等比数列教学设计

合集下载

等比数列教学设计

等比数列教学设计

等比数列教学设计等比数列教学设计(精选6篇)作为一位杰出的教职工,常常要写一份优秀的教学设计,教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。

教学设计应该怎么写才好呢?下面是店铺收集整理的等比数列教学设计(精选6篇),希望对大家有所帮助。

等比数列教学设计1教学目标1.理解等比数列的概念,掌握等比数列的通项公式,并能运用公式解决简单的问题.(1)正确理解等比数列的定义,了解公比的概念,明确一个数列是等比数列的限定条件,能根据定义判断一个数列是等比数列,了解等比中项的概念;(2)正确认识使用等比数列的表示法,能灵活运用通项公式求等比数列的首项、公比、项数及指定的项;(3)通过通项公式认识等比数列的性质,能解决某些实际问题.2.通过对等比数列的研究,逐步培养学生观察、类比、归纳、猜想等思维品质.3.通过对等比数列概念的归纳,进一步培养学生严密的思维习惯,以及实事求是的科学态度.教材分析(1)知识结构等比数列是另一个简单常见的数列,研究内容可与等差数列类比,首先归纳出等比数列的定义,导出通项公式,进而研究图像,又给出等比中项的概念,最后是通项公式的应用.(2)重点、难点分析教学重点是等比数列的定义和对通项公式的认识与应用,教学难点在于等比数列通项公式的推导和运用.①与等差数列一样,等比数列也是特殊的数列,二者有许多相同的性质,但也有明显的区别,可根据定义与通项公式得出等比数列的特性,这些是教学的重点.②虽然在等差数列的学习中曾接触过不完全归纳法,但对学生来说仍然不熟悉;在推导过程中,需要学生有一定的观察分析猜想能力;第一项是否成立又须补充说明,所以通项公式的推导是难点.③对等差数列、等比数列的综合研究离不开通项公式,因而通项公式的灵活运用既是重点又是难点.教学建议(1)建议本节课分两课时,一节课为等比数列的概念,一节课为等比数列通项公式的应用.(2)等比数列概念的引入,可给出几个具体的例子,由学生概括这些数列的相同特征,从而得到等比数列的定义.也可将几个等差数列和几个等比数列混在一起给出,由学生将这些数列进行分类,有一种是按等差、等比来分的,由此对比地概括等比数列的定义.(3)根据定义让学生分析等比数列的公比不为0,以及每一项均不为0的特性,加深对概念的理解.(4)对比等差数列的表示法,由学生归纳等比数列的各种表示法. 启发学生用函数观点认识通项公式,由通项公式的结构特征画数列的图象.(5)由于有了等差数列的研究经验,等比数列的研究完全可以放手让学生自己解决,教师只需把握课堂的节奏,作为一节课的组织者出现.(6)可让学生相互出题,解题,讲题,充分发挥学生的主体作用. 等比数列教学设计2教学目标1.通过教学使学生理解等比数列的概念,推导并掌握通项公式.2.使学生进一步体会类比、归纳的思想,培养学生的观察、概括能力.3.培养学生勤于思考,实事求是的精神,及严谨的科学态度.教学重点,难点重点、难点是等比数列的定义的归纳及通项公式的推导.教学用具投影仪,多媒体软件,电脑.教学方法讨论、谈话法.教学过程一、提出问题给出以下几组数列,将它们分类,说出分类标准.(幻灯片)①-2,1,4,7,10,13,16,19,②8,16,32,64,128,256,③1,1,1,1,1,1,1,④243,81,27,9,3,1,⑤31,29,27,25,23,21,19,⑥1,-1,1,-1,1,-1,1,-1,⑦1,-10,100,-1000,10000,-100000,⑧0,0,0,0,0,0,0,由学生发表意见(可能按项与项之间的关系分为递增数列、递减数列、常数数列、摆动数列,也可能分为等差、等比两类),统一一种分法,其中②③④⑥⑦为有共同性质的一类数列(学生看不出③的情况也无妨,得出定义后再考察③是否为等比数列).二、讲解新课请学生说出数列②③④⑥⑦的共同特性,教师指出实际生活中也有许多类似的例子,如变形虫分裂问题假设每经过一个单位时间每个变形虫都分裂为两个变形虫,再假设开始有一个变形虫,经过一个单位时间它分裂为两个变形虫,经过两个单位时间就有了四个变形虫,,一直进行下去,记录下每个单位时间的变形虫个数得到了一列数。

等比数列的概念教案

等比数列的概念教案

等比数列的概念教案一、教学目标1. 掌握等比数列的概念;2. 能够判断一个数列是否为等比数列;3. 理解等比数列的特点和性质。

二、教学准备教师准备:黑板、白板、彩色粉笔、示意图、图片等;学生准备:课本、笔、作业本等。

三、教学过程1. 导入教师可以适当引入一些与数列相关的内容,如递增数列、递减数列等,让学生复习一下已学内容,并激发学生对等比数列的兴趣。

2. 概念讲解(教师在黑板上写下等比数列的定义)等比数列是指一个数列中,从第二项开始,每一项都是前一项乘以同一个常数r得到的。

(教师通过示意图或实际例子,如1、2、4、8、16等,展示等比数列的特点)- 前一项与后一项的比值相等;- 从第二项开始,每一项都是前一项乘以同一个常数r得到。

(教师提示学生观察并总结等比数列的通项公式)设等比数列的首项为a,公比为r,第n项为an,则通项公式为an= a * r^(n-1)。

3. 案例分析(教师给出一些具体的等比数列,让学生判断其是否为等比数列,并求出公比和第n项等。

可以通过黑板、白板或提供作业题的形式进行)案例1:2,4,8,16,32,...案例2:3,6,12,24,48,...4. 练习与巩固(教师提供一些练习题,让学生巩固所学知识)练习1:判断以下数列是否为等比数列,并求出它的公比和第n项。

a) 1,3,9,27,...b) 2,5,10,20,...c) 4,12,36,108,...练习2:求以下等比数列的第n项。

a) 2,6,18,54,...,n=5b) 3,9,27,...,n=6c) 5,25,125,...,n=45. 拓展与应用(教师让学生在生活中找到一些实际应用等比数列的例子,并与同学分享)例如,银行定期存款的利率、细菌的繁殖等。

6. 总结与思考(教师进行小结,回顾本节课的学习内容,并进行思考指导,如如何判断一个数列是否为等比数列,如何求解等比数列的公比和第n项等)四、作业布置1. 完成课堂练习题;2. 预习下一课时的内容。

高三数学《等比数列》教学设计[推荐五篇]

高三数学《等比数列》教学设计[推荐五篇]

高三数学《等比数列》教学设计[推荐五篇]第一篇:高三数学《等比数列》教学设计作为一名辛苦耕耘的教育工作者,通常会被要求编写教学设计,教学设计是对学业业绩问题的解决措施进行策划的过程。

教学设计应该怎么写才好呢?下面是小编为大家收集的高三数学《等比数列》教学设计,仅供参考,希望能够帮助到大家。

教学重点:理解等比数列的概念,认识等比数列是反映自然规律的重要数列模型之一,探索并掌握等比数列的通项公式。

教学难点:遇到具体问题时,抽象出数列的模型和数列的等比关系,并能用有关知识解决相应问题。

教学过程:一.复习准备1.等差数列的通项公式。

2.等差数列的前n项和公式。

3.等差数列的性质。

二.讲授新课引入:1“一尺之棰,日取其半,万世不竭。

”2细胞分裂模型3计算机病毒的传播由学生通过类比,归纳,猜想,发现等比数列的特点进而让学生通过用递推公式描述等比数列。

让学生回忆用不完全归纳法得到等差数列的通项公式的过程然后类比等比数列的通项公式注意:1公比q是任意一个常数,不仅可以是正数也可以是负数。

2当首项等于0时,数列都是0。

当公比为0时,数列也都是0。

所以首项和公比都不可以是0。

3当公比q=1时,数列是怎么样的,当公比q大于1,公比q小于1时数列是怎么样的?4以及等比数列和指数函数的`关系5是后一项比前一项。

列:1,2,(略)小结:等比数列的通项公式三.巩固练习:1.教材P59练习1,2,3,题2.作业:P60习题1,4。

第二课时5.2.4等比数列(二)教学重点:等比数列的性质教学难点:等比数列的通项公式的应用一.复习准备:提问:等差数列的通项公式等比数列的通项公式等差数列的性质二.讲授新课:1.讨论:如果是等差列的三项满足那么如果是等比数列又会有什么性质呢?由学生给出如果是等比数列满足2练习:如果等比数列=4,=16,=?(学生口答)如果等比数列=4,=16,=?(学生口答)3等比中项:如果等比数列.那么,则叫做等比数列的等比中项(教师给出)4思考:是否成立呢?成立吗?成立吗?又学生找到其间的规律,并对比记忆如果等差列,5思考:如果是两个等比数列,那么是等比数列吗?如果是为什么?是等比数列吗?引导学生证明。

等比数列教案模板范文

等比数列教案模板范文

---一、教学目标1. 知识与技能:- 理解等比数列的概念,掌握等比数列的通项公式。

- 掌握等比数列的性质,包括首项、公比、项数等。

- 熟练运用等比数列的通项公式和前n项和公式解决实际问题。

2. 过程与方法:- 通过观察、类比、归纳等方法,培养学生的逻辑思维能力。

- 通过小组讨论和合作探究,提高学生的团队协作能力。

3. 情感态度与价值观:- 体会数学在生活中的应用,增强学生对数学的兴趣。

- 培养学生严谨求实的科学态度和勇于探索的精神。

二、教学重难点1. 教学重点:- 等比数列的概念和通项公式。

- 等比数列前n项和公式的推导和应用。

2. 教学难点:- 等比数列前n项和公式的推导过程。

- 等比数列在实际问题中的应用。

三、教学准备1. 教学课件2. 多媒体设备3. 练习题四、教学过程(一)导入新课1. 复习等差数列的概念和性质。

2. 引入等比数列的概念,通过实例让学生体会等比数列的特点。

(二)新课讲授1. 等比数列的概念:- 定义:如果一个数列从第二项起,每一项与它的前一项的比等于同一个非零常数,那么这个数列就叫做等比数列。

- 公比:等比数列中,后一项与前一项的比值称为公比,记作q。

- 首项:等比数列的第一项称为首项,记作a1。

2. 等比数列的通项公式:- 公式:an = a1 q^(n-1)- 推导过程:通过实例引导学生推导出通项公式。

3. 等比数列的性质:- 性质1:等比数列的相邻两项的比都等于公比。

- 性质2:等比数列的任意两项的乘积等于这两项之间的项数的平方乘以首项。

4. 等比数列前n项和公式:- 公式:S_n = a1 (1 - q^n) / (1 - q)(q ≠ 1)- 推导过程:通过分组求和法引导学生推导出前n项和公式。

(三)巩固练习1. 完成课件中的例题和练习题。

2. 学生分组讨论,互相解答问题。

(四)课堂小结1. 回顾本节课所学内容,总结等比数列的概念、通项公式和前n项和公式。

2. 强调等比数列在实际问题中的应用。

等比数列教案设计

等比数列教案设计

一、教学目标1. 知识与技能:理解等比数列的定义,掌握等比数列的通项公式和求和公式,能够运用等比数列解决实际问题。

2. 过程与方法:通过探究等比数列的性质,培养学生的逻辑思维能力和运算能力。

3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的应用。

二、教学重点与难点1. 教学重点:等比数列的定义,通项公式和求和公式。

2. 教学难点:等比数列求和公式的推导和应用。

三、教学准备1. 教具准备:黑板、粉笔、多媒体课件。

2. 学具准备:笔记本、笔。

四、教学过程1. 导入新课:利用多媒体课件展示等比数列的实例,引导学生观察、思考,引出等比数列的概念。

2. 自主学习:学生自主探究等比数列的定义,教师巡回指导,解答学生疑问。

3. 课堂讲解:讲解等比数列的通项公式和求和公式,并通过例题演示如何运用这些公式解决问题。

4. 课堂练习:布置练习题,让学生独立完成,教师选取部分学生的作业进行点评。

5. 小组讨论:学生分组讨论等比数列的性质,总结规律,教师参与讨论,给予指导。

6. 课堂小结:总结本节课的主要内容,强调等比数列的定义、通项公式和求和公式的运用。

7. 课后作业:布置课后作业,巩固本节课所学内容。

五、教学反思本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高教学效果。

关注学生在学习过程中遇到的困难和问题,及时给予解答和指导。

六、教学目标1. 知识与技能:理解等比数列的性质,包括公比的概念,能够判断一个数列是否为等比数列。

2. 过程与方法:通过探究等比数列的性质,培养学生的逻辑思维能力和运算能力。

3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的应用。

七、教学重点与难点1. 教学重点:等比数列的性质,公比的概念。

2. 教学难点:判断一个数列是否为等比数列的方法。

八、教学准备1. 教具准备:黑板、粉笔、多媒体课件。

等比数列教案

等比数列教案

等比数列教案一、教学目标1. 理解等比数列的概念和性质;2. 掌握等比数列的通项公式和前n项和的公式;3. 能够应用等比数列解决实际问题;4. 培养学生的逻辑思维和数学建模能力。

二、教学准备1. 教材:教材中关于等比数列的知识点和习题;2. 教具:黑板、粉笔、教学PPT、计算器等;3. 实例材料:与等比数列相关的生活实例。

三、教学步骤Step 1:引入通过对一组有序数列的观察和分析,引导学生理解等比数列的概念。

例如:1,2,4,8,16,...,让学生发现其中的规律,并总结出等比数列的特点。

Step 2:概念解释介绍等比数列的概念和性质,包括首项、公比、通项公式、前n项和公式等。

通过图示和实例,让学生能够准确理解和运用这些概念和公式。

Step 3:应用训练结合教材中的习题,引导学生进行等比数列的应用训练。

从基础的等比数列计算到更加复杂的问题解决,逐步提高学生的解题能力和应用能力。

Step 4:拓展训练提供一些生活实例,让学生将等比数列的概念和公式运用到实际问题中。

例如:某种细菌的繁殖速度呈等比数列,求第n个小时的细菌数量;某种草地上的蚂蚁数量也是按等比数列递增的,求第n天的蚂蚁数量等。

Step 5:归纳总结引导学生自主归纳总结等比数列的特点、概念和公式,巩固他们对所学知识的理解和应用能力。

四、教学评价1. 在课堂上观察学生的参与程度和思维活跃程度,及时给予鼓励和指导;2. 布置一些习题作为课后作业,检验学生对等比数列知识的掌握情况;3. 结合平时的小测验和期中、期末考试,评价学生对等比数列的理解和应用能力。

五、教学反思通过本节课的教学,学生能够准确理解和运用等比数列的概念和性质,初步掌握等比数列的计算方法,并能将所学知识运用到实际问题中。

教学中注重培养学生的思维能力和分析解决问题的能力,让他们能够灵活运用数学知识解决实际问题。

在教学中,应注重培养学生的团队合作意识,通过小组合作讨论和交流,促进学生之间的互动和合作,激发他们对数学学习的兴趣和热情。

等比数列教学案

等比数列教学案

等比数列教学案篇一:等比数列第一课时教案等比数列的定义教案内容:等比数列教学目标:1.理解和掌握等比数列的定义;2.理解和掌握等比数列的通项公式及其推导过程和方法;3.运用等比数列的通项公式解决一些简单的问题。

授课类型:课时安排:1教学重点:等比数列定义、通项公式的探求及运用。

教学难点:等比数列通项公式的探求。

教具准备:多媒体课件教学过程:(一)复习导入1.等差数列的定义2.等差数列的通项公式及其推导方法3.公差的确定方法.4.问题:给出一张书写纸,你能将它对折10次吗?为什么?(二)探索新知1.引入:观察下面几个数列,看其有何共同特点?(1)-2,1,4,7,10,13,16,19,?(2)8,16,32,64,128,256,? (3)1,1,1,1,1,1,1,?(4)1,2,4,8,16,?263请学生说出数列上述数列的特性,教师指出实际生活中也有许多类似的例子,如细胞分裂问题.假设每经过一个单位时间每个细胞都分裂为两个细胞,再假设开始有一个细胞,经过一个单位时间它分裂为两个细胞,经过两个单位时间就有了四个细胞,?,一直进行下去,记录下每个单位时间的细胞个数得到了一列数这个数列也具有前面的几个数列的共同特性,这就是我们将要研究的另一类数列——等比数列.2.等比数列定义:一般地,如果一个数列从第二项起,每一项与它的前一....项的比等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列..的公比;公比通常用字母q表示(q?0),3.递推公式:an?1∶an?q(q?0)对定义再引导学生讨论并强调以下问题(1)等比数列的首项不为0;(2)等比数列的每一项都不为0;(3)公比不为0. (4)非零常数列既是等比数列也是等差数列;问题:一个数列各项均不为0是这个数列为等比数列的什么条件?3.等比数列的通项公式:【傻儿子的故事】古时候,有一个人不识字,他不希望儿子也像他这样,他就请了个教书先生来教他儿子认字,他儿子见老师第一天写“一”就是一划,第二天“二”就是二划,第三天“三”就是三划,他就跑去跟他父亲说:“爸爸,我会写字了,请你叫老师走吧!”这人听了很高兴,就给老师结算了工钱叫他走了。

等比数列教案

等比数列教案

等比数列教案等比数列教案一、引言数学是一门重要的学科,它不仅培养学生的逻辑思维能力,还有助于他们解决实际问题。

数列是数学中的重要概念之一,而等比数列是数列中的一种特殊形式。

本教案将介绍等比数列的定义、性质以及解题方法,旨在帮助学生更好地理解和应用等比数列。

二、等比数列的定义与性质1. 定义等比数列是指一个数列中,从第二项开始,每一项与前一项的比都相等的数列。

这个比值称为公比,通常用字母q表示。

2. 性质(1)等比数列的通项公式:对于等比数列an,其通项公式为an = a1 * q^(n-1),其中a1为首项,q为公比,n为项数。

(2)等比数列的前n项和公式:对于等比数列an,其前n项和Sn = a1 * (1 -q^n) / (1 - q)。

(3)等比数列的性质:等比数列的任意三项可以构成一个等比比例。

三、等比数列的解题方法1. 求某一项的值给定等比数列的首项a1和公比q,如果要求第n项an的值,可以使用通项公式an = a1 * q^(n-1)进行计算。

2. 求前n项的和给定等比数列的首项a1和公比q,如果要求前n项的和Sn,可以使用前n项和公式Sn = a1 * (1 - q^n) / (1 - q)进行计算。

3. 求公比已知等比数列的前两项a1和a2,如果要求公比q,可以通过计算q = a2 / a1得到。

四、等比数列的应用等比数列在实际生活中有着广泛的应用。

以下是两个常见的应用示例:1. 货币贬值问题假设某国货币每年贬值10%,初始价值为1000元。

我们可以使用等比数列来计算每年的货币价值。

首项a1为1000元,公比q为0.9(1-10%),我们可以计算出第n年的货币价值an。

这样,我们就可以预测未来几年货币的贬值情况。

2. 生物繁殖问题某种细菌每小时繁殖一次,初始数量为10个。

我们可以使用等比数列来计算每小时的细菌数量。

首项a1为10个,公比q为2(每小时繁殖一次),我们可以计算出第n小时的细菌数量an。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.4-2.5 等比数列及其前n 项和考纲要求:(1)理解等比数列的概念。

(2)掌握等比数列的通项公式与前n 项和公式。

(3)能在具体的问题情境中识别数列的等比关系,并能用有关知识解决相应的问题。

(4)了解等比数列与指数函数的关系。

教材分析 :本节主要内容是等比数列的概念,通项公式及其前n 项和,它是继等差数列后有一个特殊数列,是研究数列的重要载体,与实际生活有密切的联系,如细胞分裂、银行贷款问题等都要用等比数列的知识来解决,在研究过程中体现了由特殊到一般的数学思想、函数思想和方程思想,在高考中占有重要地位。

从知识结构来看,本节核心内容是等比数列的概念,通项公式及其前n 项和,可从等比数列的“等比”的特点入手,结合具体的例子来学习等比数列的概念,同时,还要注意“比”的特性。

在学习等比数列的定义的基础上,导出等比数列的通项公式以及一些常用的性质。

学情分析:从整个中学数学教材体系安排分析,前面已安排了函数知识的学习,以及等差数列的有关知识的学习,但是对于国际象棋故事中的问题,学生还是不能解决,存在疑问。

本课正是由此入手来引发学生的认知冲突,产生求知的欲望。

而矛盾解决的关键依然依赖于学生原有的认知结构──在研究等差数列中用到的思想方法,于是从几个特殊的对应观察、分析、归纳、概括得出等比数列的定义及通项公式,用错位相减法推导出前n 项和公式。

高一学生正处于从初中到高中的过度阶段,对数学思想和方法的认识还不够,思维能力比较欠缺,他们重视具体问题的运算而轻视对问题的抽象分析。

同时,高一阶段又是学生形成良好的思维能力的关键时期。

因此,本节教学设计一方面遵循从特殊到一般的认知规律,另一方面也加强观察、分析、归纳、概括能力培养。

多数学生愿意积极参与,积极思考,表现自我。

所以教师可以把尽可能多的时间、空间让给学生,让学生在参与的过程中,学习的自信心和学习热情等个性心理品质得到很好的培养。

这也体现了教学工作中学生的主体作用。

教学重点:(1)等比数列的定义及通项公式(2)等比中项的理解与运用,及等比数列定义及通项公式的应用 (3)等比数列前n 项和公式的推导与应用。

教学难点:(1)应用等比数列的定义及通项公式,解决相关简单问题(2)灵活应用等比数列的定义及通项公式、性质解决相关问题。

(3) 公式的推导方法和公式的灵活运用。

公式推导所使用的“错位相减法”是高中数学数列求和方法中最常用的方法之一,它蕴含了重要的数学思想,所以既是重点也是难点. 教法选择与学法指导:由于等比数列与等差数列仅一字之差,在知识内容上是平行的,可用比较法来学习等比数列的相关知识。

在深刻理解等差数列与等比数列的区别与联系的基础上,牢固掌握数列的相关知识。

因此,在教法和学法上可做如下考虑:1、教法:采用问题启发与比较探究式相结合的教学方法教法构思如下:提出问题−−−−−−→−作用于原来的认知结构引发认知冲突−−−−−−−→−析在原有认知的基础上分观察分析−−−−→−在特殊情况下归纳概括−−−→−一般情况下得出结论−−−→−例题和练习总结提高。

在教师的精心组织下,对学生各种能力进行培养,并以促进学生发展,又以学生的发展带动其学习。

同时,它也能促进学生学会如何学习,因而特别有利于培养学生的探索能力。

2、学法指导:学生学习的目的在于学会学习、思考,达到创新的目的,掌握科学有效的学习方法,可增强学生的学习信心,培养其学习兴趣,提高学习效率,从而激发强烈的学习积极性。

我考虑从以下几方面来进行学法指导:(1) 把隐含在教材中的思想方法显化。

如等比数列通项公式的推导体现了从特殊到一般的方法。

其通项公式11-=n n q a a 是以n 为字变量的函数,可利用函数思想来解决数列有关问题。

思想方法的显化对提高学生数学修养有帮助。

(2) 注重从科学方法论的高度指导学生的学习。

通过提问、分析、解答、总结,培养学生发现问题、分析问题、解决问题的能力。

训练逻辑思维的严密性和深刻性的目的。

本节所蕴含的思想:归纳的思想,分类讨论的思想,方程的思想,整体代入的思想,函数的思想。

课时安排:2.4 等比数列的概念及其通项公式(3课时)等比数列概念,通项公式,等比数列的性质。

2.5等比数列的前n 项和(3课时)等比数列前n 项和的推导,前n 项和公式的性质,前n 项和公式的应用。

参考资料:课本,教参,一线精练,优化设计,训练与测评。

要点自主梳理 1.等比数列的定义如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零)公比q ,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,通常用字母q 表示(q ≠0).从等比数列的定义看,等比数列的任意项都是非零的,公比q 也是非零常数. 2.等比数列的通项公式设等比数列{a n }的首项为a 1,公比为q ,则它的通项a n =a 1·q n -1..3.等比中项:如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项. G 2=a ·b (ab ≠0) 4.等比数列的常用性质 (1)通项公式的推广:a n =a m ·qn -m,(n ,m ∈N *).(2)若{a n }为等比数列,且k +l =m +n ,(k ,l ,m ,n ∈N *),则a k ·a l =a m ·a n .(3)若{a n },{b n }(项数相同)是等比数列,则{λa n }(λ≠0),⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n 仍是等比数列.(4)单调性:⎩⎪⎨⎪⎧ a 1>0,q >1或⎩⎪⎨⎪⎧ a 1<00<q <1⇔{a n }是递增数列;⎩⎪⎨⎪⎧a 1>0,0<q <1或⎩⎪⎨⎪⎧a 1<0q >1⇔{a n }是递减数列;q =1⇔{a n }是常数列;q <0⇔{a n }是摆动数列.5.等比数列的前n 项和公式等比数列{a n }的公比为q (q ≠0),其前n 项和为S n , 当q =1时,S n =na 1;当q ≠1时,S n =a 11-q n 1-q =a 1-a n q1-q .6.等比数列前n 项和的性质公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为________. q n7.等差数列与等比数列的关系是:(1)若一个数列既是等差数列,又是等比数列,则此数列是非零常数列; (2)若{a n }是等比数列,且a n >0,则{lg a n }构成等差数列.8.思想与方法: (1)等比数列的判定方法: ①定义:a n +1a n=q (q 是不为零的常数,n ∈N *)⇔{a n }是等比数列. ②等比中项法:a 2n +1=a n ·a n +2(a n ·a n +1·a n +2≠0,n ∈N *)⇔{a n }是等比数列. ③通项公式:a n =cqn -1(c 、q 均是不为零的常数,n ∈N *)⇔{a n }是等比数列.(2)等比数列的前n 项和S n 是用错位相减法求得的,注意这种方法在数列求和中的运用. (3)在利用等比数列前n 项和公式时,如果不确定q 与1的关系,一般要用分类讨论的思想,分公比q =1和q ≠1两种情况;计算等比数列前n 项和过程中要注意整体代入的思想方法.常把q n,a 11-q当成整体求解.(4) 等比数列的通项公式a n =a 1q n -1及前n 项和公式S n =a 11-q n 1-q =a 1-a n q 1-q(q ≠1)共涉及五个量a 1,a n ,q ,n ,S n ,知三求二,体现了方程的思想的应用. (5)揭示等比数列的特征及基本量之间的关系. 利用函数、方程的观点和方法, 讨论单调性时,要特别注意首项和公比的大小. 经典题型题型一 等比数列的基本量的运算例1 (1)在等比数列{a n }中,已知a 6-a 4=24,a 3a 5=64,求{a n }的前8项和S 8;(2)设等比数列{a n }的公比为q (q >0),它的前n 项和为40,前2n 项和为3 280,且前n 项中数值最大的项为27,求数列的第2n 项.探究提高 (1)对于等比数列的有关计算问题,可类比等差数列问题进行,在解方程组的过程中要注意“相除”消元的方法,同时要注意整体代入(换元)思想方法的应用.(2)在涉及等比数列前n 项和公式时要注意对公比q 是否等于1进行判断和讨论.题型二 等比数列的性质及应用例2 在等比数列{a n }中, (1) 已知a 4a 7=-512,a 3+a 8=124,且公比为整数,求a 10;;(2)若已知a 3a 4a 5=8,求a 2a 3a 4a 5a 6的值.探究提高 在解决等比数列的有关问题时,要注意挖掘隐含条件,利用性质,特别是性质“若m +n =p +q ,则a m ·a n =a p ·a q ”,可以减少运算量,提高解题速度. 题型三 等比数列的定义及判定例3设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=4a n +2. (1)设b n =a n +1-2a n ,证明:数列{b n }是等比数列; (2)求数列{a n }的通项公式.解题导引 (1)证明数列是等比数列的两个基本方法:①a n +1a n =q (q 为与n 值无关的常数)(n ∈N *). ②a 2n +1=a n a n +2 (a n ≠0,n ∈N *).(2)证明数列不是等比数列,可以通过具体的三个连续项不成等比数列来证明,也可用反证法. 探究提高 注意 (2)问中要注意验证n =1时是否符合n ≥2时的通项公式,能合并的必须合并.题型四:等比数列的前n 项和公式例4.设等比数列{a n }的前n 项和为S n ,若S 3+S 6=2S 9,求数列的公比q. 例5.在等比数列{}n a 中,已知48n S =,260n S =,求3n S 。

思路点拨:等差数列中也有类似的题目,我们仍然采用等差数列的解决办法,即等比数列中前k 项和,第2个k 项和,第3个k 项和,……,第n 个k 项和仍然成等比数列。

题型五:等比数列的判断与证明例6.已知数列{a n }的前n 项和S n 满足:log 5(S n +1)=n(n ∈N +),求出数列{a n }的通项公式,并判断{a n }是何种数列?思路点拨:由数列{a n }的前n 项和S n 可求数列的通项公式,通过通项公式判断{a n }类型.【变式2】设{a n }、{b n }是公比不相等的两个等比数列,C n =a n +b n ,证明数列{C n }不是等比数列.题型六:S n 与a n 的关系例7.已知正项数列{a n },其前n 项和S n 满足21056n n n S a a =++,且a 1,a 3,a 15成等比数列,求数列{a n }的通项a n .举一反三:【变式】命题1:若数列{a n }的前n 项和S n =a n+b(a ≠1),则数列{a n }是等比数列;命题2:若数列{a n }的前n 项和S n =na-n ,则数列{a n }既是等差数列,又是等比数列。

相关文档
最新文档