人教版2013-2014学年度第二学期九年数学期中试卷
2013-2014年下学期九年级数学期中考试题及答案

EAD B50°C四川省眉山市华兴联谊学校2013-2014学年下学期期中考试九年级数学试题全卷满分120分,考试时间120分钟A 卷(共100分)一、选择题(3分×12=36分) 1、-3的相反数是()A 、3B 、-3C 、31D 、-312、2010年某景区全年游客人数超8030000人次,8030000用科学计数法表示是() A 、803×104B 、80.3×105C 、8.03×106D 、8.03×1073、如图,已知AB ∥CD,∠A=50°,∠C=∠E,则∠C=() A 、20° B 、25° C 、30° D 、40°4、下列运算结果正确的是() ① 2x 3-x 2= x ②x 3·(x 5)2=x13③(-x)6÷(-x )3=x 3④(0.1)2·103=10A 、①②B 、②④C 、②③D 、②③④5、已知下列命题:①若a >0,b >0,则a+b >0;②若a 2≠b 2,则a ≠b ③角平分线上的点到角两边的距离相等;④平行四边形的对角线互相平分⑤直角三角形斜边上的中线等于斜边的一半。
其中原命题与逆命题均为真命题的是() A 、①③④ B 、①②④ C 、③④⑤ D 、②③⑤ 6、下列运算,正确的是()A 、3+2=5B 、3×2=6C 、(3-1)2=3-1 D 、223-5=5-3 7、如下左图是由五个小正方体搭成的几何体,它的左视图是()8、已知两圆的半径分别为1和4,圆心距为3,则两圆的位置关系是() A 、外离 B 、外切 C 、相交 D 、内切 9、下列事件中是必然事件的是()A 、一个直角三角形的两个锐角分别是40°和60°A B C DB 、抛掷一枚硬币,落地后正面朝上。
C 、当x 是实数时,x≥0D 、长为5cm 、5cm 、11cm 的三条线段能围成一个三角形。
2013-2014学年第二学期九年级数学

2013-2014-2九年级数学第一次学业水平测试题本试题满分150分,考试时间为120分钟。
A 卷(100分)一、 填空题(每题3分,共30分)1、函数y=+中自变量x 的取值范围是( ) 2、抛物线y =(x -2)2+3的对称轴是A.直线x =-3B.直线x =3C.直线x =2D.直线x =-2 3、二次函数2)1(2+-=x y 的最小值是()A.2 (B )1 (C )-1(D )-22226、已知二次函数y=,若函数值y 随x 的增大而减小,则x 的取值范围是( )积为( )的任意一点,则∠APB 等于( ).60° 或120°9、在一个不透明的盒里,装有10个红球和5个蓝球,它们除颜色不同外,其余均相同,从中随机摸出一个球,它为蓝球的概率是()A.23B.12C.13D.1510、如图所示是二次函数y=ax 2+bx+c 图象的一部分,图象过A点(3,0),二次函数图象对称轴为x=1,给出四个结论:①b2>4ac ;②bc <0;③2a+b=0;④a+b+c=0,其中正确结论是( )二、填空(本题共10小题,每题3分,共30分).11、抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是12、某公司4月份的利润为160万元,要使6月份的利润达到250万元,则平均每月增长的百分率是 .13、 抛物线m x x y ++=822与x 轴只有一个公共点,则m 的值为. 14、已知|1|0a +=,则a b -=.15、如图,小华同学设计了一个圆直径的测量器,标有刻度的尺子OA 、OB 在O 点钉在一起,并使它们保持垂直,在测直径时,把O 点靠在圆周上,读得刻度OE=8,OF=6,则圆的直径为 .16、如图,上体育课,甲、乙两名同学分别站在C 、D 的位置时,乙的影子恰好在甲的影子里边,已知甲,乙同学相距1米.甲身高1.8米,乙身高1.5米,则甲的影长是米.17、如图所示的抛物线是二次函数y=ax 2﹣3x+a 2﹣1的图象,那么a 的值是 _________.18、已知二次函数y=﹣x 2+2x+m 的部分图象如图所示,则关于x 的一元二次方程﹣x 2+2x+m=0的解为 .19、直线y=2x ﹣1与抛物线y=x 2的公共点坐标是 .20、如图所示,△ABC 中,DE ∥BC ,AE ∶EB =2∶3,若△AED 的面积是4m 2,则四边形DEBC 的面积为______.三、解答题(21、22每题6分;23、24每题9分,25题10分) 21、计算:22、先化简,再求代数式的值:222111a a a a a +⎛⎫-÷ ⎪-+-⎝⎭,其中1a =.23、四张质地相同并标有数学0、1、2、3的卡片(如图所示),将卡片洗匀后,背面朝上放在桌面上,第一次任意抽取一张(不放回),第二次再抽一张。
2013年下期九年级期中考试数学试题.doc

2013年下学期九年级期中考试数学试卷一、填空题(每小题3分,共30分)1、将方程3x ²=5x+2化为一元二次方程的一般形式是2、命题:“面积相等的两个三角形是全等三角形”的逆命题是 ,它是 (填“真”或“假”)命题。
3、已知直角三角形的两边长为6和8,则第三边长为 。
4、已知:在△ABC 中,∠A=90°,D 是AB 上一点,DB=DC ,∠ACD=14°,则∠B 的度数为 。
5、如图,已知△ADE ∽△ABC ,AD=6cm ,DB=3cm ,BC=9.9cm,∠B=50°, 则∠ADE= ,DE = cm ;6、如图,在Rt ABC ∆中,∠=C 90 ,EF AB BE ⊥=,10,AC BC =34,则EF的长为_______________.7、已知:a ,b ,c ,d 是成比例线段,其中a =3cm ,b =2cm , c =6cm ,则d = cm ; 8、在△ABC 中,若│sinA-2│+()=0,则∠C=_______度. 9、方程032=++a x x 的一个根为1,则a= ,方程的另一个根是 。
10、设230a b -=,则a b =_______,a b b-=________. 二、选择题(每小题3分,共30分)11、下列方程中,是一元二次方程的是( ) (A )022=++y x x (B )0112=++xx (C )122=+x x (D )322132+=-x x 12、5.下列说法正确的是( )A.“对顶角相等”是定义B.“在直线AB 上取一点C ”是命题C.“整体大于部分”是公理D.“同位角相等”是定理 13、若(m-2)22-mx -x+1=0是一元二次方程,则m 的值为( )(A )±2 (B )2 (C )-2 (D )014、已知一个三角形的三个角的度数比为1:2:3,它们最长边等于8,则最短边的长为( )(A )4 (B )8 (C )2 (D )4315.如图,在平行四边形ABCD 中, F 是AD 延长线上一点,连接BF 交DC 与点E,则图中相似三角形共有( ) A. 0对 B. 1对C. 2对D.3对16、用配方法将二次三项式a ²+4a+5变形,结果是( ) A (a-2)²+1 B (a+2)² +1 C (a-2)²-1 D (a+2)² -1 17、方程n m x =+2)((n ﹥0)的根是( )(A )n m +-(B )n m ±- (C )n m + (D )n m ±18、如果关于x 的一元二次方程0962=+-x kx 有两个不相等的实数根,那么k 的取值范围是( )(A )k <1 (B )k ≠0 (C )k <1且k ≠0 (D )k >1 19、若(x+y )(x+y+2)-8=0,则x+y 的值是( )(A )-4或2 (B )-2或4 (C )23-或3 (D )3或-2 20、若等腰△ABC 的三边都是方程x ²-6x+8=0的根,则△ABC 的周长是( ) A 10 B 6 C 12 D 6或10或12CAFBEC三、用适当的方法解下列方程(16分)21、9(x+2)² =16 22、 )5(4)5)(7(+=+-x x x23、3x ²-2x-1=0 24、(x-2)(x-3)=6四、解答题(44分)25、(6分)已知关于x 的一元二次方程03)12(2=+++-m x m mx 无实数根,求m 的最小整数值。
九年级(下)期中数学试卷含答案

九年级(下)期中数学试卷一、选择题:1.使式子有意义的取值为()A.x>0 B.x≠1 C.x≠﹣1 D.x≠±12.下面的多项式中,能因式分解的是()A.m2+n B.m2﹣m+1 C.m2﹣n D.m2﹣2m+13.一组数据:10、5、15、5、20,则这组数据的平均数和中位数分别是()A.10,10 B.10,12.5 C.11,12.5 D.11,104.下列各式,分解因式正确的是()A.a2+b2=(a+b)2 B.xy+xz+x=x(y+z)C.x2+x3=x3 D.a2﹣2ab+b2=(a﹣b)25.某校九年级开展“光盘行动”宣传活动,各班级参加该活动的人数统计结果如下表,对于这组统计数据,下列说法中正确的是()班级1班2班3班4班5班6班人数52 60 62 54 58 62A.平均数是58 B.中位数是58 C.极差是40 D.众数是606.若m+n=3,则2m2+4mn+2n2﹣6的值为()A.12 B.6 C. 3 D.07.为保证达万高速公路在2012年底全线顺利通车,某路段规定在若干天内完成修建任务.已知甲队单独完成这项工程比规定时间多用10天,乙队单独完成这项工程比规定时间多用40天,如果甲、乙两队合作,可比规定时间提前14天完成任务.若设规定的时间为x天,由题意列出的方程是()A.B.C.D.8.(﹣8)2014+(﹣8)2013能被下列数整除的是()A.3 B. 5 C.7 D.99.在一次科技知识竞赛中,两组学生成绩统计如下表,通过计算可知两组的方差为S甲2=172,S乙2=256.下列说法:①两组的平均数相同;②甲组学生成绩比乙组学生成绩稳定;③甲组成绩的众数>乙组成绩的众数;④两组成绩的中位数均为80,但成绩≥80的人数甲组比乙组多,从中位数来看,甲组成绩总体比乙组好;⑤成绩高于或等于90分的人数乙组比甲组多,高分段乙组成绩比甲组好.其中正确的共有()分数50 60 70 80 90 100人数甲组2 5 10 13 14 6乙组4 4 16 2 12 12A.2种B.3种C.4种D.5种10.关于x的分式方程=1,下列说法正确的是()A.方程的解是x=m+5 B.m>﹣5时,方程的解是正数C.m<﹣5时,方程的解为负数D.无法确定二、填空题:11.若分式有意义,则实数x的取值范围是.12.若x2+4x+4=(x+2)(x+n),则n=.13.一段山路400m,一人上山每分钟走50m,下山时每分钟走80m,则他在这段时间内平均速度为每分钟走m.14.因式分解:x2(y2﹣1)+2x(y2﹣1)+(y2﹣1)=.15.化简+的结果为.16.小明和小兵两人参加学校组织的理化实验操作测试,近期的5次测试成绩如图所示,则小明5次成绩的方差S12与小兵5次成绩的方差S22之间的大小关系为S12S22.(填“>”、“<”、“=”)17.若关于x的分式方程的解为正数,那么字母a的取值范围是.18.将边长分别为1、2、3、4…19、20的正方形置于直角坐标系第一象限,如图中方式叠放,则按图示规律排列的所有阴影部分的面积之和为.三、解答题:19.(2006•北京)已知2x﹣3=0,求代数式x(x2﹣x)+x2(5﹣x)﹣9的值.20.(2015春•莱城区校级期中)把下列各式分解因式:(1)2a2﹣2ab(2)2x2﹣18(3)﹣3ma3+6ma2﹣3ma.21.(2015春•莱城区校级期中)解方程:(1)﹣1=.(2)+=2.22.(2013•乌鲁木齐)先化简:(﹣x+1)÷,然后从﹣1≤x≤2中选一个合适的整数作为x的值代入求值.23.(2013•宁夏)某校要从九年级(一)班和(二)班中各选取10名女同学组成礼仪队,选取的两班女生的身高如下:(单位:厘米)(一)班:168 167 170 165 168 166 171 168 167 170(二)班:165 167 169 170 165 168 170 171 168 167(1)补充完成下面的统计分析表班级平均数方差中位数极差一班168 168 6二班168 3.8(2)请选一个合适的统计量作为选择标准,说明哪一个班能被选取.24.(2005•泰州)春兰集团对应聘者甲、乙、丙进行面试,并从专业知识、工作经验、仪表形象三方面给应聘者打分,每一方面满分20分,最后的打分制成条形统计图(如图).(1)利用图中提供的信息,在专业知识方面3人得分的极差是多少?在工作经验方面3人得分的众数是多少?在仪表形象方面谁最有优势?(2)如果专业知识、工作经验、仪表形象三个方面的重要性之比为10:7:3,那么作为人事主管,你应该录用哪一位应聘者为什么?(3)在(2)的条件下,你对落聘者有何建议?25.(2013•贺州)某校为了丰富学生的校园生活,准备购进一批篮球和足球.其中篮球的单价比足球的单价多40元,用1500元购进的篮球个数与900元购进的足球个数相等.(1)篮球和足球的单价各是多少元?(2)该校打算用1000元购买篮球和足球,问恰好用完1000元,并且篮球、足球都买有的购买方案有哪几种?参考答案与试题解析一、选择题:1.使式子有意义的取值为()A.x>0 B.x≠1 C.x≠﹣1 D.x≠±1考点:分式有意义的条件.分析:要使分式有意义,分式的分母不能为0.解答:解:∵|x|﹣1≠0,即|x|≠1,∴x≠±1.故选D.点评:解此类问题,只要令分式中分母不等于0,求得字母的值即可.2.下面的多项式中,能因式分解的是()A.m2+n B.m2﹣m+1 C.m2﹣n D.m2﹣2m+1考点:因式分解的意义.分析:根据多项式特点和公式的结构特征,对各选项分析判断后利用排除法求解.解答:解:A、m2+n不能分解因式,故本选项错误;B、m2﹣m+1不能分解因式,故本选项错误;C、m2﹣n不能分解因式,故本选项错误;D、m2﹣2m+1是完全平方式,故本选项正确.故选D.点评:本题主要考查了因式分解的意义,熟练掌握公式的结构特点是解题的关键.3.一组数据:10、5、15、5、20,则这组数据的平均数和中位数分别是()A.10,10 B.10,12.5 C.11,12.5 D.11,10考点:中位数;加权平均数.分析:根据中位数和平均数的定义结合选项选出正确答案即可.解答:解:这组数据按从小到大的顺序排列为:5,5,10,15,20,故平均数为:=11,中位数为:10.故选D.点评:本题考查了中位数和平均数的知识,属于基础题,解题的关键是熟练掌握其概念.4.下列各式,分解因式正确的是()A.a2+b2=(a+b)2 B.xy+xz+x=x(y+z)C.x2+x3=x3 D.a2﹣2ab+b2=(a﹣b)2考点:因式分解-运用公式法;因式分解-提公因式法.分析:直接利用提取公因式法以及公式法分解因式得出即可.解答:解:A、a2+b2无法分解因式,故此选项错误;B、xy+xz+x=x(y+z+1),故此选项错误;C、x2+x3=x2(1+x),故此选项错误;D、a2﹣2ab+b2=(a﹣b)2,正确.故选:D.点评:此题主要考查了公式法分解因式,熟练应用完全平方公式是解题关键.5.某校九年级开展“光盘行动”宣传活动,各班级参加该活动的人数统计结果如下表,对于这组统计数据,下列说法中正确的是()班级1班2班3班4班5班6班人数52 60 62 54 58 62A.平均数是58 B.中位数是58 C.极差是40 D.众数是60考点:极差;算术平均数;中位数;众数.分析:分别计算该组数据的众数、平均数、中位数及极差后,选择正确的答案即可.解答:解:A.=(52+60+62+54+58+62)÷6=58;故此选项正确;B.∵6个数据按大小排列后为:52,54,58,60,62,62;∴中位数为:(60+58)÷2=59;故此选项错误;C.极差是62﹣52=10,故此选项错误;D.62出现了2次,最多,∴众数为62,故此选项错误;故选:A.点评:此题主要考查了平均数、众数、中位数及极差的知识,解题时分别计算出众数、中位数、平均数及极差后找到正确的选项即可.6.若m+n=3,则2m2+4mn+2n2﹣6的值为()A.12 B.6 C. 3 D.0考点:完全平方公式.分析:根据完全平方公式的逆用,先整理出完全平方公式的形式,再代入数据计算即可.解答:解:原式=2(m2+2mn+n2)﹣6,=2(m+n)2﹣6,=2×9﹣6,=12.故选A.点评:本题利用了完全平方公式求解:(a±b)2=a2±2ab+b2,要注意把m+n看成一个整体.7.为保证达万高速公路在2012年底全线顺利通车,某路段规定在若干天内完成修建任务.已知甲队单独完成这项工程比规定时间多用10天,乙队单独完成这项工程比规定时间多用40天,如果甲、乙两队合作,可比规定时间提前14天完成任务.若设规定的时间为x天,由题意列出的方程是()A.B.C.D.考点:由实际问题抽象出分式方程.专题:压轴题.分析:设规定的时间为x天.则甲队单独完成这项工程所需时间是(x+10)天,乙队单独完成这项工程所需时间是(x+40)天.根据甲、乙两队合作,可比规定时间提前14天完成任务,列方程为+=.解答:解:设规定时间为x天,则甲队单独一天完成这项工程的,乙队单独一天完成这项工程的,甲、乙两队合作一天完成这项工程的.则+=.故选B.点评:考查了由实际问题抽象出分式方程.在本题中,等量关系:甲单独做一天的工作量+乙单独做一天的工作量=甲、乙合做一天的工作量.8.(﹣8)2014+(﹣8)2013能被下列数整除的是()A.3 B. 5 C.7 D.9考点:因式分解-提公因式法.分析:直接提取公因式(﹣8)2013,进而得出答案.解答:解:(﹣8)2014+(﹣8)2013=(﹣8)2013×(﹣8+1)=﹣7×(﹣8)2013,则(﹣8)2014+(﹣8)2013能被7整除.故选:C.点评:此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.9.在一次科技知识竞赛中,两组学生成绩统计如下表,通过计算可知两组的方差为S甲2=172,S乙2=256.下列说法:①两组的平均数相同;②甲组学生成绩比乙组学生成绩稳定;③甲组成绩的众数>乙组成绩的众数;④两组成绩的中位数均为80,但成绩≥80的人数甲组比乙组多,从中位数来看,甲组成绩总体比乙组好;⑤成绩高于或等于90分的人数乙组比甲组多,高分段乙组成绩比甲组好.其中正确的共有()分数50 60 70 80 90 100人数甲组2 5 10 13 14 6乙组4 4 16 2 12 12A.2种B.3种C.4种D.5种考点:中位数;算术平均数;众数;方差.专题:图表型.分析:根据中位数、众数、方差、平均数的概念来解答.解答:解:①平均数:甲组:(50×2+60×5+70×10+80×13+90×14+100×6)÷50=80,乙组:(50×4+60×4+70×16+80×2+90×12+100×12)÷50=80,②S甲2=172<S乙2=256,故甲组学生成绩比乙组学生成绩稳定;③甲组成绩的众数90>乙组成绩的众数70;④成绩≥80的人数甲组33人比乙组26人多;从中位数来看,甲组成绩80=乙组成绩80,故错误.⑤成绩高于或等于90分的人数乙组24人比甲组20人多,高分段乙组成绩比甲组好.故①②③⑤正确.故选:C.点评:本题考查统计知识中的中位数和众数的定义.将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.一组数据中出现次数最多的数据叫做众数.平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.样本方差描述了一组数据围绕平均数波动的大小.10.关于x的分式方程=1,下列说法正确的是()A.方程的解是x=m+5 B.m>﹣5时,方程的解是正数C.m<﹣5时,方程的解为负数D.无法确定考点:分式方程的解.专题:计算题.分析:先按照一般步骤解方程,用含有m的代数式表示x,然后根据x的取值讨论m的范围,即可作出判断.解答:解:方程两边都乘以x﹣5,去分母得:m=x﹣5,解得:x=m+5,∴当x﹣5≠0,把x=m+5代入得:m+5﹣5≠0,即m≠0,方程有解,故选项A错误;当x>0且x≠5,即m+5>0,解得:m>﹣5,则当m>﹣5且m≠0时,方程的解为正数,故选项B错误;当x<0,即m+5<0,解得:m<﹣5,则m<﹣5时,方程的解为负数,故选项C正确;显然选项D错误.故选:C.点评:本题在判断方程的解是正数时,容易忽视m≠0的条件.二、填空题:11.若分式有意义,则实数x的取值范围是x≠.考点:分式有意义的条件.分析:根据分母为零,分式无意义;分母不为零,分式有意义.解答:解:由分式有意义,得5x﹣8≠0.解得x≠,故答案为:x≠.点评:本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:分式无意义⇔分母为零;分式有意义⇔分母不为零;分式值为零⇔分子为零且分母不为零.12.若x2+4x+4=(x+2)(x+n),则n=2.考点:因式分解的意义.专题:计算题.分析:根据因式分解与整式的乘法是互逆运算,把等式右边展开后根据对应项系数相等列式求解即可.解答:解:∵(x+2)(x+n)=x2+(n+2)x+2n,∴n+2=4,2n=4,解得n=2.点评:本题主要利用因式分解与整式的乘法是互逆运算.13.一段山路400m,一人上山每分钟走50m,下山时每分钟走80m,则他在这段时间内平均速度为每分钟走m.考点:有理数的混合运算.专题:应用题.分析:根据平均速度等于总路程除以总时间,求出即可.解答:解:根据题意得:=(m).则他在这段时间内平均速度为每分钟走m.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.14.因式分解:x2(y2﹣1)+2x(y2﹣1)+(y2﹣1)=(y+1)(y﹣1)(x+1)2.考点:提公因式法与公式法的综合运用.专题:计算题.分析:原式提取公因式,再利用平方差公式及完全平方公式分解即可.解答:解:原式=(y2﹣1)(x2+2x+1)=(y+1)(y﹣1)(x+1)2.故答案为:(y+1)(y﹣1)(x+1)2点评:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.15.化简+的结果为x.考点:分式的加减法.分析:先把两分式化为同分母的分式,再把分母不变,分子相加减即可.解答:解:原式=﹣==x.故答案为:x.点评:本题考查的是分式的加减法,即把分母不相同的几个分式化成分母相同的分式,叫做通分,经过通分,异分母分式的加减就转化为同分母分式的加减.16.小明和小兵两人参加学校组织的理化实验操作测试,近期的5次测试成绩如图所示,则小明5次成绩的方差S12与小兵5次成绩的方差S22之间的大小关系为S12<S22.(填“>”、“<”、“=”)考点:方差.分析:先从图片中读出小明和小兵的测试数据,分别求出方差后比较大小.也可从图看出来小明的都在8到10之间相对小兵的波动更小.解答:解:小明数据的平均数1=(9+8+10+9+9)=9,方差s12=[(9﹣9)2+(8﹣9)2+(10﹣9)2+(9﹣9)2+(9﹣9)2]=0.4,小兵数据的平均数2=(7+10+10+8+10)=9,方差s22=[(7﹣9)2+(10﹣9)2+(10﹣9)2+(8﹣9)2+(10﹣9)2]=1.6,∴S12<S22.故答案为:<.点评:本题考查了方差的意义.方差它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.17.若关于x的分式方程的解为正数,那么字母a的取值范围是a>1且a≠2.考点:分式方程的解.专题:计算题.分析:将a看做已知数求出分式方程的解得到x的值,根据解为正数列出不等式,求出不等式的解集即可得到a的范围.解答:解:分式方程去分母得:2x﹣a=x﹣1,解得:x=a﹣1,根据题意得:a﹣1>0且a﹣1﹣1≠0,解得:a>1且a≠2.故答案为:a>1且a≠2.点评:此题考查了分式方程的解,弄清题意是解本题的关键.注意分式方程分母不等于0.18.将边长分别为1、2、3、4…19、20的正方形置于直角坐标系第一象限,如图中方式叠放,则按图示规律排列的所有阴影部分的面积之和为210.考点:规律型:图形的变化类.专题:压轴题.分析:第一个阴影部分的面积等于第二个图形的面积减去第一个图形的面积,第二个阴影部分的面积等于第四个图形的面积减去第三个图形的面积,由此类推,最后一个阴影部分的面积等于最后一个图形的面积减去倒数第二个图形的面积.解答:解:图中阴影部分的面积为:(22﹣1)+(42﹣32)+…+(202﹣192)=(2+1)(2﹣1)+(4+3)(4﹣3)+…+(20+19)(20﹣19)=1+2+3+4+…+19+20=210;故答案为:210.点评:此题考查了图形的变化类,关键是找出每一个阴影部分的面积等于两个正方形面积的差,这样可以将阴影部分的面积看做边长为偶数的正方形的面积减去边长为奇数的正方形的面积.三、解答题:19.(2006•北京)已知2x﹣3=0,求代数式x(x2﹣x)+x2(5﹣x)﹣9的值.考点:因式分解的应用.专题:整体思想.分析:对所求的代数式先进行整理,再利用整体代入法代入求解.解答:解:x(x2﹣x)+x2(5﹣x)﹣9,=x(x2﹣x)+x2(5﹣x)﹣9,=x3﹣x2+5x2﹣x3﹣9,=4x2﹣9,=(2x+3)(2x﹣3).当2x﹣3=0时,原式=(2x+3)(2x﹣3)=0.点评:本题考查了提公因式法分解因式,观察题目,先进行整理再利用整体代入法求解,不要盲目的求出求知数的值再利用代入法求解.20.(2015春•莱城区校级期中)把下列各式分解因式:(1)2a2﹣2ab(2)2x2﹣18(3)﹣3ma3+6ma2﹣3ma.考点:提公因式法与公式法的综合运用.专题:计算题.分析:(1)原式提取2a,即可得到结果;(2)原式提取2,再利用平方差公式分解即可;(3)原式提取﹣3ma,再利用完全平方公式分解即可.解答:解:(1)原式=2a(a﹣b);(2)原式=2(x2﹣9)=2(x+3)(x﹣3);(3)原式=﹣3ma(a2﹣2a+1)=﹣3ma(a﹣1)2.点评:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.21.(2015春•莱城区校级期中)解方程:(1)﹣1=.(2)+=2.考点:解分式方程.专题:计算题.分析:两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:(1)去分母得:x2+2x﹣x2+4=8,解得:x=2,经检验x=2是增根,分式方程无解;(2)去分母得:x﹣5=4x﹣2,解得:x=﹣1,经检验x=﹣1是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.22.(2013•乌鲁木齐)先化简:(﹣x+1)÷,然后从﹣1≤x≤2中选一个合适的整数作为x的值代入求值.考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再选取合适的x的值代入进行计算即可.解答:解:原式=(﹣)÷=×=,当x=1时,原式==3.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.23.(2013•宁夏)某校要从九年级(一)班和(二)班中各选取10名女同学组成礼仪队,选取的两班女生的身高如下:(单位:厘米)(一)班:168 167 170 165 168 166 171 168 167 170(二)班:165 167 169 170 165 168 170 171 168 167(1)补充完成下面的统计分析表班级平均数方差中位数极差一班168 168 6二班168 3.8(2)请选一个合适的统计量作为选择标准,说明哪一个班能被选取.考点:方差;加权平均数;中位数;极差;统计量的选择.专题:压轴题.分析:(1)根据方差、中位数及极差的定义进行计算,得出结果后补全表格即可;(2)应选择方差为标准,哪班方差小,选择哪班.解答:解:(1)一班的方差=×[(168﹣168)2+(167﹣168)2+(170﹣168)2+…+(170﹣168)2]=3.2;二班的极差为171﹣165=6;二班的中位数为168;补全表格如下:班级平均数方差中位数极差一班168 3.2 168 6二班168 3.8 168 6(2)选择方差做标准,∵一班方差<二班方差,∴一班可能被选取.点评:本题考查了方差、极差及中位数的知识,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.24.(2005•泰州)春兰集团对应聘者甲、乙、丙进行面试,并从专业知识、工作经验、仪表形象三方面给应聘者打分,每一方面满分20分,最后的打分制成条形统计图(如图).(1)利用图中提供的信息,在专业知识方面3人得分的极差是多少?在工作经验方面3人得分的众数是多少?在仪表形象方面谁最有优势?(2)如果专业知识、工作经验、仪表形象三个方面的重要性之比为10:7:3,那么作为人事主管,你应该录用哪一位应聘者为什么?(3)在(2)的条件下,你对落聘者有何建议?考点:加权平均数;条形统计图;众数;极差.专题:图表型.分析:运用极差、众数、平均数的定义并结合条形统计图来分析和解决题目.解答:解:(1)专业知识方面3人得分极差是18﹣14=4分,工作经验方面3人得分的众数是15,在仪表形象方面丙最有优势;(2)甲得分:14×0.5+17×0.35+12×0.15=14.75分;乙得分:18×0.5+15×0.35+11×0.15=15.9分;丙得分:16×0.5+15×0.35+14×0.15=15.35分,∴应录用乙;(3)对甲而言,应加强专业知识的学习,同时要注意自己的仪表形象.对丙而言,三方面都要努力.重点在工作经验和仪表形象.点评:本题考查了从统计图中获取信息的能力和计算加权平均数的能力.25.(2013•贺州)某校为了丰富学生的校园生活,准备购进一批篮球和足球.其中篮球的单价比足球的单价多40元,用1500元购进的篮球个数与900元购进的足球个数相等.(1)篮球和足球的单价各是多少元?(2)该校打算用1000元购买篮球和足球,问恰好用完1000元,并且篮球、足球都买有的购买方案有哪几种?考点:分式方程的应用;二元一次方程的应用.分析:(1)首先设足球单价为x元,则篮球单价为(x+40)元,根据题意可得等量关系:1500元购进的篮球个数=900元购进的足球个数,由等量关系可得方程=,再解方程可得答案;(2)设恰好用完1000元,可购买篮球m个和购买足球n个,根据题意可得篮球的单价×篮球的个数m+足球的单价×足球的个数n=1000,再求出整数解即可.解答:解:(1)设足球单价为x元,则篮球单价为(x+40)元,由题意得:=,解得:x=60,经检验:x=60是原分式方程的解,则x+40=100,答:篮球和足球的单价各是100元,60元;(2)设恰好用完1000元,可购买篮球m个和购买足球n个,由题意得:100m+60n=1000,整理得:m=10﹣n,∵m、n都是正整数,∴①n=5时,m=7,②n=10时,m=4,③n=15,m=1;∴有三种方案:①购买篮球7个,购买足球5个;②购买篮球4个,购买足球10个;③购买篮球1个,购买足球15个.点评:此题主要考查了分式方程和二元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.。
2013~2014学年度第二学期期中考试 数学试卷

九年级数学模拟试卷(5月27日)一、选择题(本题共10小题,每小题3分,共30分) 1.-3的倒数是【▲】A .31B .3C .31-D .3-2.下列运算中正确的是【▲】 A .2a a a =+B .22a a a =⋅C .222()=ab a bD .532)(a a =3.若一个多边形的内角和是720°,则这个多边形的边数是【▲】 A .5 B .6 C .7 D .8 4.将0.000075用科学记数法表示为【▲】 A .7.5×105 B .7.5×10-5 C .0.75×10-4 D .75×10-6 5.在直角坐标系中,点M (1,2)关于y 轴对称的点的坐标为【▲】A .(1,-2)B .(2,-1)C .(-1,2)D .(-1,-2) 6.若两圆的半径分别是2和3,圆心距为5,则这两圆的位置关系是【▲】 A .内切 B .相交 C .外切 D .外离7.图1是一个正方体的展开图,该正方体从图2所示的位置依次翻到第1格、第2格、第3格、第4格、第5格,此时这个正方体朝上..一面的字是【▲】 A .我C .梦 D.中8.1、2、3的34、5、6的3个黄色乒乓球.现分别从每个盒子中随机地各取出1个乒乓球,则取出乒乓球的编号之和大于6的概率为【▲】A .94B .95C .32D .97 9.若二次函数72++=bx x y 配方后为k x y+-=2)1(,则b 、k 的值分别为【▲】A .2、6B .2、8C .-2、6D .-2、810.如图,在平行四边形ABCD 中,AC = 12,BD = 8,P 是AC 上的一个动点,过点P 作EF ∥BD ,与平行四边形的 两条边分别交于点E 、F .设CP=x ,EF=y ,则下列图象中,能表示y 与x 的函数关系的图象大致是【▲】二、填空题(本题共8小题,每小题3分,共24分) 11.在函数y =x 的取值范围是 ▲ .PF E D C BA ABC D12.分解因式:269ab ab a -+= ▲ .13.若分式42x x -+的值为0,则x 的值为 ▲ .14.如图,平行四边形ABCD 中,E 是CD 的延长线上一点,BE 与AD 交于点F ,CD =2DE .若△DEF 的面积为1, 则平行四边形ABCD 的面积为 ▲ . 15.某中学初三年级的学生开展测量物体高度的实践活动,他们要测量一幢建筑物AB 的高度.如图,他们先在点C 处 测得建筑物AB 的顶点A 的仰角为30︒,然后向建筑物AB 前进20m 到达点D 处,又测得点 A 的仰角为60︒,则建 筑物AB 的高度是 ▲ m . 16.抛物线252+-=x kx y 的图象和x 轴有交点,则k 的取 值范围是 ▲ .17.如图,在△ABC 中,∠ACB=52°,点D ,E 分别是AB , AC 的中点.若点F 在线段DE 上,且∠AFC=90°,则 ∠F AE 的度数为 ▲ °.18.如图,在平行四边形OADB 中,对角线AB 、OD 相交于点C ,反比例函数xky =(k >0)在第一象限的图象经过A 、C 两点,若平行四边形OADB 面积为12,则k 的值为 ▲ . 三、解答题(本题共10小题,共96分) 19.(10分)计算:(1)0231(1)sin30(73)42⎛⎫-÷+-⨯- ⎪⎝⎭;(220.(8分)先化简22121x x x x x x --⎛⎫÷- ⎪+⎝⎭,再选取一个合适的x 的值代入求值.21.(8分)解方程组:16,2 2.x y x y +=⎧⎨-=⎩22.(8分)如图,在□ABCD 中,E F ,为BC 上 两点,且BE CF =,AF DE =.求证:(1)ABF DCE △≌△;(2)四边形ABCD 是矩形.AB 30︒60︒(第14题) (第15题)AB CDEF(第18题)AB CDE F (第22题)ABCDE F23.(8分)已知二次函数c bx x y ++-=2x 轴的一个交点坐标为(-1,0),与y 轴的交点坐标为(0,3(1)求出b ,c 的值,并写出此二次函数的解析式; (2)根据图象,直接写出函数值y 为正数时, 自变量x 的取值范围;(3)当12≤x ≤2时,求y 的最大值.24.(8分)已知关于x 的一元二次方程093)6(2=+++-m x m x 的两个实数根分别为1x ,2x . (1)求证:该一元二次方程总有两个实数根;(2)若521-+=x x n ,判断动点P (m ,n )所形成的函数图象是否经过点A (4,5),并说明理由.26.(12分)某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量y (万件)与销售单价x (元)之间的关系可以近似地看作一次函数y =-2x +100.(利润=售价-制造成本)(1)写出每月的利润z (万元)与销售单价x (元)之间的函数关系式; (2)当销售单价为多少元时,厂商每月获得的利润为440万元?(3)如果厂商每月的制造成本不超过540万元,那么当销售单价为多少元时,厂商每月获得的利润最大?最大利润为多少万元?27.(本题满分12分)在△ABC 中,AC =BC ,∠ACB =120°,点D 在AB 边上,∠EDF =60°. (1)当点D 为AB 中点时,且∠EDF 的两边分别交线段AC 、BC 于点E 、F ,如图1,求证:DE =DF ;(2)当点D 不是AB 中点,且AD AB =13时,①若∠EDF 的两边分别交线段AC 、BC 于点E 、F ,如图2,求DEDF;A BC DE F 图2(第23题)A C DEF 图1②若∠EDF 的边DE 交线段AC 于点E ,边DF 交BC 延长线于点F ,如图3,直接写出DEDF的值.28.(本题满分14分)如图,分别以菱形BCED 的对角线BE 、CD 所在直线为x 轴、y 轴建立平面直角坐标系,抛物线a ax ax y 1662--=(a <0)过B 、C 两点,与x 轴的负半轴交于点A ,且∠ACB=90°.点P 是x 轴上一动点,设点P 的坐标为(m ,0),过点P 作直线l 垂直于x 轴,交抛物线于点Q.(1)求抛物线的解析式;(2)当点P 在线段OB 上运动时,直线l 交BD 于点M ,试探究:①填空:MQ = ;(用含m 的化简式子表示,不写过程)②当m 为何值时,四边形CQBM 的面积取得最大值,并求出这个最大值.(3)当点P 在线段EB 上运动时,是否存在点 Q ,使△BDQ 为直角三角形,若存在,请直接写出点Q 的坐标;若不存在,请说明理由.AB C D E F 图3九年级数学模拟试卷答题纸二、填空题(本大题共8小题,每小题3分,共24分.)11、12、13、14 、15、16、17、18 、。
2013-2014学年度第二学期期中初三数学

2013—2014学年度第二学期期中质量检测初 三 数 学 试 题请把答案写在答题框内)1.下列方程中是关于x 的一元二次方程的是A .2210x x+=B .20ax bx c ++= C .(1)(2)1x x -+=D .223250x xy y --=2.在△ABC 中,AB =AC ,∠C =75°,则∠A 的度数是A . 150°B . 50°C . 30°D . 75° 3.如图,已知MB=ND ,∠MBA=∠NDC ,下列条件中不能判定△ABM ≌△CDN 的是A .∠M=∠N B. AM ∥CN C .AB=CD D. AM=CN 4.用配方法解一元二次方程x 2-4x+3=0时可配方得A .(x -2)2=7B .(x -2)2=1C .(x +2)2=1D .(x +2)2=2 5.三角形中,到三边距离相等的点是A .三条高线的交点B .三条中线的交点C .三条角平分线的交点D .三边垂直平分线的交点6.如图是用直尺和圆规作角平分线的示意图,通过证明△DOP ≌△EOP 可以说明OC 是∠AOB 的角平分线,那么△DOP ≌△EOP 的依据是 A .SSS B .SAS C .ASA D. AAS 7.已知关于x 的方程260x kx --=的一个根为3x =,则实数k 的值为A .1-B . 1C .2D .2-8.某校九年级(一)班学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070张相片.如果全班有x 名学生,根据题意,列出方程为A M NB DC (第3题)(第6题)A .(1)2070x x -=B .(1)2070x x +=C .2(1)2070x x +=D .(1)20702x x -= 9.等腰三角形的底和腰是方程x 2-6x +8=0的两根,则这个三角形的周长为 A .8 B .10 C .8或10 D .不能确定 10.关于x 的方程kx 2+3x -1=0有实数根,则k 的取值范围是A .k ≤49-B .k ≥49-且k ≠0C .k ≥49-D .k >49-且k ≠0 二、填空题(每小题3分,共15分)11. 方程x x 32=的解是________________.12.如图,已知AD AB =,DAC BAE ∠=∠,要使ABC △≌ADE △,若以“SAS ”为依据,补充的条件是 .13. 如图,在△ABC 中,DE 是AC 的垂直平分线,AE =3cm , △ABD 的周长为13cm ,则△ABC 的周长为________ cm .14. 据调查,某市2011年的房价为4000元/m 2,预计2013年将达到4840元/m 2,求这两年的年平均增长率.设年平均增长率为x ,根据题意,所列方程为 . 15. 已知a ,b 为一元二次方程x 2+2x -2014=0的两根,那么a 2+a -b 的值为 .三、解答题(共55分,解答要求写出计算步骤.)16.(本题满分5分)用适当的方法解方程0362=--x x .17. (本题满分6分)在△ABC 中,AB =CB ,∠ABC =90°,ACEBD(第12题)(第13题)E 为CB 延长线上一点,点F 在AB 上,且AE =CF . (1)求证:Rt Rt ABE CBF △≌△; (2)若60CAE ∠=°,求ACF ∠的度数。
2013~2014年上学期九年级期中考试数学试题卷(附答题卷)

九年级数学试卷一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填写在答题卡相应位置.......上.) 1.函数2(1)2y x =+-的最小值是 ( ▲ ) A .1 B .-1 C .2 D .-23.如果⊙A 的半径是4cm ,⊙B 的半径是10cm ,圆心距AB =8cm ,那么这两个圆的位置关系是 ( ▲ ) A .外离 B .外切 C .相交 D .内切 4.如果圆锥的底面半径为3cm ,母线长为4cm ,那么它的侧面积等于( ▲ )A .24π2cmB .12π2cmC .122cmD .6π2cm5.将抛物线23y x =先向上平移3个单位,再向左平移2个单位后得到的抛物线解析式为( ▲ )A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+- D .23(2)3y x =--7.某种型号的电视机经过连续两次降价,每台售价由原来的1500元,降到了980元,设平均每次降价的百分率为x ,则下列方程中正确的是 ( ▲ ) A .215001)980x -=( B .21500(1)980x += C .2980(1)1500x -= D .2980(1)1500x +=8.如图,抛物线2(0)y ax bx c a =++≠经过点(-1,0),对称轴为:直线1x =,则下列结论中正确..的是 ( ▲ ) A .a >0 B .当1>x 时,y 随x 的增大而增大 C .c <0D .3x =是一元二次方程20(0)ax bx c a ++=≠的一个根二、填空题(本大题共10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上.) 12.如图,A 、B 、C 是⊙O 上的三个点,∠ABC =25°,则∠AOC 的度数是 ▲ °.xOy -1 113.如图,PA 、PB 分别切⊙O于A 、B 两点,∠APB =50°,则∠AOP = ▲ °.14.如图所示,抛物线2y ax bx c =++(0a ≠)与x 轴的两个交点分别为(20)A -,和(60)B ,,当0y <时,x 的取值范围是 ▲ . 15.当m = ▲ 时,一元二次方程240x x m -+=(m 为常数)有两个相等的实数根. 16.已知抛物线2y ax bx c =++(a >0)的对称轴为直线12x =,且经过点(-3,1y ),(4,2y ),试比较1y 和2y 的大小:1y ▲ 2y (填“>”,“<”或“=”). 17. 已知实数m 是关于x 的方程2310x x --=的一根,则代数式2262m m -+值为 ▲ . 18.如图,依次以三角形,四边形,…,n 边形的各顶点为圆心画半径为1的圆,且任意两圆均不相交.把三角形与各圆重叠部分面积之和记为3S ,四边形与各圆重叠部分面积之和记为4S ,…,n 边形与各圆重叠部分面积之和记为n S ,则100S 的值为 ▲ .(结果保留π)……三、解答题(本大题共10小题,共96分.请在答题卡指定区域.......内作答,解答时应写出文 字说明、证明过程或演算步骤.)20.(本题满分8分)解方程:2(3)2(3)0x x x -+-=22.(本题满分8分)如图,已知CD 是⊙O 的直径,弦AB CD ⊥,垂足为点M ,点P 是AB 上一点,且60BPC ∠=︒.试判断ABC ∆的形状,并说明你的理由.24.(本题满分10分)如图,抛物线232(0) 2y ax x a=--≠的图象与x轴交于A、B两点,与y轴交于C点,已知点B坐标为(4,0).(1)求抛物线的解析式;(2)判断△ABC的形状,说出△ABC外接圆的圆心位置,并求出圆心的坐标.26.(本题满分10分)如图,AB是⊙O的直径,直线EF切⊙O于点C,AD⊥EF于点D.(1)求证:AC平分∠BAD;(2)若⊙O的半径为2,∠ACD=30°,求图中阴影部分的面积.(结果保留π)27.(本题满分12分)在“母亲节”期间,某校部分团员参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利润捐给慈善机构.根据市场调查,这种许愿瓶一段时间内的销售量y(个)与销售单价x(元/个)之间的对应关系如图所示:(1)观察图象判断y与x之间的函数关系,并求出函数关系式;(2)若许愿瓶的进价为6元/个,按照上述市场调查的销售规律,求销售利润W(元)与销售单价x(元/个)之间的函数关系式;(3)若许愿瓶的进货成本不超过900元,要想获得最大的利润,试确定这种许愿瓶的销售单价,并求出此时的最大利润.28.(本题满分12分)如图,抛物线2(0)y ax bx c a=++≠与x轴交于点A(-1,0)、B(3,0),与y轴交于点C(0,3).(1)求抛物线的解析式及顶点D的坐标;(2)若P为线段BD上的一个动点,点P的横坐标为m,试用含m的代数式表示点P的纵坐标;(3)过点P作PM⊥x轴于点M,求四边形PMAC的面积的最大值和此时点P的坐标;(4)若点F是第一象限抛物线上的一个动点,过点F作FQ∥AC交x轴于点Q.当点F 的坐标为时,四边形FQAC是平行四边形;当点F的坐标为时,四边形FQAC是等腰梯形(直接写出结果,不写求解过程).2013年秋学期期末教研片教学调研九年级数学参考答案及评分标准一、选择题(本大题共8小题,每题3分,计24分)题号 1 2 3 4 5 6 7 8 答案DACBADAD二、填空题(本大题共10小题,每题3分,计30分)9.4 10.3a - 11.5 12.50 13.65 14.x <-2或x >6 15.4 16.= 17.4 18.49π 三、解答题(本大题共9小题,计96分)19.解:原式=2218122+-- ………………………………………………4分 =17 ………………………………………………8分20.解:0)23)(3(=+--x x x ………………………………………………4分 0)33)(3(=--x x03=-x 或033=-x ………………………………………………6分∴31=x ,12=x ………………………………………………8分 21.解:(1)统计量 平均数 极差 方差 立定跳远 8 4 2 一分钟跳绳820.4………………………………………………6分 (说明:每空2分)(2)选一分钟跳绳 ………………………………………………7分因为平均分数相同,但一分钟跳绳成绩的极差和方差均小于立定跳远的极差和方差,说明一分钟跳绳的成绩较稳定,所以选一分钟跳绳.(答案基本正确,不扣分)………………………………………………8分22.解:方法一:ABC ∆为等边三角形 ……………………………………1分 ∵AB ⊥CD ,CD 为⊙O 的直径∴AC BC = ……………………………………3分 ∴AC =BC ……………………………………4分 又∵在⊙O 中,∠BPC =∠A ……………………………………5分 ∵∠BPC =60°∴∠A =60° ……………………………………7分 ∴ABC ∆为等边三角形 ……………………………………8分 方法二:ABC ∆为等边三角形 ……………………………………1分∵AB ⊥CD ,CD 为⊙O 的直径∴AM =BM ……………………………………3分 即CD 垂直平分AB∴AC =BC ……………………………………4分 又∵在⊙O 中,∠BPC =∠A ……………………………………5分 ∵∠BPC =60°∴∠A =60° ……………………………………7分 ∴ABC ∆为等边三角形 ……………………………………8分23.(1)证明:∵四边形ABCD 是矩形∴AC =BD , AB ∥CD又∵BE ∥AC∴四边形ABEC 是平行四边形 ……………………………………3分 ∴BE = AC∴BD =BE ……………………………………5分(2)解:∵四边形ABCD 是矩形∴∠DCB =90° ∵∠DBC =30︒,CD =4∴BD =8,BC =43 ……………………………………7分 ∴AB =DC =CE =4,DE =8 ……………………………………8分 ∵AB ∥DE ,AD 与BE 不平行∴四边形ABED 是梯形,且BC 为梯形的高∴四边形ABED 的面积=1()2AB DE BC +⨯=1(48)432+⨯=243∴四边形ABED 的面积为243 ……………………………………10分(若不说明四边形ABED 是梯形,直接按梯形面积公式计算不扣分,其它方法,参照给分)24.解:(1)∵点B (4,0)在抛物线232(0)2y ax x a =--≠的图象上 ∴3016422a =-⨯- ……………………………………2分 ∴12a =∴抛物线的解析式为:213222y x x =--………………………………4分 (2)△ABC 为直角三角形 ……………………………………5分令0x =,得:2y =- ∴C (0,-2) 令0y =,得2132022x x --=∴11x =-,24x =∴A (-1,0),B (4,0) ……………………………………7分 ∴AB =5,AC =5,BC =20 ∴222AC BC AB +=∴△ABC 为直角三角形 ……………………………………8分 ∴AB 为△ABC 外接圆的直径∴该外接圆的圆心为AB 的中点,且坐标为:(32,0)…………………10分 25.解:(1)若四边形ABCD 是菱形则AB =AD又∵AB 、AD 的长是方程的两个实数根∴240b ac -= ……………………………………1分即21()4()024m m --⨯-= ∴2210m m -+=∴121m m == ……………………………………3分此时方程可化为:2104x x -+=∴1212x x == ……………………………………4分∴当1m =时,四边形ABCD 是菱形,菱形的边长为12……………………5分(2)∵AB =2即此时方程的一个根为2 ……………………………………6分∴把2x =代入04122=-+-m mx x 得: 52m =……………………………………7分 ∴2515102224x x -+⨯-=∴1212,2x x == ……………………………………9分即此时平行四边形相邻的两边长分别为:2,12∴平行四边形的周长为5 ……………………………………10分26.解:(1)证明:连接OC∵直线EF 切⊙O 于点C ∴OC ⊥EF ∵AD ⊥EF∴OC ∥AD ……………………………………2分 ∴∠OCA =∠DAC ∵ OA =OC∴∠BAC =∠OCA ……………………………………4分 ∴∠DAC =∠BAC即AC 平分∠BAD ……………………………………5分(2)∵∠ACD =30°,∠OCD =90°∴∠OCA =60°. ∵OC =OA∴△OAC 是等边三角形 ∵⊙O 的半径为2∴AC =OA =OC =2,∠AOC =60° ……………………………………7分 ∵在R t △ACD 中,AD =12AC =1 由勾股定理得:DC =3 ……………………………………8分 ∴阴影部分的面积=S 梯形OCDA ﹣S 扇形OCA=12×(2+1)×3﹣2602360π⋅⋅33223π=- ∴阴影部分的面积为:33223π- ……………………………………10分 27.解:(1)由图象知:y 是x 的一次函数设y kx b =+ ……………………………………1分∵图象过点(10,300),(12,240)∴1030012240k b k b +=⎧⎨+=⎩ ……………………………………2分∴30600k b =-⎧⎨=⎩……………………………………3分∴30600y x =-+当14x =时,180y =;当16x =时,120y =即点(14,180),(16,120)均在函数30600y x =-+的图象上∴y 与x 之间的函数关系式为:30600y x =-+…………………………4分 (不把另两对点代入验证不扣分)(2)(6)(30600)W x x =--+ ……………………………………6分2307803600W x x =-+-即W 与x 之间的函数关系式为:2307803600W x x =-+-……………………………………8分(3)由题意得6(-30x +600)≤900解之得:x ≥15 ……………………………………9分而2307803600W x x =-+-230(13)1470W x =--+ ……………………………………10分 ∵-30<0∴当x >13时,W 随x 的增大而减小又∵x ≥15∴当x =15时,W 最大=1350即以15元/个的价格销售这批许愿瓶可获得最大利润,最大利润是1350元 ……………………………………12分28.解:(1)∵抛物线2(0)y ax bx c a =++≠与x 轴交于点A (-1,0)、B (3,0), ∴可设抛物线的解析式为:(1)(3)y a x x =+- ……………………1分 又∵抛物线 与y 轴交于点C (0,3), ∴3(01)(03)a =+-∴1a =-∴(1)(3)y x x =-+-即抛物线的解析式为:223y x x =-++ ……………………2分 ∴2(1)4y x =--+∴抛物线顶点D 的坐标为(1,4) ……………………3分(2)设直线BD 的解析式为:y kx b =+由B (3,0),D (1,4)得304k b k b +=⎧⎨+=⎩解得26k b =-⎧⎨=⎩∴直线BD 的解析式为26y x =-+ ……………………5分 ∵点P 在直线PD 上,点P 的横坐标为m∴点P 的纵坐标为:26m -+ ……………………6分 (3)由(1),(2)知:OA =1,OC =3,OM = m ,PM =26m -+ ∴OAC PMAC OMPC S S S ∆=+四边形梯形()111332622m m =⨯⨯+⨯-+⨯29322m m =-++ ……………………………………8分29105416m ⎛⎫=--+ ⎪⎝⎭∵9134<<,∴当94m =时,四边形PMAC 的面积取得最大值为10516…9分此时点P的坐标为(9342,)……………………10分(4)(2,3);(1115416,)(每空1分)……………………12分。
2013-2014初三数学期中考试题

DECC'BF A2013—2014学年度上学期初三期中学业水平测试数 学 试 题(测试时间:120分钟,满分:120分)第Ⅰ卷一、选择题(本大题共20小题,在每题给出的四个选项中,只有一个是正确的,请把正确选项的序号填到后面的答题框里)1、下图四个图形中,既是轴对称图形又是中心对称图形的是( ) A .(1)(2)(3)(4) B .(1)(2)(3) C .(1)(3) D .(3)2、不能判定四边形ABCD 为平行四边形的题设是( )A. AB 平行且等于CDB. ∠A=∠C ,∠B=∠DC. AB=CD ∠A=∠CD. AB ∥CD ∠B=∠D 3、下列命题中,真命题是( ) A.两条对角线相等的四边形是矩形 B.两条对角线互相垂直的四边形是菱形 C.两条对角线互相垂直且相等的四边形是正方形 D.两条对角线互相平分的四边形是平行四边形4、矩形纸片ABCD 中, AD = 4cm , AB = 10cm , 按如图方式折叠,使点B 与点D 重合, 折痕为EF,则DE =( )cm A 、5.8 B 、6 C 、5 D 、85、梯形的上底长4cm ,下底长6cm ,则梯形的中位线长为( )A.12cmB.5cmC.10cmD.20cm6、一张矩形纸片按如图甲、乙所示对折,然后沿着图丙中的虚线剪下,得到①,•②两部分,将①展开后得到的平面图形是( ). A.三角形 B.矩形 C.菱形 D.梯形7、顺次连接四边形ABCD 各边的中点所得四边形是菱形,则四边形ABCD 一定是( )A.菱形B.对角线互相垂直的四边形C.矩形D.对角线相等的四边形8、下列方程中是一元二次方程的是( )A 、1210x -=B 、221y x +=C 、21x =-D 、211x x+=9、 关于x 的一元二次方程(a-1)x 2+x+a 2-1=0的一个根是0,则a 的值为( )A. 1B. -1C. 1-1D.1或2 10、方程29180x x -+=的两个根是等腰三角形的底和腰,则这个三角形的周长为( )A .12B .12或15C .15D .不能确定11、一元二次方程2210x x --=的根的情况为( )A.有两个相等的实数根 B.有两个不相等的实数根 C.只有一个实数根 D.没有实数根12、利华机械厂四月份生产零件50万个,若五、六月份平均每月的增长率是m ,• 则第二季度共生产零件( ) A .50【m 2 +3m+1】万个 B .【50+50(1+m)2】万个 C .【50+50(1+2m )】万个 D .【50+50(1+m )+50(1+m)2】万个13、已知1x =是方程220x ax ++=的一个根,则方程的另一个根为( ) A .2- B .2C .3-D .314、用配方法解方程2250x x --=时,原方程应变形为( ) A .()216x += B .()216x -= C .()229x +=D .()229x -=15、有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中平均一个人传染的人数为( ) A .8人 B .9人 C .10人 D .11人 16、某种药品零售价经过两次降价后的价格为降价前的81%,则平均每次降价( )A.10%B.19%C.9.5%D.20% 17、如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为P .若CD=8,OP=3,则⊙O 的半径为( ) A . 10 B . 8 C . 5 D . 318、如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB 宽为8cm ,水面最深地方的高度为2cm ,则该输水管的半径为( ) A .3cm B .4cm C .5cm D .6cm19、如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为( )A.5米 B.8米 C.7米 D.53米20、如图2,⊙O的弦AB=6,M是AB上任意一点,且OM最小值为4,则⊙O的半径为()A.5 B.4 C.3 D.22013—2014学年度上学期初三期中学业水平测试数 学 试 题成绩统计第Ⅱ卷(非选择题 共60分)一、选择题答题框(在每题给出的四个选项中,只有一个是正确的,请把正确选项的序号填到答题框里,每小题选对得3分,选错、不选或选出的答案超过一个,记零分) 题号 1 2 3 4 5 6 7 8 9 10 答案 题号 11 12 13 14 15 16 17 18 19 20 答案二、填空题(本大题共4个小题,满分12分,要求填最后结果,每小题填对得3分)21、如图,□ABCD 的周长为cm 16,AC 、BD 相交于点O ,OE ⊥AC 交AD 于E ,则△DCE 的周长为 .题号一二 三总分252627282930得分得分 评卷人学校 班级 姓名 考号(第21题图)22、一元二次方程(1+3x )(x-3)= 2x 2+1,化为一般形式为 ,其中二次项系数为 ,常数项为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013-2014学年度第二学期九年级数学期中试卷考试时间:100分钟;试卷总分:150分一、 选择题(每小题4分,共32分)。
1、-41的倒数是( ) A .4B .-41 C .41 D.-42、如图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,那么该几何体的主视图为 ( )3、3.用科学记数法表示0.0000210,结果是( )A .2.10×10-4B .2.10×10-5C . 2.1×10-4D .2.1×10-54、某超级市场失窃,大量的商品在夜间被罪犯用汽车运走。
三个嫌疑犯被警察局传讯,警察局已经掌握了以下事实:(1)罪犯不在A 、B 、C 三人之外;(2)C 作案时总得有A 作从犯;(3)B 不会开车。
在此案中能肯定的作案对象是( )A .嫌疑犯AB .嫌疑犯BC .嫌疑犯CD .嫌疑犯A 和C5.河堤横断面迎水坡AB 的坡比是1BC =5m )A .10mB ..15m D .6.为了解某班学生每天使用零花钱的情况,小明随机调查了15名同学,结果如下表:关于这15名同学每天使用的零花钱,下列说法正确的是( )A .众数是5元B .平均数是2.5元C .极差是4元D .中位数是3元 7、受季节的影响,某种商品每件按原售价降价10%,又降价a 元,现每件售价为b 元, 那么该商品每件的原售价为( )A a bB a b ..()+--+110%110%)(元元C b aD b a ..()----110%110%)(元元,那么原方程可,并设如用换元法解方程x x y x x x x 102131..8222-==+---化为( ) A y y B y y ..22320320-+=+-=C y yD y y ..22230230-+=+-=二、填空题(每空4分,共20分)9.在函数23-=x y 中,自变量x 的取值范围是 .10.如图,CD AB ⊥于E ,若60B ∠=,则A ∠= 度. 11.分解因式:=+-a 8a 8a 223.12.如图,45AOB ∠=,过OA 上到点O 的距离分别为1357911,,,,,,的点作OA 的垂线与OB 相交,得到并标出一组黑色梯形,它们的面积分别为1234S S S S ,,,,. 则第一个黑色梯形的面积=1S ;观察图中的规律, 第n(n 为正整数)个黑色梯形的面积=n S .第10题13、已知三个边长分别为2、3、5的正方形如图排列, 则图中阴影部分面积为 .第13题三、解答题(每小题7分,共35分)14、计算:︒+⎪⎭⎫⎝⎛--+--30tan 331201023115、化简,求值: 111(11222+---÷-+-m m m m m m ) ,其中m =3.16、由山脚下的一点A 测得山顶D 的仰角是45°,从A 沿倾斜角为30°的山坡前进1500米到B ,再次测得山顶D 的仰角为60°,求山高CD .第12题17、直线1l :1y x =+与直线2l :y mx n =+相交于点), 1(b P .(1)求b 的值;(2)不解关于y x ,的方程组 请你直接写出它 的解;(3)直线3l :y nx m =+是否也经过点P ?请说明理由.18、已知⊙O 的直径AB 、CD 互相垂直,弦AE 交CD 于F ,若⊙O 的半径为R求证:AE ·AF =2 R 2OxyP第17题1l2l四、解答题(每小题9分,共27分) 19、如图,先把一矩形ABCD 纸片对折,设折痕为MN ,再把B 点叠在折痕线上,得到△ABE.过B 点折纸片使D 点叠在直线AD 上,得折痕PQ 。
(1)求证:△PBE∽△QAB;(2)你认为△PBE 和△BAE 相似吗?如果相似给出证明,若不相似请说明理由。
20、某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.(1)该顾客至少可得到_____元购物券,至多可得到_______元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.A D CB N M CBE P NA21、为了求1+2+22+...+22009的值,可令S=1+2+22+...+22009,则2S=2+22+ (22010)因此2S-S=22010-1,所以1+2+22+…+22009=22010-1,仿照以上推理计算出1+3-1+3-2+…+3-2009的值是多少?五、综合题(每小题12分,共36分)22、某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?23、如图,甲船在港口P的北偏西60方向,距港口80海里的A处,沿AP方向以12海里/时的速度驶向港口P.乙船从港口P出发,沿北偏东45°方向匀速驶离港口P,现两船同时出发,2小时后乙船在甲船的正东方向。
求乙船的航行速度。
(精确到0.1海里/1.411.73)AP东北456024、.某地要建造一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子OA,O恰好在水面中心,安装在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA的任一平面上,抛物线的形状如图(1)和(2)所示,建立直角坐标系,水流喷出的高度y(米)与水平距离x(米)之间的关系式是y=-x2+2x+54,请你寻求:(1)柱子OA的高度为多少米?(2)喷出的水流距水平面的最大高度是多少?(3)若不计其他因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外。
(1)答案一、选择题(每小题4分,共32分)1、B2、C ;3、B4、A5、A6、D7、A8、D二、填空题(每小题4分,共20分)9、2≠x 10、30 11、 2)2(2-a a 12、4 )12(4-n 13、3.75 三、计算题(每小题7分,共35分)14、解:原式3333132⨯+++-=6= 15、解:原式=1)1()1)(1(11222+--+-÷-+-m m m m m m m =m1. ∴当m =3时,原式=3331=16、解:过点B 作CD 、AC 的垂线,垂足分别为E 、F ∵∠BAC =30°,AB =1500米∴BF =EC =750米 AF = 设FC =x 米 ∵∠DBE =60°,∴DE 米又∵∠DAC=45°,∴AC =CD 即:= 得x =750∴CD =)米答:山高CD 为)米.17、解:(1)∵),1(b 在直线1+=x y 上, ∴当1=x 时,211=+=b . (2)解是⎩⎨⎧==.2,1y x(3)直线m nx y +=也经过点P ∵点P )2,1(在直线n mx y +=上, ∴2=+n m .把,1x =代入m nx y +=,得2m =+n .∴直线m nx y +=也经过点P .18、连BE ∵AB 为⊙O 的直径∴∠AEB =90°∵AB ⊥CD ∴∠AOF =90°∴∠AOF =∠AEB =90° 又∠A =∠A ∴△AOF ∽△AEBAEAOAB AF = ∴AE ·AF =AO ·AB ∵AO =R AB =2R AE ·AF =2R 2四、解答题(每小题9分,共27分) 19、解:(1)证明:∵∠PBE+∠ABQ=90°,∠PBE+∠PEB=90°,∴∠ABQ=∠PEB。
又∵∠BPE=∠AQB=90°,∴△PBE∽△QAB。
(2)∵△PBE∽△QAB,∴BQPEAB BE =。
∵BQ=PB,∴PB PE AB BE =,即PBABPE BE =。
又∵∠EPB=∠EBA=90°,∴△PBE∽△BAE。
20、解:(1)10,50; (2)解法一(树状图):从上图可以看出,共有12种等可能结果,其中大于或等于30元共有8种可能结果, 因此P (不低于30元)=;21、解:根据题中的规律,设S=1+3-1+3-2+…+3-2009, 则3S=3+1+3-1+3-2+…+3-2008,所以3S-S=(3+1+3-1+3-2+…+3-2008)-(1+3-1+3-2+…+3-2009) 即2S=3-3-2009,所以S=2200932009--五、综合题(每小题12分,共36分)22、解:设第一次购书的进价为x 元,根据题意得:101200%)201(1500=-+xx解得:x=5经检验x=5都是原方程的解所以第一次购书为12002405=(本). 第二次购书为24010250+=(本)第一次赚钱为240(75)480⨯-=(元) 第二次赚钱为200(75 1.2)50(70.45 1.2)40⨯-⨯+⨯⨯-⨯=(元)所以两次共赚钱48040520+=(元)答:该老板两次售书总体上是赚钱了,共赚了520元.23、依题意,设乙船速度为x 海里/时,2小时后甲船在点B 处,乙船在点C处,作PQ BC ⊥于Q ,则8021256BP =-⨯=海里,2PC x =海里。
在Rt PQB △中,60BPQ ∠=,九年数学竞赛试卷 第11页 共11页 1cos 6056282PQ BP ∴==⨯=。
在Rt PQC △中,45QPC ∠=,∴x PC PQ 245cos =⋅=︒,28=,∴7.19214≈=x 。
答:乙船的航行速度约为19.7海里/时。
24、解:(1)当x =0时,y =54,故OA 的高度为1.25米。
(2)∵y=-x 2+2x+54=-(x -1)2+2.25, ∴顶点是(1,2.25),故喷出的水流距水面的最大高度是2.25米。
(3)解方程-x 2+2x+54=0,得1215,22x x =-=.∴B 点坐标为5,02⎛⎫ ⎪⎝⎭。
∴OB=52。
故不计其他因素,水池的半径至少要2.5米,才能使喷出 的水流不至于落在水池外。