,∴∠DEF=∠DGA=45°,∴∠CEF=∠FGH=135°,∴△CEF≌△FGH,∴CF=FH.(2)FH与FC仍然相等.理由:由题意可得出:DF=DE,∴∠DFE=∠DEF=45°,∵AC=BC,∴∠A=∠CBA=45°,∵DF∥BC,∴∠CBA=∠FGB=45°,∴∠FGH=∠CEF=45°,∵点D为AC的中点,DF∥BC,∴DG=BC,DC=AC,∴DG=DC,∴EC=GF,∵∠DFC=∠FCB,∴∠GFH=∠FCE,在△FCE和△HFG中,∴△FCE≌△HFG(ASA),∴HF=FC.(第16题答图)22.4 矩形一.选择题1.如图,将矩形纸片ABCD折叠,使顶点B落在边AD的E点上,折痕FG交BC于G.交AB于F,若∠AEF=30°,则∠FGB的度数为()(第1题图)A.25°B.30°C.35°D.40°2.如图,矩形ABCD的两条对角线相交于点O,∠BOC=120°,BO=4,则矩形的边BC的长是()(第2题图)A.6 B.8 C.6D.43.下列说法正确的是()A.平行四边形对角线相等B.矩形的对角线互相垂直C.菱形的四个角都相等D.菱形的对角线互相垂直平分且平分一组对角4.如图,在矩形ABCD中,M是BC边上一点,连接AM,DM.过点D作DE⊥AM,垂足为E.若DE=DC=1,AE=2EM,则BM的长为()(第4题图)A.1 B.C.D.5.关于特殊四边形对角线的性质,矩形具备而平行四边形不一定具备的是()A.对角线互相平分B.对角线互相垂C.对角线相等D.对角线平分一组对角6.矩形具有下列性质()A.对角线相互垂直B.对角线相等C.一条对角线平分一组对角D.面积等于两条对角线乘积的一半7.如图,点P是矩形ABCD的边AD上的一个动点,矩形的两条边AB、BC的长分别为6和8,那么点P到矩形的两条对角线AC和BD的距离之和是()(第7题图)A.B.C.D.不确定8.如图,在矩形ABCD中,对角线AC,BD交于点E,DF⊥AC于F点,若∠ADF=3∠FDC,则∠DEC 的度数是()(第8题图)A.30°B.45°C.50°D.55°9.检查一个门框(已知两组对边分别相等)是不是矩形,可用的方法是()A.测量两条对角线是否相等B.用重锤线检查竖门框是否与地面垂直C.测量两条对角线是否互相平分D.用曲尺测量两条对角线是否互相垂直10.如图,D,E是△ABC中AB,BC边上的点,且DE∥AC,∠ACB角平分线和它的外角的平分线分别交DE于点G和H.则下列结论错误的是()(第10题图)A.若BG∥CH,则四边形BHCG为矩形B.若BE=CE时,四边形BHCG为矩形C.若HE=CE,则四边形BHCG为平行四边形D.若CH=3,CG=4,则CE=2.511.如图,在矩形COED中,点D的坐标是(1,3),则CE的长是()(第11题图)A.3 B.C.D.4二.解答题12.如图,DB∥AC,DE∥BC,DE与AB交于点F,E是AC的中点.(1)求证:F是AB的中点;(2)若要使DBEA是矩形,则需给△ABC添加什么条件?并说明理由.(第12题图)13.如图,在▱ABCD中,AC=8,BD=12,点E、F在对角线BD上,点E从点B出发以1个单位每秒的速度向点D运动,同时点F从点D出发以相同速度向点B运动,到端点时运动停止,运动时间为t秒.(1)求证:四边形AECF为平行四边形.(2)求t为何值时,四边形AECF为矩形.(第13题图)14.如图,平行四边形ABCD中,AC,BD相交于点O,EF⊥BD于点O,EF分别交AD,BC于点E,F.且AE=EO=DE,那么平行四边形ABCD是否是矩形,为什么?(第14题图)参考答案一.1.B 2.D 3.D 4.D 5.C 6.B 7.C 8.B 9.B 10.C11.C二.12.证明:(1)∵DE∥BC,BD∥AC∴四边形DBCE是平行四边形∴DB=EC,∵E是AC中点∴AE=EC∵AE=EC,AC∥DB∴四边形ADBE是平行四边形∴AF=BF,即F是AB中点.(2)添加AB=BC∵AB=BC,AE=EC∴BE⊥AC∴平行四边形DBEA是矩形.13.证明:在▱ABCD中,∵AD∥BC,AD=BC,∴∠EBC=∠ADF,由题意知,BE=DF,在△BEC与△DFC中,,∴△BEC≌△DFC(SAS),∴CE=AF,同理可得AE=CF,∴四边形AECF为平行四边形;(2)当t=2或t=10时以点A,C,E,F为顶点的四边形为矩形;(第13题答图)理由:由矩形的性质知OE=OF、OA=OC,要使∠EAF是直角,只需OE=OF=OA=AC=4cm.则∠1=∠2,∠3=∠4,∵∠1+∠2+∠3+∠4=180°,∴2∠2+2∠3=180°,∴∠2+∠3=90°即∠EDF=90°.此时BE=DF=(BD﹣EF)=(12﹣8)=2cm或BE=DF=12﹣2=10cm14.解:平行四边形ABCD是矩形.如图所示,取DE的中点G,连接OG,∵EF⊥BD,∴Rt△DOE中,OG=DE=EG=DG,∵AE=EO=DE,∴EO=OG=EG,∴△OEG是等边三角形,∴∠AEO=∠DGO=120°,又∵AE=DG,OE=OG,∴△AOE≌△DOG,∴AO=DO,又∵四边形ABCD是平行四边形,∴AC=2AO=2DO=BD,∴平行四边形ABCD是矩形.(第14题答图)22.5 菱形一.选择题(共6小题)1.如图,菱形ABCD中,对角线AC,BD相交于点O,若AB=5,AC=6,则BD的长是()(第1题图)A.8 B.7 C.4 D.32.如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为()(第2题图)A.24 B.18 C.12 D.93.如图,菱形ABCD的对角线AC、BD的长分别为6和8,则这个菱形的周长是()(第3题图)A.20 B.24 C.40 D.484.如图,菱形ABCD的对角线AC,BD相交于点O,AC=10,BD=24,则菱形ABCD的周长为()(第4题图)A.52 B.48 C.40 D.205.菱形不具备的性质是()A.四条边都相等B.对角线一定相等C.是轴对称图形D.是中心对称图形二.填空题6.如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥AD于点E,交BC于点F,则EF的长为.(第6题图)7.如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AH⊥BC于点H,连接OH,若OB=4,S菱形ABCD=24,则OH的长为.(第7题图)8.如图,点E、F、G分别在菱形ABCD的边AB,BC,AD上,AE=AB,CF=CB,AG=AD.已知△EFG的面积等于6,则菱形ABCD的面积等于.(第8题图)9.如图,在菱形OABC中,点B在x轴上,点A的标为(2,3),则点C的坐标为.(第9题图)10.已知一个菱形的边长为2,较长的对角线长为2,则这个菱形的面积是.三.解答题(共11小题)11.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,且AB=2.(1)求菱形ABCD的周长;(2)若AC=2,求BD的长.(第11题图)12.如图,在平行四边形ABCD中,P是对角线BD上的一点,过点C作CQ∥DB,且CQ=DP,连接AP、BQ、PQ.(1)求证:△APD≌△BQC;(2)若∠ABP+∠BQC=180°,求证:四边形ABQP为菱形.(第12题图)13.如图,在▱ABCD中,E,F分别是AD,BC上的点,且DE=BF,AC⊥EF.求证:四边形AECF是菱形.(第13题图)14.如图,已知A、F、C、D四点在同一条直线上,AF=CD,AB∥DE,且AB=DE.(1)求证:△ABC≌△DEF;(2)若EF=3,DE=4,∠DEF=90°,请直接写出使四边形EFBC为菱形时AF的长度.(第14题图)15.如图,在▱ABCD中,作对角线BD的垂直平分线EF,垂足为O,分别交AD,BC于E,F,连接BE,DF.求证:四边形BFDE是菱形.(第15题图)参考答案一.1.A 2.A 3.A 4.A 5.B二.6.7.3 8.27 9.(2,﹣3)10.2.三.11.解:(1)∵四边形ABCD是菱形,AB=2,∴菱形ABCD的周长为:8;(2)∵四边形ABCD是菱形,AC=2,AB=2∴AC⊥BD,AO=1,∴BO=,∴BD=212.(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠ADB=∠DBC,∵CQ∥DB,∴∠BCQ=∠DBC,∴∠ADB=∠BCQ∵DP=CQ,∴△ADP≌△BCQ.(2)证明:∵CQ∥DB,且CQ=DP,∴四边形CQPD是平行四边形,∴CD=PQ,CD∥PQ,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴AB=PQ,AB∥PQ,∴四边形ABQP是平行四边形,∵△ADP≌△BCQ,∴∠APD=∠BQC,∵∠APD+∠APB=180°,∴∠ABP=∠APB,∴AB=AP,∴四边形ABQP是菱形.13.证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵DE=BF,∴AE=CF,∵AE∥CF,∴四边形AECF是平行四边形,∵AC⊥EF,∴四边形AECF是菱形.14.(1)证明:∵AB∥DE,∴∠A=∠D,∵AF=CD,∴AF+FC=CD+FC,即AC=DF,∵AB=DE,∴△ABC≌△DEF.(2)如图,连接EB交AD于O.在Rt△EFD中,∵∠DEF=90°,EF=3,DE=4,∴DF==5,∵四边形EFBC是菱形,∴BE⊥CF,∴EO==,∴OF=OC==,∴CF=,∴AF=CD=DF﹣FC=5﹣=.15.证明:∵在▱ABCD中,O为对角线BD的中点,∴BO=DO,∠EDB=∠FBO,在△EOD和△FOB中,,∴△DOE≌△BOF(ASA);∴OE=OF,又∵OB=OD,∴四边形EBFD是平行四边形,∵EF⊥BD,∴四边形BFDE为菱形.22.6 正方形一.选择题(共5小题)1.如图,在正方形ABCD中,A、B、C三点的坐标分别是(﹣1,2)、(﹣1,0)、(﹣3,0),将正方形ABCD向右平移3个单位,则平移后点D的坐标是()(第1题图)A.(﹣6,2)B.(0,2)C.(2,0)D.(2,2)2.关于▱ABCD的叙述,正确的是()A.若AB⊥BC,则▱ABCD是菱形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是正方形3.下列说法中,正确的是()A.两条直线被第三条直线所截,内错角相等B.对角线相等的平行四边形是正方形C.相等的角是对顶角D.角平分线上的点到角两边的距离相等4.如图,边长分别为4和8的两个正方形ABCD和CEFG并排放在一起,连结BD并延长交EG于点T,交FG于点P,则GT=()(第4题图)A.B.2C.2 D.15.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为()(第5题图)A.16 B.17 C.18 D.19二.填空题(共3小题)6.如图,正方形ABCD的边长为1,点A与原点重合,点B在y轴的正半轴上,点D在x轴的负半轴上,将正方形ABCD绕点A逆时针旋转30°至正方形AB'C′D′的位置,B'C′与CD相交于点M,则点M的坐标为.(第6题图)7.在平行四边形ABCD中,对角线AC与BD相交于点O,要使四边形ABCD是正方形,还需添加一组条件.下面给出了四组条件:①AB⊥AD,且AB=AD;②AB=BD,且AB⊥BD;③OB=OC,且OB⊥OC;④AB=AD,且AC=BD.其中正确的序号是.8.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确的序号是(把你认为正确的都填上).(第8题图)三.解答题(共4小题)9.已知点E为正方形ABCD的边AD上一点,连接BE,过点C作CN⊥BE,垂足为M,交AB于点N.(1)求证:△ABE≌△BCN;(2)若N为AB的中点,求tan∠ABE.(第9题图)10.如图,在正方形ABCD中,AF=BE,AE与DF相交于点O.(1)求证:△DAF≌△ABE;(2)求∠AOD的度数.(第10题图)11.如图,等边△AEF的顶点E,F在矩形ABCD的边BC,CD上,且∠CEF=45°.求证:矩形ABCD是正方形.(第11题图)12.如图,E是正方形ABCD对角线BD上的一点,求证:AE=CE.(第12题图)参考答案一.1.B 2.C 3.D 4.B 5.B二.6.(﹣1,)7.①③④8.①②④三.9.(1)证明:∵四边形ABCD为正方形∴AB=BC,∠A=∠CBN=90°,∠1+∠2=90°∵CM⊥BE,∴∠2+∠3=90°∴∠1=∠3在△ABE和△BCN中∴△ABE≌△BCN(ASA);(2)∵N为AB中点,∴BN=AB又∵△ABE≌△BCN,∴AE=BN=AB在Rt△ABE中,tan∠ABE═.10.(1)证明:∵四边形ABCD是正方形,∴∠DAB=∠ABC=90°,AD=AB,在△DAF和△ABE中,,∴△DAF≌△ABE(SAS),(2)由(1)知,△DAF≌△ABE,∴∠ADF=∠BAE,∵∠ADF+∠DAO=∠BAE+∠DAO=∠DAB=90°,∴∠AOD=180°﹣(∠ADF+DAO)=90°.11.解:∵四边形ABCD是矩形,∴∠B=∠D=∠C=90°,∵△AEF是等边三角形,∴AE=AF,∠AEF=∠AFE=60°,∵∠CEF=45°,∴∠CFE=∠CEF=45°,∴∠AFD=∠AEB=180°﹣45°﹣60°=75°,∴△AEB≌△AFD(AAS),∴AB=AD,∴矩形ABCD是正方形.12.证明:∵四边形ABCD是正方形,∴AB=CB,∠ABE=∠CBE,在△ABE和△CBE中,,∴△ABE≌△CBE(SAS),∴AE=CE.22.7 多边形的内角和与外角和一.选择题1.一个正多边形的每一个外角都等于30°,则这个多边形的边数是()A.6 B.8 C.9 D.122.如图,小林从P点向西直走12米后,向左转,转动的角度为α,再走12米,如此重复,小林共走了108米回到点P,则α﹣5的值是()(第2题图)A.35°B.40°C.50°D.不存在3.如图,在四边形ABCD中,∠ABC与∠BCD的平分线的交点E恰好在AD边上,则∠BEC=()(第3题图)A.∠A+∠D﹣45°B.(∠A+∠D)+45°C.180°﹣(∠A+∠D)D.∠A+∠D4.如图,五边形ABCDE中,AE∥BC,则∠C+∠D+∠E的度数为()(第4题图)A.180°B.270°C.360°D.450°5.一个多边形的内角和等于360°,它是()A.四边形B.五边形C.六边形D.七边形6.如果某多边形的每个内角的大小都是其相邻外角的3倍,那么这个多边形是()A.六边形B.八边形C.正六边形D.正八边形7.下列角度中,不能成为多边形内角和的是()A.460°B.540°C.900°D.1260°8.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°9.若一个多边形的外角和与它的内角和相等,则这个多边形是()边形.A.三B.四C.五D.六10.四边形的四个内角可以都是()A.锐角B.直角C.钝角D.以上答案都不对二.11.如图,小明从点O出发,前进5m后向右转15°,再前进5m后又向右转15°,…这样一直下去,直到他第一次回到出发点O为止,他所走的路径构成了一个多边形.小明一共走了米?这个多边形的内角和是度?(第11题图)12.一个正多边形的每个内角等于108°,则它的边数是.13.在图中,x的值为.(第13题图)14.如图,∠1+∠2+∠3+∠4+∠5+∠6=.(第14题图15.如图所示是三个边长相等的正多边形拼成的无缝隙、不重叠的图形的一部分,正多边形①和②的内角都是108°,则正多边形③的边数是.(第15题图)三.解答题(共3小题)16.如图,五角星的顶点为A、B、C、D、E,求∠A+∠B+∠C+∠D+∠E的度数?(第16题图)17.如图,在四边形ABCD中,AD∥BC,连接BD,点E在BC边上,点F在DC边上,且∠1=∠2.(1)求证:EF∥BD;(2)若DB平分∠ABC,∠A=130°,∠C=70°,求∠CFE的度数.(第17题图)18.解答题:(第18题图)(1)如图①,△ABC的内角∠ABC的平分线与外角∠ACD的平分线相交于P点,请探究∠P与∠A的关系,并说明理由.(2)如图②③,四边形ABCD中,设∠A=α,∠D=β,∠P为四边形ABCD的内角∠ABC与外角∠DCE 的平分线所在直线相交而形成的锐角.请利用(1)中的结论完成下列问题:①如图②,若α+β>180°,求∠P的度数.(用α,β的代数式表示)②如图③,若α+β<180°,请在图③中画出∠P,并直接写出∠P=.(用α,β的代数式表示)(作图2分,写出结果)参考答案一.1.D 2.A 3.D 4.C 5.A 6.B 7.A 8.C 9.B 10.B 二.11.120;3960 12.五13.135 14.360°15.10三.16.解:如答图.由三角形的外角性质,得∠1=∠A+∠C,∠2=∠B+∠D,∵∠1+∠2+∠E=180°,∴∠A+∠B+∠C+∠D+∠E=180°.(第16题答图)17.解:(1)如答图.(第17题答图)∵AD∥BC(已知),∴∠1=∠3(两直线平行,内错角相等).∵∠1=∠2,∴∠3=∠2(等量代换).∴EF∥BD(同位角相等,两直线平行).(2)解:∵AD∥BC(已知),∴∠ABC+∠A=180°(两直线平行,同旁内角互补).∵∠A=130°(已知),∴∠ABC=50°.∵DB平分∠ABC(已知),∴∠3=∠ABC=25°.∴∠2=∠3=25°.∵在△CFE中,∠CFE+∠2+∠C=180°(三角形内角和定理),∠C=70°,∴∠CFE=85°.18.解:(1)如答图1中,结论:2∠P=∠A.(第18题答图)理由:∵∠PCD=∠P+∠PBC,∠ACD=∠A+∠ABC,∵P点是∠ABC和外角∠ACD的角平分线的交点,∴2∠PCD=∠ACD,2∠PBC=∠ABC,∴2(∠P+∠PBC)=∠A+∠ABC,2∠P+2∠PBC=∠A+∠ABC,2∠P+∠ABC=∠A+∠ABC,∴2∠P=∠A;(2)①如答图2中,解法一:由四边形内角和定理得,∠BCD=360°﹣∠A﹣∠D﹣∠ABC,∴∠DCE=180°﹣(360°﹣∠A﹣∠D﹣∠ABC)=∠A+∠D+∠ABC﹣180°,由三角形的外角性质得,∠DCE=∠A+∠D+∠ABC,∠PCE=∠P+∠PBC,∵BP、CP分别是∠ABC和∠DCE的平分线,∴∠PBC=∠ABC,∠PCE=∠DCE,∴∠P+∠PBC=(∠A+∠D+∠ABC﹣180°)=(∠A+∠D)+∠ABC﹣90°,∴∠P=(∠A+∠D)﹣90°,∵∠A=α,∠D=β,∴∠P=(α+β)﹣90°;解法二:延长BA交CD的延长线于点F.∵∠F=180°﹣∠FAD﹣∠FDA=180°﹣(180°﹣α)﹣(180°﹣β)=α+β﹣180°,由(1)可知,∠P=∠F,∴∠P=(α+β)﹣90°;②如图3,延长AB交DC的延长线于F.∵∠F=180°﹣α﹣β,∠P=∠F,∴∠P=(180°﹣α﹣β)=90°﹣α﹣β。

平面图形的镶嵌(修改)-教学设计(冀教)

平面图形的镶嵌(修改)-教学设计(冀教)

冀教版八年级下册22.9平面图形的镶嵌故城县聚龙中学秦玉晨22.9平面图形的镶嵌故城县聚龙中学秦玉晨一、教学目标:知识与技能:理解镶嵌的意义,探索平面图形的镶嵌,知道任意一个三角形、四边形或正六边形可以镶嵌平面,并能运用这几种图形进行简单的镶嵌设计.过程与方法:通过动手实践、自主探索与合作交流,鼓励学生勇于探究、敢想敢说,挖掘学生的创造性思维.情感态度与价值观:本节课以拼图为主题、快乐为主线,让学生在轻松愉悦的氛围中感受镶嵌的美妙,获得成功的体验.教学重点:理解镶嵌的意义,探索镶嵌的条件.教学难点:正多边形是否能够进行镶嵌的原因.通过以学生为主体:动手操作、合作交流;教师为主导:媒体演示、适时点拨,突出重点、突破难点.二、教法与学法《新课标》指出:动手实践、自主探索与合作交流是学生学习数学的重要方式;让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程.《新课标》还指出:教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会.应帮助学生在自主探索与合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验.因此,我确定了如下教法、学法:一、自主式探索尝试法即以学生自主探究为主,把课堂真正还给学生,给他们搭建动手实践的平台,给他们创造合作探究的机会,让学生充分体验学习的过程,感受求知的乐趣.二、引导式探索发现法即以教师师启发引导为辅,在学生需要时,利用教具、多媒体等为学生提供必要的指点和帮助,最大限度地调动学生学习的积极性和主动性.三、教学过程:根据本节课学生探究活动的需要,课前让各学习小组准备: (1)全等的三角形纸片8—10张; (2)全等的四边形纸片8—10张; (3)全等的正六边形纸片3张; (4)全等的正五边形纸片4张; (5)全等的正八边形3张; (6)课后练习中图(1)、图(2)形状各8张.本环节由学生操作、观察后,在独立思考的基础上同桌交流,然后找代表发言,从而引出课题——平面图形的镶嵌,并给出镶嵌的定义2、用三种正多边形镶嵌的图案;3、用菱形和六边形镶嵌的图案;4、不规则图形镶嵌图案欣赏让学生畅谈收获与困惑,以及遇到问题时的解决方法,反思本节课的所学所感四、教学设计构想说明德国教育学家第斯惠说过:“教学的艺术不在于传授本领,而在于激励、唤醒和鼓舞”.学生的想象力和创造力是无限的,本节课我大胆放开学生,让他们课前精心的准备,课上专心的参与,力求给学生创造人人参与数学活动的机会,让每个学生都享受到学习的快乐;同时,不失时机地给予学生鼓励、赞扬和肯定,从而挖掘他们学习的潜能,增强他们学习的信心.本节课,我将始终关注学生能否在老师的引导下,积极主动地按所给的条件进行思考、探究,能否在活动中大胆尝试并表达自己的想法.既关注学生对“双基”的理解和掌握,更关注他们的学习过程和在数学活动中表现出来的情感与态度. 通过对学生的反馈信息分析、判断,及时对课堂教学进行调控,如:及时激励启迪、明辨是非;及时调节节奏、难度等,这样通过变换教法、学法,不仅使教与学更加和谐地发展,也有助于老师从中总结出经验教训,以改进自己的教学,找到努力的方向.。

冀教版八年级数学下册第22章测试题及答案

冀教版八年级数学下册第22章测试题及答案

冀教版八年级数学下册第22章测试题及答案22.1 平行四边形的性质一、选择题1.平行四边形不一定具有的性质是()A.对角线互相平分B.对边平行C.对角线互相垂直D.对边相等2.如图,在平行四边形ABCD中,对角线AC,BD交于点O,图中全等三角形有()A.5对B.4对C.3对D.2对(第2题图)(第3题图)3.如图,在平行四边形ABCD中,对角线AC,BC相交于点O,已知△BOC与△AOB的周长之差为3,平行四边形ABCD的周长为26,则BC的长度为()A.5 B.6 C.7 D.84.已知平行四边形ABCD的一条边长是5,则两条对角线的长可能是()A.6和16 B.6和6 C.5和5 D.8和185.将一张平行四边形纸片折一次,使得折痕平分这个平行四边形的面积,则这样的折纸方法有()A.1种B.2种C.3种D.无数种6.在平行四边形ABCD中,若∠A=30°,AB边上的高为8,则BC=()A.B.C.8 D.167.在平行四边形ABCD中,∠A的平分线交BC于点E,若CD=10,AD=16,则EC为()A.10 B.16 C.6 D.138.如图,在平行四边形ABCD中,若∠A=45°,,则AB与CD之间的距离为()A B C D.3(第8题图)(第9题图)(第10题图)9.如图,在平行四边形ABCD中,已知AC=3cm,若△ABC的周长为8cm,则平行四边形的周长为()A.5cm B.10cm C.16cm D.11cm10.如图,已知在平行四边形ABCD中,AB=6,BC=4,若∠B=45°,则平行四边形ABCD的面积为()A.8 B.C.D.24二、填空题11.平行四边形的对角线_________.12.如图,在平行四边形ABCD中,对角线AC,BD交于点O,若AO=4,BO=3,则CO=______,BD=________.(第12题图)(第13题图)(第14题图)13.如图,在平行四边形ABCD中,两条对角线交于点O,有△AOB≌△_______,△AOD≌△_______.14.如图,在平行四边形ABCD中,两条对角线交于点O,若AO=2cm,△ABC的周长为13cm,则平行四边形ABCD的周长为______cm.15.在平行四边形ABCD中,对角线AC,BD交于点O,若△AOB的面积为3,则平行四边形ABCD的面积为______.16.平行四边形的两组对边分别_________.17.夹在两平行线的平行线段_______,夹在两平行线间_______相等.18.在ABCD中,若AB=3cm,AD=4cm,则它的周长为________cm.19.已知平行四边形ABCD的周长为26,若AB=5,则BC=________.20.在平行四边形ABCD中,若AB:BC=2:3,周长为30cm,则AB=______cm,BC=______cm.三、解答题21.如图,在平行四边形ABCD中,AD⊥BD,AD=4,DO=3.(1)求△COD的周长;(2)直接写出Y ABCD 的面积.(第21题图)22.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,M,N在对角线AC上,且AM=CN,求证:BM∥DN.(第22题图)参考答案一、1.C 2.B 3.D 4.B 5.D 6.D 7.C 8.B 9.B 10.B二、11.互相平分12.4,8 13.COD,COB 14.18 15.12 16.相等17.相等,的垂线段18.14 19.8 20.6,9三、21.(1)(2)2422.提示:证△ABM≌△CDN,得∠BMA=∠DNC,于是∠BMN=∠DNM,所以BM∥DN.22.2 平行四边形的判定一.选择题(共6小题)1.如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD的面积为()(第1题图)A.6 B.12 C.20 D.242.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,E、F是对角线AC上的两点,给出下列四个条件:①AE=CF;②DE=BF;③∠ADE=∠CBF;④∠ABE=∠CDF.其中不能判定四边形DEBF 是平行四边形的有()(第2题图)A.0个B.1个C.2个D.3个3.下列说法中错误的是()A.平行四边形的对角线互相平分B.有两对邻角互补的四边形为平行四边形C.对角线互相平分的四边形是平行四边形D.一组对边平行,一组对角相等的四边形是平行四边形4.如图,在四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定四边形ABCD为平行四边形的是()(第4题图)A.AB∥CD,AD∥BC B.OA=OC,OB=ODC.AD=BC,AB∥CD D.AB=CD,AD=BC5.下列不能判定一个四边形是平行四边形的是()A.两组对边分别平行的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.一组对边平行另一组对边相等的四边形是平行四边形D.对角线互相平分的四边形是平行四边形6.在下列条件中,不能确定四边形ABCD为平行四边形的是()A.∠A=∠C,∠B=∠DB.∠A=∠B=∠C=90°C.∠A+∠B=180°,∠B+∠C=180°D.∠A+∠B=180°,∠C+∠D=180°二.填空题(共6小题)7.如图,四边形ABCD的对角线相交于点O,AO=CO,请添加一个条件(只添一个即可),使四边形ABCD是平行四边形.(第7题图)8.如图,已知四边形ABCD,对角线AC,BD交于点O,AB=CD,请添加一个条件(只添一个即可),使四边形ABCD是平行四边形.(第8题图)9.将两块相同的含有30°角的三角尺按如图所示的方式摆放在一起,则四边形ABCD为平行四边形,请你写出判断的依据.(第9题图)10.如图,四边形ABCD中,AB=CD,对角线AC,BD相交于点O,AE⊥BD于点E,CF⊥BD于点F,连接AF,CE,若DE=BF,则下列结论:①CF=AE;②OE=OF;③四边形ABCD是平行四边形:④图中共有四对全等三角形.其中正确结论是(填序号)(第10题图)11.如图,AD∥BC,要使四边形ABCD成为平行四边形还需要添加的条件是(只需写出一个即可)(第11题图)12.如图,在▱ABCD中,E,F是对角线BD上的两点,要使四边形AFCE是平行四边形,则需添加的一个条件可以是.(只添加一个条件)(第12题图)三.解答题(共12小题)13.如图,点E是平行四边形ABCD边CD上的中点,AE、BC的延长线交于点F,连接DF.求证:四边形ACFD为平行四边形.(第13题图)14.在▱ABCD中,∠DAB与∠DCB的角平分线AE,CF分别与对角线BD交于点E与点F,连接AF,CE.求证:四边形AECF是平行四边形.(第14题图)15.如图,在四边形ABCD中,AC、BD相交于点O,O是AC的中点,AB∥DC,AC=10,BD=8.(1)求证:四边形ABCD是平行四边形;(2)若AC⊥BD,求平行四边形ABCD的面积.(第15题图)参考答案一.1.D 2.B 3.B 4.C 5.C 6.D二.7.BO=DO.(答案不唯一)8.AB∥CD或AD=BC(答案不唯一)9.两组对边分別平行的四边形是平行四边形;两组对边分別相等的四边形是平行四边形一组对边平行且相等的四边形是平行四边形(写出一种即可)10.①②③11.AD=BC或AB∥CD 12.BF=DE 三.13.证明:∵在▱ABCD中,AD∥BF.∴∠ADC=∠FCD.∵E为CD的中点,∴DE=CE.在△ADE和△FCE中,,∴△ADE≌△FCE(ASA)∴AD=FC.又∵AD∥FC,∴四边形ACFD是平行四边形.14.证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∠DAB=∠DCB,∴∠ADB=∠DBC.∵AE平分∠DAB,CF平分∠DCB,∴∠DAE=∠DAB,∠BCF=∠DCB,∴∠DAE=∠BCF,∵∠DAE=∠DCF,∠ADB=∠DBC,AD=BC. ∴△DEB≌△BFC,∴AE=CF,∠DEA=∠CFB,∴∠AEF=∠CFE,∴AE∥CF.又∵AE=CF,∴四边形AECF是平行四边形.15.证明:(1)∵AB∥DC,∴∠OAB=∠OCD,∠AOB=∠COD,又∵AO=CO,∴△AOB≌△COD,∴OD=OB,∴四边形ABCD是平行四边形.(2)∵AC⊥BD,∴平行四边形ABCD是菱形,∴平行四边形ABCD的面积为S=AC×BD=40.22.3 三角形的中位线一.选择题1.如图,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=7,则MN的长度为()(第1题图)A.B.2 C.D.32.如图,在△ABC中,AB=AC,E,F分别是BC,AC的中点,以AC为斜边作Rt△ADC,若∠CAD=∠CAB=45°,则下列结论不正确的是()(第2题图)A.∠ECD=112.5°B.DE平分∠FDCC.∠DEC=30°D.AB=CD3.如图,D,E分别是△ABC的边AB,AC上的中点,如果△ADE的周长是6,则△ABC的周长是()(第3题图)A.6 B.12 C.18 D.244.在△ABC中,AB=3,BC=4,AC=2,D、E、F分别为AB、BC、AC中点,连接DF、FE,则四边形DBEF的周长是()(第4题图)A.5 B.7 C.9 D.11二.填空题5.如图,已知在△ABC中,D、E分别是AB、AC的中点,BC=6cm,则DE的长度是cm.(第5题图)6.如图:在△ABC中,AB=13,BC=12,点D,E分别是AB,BC的中点,连接DE,CD,如果DE=2.5,那么△ACD的周长是.(第6题图)7.如图,在△ABC中,∠ACB=60°,AC=1,D是边AB的中点,E是边BC上一点.若DE平分△ABC 的周长,则DE的长是.(第7题图)8.在△ABC中,点E,F分别是边AB,AC的中点,点D在BC边上,连接DE,DF,EF,请你添加一个条件,使△BED与△FDE全等.(第8题图)9.如图,在四边形ABCD中,P是对角线BD的中点,E、F分别是AB、CD的中点,AD=BC,∠FPE=100°,则∠PFE的度数是.(第9题图)10.如图,Rt△ABC中,∠C=90°,BC=6,AC=8,D、E分别为AC、AB的中点,连接DE,则△ADE 的面积是.(第10题图)三.解答题(共12小题)11.如图,已知△ABC中,D为AB的中点.(1)请用尺规作图法作边AC的中点E,并连接DE(保留作图痕迹,不要求写作法);(2)在(1)的条件下,若DE=4,求BC的长.(第11题图)12.如图,已知△ABC,AD平分∠BAC交BC于点D,BC的中点为M,ME∥AD,交BA的延长线于点E,交AC于点F.(1)求证:AE=AF;(2)求证:BE=(AB+AC).(第12题图)13.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3(1)求证:BN=DN;(2)求△ABC的周长.(第13题图)14.如图,在Rt△ABC中,∠C=90°(1)求作:△ABC的一条中位线,与AB交于D点,与BC交于E点,(保留作图痕迹,不写作法)(2)若AC=6,AB=10,连接CD,则DE=,CD=.(第14题图)15.观察探究,完成证明和填空.如图,四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,顺次连接E、F、G、H,得到的四边形EFGH叫中点四边形.(1)求证:四边形EFGH是平行四边形;(2)如图,当四边形ABCD变成等腰梯形时,它的中点四边形是菱形,请你探究并填空:(第15题图)当四边形ABCD变成平行四边形时,它的中点四边形是;当四边形ABCD变成矩形时,它的中点四边形是;当四边形ABCD变成菱形时,它的中点四边形是;当四边形ABCD变成正方形时,它的中点四边形是;(3)根据以上观察探究,请你总结中点四边形的形状由原四边形的什么决定的?16.在△ABC中,AC=BC,∠ACB=90°,点D为AC的中点.(1)如图1,E为线段DC上任意一点,将线段DE绕点D逆时针旋转90°得到线段DF,连接CF,过点F作FH⊥FC,交直线AB于点H.判断FH与FC的数量关系并加以证明;(2)如图2,若E为线段DC的延长线上任意一点,(1)中的其他条件不变,你在(1)中得出的结论是否发生改变,直接写出你的结论,不必证明.(第16题图)参考答案一.1.C 2.C 3.B 4.B二.5.3 6.18 7.8.D是BC的中点9.40°10.6三.11.解:(1)作线段AC的垂直平分线MN交AC于E,点E就是所求的点.(第11题答图)(2)∵AD=DB,AE=EC,∴DE∥BC,DE=BC,∵DE=4,∴BC=8.12.证明:(1)∵DA平分∠BAC,∴∠BAD=∠CAD,∵AD∥EM,∴∠BAD=∠AEF,∠CAD=∠AFE,∴∠AEF=∠AFE,∴AE=AF.(2)作CG∥EM,交BA的延长线于G.∵EF∥CG,∴∠G=∠AEF,∠ACG=∠AFE,∵∠AEF=∠AFE,∴∠G=∠ACG,∴AG=AC,∵EM∥CG,∴=,∵BM=CM,∴BE=EG,∴BE=BG=(BA+AG)=(AB+AC).(第12题答图)13.(1)证明:∵AN平分∠BAC∴∠1=∠2∵BN⊥AN∴∠ANB=∠AND=90°在△ABN和△ADN中,∵,∴△ABN≌△ADN(ASA),∴BN=DN.(2)解:∵△ABN≌△ADN,∴AD=AB=10,又∵点M是BC中点,∴MN是△BDC的中位线,∴CD=2MN=6,故△ABC的周长=AB+BC+CD+AD=10+15+6+10=41.14.解:(1)如答图.(第14题答图)(2)∵DE是△ABC的中位线,∴DE=AC,∵AC=6,∴DE=3,∵AB=10,CD是Rt△斜边上的中线等于斜边的一半,∴CD=5.15.(1)证明:连接BD,如答图.∵E、H分别是AB、AD的中点,∴EH是△ABD的中位线.∴EH=BD,EH∥BD.同理得FG=BD,FG∥BD.∴EH=FG,EH∥FG.∴四边形EFGH是平行四边形.(2)填空依次为平行四边形,菱形,矩形,正方形;(3)中点四边形的形状是由原四边形的对角线的关系决定的.(第15题答图)16.解:(1)FH与FC的数量关系是FH=FC.证明如下:延长DF交AB于点G.由题意,知∠EDF=∠ACB=90°,DE=DF,∴DG∥CB,∵点D为AC的中点,∴点G为AB的中点,且,∴DG为△ABC的中位线,∴.∵AC=BC,∴DC=DG,∴DC﹣DE=DG﹣DF,即EC=FG.∵∠EDF=90°,FH⊥FC,∴∠1+∠CFD=90°,∠2+∠CFD=90°,∴∠1=∠2.∵△DEF与△ADG都是等腰直角三角形,∴∠DEF=∠DGA=45°,∴∠CEF=∠FGH=135°,∴△CEF≌△FGH,∴CF=FH.(2)FH与FC仍然相等.理由:由题意可得出:DF=DE,∴∠DFE=∠DEF=45°,∵AC=BC,∴∠A=∠CBA=45°,∵DF∥BC,∴∠CBA=∠FGB=45°,∴∠FGH=∠CEF=45°,∵点D为AC的中点,DF∥BC,∴DG=BC,DC=AC,∴DG=DC,∴EC=GF,∵∠DFC=∠FCB,∴∠GFH=∠FCE,在△FCE和△HFG中,∴△FCE≌△HFG(ASA),∴HF=FC.(第16题答图)22.4 矩形一.选择题1.如图,将矩形纸片ABCD折叠,使顶点B落在边AD的E点上,折痕FG交BC于G.交AB于F,若∠AEF=30°,则∠FGB的度数为()(第1题图)A.25°B.30°C.35°D.40°2.如图,矩形ABCD的两条对角线相交于点O,∠BOC=120°,BO=4,则矩形的边BC的长是()(第2题图)A.6 B.8 C.6D.43.下列说法正确的是()A.平行四边形对角线相等B.矩形的对角线互相垂直C.菱形的四个角都相等D.菱形的对角线互相垂直平分且平分一组对角4.如图,在矩形ABCD中,M是BC边上一点,连接AM,DM.过点D作DE⊥AM,垂足为E.若DE=DC=1,AE=2EM,则BM的长为()(第4题图)A.1 B.C.D.5.关于特殊四边形对角线的性质,矩形具备而平行四边形不一定具备的是()A.对角线互相平分B.对角线互相垂C.对角线相等D.对角线平分一组对角6.矩形具有下列性质()A.对角线相互垂直B.对角线相等C.一条对角线平分一组对角D.面积等于两条对角线乘积的一半7.如图,点P是矩形ABCD的边AD上的一个动点,矩形的两条边AB、BC的长分别为6和8,那么点P到矩形的两条对角线AC和BD的距离之和是()(第7题图)A.B.C.D.不确定8.如图,在矩形ABCD中,对角线AC,BD交于点E,DF⊥AC于F点,若∠ADF=3∠FDC,则∠DEC 的度数是()(第8题图)A.30°B.45°C.50°D.55°9.检查一个门框(已知两组对边分别相等)是不是矩形,可用的方法是()A.测量两条对角线是否相等B.用重锤线检查竖门框是否与地面垂直C.测量两条对角线是否互相平分D.用曲尺测量两条对角线是否互相垂直10.如图,D,E是△ABC中AB,BC边上的点,且DE∥AC,∠ACB角平分线和它的外角的平分线分别交DE于点G和H.则下列结论错误的是()(第10题图)A.若BG∥CH,则四边形BHCG为矩形B.若BE=CE时,四边形BHCG为矩形C.若HE=CE,则四边形BHCG为平行四边形D.若CH=3,CG=4,则CE=2.511.如图,在矩形COED中,点D的坐标是(1,3),则CE的长是()(第11题图)A.3 B.C.D.4二.解答题12.如图,DB∥AC,DE∥BC,DE与AB交于点F,E是AC的中点.(1)求证:F是AB的中点;(2)若要使DBEA是矩形,则需给△ABC添加什么条件?并说明理由.(第12题图)13.如图,在▱ABCD中,AC=8,BD=12,点E、F在对角线BD上,点E从点B出发以1个单位每秒的速度向点D运动,同时点F从点D出发以相同速度向点B运动,到端点时运动停止,运动时间为t秒.(1)求证:四边形AECF为平行四边形.(2)求t为何值时,四边形AECF为矩形.(第13题图)14.如图,平行四边形ABCD中,AC,BD相交于点O,EF⊥BD于点O,EF分别交AD,BC于点E,F.且AE=EO=DE,那么平行四边形ABCD是否是矩形,为什么?(第14题图)参考答案一.1.B 2.D 3.D 4.D 5.C 6.B 7.C 8.B 9.B 10.C11.C二.12.证明:(1)∵DE∥BC,BD∥AC∴四边形DBCE是平行四边形∴DB=EC,∵E是AC中点∴AE=EC∵AE=EC,AC∥DB∴四边形ADBE是平行四边形∴AF=BF,即F是AB中点.(2)添加AB=BC∵AB=BC,AE=EC∴BE⊥AC∴平行四边形DBEA是矩形.13.证明:在▱ABCD中,∵AD∥BC,AD=BC,∴∠EBC=∠ADF,由题意知,BE=DF,在△BEC与△DFC中,,∴△BEC≌△DFC(SAS),∴CE=AF,同理可得AE=CF,∴四边形AECF为平行四边形;(2)当t=2或t=10时以点A,C,E,F为顶点的四边形为矩形;(第13题答图)理由:由矩形的性质知OE=OF、OA=OC,要使∠EAF是直角,只需OE=OF=OA=AC=4cm.则∠1=∠2,∠3=∠4,∵∠1+∠2+∠3+∠4=180°,∴2∠2+2∠3=180°,∴∠2+∠3=90°即∠EDF=90°.此时BE=DF=(BD﹣EF)=(12﹣8)=2cm或BE=DF=12﹣2=10cm14.解:平行四边形ABCD是矩形.如图所示,取DE的中点G,连接OG,∵EF⊥BD,∴Rt△DOE中,OG=DE=EG=DG,∵AE=EO=DE,∴EO=OG=EG,∴△OEG是等边三角形,∴∠AEO=∠DGO=120°,又∵AE=DG,OE=OG,∴△AOE≌△DOG,∴AO=DO,又∵四边形ABCD是平行四边形,∴AC=2AO=2DO=BD,∴平行四边形ABCD是矩形.(第14题答图)22.5 菱形一.选择题(共6小题)1.如图,菱形ABCD中,对角线AC,BD相交于点O,若AB=5,AC=6,则BD的长是()(第1题图)A.8 B.7 C.4 D.32.如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为()(第2题图)A.24 B.18 C.12 D.93.如图,菱形ABCD的对角线AC、BD的长分别为6和8,则这个菱形的周长是()(第3题图)A.20 B.24 C.40 D.484.如图,菱形ABCD的对角线AC,BD相交于点O,AC=10,BD=24,则菱形ABCD的周长为()(第4题图)A.52 B.48 C.40 D.205.菱形不具备的性质是()A.四条边都相等B.对角线一定相等C.是轴对称图形D.是中心对称图形二.填空题6.如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥AD于点E,交BC于点F,则EF的长为.(第6题图)7.如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AH⊥BC于点H,连接OH,若OB=4,S菱形ABCD=24,则OH的长为.(第7题图)8.如图,点E、F、G分别在菱形ABCD的边AB,BC,AD上,AE=AB,CF=CB,AG=AD.已知△EFG的面积等于6,则菱形ABCD的面积等于.(第8题图)9.如图,在菱形OABC中,点B在x轴上,点A的标为(2,3),则点C的坐标为.(第9题图)10.已知一个菱形的边长为2,较长的对角线长为2,则这个菱形的面积是.三.解答题(共11小题)11.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,且AB=2.(1)求菱形ABCD的周长;(2)若AC=2,求BD的长.(第11题图)12.如图,在平行四边形ABCD中,P是对角线BD上的一点,过点C作CQ∥DB,且CQ=DP,连接AP、BQ、PQ.(1)求证:△APD≌△BQC;(2)若∠ABP+∠BQC=180°,求证:四边形ABQP为菱形.(第12题图)13.如图,在▱ABCD中,E,F分别是AD,BC上的点,且DE=BF,AC⊥EF.求证:四边形AECF是菱形.(第13题图)14.如图,已知A、F、C、D四点在同一条直线上,AF=CD,AB∥DE,且AB=DE.(1)求证:△ABC≌△DEF;(2)若EF=3,DE=4,∠DEF=90°,请直接写出使四边形EFBC为菱形时AF的长度.(第14题图)15.如图,在▱ABCD中,作对角线BD的垂直平分线EF,垂足为O,分别交AD,BC于E,F,连接BE,DF.求证:四边形BFDE是菱形.(第15题图)参考答案一.1.A 2.A 3.A 4.A 5.B二.6.7.3 8.27 9.(2,﹣3)10.2.三.11.解:(1)∵四边形ABCD是菱形,AB=2,∴菱形ABCD的周长为:8;(2)∵四边形ABCD是菱形,AC=2,AB=2∴AC⊥BD,AO=1,∴BO=,∴BD=212.(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠ADB=∠DBC,∵CQ∥DB,∴∠BCQ=∠DBC,∴∠ADB=∠BCQ∵DP=CQ,∴△ADP≌△BCQ.(2)证明:∵CQ∥DB,且CQ=DP,∴四边形CQPD是平行四边形,∴CD=PQ,CD∥PQ,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴AB=PQ,AB∥PQ,∴四边形ABQP是平行四边形,∵△ADP≌△BCQ,∴∠APD=∠BQC,∵∠APD+∠APB=180°,∴∠ABP=∠APB,∴AB=AP,∴四边形ABQP是菱形.13.证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵DE=BF,∴AE=CF,∵AE∥CF,∴四边形AECF是平行四边形,∵AC⊥EF,∴四边形AECF是菱形.14.(1)证明:∵AB∥DE,∴∠A=∠D,∵AF=CD,∴AF+FC=CD+FC,即AC=DF,∵AB=DE,∴△ABC≌△DEF.(2)如图,连接EB交AD于O.在Rt△EFD中,∵∠DEF=90°,EF=3,DE=4,∴DF==5,∵四边形EFBC是菱形,∴BE⊥CF,∴EO==,∴OF=OC==,∴CF=,∴AF=CD=DF﹣FC=5﹣=.15.证明:∵在▱ABCD中,O为对角线BD的中点,∴BO=DO,∠EDB=∠FBO,在△EOD和△FOB中,,∴△DOE≌△BOF(ASA);∴OE=OF,又∵OB=OD,∴四边形EBFD是平行四边形,∵EF⊥BD,∴四边形BFDE为菱形.22.6 正方形一.选择题(共5小题)1.如图,在正方形ABCD中,A、B、C三点的坐标分别是(﹣1,2)、(﹣1,0)、(﹣3,0),将正方形ABCD向右平移3个单位,则平移后点D的坐标是()(第1题图)A.(﹣6,2)B.(0,2)C.(2,0)D.(2,2)2.关于▱ABCD的叙述,正确的是()A.若AB⊥BC,则▱ABCD是菱形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是正方形3.下列说法中,正确的是()A.两条直线被第三条直线所截,内错角相等B.对角线相等的平行四边形是正方形C.相等的角是对顶角D.角平分线上的点到角两边的距离相等4.如图,边长分别为4和8的两个正方形ABCD和CEFG并排放在一起,连结BD并延长交EG于点T,交FG于点P,则GT=()(第4题图)A.B.2C.2 D.15.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为()(第5题图)A.16 B.17 C.18 D.19二.填空题(共3小题)6.如图,正方形ABCD的边长为1,点A与原点重合,点B在y轴的正半轴上,点D在x轴的负半轴上,将正方形ABCD绕点A逆时针旋转30°至正方形AB'C′D′的位置,B'C′与CD相交于点M,则点M的坐标为.(第6题图)7.在平行四边形ABCD中,对角线AC与BD相交于点O,要使四边形ABCD是正方形,还需添加一组条件.下面给出了四组条件:①AB⊥AD,且AB=AD;②AB=BD,且AB⊥BD;③OB=OC,且OB⊥OC;④AB=AD,且AC=BD.其中正确的序号是.8.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确的序号是(把你认为正确的都填上).(第8题图)三.解答题(共4小题)9.已知点E为正方形ABCD的边AD上一点,连接BE,过点C作CN⊥BE,垂足为M,交AB于点N.(1)求证:△ABE≌△BCN;(2)若N为AB的中点,求tan∠ABE.(第9题图)10.如图,在正方形ABCD中,AF=BE,AE与DF相交于点O.(1)求证:△DAF≌△ABE;(2)求∠AOD的度数.(第10题图)11.如图,等边△AEF的顶点E,F在矩形ABCD的边BC,CD上,且∠CEF=45°.求证:矩形ABCD是正方形.(第11题图)12.如图,E是正方形ABCD对角线BD上的一点,求证:AE=CE.(第12题图)参考答案一.1.B 2.C 3.D 4.B 5.B二.6.(﹣1,)7.①③④8.①②④三.9.(1)证明:∵四边形ABCD为正方形∴AB=BC,∠A=∠CBN=90°,∠1+∠2=90°∵CM⊥BE,∴∠2+∠3=90°∴∠1=∠3在△ABE和△BCN中∴△ABE≌△BCN(ASA);(2)∵N为AB中点,∴BN=AB又∵△ABE≌△BCN,∴AE=BN=AB在Rt△ABE中,tan∠ABE═.10.(1)证明:∵四边形ABCD是正方形,∴∠DAB=∠ABC=90°,AD=AB,在△DAF和△ABE中,,∴△DAF≌△ABE(SAS),(2)由(1)知,△DAF≌△ABE,∴∠ADF=∠BAE,∵∠ADF+∠DAO=∠BAE+∠DAO=∠DAB=90°,∴∠AOD=180°﹣(∠ADF+DAO)=90°.11.解:∵四边形ABCD是矩形,∴∠B=∠D=∠C=90°,∵△AEF是等边三角形,∴AE=AF,∠AEF=∠AFE=60°,∵∠CEF=45°,∴∠CFE=∠CEF=45°,∴∠AFD=∠AEB=180°﹣45°﹣60°=75°,∴△AEB≌△AFD(AAS),∴AB=AD,∴矩形ABCD是正方形.12.证明:∵四边形ABCD是正方形,∴AB=CB,∠ABE=∠CBE,在△ABE和△CBE中,,∴△ABE≌△CBE(SAS),∴AE=CE.22.7 多边形的内角和与外角和一.选择题1.一个正多边形的每一个外角都等于30°,则这个多边形的边数是()A.6 B.8 C.9 D.122.如图,小林从P点向西直走12米后,向左转,转动的角度为α,再走12米,如此重复,小林共走了108米回到点P,则α﹣5的值是()(第2题图)A.35°B.40°C.50°D.不存在3.如图,在四边形ABCD中,∠ABC与∠BCD的平分线的交点E恰好在AD边上,则∠BEC=()(第3题图)A.∠A+∠D﹣45°B.(∠A+∠D)+45°C.180°﹣(∠A+∠D)D.∠A+∠D4.如图,五边形ABCDE中,AE∥BC,则∠C+∠D+∠E的度数为()(第4题图)A.180°B.270°C.360°D.450°5.一个多边形的内角和等于360°,它是()A.四边形B.五边形C.六边形D.七边形6.如果某多边形的每个内角的大小都是其相邻外角的3倍,那么这个多边形是()A.六边形B.八边形C.正六边形D.正八边形7.下列角度中,不能成为多边形内角和的是()A.460°B.540°C.900°D.1260°8.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°9.若一个多边形的外角和与它的内角和相等,则这个多边形是()边形.A.三B.四C.五D.六10.四边形的四个内角可以都是()A.锐角B.直角C.钝角D.以上答案都不对二.11.如图,小明从点O出发,前进5m后向右转15°,再前进5m后又向右转15°,…这样一直下去,直到他第一次回到出发点O为止,他所走的路径构成了一个多边形.小明一共走了米?这个多边形的内角和是度?(第11题图)12.一个正多边形的每个内角等于108°,则它的边数是.13.在图中,x的值为.(第13题图)14.如图,∠1+∠2+∠3+∠4+∠5+∠6=.(第14题图15.如图所示是三个边长相等的正多边形拼成的无缝隙、不重叠的图形的一部分,正多边形①和②的内角都是108°,则正多边形③的边数是.(第15题图)三.解答题(共3小题)16.如图,五角星的顶点为A、B、C、D、E,求∠A+∠B+∠C+∠D+∠E的度数?(第16题图)17.如图,在四边形ABCD中,AD∥BC,连接BD,点E在BC边上,点F在DC边上,且∠1=∠2.(1)求证:EF∥BD;(2)若DB平分∠ABC,∠A=130°,∠C=70°,求∠CFE的度数.(第17题图)18.解答题:(第18题图)(1)如图①,△ABC的内角∠ABC的平分线与外角∠ACD的平分线相交于P点,请探究∠P与∠A的关系,并说明理由.(2)如图②③,四边形ABCD中,设∠A=α,∠D=β,∠P为四边形ABCD的内角∠ABC与外角∠DCE 的平分线所在直线相交而形成的锐角.请利用(1)中的结论完成下列问题:①如图②,若α+β>180°,求∠P的度数.(用α,β的代数式表示)②如图③,若α+β<180°,请在图③中画出∠P,并直接写出∠P=.(用α,β的代数式表示)(作图2分,写出结果)参考答案一.1.D 2.A 3.D 4.C 5.A 6.B 7.A 8.C 9.B 10.B 二.11.120;3960 12.五13.135 14.360°15.10三.16.解:如答图.由三角形的外角性质,得∠1=∠A+∠C,∠2=∠B+∠D,∵∠1+∠2+∠E=180°,∴∠A+∠B+∠C+∠D+∠E=180°.(第16题答图)17.解:(1)如答图.(第17题答图)∵AD∥BC(已知),∴∠1=∠3(两直线平行,内错角相等).∵∠1=∠2,∴∠3=∠2(等量代换).∴EF∥BD(同位角相等,两直线平行).(2)解:∵AD∥BC(已知),∴∠ABC+∠A=180°(两直线平行,同旁内角互补).∵∠A=130°(已知),∴∠ABC=50°.∵DB平分∠ABC(已知),∴∠3=∠ABC=25°.∴∠2=∠3=25°.∵在△CFE中,∠CFE+∠2+∠C=180°(三角形内角和定理),∠C=70°,∴∠CFE=85°.18.解:(1)如答图1中,结论:2∠P=∠A.(第18题答图)理由:∵∠PCD=∠P+∠PBC,∠ACD=∠A+∠ABC,∵P点是∠ABC和外角∠ACD的角平分线的交点,∴2∠PCD=∠ACD,2∠PBC=∠ABC,∴2(∠P+∠PBC)=∠A+∠ABC,2∠P+2∠PBC=∠A+∠ABC,2∠P+∠ABC=∠A+∠ABC,∴2∠P=∠A;(2)①如答图2中,解法一:由四边形内角和定理得,∠BCD=360°﹣∠A﹣∠D﹣∠ABC,∴∠DCE=180°﹣(360°﹣∠A﹣∠D﹣∠ABC)=∠A+∠D+∠ABC﹣180°,由三角形的外角性质得,∠DCE=∠A+∠D+∠ABC,∠PCE=∠P+∠PBC,∵BP、CP分别是∠ABC和∠DCE的平分线,∴∠PBC=∠ABC,∠PCE=∠DCE,∴∠P+∠PBC=(∠A+∠D+∠ABC﹣180°)=(∠A+∠D)+∠ABC﹣90°,∴∠P=(∠A+∠D)﹣90°,∵∠A=α,∠D=β,∴∠P=(α+β)﹣90°;解法二:延长BA交CD的延长线于点F.∵∠F=180°﹣∠FAD﹣∠FDA=180°﹣(180°﹣α)﹣(180°﹣β)=α+β﹣180°,由(1)可知,∠P=∠F,∴∠P=(α+β)﹣90°;②如图3,延长AB交DC的延长线于F.∵∠F=180°﹣α﹣β,∠P=∠F,∴∠P=(180°﹣α﹣β)=90°﹣α﹣β。

八年级数学下册随堂训练第6章平行四边形综合与实践平面图形的镶嵌课件

八年级数学下册随堂训练第6章平行四边形综合与实践平面图形的镶嵌课件

5.小芳家进行装修,她在材料市场选中了一种漂亮的正八边形的地砖,可 建材行的服务员告诉她,仅一种正八边形的地砖是不能密铺地面的, 随又向 她推荐各种尺寸、形状、花色的其他地砖,供小芳搭配选用的有:菱形的、 正方形的、矩形的、正三角形的、平行四边形的、各种三角形的、等腰直角 三角形的、正六边形的、正五边形的、五角星形状的等等,小芳顿时选花了 眼,你能帮忙筛选一下吗?如果小芳不选正八边形的地砖,她还可以有哪些 选择?(列举 2 种即可)
答案:正十二边形
1.若用规格相同的正六边形地砖铺地板,则围绕在一个顶点处的地砖的块 数为( A ) A.3 C.5 A.正六边形和正方形 B.正五边形和正八边形 C.正六边形和正三角形 D.正十边形和正三角形 B.4 D.6
2.下列正多边形的组合中,能够铺满地面的是( C )
3.如果只用一种正多边形做平面密铺,而且在每一个正多边形的每一个顶 点周围都有 6 个正多边形,则该正多边形的每个内角度数为 60° . 4.一幅图案,在某个顶点处由三个边长相等的正多边形镶嵌而成,其中的 两个分别是正方形和正六边形,则第三个正多边形的边数是 12 .
多种平面图形的镶嵌 3.下列正多边形中,与正三角形同时使用能进行镶嵌的是( A A.正十二边形 C.正八边形 B.正十边形 D.正五边形 )
4.如图①,②,③,用一种大小相等的正多边形密铺成一个“环”,我们 称之为环形密铺,但图④,⑤不是我们所说的环形密铺.请你再写出一种可 以进行环形密铺的正多边形.
解:根据密铺的条件可知:从正方形和等腰直角三角形的地砖中选择;①正 方形、八边形内角分别为 90° 、135° ,由于 135° ×2+90° =360° ,故能密铺; ②等腰直角三角形、八边形内角分别为 45° 、135° ,由于 135° ×2+45° ×2 =360° ,故能密铺,故可以选择正方形和等腰直角三角形的地砖.

八年级数学部审湘教版平面图形的镶嵌答案及解析基础2020班

八年级数学部审湘教版平面图形的镶嵌答案及解析基础2020班

八年级数学部审湘教版平面图形的镶嵌答案及解析基础班1、如图,将边长为的正六边形A1 A2 A3 A4 A5 A6在直线上由图1的位置按顺时针方向向右作无滑动滚动,当A 答案A 解析2、几何体的三视图如下图所示,那么这个几何体是答案C 解析考点:由三视图判断几何体.分析:由正视图和左视图可确定此几何体为柱体,锥体还是球体,再由俯视图可得具体形状.解答:解:由正视图和左视图可确定此几何体为柱体,由俯视图是三角形可得此几何体为三棱柱.故选C.点评:本题由物体的三种视图推出原来几何体的形状,考查了学生的思考能力和对几何体三种视图的空间想象能力和综合能力.3、有理数m,n在数轴上的对应点如图所示,则是(答案B 解析考点:有理数的减法;数轴;有理数大小比较.分析:根据数轴上,右边的数总是大于左边的数,就可得到m,n 的大小关系,即可判断.解答:解:根据题意得:m<n,则m-n<0.故选B.点评:本题主要考查了利用数轴比较两个数的大小关系的方法.4、若lt; 0,则中最大的一个数是;( )A 答案C 解析5、对称轴平行于y轴的抛物线的顶点为点(2,3)且抛物线经过点(3,1),那么抛物线解析式是( 答案C 解析6、不等式组;的解集是(;)A.B.C.答案D 解析7、如图,a、b两个数在数轴上的位置如图所示,则下列各式正确的是(答案B 解析8、一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件作服装仍可获利15元,答案B 解析9、在一间屋子里的屋顶上挂着一盏白炽灯,在它的正下方有一个球,如图所示,下列说法:(1)球在地面上的影子是圆;(2)答案C 解析10、如图,在△ABC中,CD是∠ACB的平分线,∠A = 80°,∠ACB = 60°,那么∠BDC =(m 答案D 解析11、某公司把500万元资金投入新产品的生产,第一年获得一定的利润,在不抽掉资金和利润的前提下,继续生产,第二年的利润答案D 解析初中数学北京课标版点与圆位置关系将一个菱形放在2倍的放大镜下,则下列说法中不正确的是答案C 解析12。

初中数学平面图形的镶嵌冀2020年教版理解

初中数学平面图形的镶嵌冀2020年教版理解

平面图形的镶嵌冀教版理解1、有一实物如图,那么它的主视图是( ) 答案B 解析2、由四舍五入法得到的近似数8.8×103,下列说法中正确的是A.精确到十分位,有2个有效数字B.精确到个位,有2个答案C 解析3、若是关于的方程的一个解,则常数a为(;).A.1B.2 答案B 解析4、一元一次不等式组的解集是,则的取值范围是(答案B 解析5、.下列运算正确的是()A.B.C 答案B 解析6、国家体育场“鸟巢”建筑面积达25.8万平方米,将25.8万平方米用科学记数法(四舍五入保留2个有效数字)表示约答案C 解析7、下列所给的几何体中,主视图是三角形的是(); 答案B 解析8、如图表示了某个不等式的解集, 该解集所含的整数解的个数是( )A 4 答案B 解析9、有四张形状、大小和质地完全相同的卡片,每张卡片的正面写有一个算式.将这四张卡片背面向上洗匀,从中随机抽取一张(不答案C 解析10、如图,正方形ABCD的边长为5,P为DC上一点,设DP=x,△APD的面积为y,关于y 与x的函数关系式为:y=, 答案B 解析11、如图,,则下列结论中,错误的是();A.B.C.D.答案C 解析12、、如图,若m∥n,∠1 = 105°,则∠2 =" 答案D 解析13、单项式的系数是答案C 解析14、实数a、b在数轴上的位置如图所示,那么化简|a-b|-的结果是A.2a-bB.bC.-bD.-2a+b答案C 解析15、不等式组的解集在数轴上可表示为(;)答案D 解析16、-4的相反数是()答案A 解析17、下列计算,正确的是()A.3+2 答案C 解析18、下列计算中,正确的是答案B 解析19、如图是正方体的展开图,则正方体相对两个面上的数字之和的最小值是( ). 答案B解析20、如图,是一个正方体纸盒的展开图,若在其中三个正方形A、B、C中分别填入适当的数,使得它们折成正方体后相对的面上两答案A 解析21、下列各组数中互为相反数的是A.-2与B.-2与C.2与(-)2D.|-|与答案A解析22、不等式组的解集在数轴上表示正确的是()答案B 解析23、如图,是有几个相同的小正方体搭成的几何体的三种视图,;则搭成这个几何体的小正方体的个数是A.3 答案B 解析24、如果,那么代数式的值是(; ▲;)A.0B.2 C.5D.8 答案D 解析25、.-5的相反数是( 答案A 解析26、-0.5的倒数为答案C 解析27、如图,∠B=∠D=90°,CB=CD,∠1=40°,则∠2=(答案C 解析先要证明Rt△ABC≌Rt△ADC(HL),则可求得∠2=∠ACB=90°-∠1的值.∵∠B=∠D=90°在Rt△ABC和Rt△ADC中$\left\{\begin{array}{l}BC=CD\\AC=AC\end{array}\right.$∴Rt△ABC≌Rt△ADC(HL)∴∠2=∠ACB=90°-∠1=50°。

最新冀教版八年级下册数学同步练习第二十二章复习2

最新冀教版八年级下册数学同步练习第二十二章复习2

第二十二章四边形一、选择题:1、下列给出的条件中,能判断四边形ABCD是平行四边形的是( )A.AB∥CD,AD = BC;B.∠B = ∠C;∠A = ∠D,C.AB =CD,CB = AD;D.AB = AD,CD = BC2、矩形具有而菱形不具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相平分D.两组对角分别相等3、如图,下列四组条件中,能判定□ABCD是正方形的有( )①AB=BC,∠A=90°;②AC⊥BD,AC=BD;③OA=OD,BC=CD;④∠BOC=90°,∠ABD=∠DCA.A.1个 B.2个 C.3个 D.4个4、如图,在▱ABCD中,CE⊥AB,且E为垂足.如果∠D=75°,则∠BCE=()A.105°B.15°C.30°D.25°第4题图第5题图第6题图5、如图,▱ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=4,AC=6,则BD的长是() A.8 B.9 C.10 D.116、如图,Rt△ABC中,∠C=90°,CD⊥AB于D,E是AC的中点,则下列结论中一定正确的是( ) A.∠4=∠5 B.∠1=∠2 C.∠4=∠3 D.∠B=∠27、如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是()A.△ABD与△ABC的周长相等B.△ABD与△ABC的面积相等C.菱形的周长等于两条对角线之和的两倍D.菱形的面积等于两条对角线之积的两倍第7题图第8题图第9题图8、如图,在△ABC 中,∠ACB=90°,∠ABC=60°,BD 平分∠ABC,P点是BD中点,若AD=6,则CP长为()A.3B.3.5C.4D.4.59、如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为()A.3 B.3.5 C.2.5 D.2.810、如图,在菱形ABCD中,对角线AC=6,BD=8,点E、F分别是边AB、BC的中点,点P在AC上运动,在运动过程中,存在PE+PF的最小值,则这个最小值是()A.3 B.4 C.5 D.6第10题图第11题图第12题图11、如图,在菱形ABCD中,菱形ABCD面积为123,∠B=60°,则以AC为边长正方形ACEF边长为()A.23B.22C.26D.612、如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上.下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确的个数为()A.1 B.2 C.3 D.4二、填空题:13、如图,四边形ABCD是矩形,则只须补充条件(用字母表示只添加一个条件)就可以判定四边形ABCD是正方形.第13题图第14题图第15题图14、如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是.15、如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于.16、如图,△ABC中,AD是高,E、F分别是AB、AC的中点.若AB=10,AC=8,则四边形AEDF的周长为.第16题图第17题图第18题图17、如图,连接四边形ABCD各边中点,得到四边形EFGH,只要添加条件,就能保证四边形EFGH是菱形.18、如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,则EF的最小值为.19、如图,ABCD是一张边长为4cm的正方形纸片,E,F分别为AB,CD的中点,沿过点D的折痕将A 角翻折,使得点A落在EF上的点A′处,折痕交AE于点G,则EG=______cm.第19题图第20题图20、如图,矩形ABCD中,AB=6,BC=8,E是BC边上的一定点,P是CD边上的一动点(不与点C、D重合),M,N分别是AE、PE的中点,记MN的长度为a,在点P运动过程中,a不断变化,则a 的取值范围是.三、简答题:21、如图,已知E,F是▱ABCD的对角线AC上的两点,BE∥DF,求证:AF=CE.22、如图,点E、F为线段BD的两个三等分点,四边形AECF是菱形.(1)试判断四边形ABCD的形状,并加以证明;(2)若菱形AECF的周长为20,BD为24,试求四边形ABCD的面积.23、如图,在△ABC中,CF⊥AB,BE⊥AC,M、N分别是BC、EF的中点,试说明MN⊥EF.24、如图,四边形ABCD为矩形(对边相等,四个角是直角),过点D作对角线BD的垂线,交BC 的延长线于点E,在BE上取一点F,使DF=EF=4.设AB=x,AD=y,求代数式的值.参考答案1、C2、B.3、D4、B.5、C.6、A.7、B8、A9、C. 10、C. 11、D. 12、C.13、略 14、答案为:8.15、答案为:8;16、答案为:18.17、答案为:AC=BD.18、答案为:2.4.19、答案为:4﹣6.20、答案为:4<a<5 .21、【解答】证明:在平行四边形ABCD中,∵AD∥BC,AD=BC,∴∠ACB=∠CAD.又∵BE∥DF,∴∠BEC=∠DFA,在△BEC与△DFA中,,∴△BEC≌△DFA,∴AF=CE.22、【解答】解:(1)四边形ABCD为菱形.理由如下:如图,连接AC交BD于点O,∵四边形AECF是菱形,∴AC⊥BD,AO=OC,EO=OF,又∵点E、F为线段BD的两个三等分点,∴BE=FD,∴BO=OD,∵AO=OC,∴四边形ABCD为平行四边形,∵AC⊥BD,∴四边形ABCD为菱形;(2)∵四边形AECF为菱形,且周长为20,∴AE=5,∵BD=24,∴EF=8,OE=EF=×8=4,由勾股定理得,AO===3,∴AC=2AO=2×3=6,∴S四边形ABCD=BD•AC=×24×6=72.23、【解答】证明:连接MF、ME,∵CF⊥AB,在Rt△BFC中,M是BC的中点,∴MF=BC(斜边中线等于斜边一半),同理ME=BC,∴ME=MF,∵N是EF的中点,∴MN⊥EF.24、【解答】解:由题意知:AB=CD=x,AD=BC=y,CD⊥BE,∵BD⊥DE,∴∠BDF+∠FDE=90°∠DBF+∠E=90°,∵DF=EF,∴∠E=∠FDE,∴∠BDF=∠DBF,∴DF=BF=4,∴CF=4﹣x,在Rt△CDF中,∴=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020年八年级数学下册 22.9平面图形的镶嵌同步练习冀教

【课前热身】
1.四边形的内角和等于__________.
2.一幅图案.在某个顶点处由三个边长相等的正多边形镶嵌而成.其中的两个分别是正方形和正六边形,则第三个正多边形的边数是.
3. 内角和为1440°的多边形是.
4. 一个正多边形的每一个外角都等于72°,则这个多边形的边数是_________.
5.只用下列图形不能镶嵌的是()
A.三角形 B.四边形C.正五边形D.正六边形
6. 若n边形每个内角都等于150°,那么这个n边形是()
A.九边形 B.十边形 C.十一边形 D.十二边形
7.一个多边形内角和是1080,则这个多边形是()
A.六边形 B.七边形C.八边形D.九边形
【考点链接】
1. 四边形有关知识
⑴ n边形的内角和为.外角和为.
⑵如果一个多边形的边数增加一条,那么这个多边形的内角和增加,
外角和增加.
⑶ n边形过每一个顶点的对角线有条,n边形的对角线有条.
2. 平面图形的镶嵌
⑴当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个____________时,就
拼成一个平面图形.
⑵只用一种正多边形铺满地面,请你写出这样的一种正多边形____________.
3.易错知识辨析
多边形的内角和随边数的增加而增加,但多边形的外角和随边数的增加没有变化,外角和恒为360 º.
【典例题目】
1 已知多边形的内角和为其外角和的5倍,求这个多边形的边数.
2在凸多边形中,四边形有2条对角线,五边形有5条对角线,经过观察、探索、归纳,你认为凸八边形的对角线条数应该是多少条?简单扼要地写出你的思考过程.
3请你用正三角形、正方形、正六边形三种图形设计一个能铺满整个地面的美丽图案.
【中考演练】
1.若一个多边形的内角和等于720,则这个多边形的边数是()
A.5 B.6 C.7 D.8
2.某商店出售下列四种形状的地砖:①正三角形;②正方形;③正五边形;④正六边形.若
只选购其中一种地砖镶嵌地面,可供选择的地砖共有()
A.4种 B.3种 C.2种 D.1种
3. 如图,在正五边形ABCDE中,连结AC,AD,
4. 下面各角能成为某多边形的内角的和的是()
A.430° B.4343° C.4320° D.4360°
5.一个多边形的内角和与它的一个外角的和
为570,那么这个多边形的边数为()
A.5 B.6 C.7 D.8
6.一个多边形少一个内角的度数和为2300°.
(1)求它的边数;(2)求少的那个内角的度数.
7. 求下图中x的值.。

相关文档
最新文档