时钟问题.题库教师版

合集下载

小学奥数时钟问题题库【教师备课】【精选】

小学奥数时钟问题题库【教师备课】【精选】

时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。

我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。

时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。

对于正常的时钟, 具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。

分针速度:每分钟走1小格,每分钟走6度时针速度:每分钟走112小格,每分钟走0.5度 注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。

要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。

另外,在解时钟的快慢问题中,要学会十字交叉法。

例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为56511分。

模块一、时针与分针的追及与相遇问题【例 1】 王叔叔有一只手表,他发现手表比家里的闹钟每小时快 30 秒.而闹钟却比标准时间每小时慢 30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】 6秒【巩固】 小强家有一个闹钟,每时比标准时间快3分。

有一天晚上10点整,小强对准了闹钟,他想第二天早晨6∶00起床,他应该将闹钟的铃定在几点几分?【解析】 6:24【巩固】 小翔家有一个闹钟,每时比标准时间慢3分。

有一天晚上9点整,小翔对准了闹钟,他想第二天早晨6∶30起床,于是他就将闹钟的铃定在了6∶30。

这个闹钟响铃的时间是标准时间的几点几分?【解析】 7点【巩固】 当时钟表示1点45分时,时针和分针所成的钝角是多少度?【解析】 142.5度【例 2】 有一座时钟现在显示10时整.那么,经过多少分钟,分针与时针第一次重合;再经过多少分钟,分针与时针第二次重合?【解析】 在lO 点时,时针所在位置为刻度10,分针所在位置为刻度12;当两针重合时,分针必须追上50个小刻度,设分针速度为“l”,有时针速度为“112”,于是需要时间:时钟问题1650(1)541211÷-=.所以,再过65411分钟,时针与分针将第一次重合.第二次重合时显然为12点整,所以再经过65(1210)6054651111-⨯-=分钟,时针与分针第二次重合.标准的时钟,每隔56511分钟,时针与分针重合一次. 我们来熟悉一下常见钟表(机械)的构成:一般时钟的表盘大刻度有12个,即为小时数;小刻度有60个,即为分钟数.所以时针一圈需要12小时,分针一圈需要60分钟(1小时),时针的速度为分针速度的112.如果设分针的速度为单位“l”,那么时针的速度为“112”. 【巩固】 钟表的时针与分针在4点多少分第一次重合?【解析】 此题属于追及问题,追及路程是20格,速度差是11111212-=,所以追及时间是:11920211211÷=(分)。

时钟问题题库教师版

时钟问题题库教师版

时钟问题题库教师版(总5页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除时钟问题时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。

我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。

时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。

对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。

分针速度:每分钟走1小格,每分钟走6度时针速度:每分钟走112小格,每分钟走度注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。

要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。

另外,在解时钟的快慢问题中,要学会十字交叉法。

例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为56511分。

模块一、时针与分针的追及与相遇问题【例 1】有一座时钟现在显示10时整.那么,经过多少分钟,分针与时针第一次重合;再经过多少分钟,分针与时针第二次重合?【解析】在lO点时,时针所在位置为刻度10,分针所在位置为刻度12;当两针重合时,分针必须追上50个小刻度,设分针速度为“l”,有时针速度为“112”,于是需要时间:1650(1)541211÷-=.所以,再过65411分钟,时针与分针将第一次重合.第二次重合时显然为12点整,所以再经过65(1210)6054651111-⨯-=分钟,时针与分针第二次重合.标准的时钟,每隔56511分钟,时针与分针重合一次.我们来熟悉一下常见钟表(机械)的构成:一般时钟的表盘大刻度有12个,即为小时数;小刻度有60个,即为分钟数.所以时针一圈需要12小时,分针一圈需要60分钟(1小时),时针的速度为分针速度的112.如果设分针的速度为单位“l”,那么时针的速度为“112”. 【巩固】 钟表的时针与分针在4点多少分第一次重合? 【解析】 此题属于追及问题,追及路程是20格,速度差是11111212-=,所以追及时间是:11920211211÷=(分)。

小学奥数时钟问题题库【教师备课】【最新】

小学奥数时钟问题题库【教师备课】【最新】

时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。

我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。

时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。

对于正常的时钟, 具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。

分针速度:每分钟走1小格,每分钟走6度时针速度:每分钟走112小格,每分钟走0.5度 注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。

要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。

另外,在解时钟的快慢问题中,要学会十字交叉法。

例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为56511分。

模块一、时针与分针的追及与相遇问题【例 1】 王叔叔有一只手表,他发现手表比家里的闹钟每小时快 30 秒.而闹钟却比标准时间每小时慢 30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】 6秒【巩固】 小强家有一个闹钟,每时比标准时间快3分。

有一天晚上10点整,小强对准了闹钟,他想第二天早晨6∶00起床,他应该将闹钟的铃定在几点几分?【解析】 6:24【巩固】 小翔家有一个闹钟,每时比标准时间慢3分。

有一天晚上9点整,小翔对准了闹钟,他想第二天早晨6∶30起床,于是他就将闹钟的铃定在了6∶30。

这个闹钟响铃的时间是标准时间的几点几分?【解析】 7点【巩固】 当时钟表示1点45分时,时针和分针所成的钝角是多少度?【解析】 142.5度【例 2】 有一座时钟现在显示10时整.那么,经过多少分钟,分针与时针第一次重合;再经过多少分钟,分针与时针第二次重合?【解析】 在lO 点时,时针所在位置为刻度10,分针所在位置为刻度12;当两针重合时,分针必须追上50个小刻度,设分针速度为“l”,有时针速度为“112”,于是需要时间:时钟问题1650(1)541211÷-=.所以,再过65411分钟,时针与分针将第一次重合.第二次重合时显然为12点整,所以再经过65(1210)6054651111-⨯-=分钟,时针与分针第二次重合.标准的时钟,每隔56511分钟,时针与分针重合一次. 我们来熟悉一下常见钟表(机械)的构成:一般时钟的表盘大刻度有12个,即为小时数;小刻度有60个,即为分钟数.所以时针一圈需要12小时,分针一圈需要60分钟(1小时),时针的速度为分针速度的112.如果设分针的速度为单位“l”,那么时针的速度为“112”. 【巩固】 钟表的时针与分针在4点多少分第一次重合?【解析】 此题属于追及问题,追及路程是20格,速度差是11111212-=,所以追及时间是:11920211211÷=(分)。

时钟考试题及答案

时钟考试题及答案

时钟考试题及答案一、选择题1. 时钟上显示的时间是6:30,此时时针与分针之间的角度是多少度?A. 15°B. 30°B. 45°D. 60°答案:B2. 一个时钟的秒针每秒钟转动的角度是多少?A. 6°B. 5°C. 3°D. 1°答案:A3. 时钟上的时针和分针在一天内会相遇多少次?A. 23次B. 24次C. 48次D. 52次答案:C二、填空题4. 当时钟指向3点整时,时针与分针之间的角度是______度。

答案:905. 如果时钟的分针从12点开始转动,转动一圈需要______分钟。

答案:606. 时钟的时针每小时转动的角度是______度。

答案:30三、计算题7. 假设现在是上午9点15分,求时针和分针之间的角度。

解:时针每小时转30度,15分钟转7.5度;分针每分钟转6度,15分钟转90度。

9点时时针在270度位置,分针在0度位置。

计算时针和分针的角度差:270 - (90 - 7.5) = 270 - 82.5 = 187.5度。

8. 如果时钟的秒针在一分钟内转了半圈,求秒针转动了多少度。

解:秒针每分钟转动360度,半圈即为180度。

四、简答题9. 为什么时钟的时针和分针在一天内会相遇48次?答:因为一天有24小时,每小时时针和分针相遇一次,但由于12点时它们会相遇两次(一次是0点,一次是12点),所以一天内总共会相遇24 * 2 = 48次。

10. 为什么时钟的时针和分针在12点整时重合?答:因为12点整时,时针和分针都指向12点的位置,它们的角度是360度的整数倍,所以它们重合。

五、论述题11. 描述时钟的工作原理,并解释为什么时钟的秒针、分针和时针转动的速度不同。

答:时钟的工作原理基于地球自转周期,即24小时制。

时钟的秒针、分针和时针的转动速度不同,是因为它们代表的时间单位不同。

秒针每秒钟转动6度,代表1秒;分针每分钟转动6度,代表1分钟;时针每小时转动30度,代表1小时。

认识时钟考试题目及答案

认识时钟考试题目及答案

认识时钟考试题目及答案一、选择题1. 时钟上12点整时,时针和分针之间的角度是多少度?A. 30°B. 60°C. 90°D. 360°答案:C2. 如果现在是下午3点15分,时针和分针之间大约形成多少度的角?A. 15°B. 22.5°C. 37.5°D. 45°答案:C3. 钟表上分针每分钟转多少度?A. 1°B. 2°C. 3°D. 6°答案:D二、填空题4. 时钟的时针在一小时内转过的角度是______°。

答案:(30°)5. 分针走一圈(60分钟)时针转过的角度是______°。

答案:(30°)6. 如果现在是10点25分,分针指向5,时针和分针之间的夹角是______°。

答案:(112.5°)三、简答题7. 解释为什么在12点整时,时针和分针之间的角度是90°。

答案:在12点整时,时针指向12,分针指向12,它们之间相差0个数字,而钟表上每个数字之间的夹角是30°,因此它们之间的角度是0个30°,即90°。

8. 如何计算任意时间时针和分针之间的角度?答案:首先确定时针和分针分别指向的数字,然后计算它们之间的差值。

由于钟表上每相邻两个数字之间的夹角是30°,所以可以通过差值乘以30°来计算时针和分针之间的角度。

四、计算题9. 如果现在是上午8点45分,计算时针和分针之间的角度。

答案:首先,时针指向8和9之间,而分针指向9。

时针每过一刻钟(1/4小时)会转过钟面的1/4,所以从8点到8点45分,时针转过了8 * 1/4 = 2.25个数字。

因此,时针和分针之间的角度是2.25 * 30° = 67.5°。

10. 如果现在是晚上7点20分,计算时针和分针之间的角度。

时钟问题—相关例题

时钟问题—相关例题

时钟问题—相关例题时钟应用题16道1,把一个时钟改装成一个玩儿钟,使得时针每转一圈,分针转16周,秒针转36圈,开始时三针重合,在时针旋转一周的过程中,3针重合了几次? (不计起始和终止位置)解析:本题是关于3针重合问题,可以先找出时什与分针重合位置和时什与秒针的重合位置,然后再找出其中的共同位置,即为三针重合的位置。

解:分针与时针的重合点:1÷(16-1)这样分针和时针重合的位置分别在表盘上的1/15、2/15....14/15处;秒针与时针的重合点:1÷(36-1)这样秒针与时针重合的位置分别在1/35、2/35、3/35......34/35处3针重合的位置在表盘的1/5、2/5、3/5、4/5处,先后共重合4次。

答:三针重合了4次。

2,从0时开始,12小时内,时针与分针重合几次?解一:12×60=720分重合1次为360/5.5=720/11720÷720/11=11次解二:12小时内,时针走了360度,分针就只能追上时针12-1=11次。

同时,分针每次与时针重合后到下次重合需要360/5.5=720/11分钟。

12小时正好是720分钟,720÷720/11=11次解三:从0时开始,分针转第一圈,如果时针不转动,会在12点(0点)重合,但时针是会转动的。

当分针转回到12处,时针已到1时处(速度是分针的1/12),所以分针转完第一圈时不会与时针重合。

以后每转一圈都会与时针重合1次。

故:12-1=11(次)答:时针与分针重合11次。

3,小明的爷爷外出散步不到1小时,结束时他发现手表上时针、分针的位置正好与开始时时针、分针的位事交换了一下。

小明的爷爷散步用了多少时间?解:两针在1小时内对换位置,两针转动的路程和正好为360度,而它们的速度和为每分针6+0.5=6.5度。

360÷6.5=720/13≈55分答:小明的爷爷散步用了约55分钟。

时钟问题应用题及答案

时钟问题应用题及答案

时钟问题应用题及答案问题1:小明早上7点起床,他需要完成以下活动:刷牙5分钟,洗脸3分钟,吃早餐10分钟,然后他需要花15分钟走到学校。

如果小明希望在8点之前到达学校,他最晚应该在什么时候开始刷牙?答案1:小明需要完成的活动总共需要5分钟(刷牙)+ 3分钟(洗脸)+ 10分钟(吃早餐)= 18分钟。

他需要在8点之前到达学校,所以他最晚需要在8点减去18分钟,也就是7点42分开始刷牙。

问题2:一个时钟的时针和分针在12点整时重合。

假设时针和分针的速度分别是每小时30度和每小时360度,那么下一次时针和分针重合是几点几分?答案2:时针和分针重合时,它们的夹角为0度。

设x为小时,y为分钟,那么时针走过的角度为30x + 0.5y,分针走过的角度为6y。

由于它们的速度差为330度/小时,所以330x = 5.5y。

解这个方程,我们得到y = 60x/11。

当x=1时,y=60/11,所以下一次时针和分针重合的时间是1点5分27秒左右。

问题3:一个钟表的分针和时针在一天中会重合多少次?答案3:在一天中,分针和时针会重合22次。

这是因为分针每小时比时针多转一圈,所以每小时至少重合一次。

在12点整,它们会重合一次,然后在接下来的每个小时,它们会重合一次,直到11点55分左右再次重合,总共22次。

问题4:如果一个钟表的分针和时针在3点30分时的夹角是75度,那么在3点45分时,分针和时针的夹角是多少度?答案4:在3点30分,分针指向6,时针指向3和4之间,夹角为75度。

在3点45分,分针指向9,时针会稍微超过3和4之间的位置。

由于分针每分钟转6度,15分钟转90度,时针每分钟转0.5度,15分钟转7.5度。

所以在3点45分,分针和时针的夹角为90度 - 7.5度 = 82.5度。

问题5:一个时钟的秒针从12点开始转动,当秒针转了720圈时,分针转了多少圈?答案5:秒针转一圈需要60秒,720圈则需要720 * 60秒。

时钟练习题加答案

时钟练习题加答案

时钟练习题加答案时钟练习题是帮助学生掌握时间概念和时钟读数技巧的有效工具。

以下是一些时钟练习题及其答案,适合不同年级的学生使用。

练习题1:基本时间读数1. 时针指向2,分针指向12,是几点?2. 时针指向6,分针指向3,是几点几分?3. 时针指向9,分针指向6,是几点几分?答案1:1. 2点整。

2. 6点15分。

3. 9点30分。

练习题2:时间计算1. 如果现在是3点30分,20分钟后是几点几分?2. 如果现在是8点15分,1小时30分钟后是几点几分?3. 如果现在是下午4点,3小时后是几点?答案2:1. 3点50分。

2. 9点45分。

3. 7点。

练习题3:时间间隔计算1. 从早上8点到下午2点,经过了多少小时?2. 如果一个会议从下午3点开始,持续了2小时,会议结束是几点?3. 如果一个学生从上午9点开始学习,直到下午1点,他学习了多长时间?答案3:1. 6小时。

2. 下午5点。

3. 4小时。

练习题4:时间转换1. 将9:15 AM转换为24小时制。

2. 将17:45转换为12小时制,并标明上午或下午。

3. 将晚上9点30分转换为24小时制。

答案4:1. 09:15。

2. 5:45 PM。

3. 21:30。

练习题5:复杂时间问题1. 如果小明在早上7点开始跑步,跑了1小时20分钟,他跑步结束的时间是几点?2. 如果一个电视节目在晚上8点开始,持续了1小时45分钟,节目结束的时间是几点?3. 如果一个学生在下午2点开始做作业,做了2小时15分钟,他完成作业的时间是几点?答案5:1. 8点20分。

2. 9点45分。

3. 4点15分。

通过这些练习题,学生可以逐步提高对时钟的理解和时间计算的能力。

教师可以根据学生的实际情况,适当调整题目的难度,确保学生能够充分掌握时间的概念。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

时钟问题模块一、时针与分针的追及与相遇问题【例 1】 王叔叔有一只手表,他发现手表比家里的闹钟每小时快 30 秒.而闹钟却比标准时间每小时慢30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】 闹钟比标准的慢 那么它一小时只走(3600-30)/3600个小时,手表又比闹钟快 那么它一小时走(3600+30)/3600个小时,则标准时间走1小时 手表则走(3600-30)/3600*(3600+30)/3600个小时,则手表每小时比标准时间慢1—【(3600-30)/3600*(3600+30)/3600】=1—14399/14400=1/14400个小时 ,也就是1/14400*3600=四分之一秒,所以一昼夜24小时比标准时间慢四分之一乘以24等于6秒【巩固】 小强家有一个闹钟,每时比标准时间快3分。

有一天晚上10点整,小强对准了闹钟,他想第二天早晨6∶00起床,他应该将闹钟的铃定在几点几分?【解析】 6:24【巩固】 小翔家有一个闹钟,每时比标准时间慢3分。

有一天晚上9点整,小翔对准了闹钟,他想第二天早晨6∶30起床,于是他就将闹钟的铃定在了6∶30。

这个闹钟响铃的时间是标准时间的几点几分?【解析】 7点【巩固】 当时钟表示1点45分时,时针和分针所成的钝角是多少度?【解析】 142.5度【例 2】 有一座时钟现在显示10时整.那么,经过多少分钟,分针与时针第一次重合;再经过多少分钟,分针与时针第二次重合?【解析】 在lO 点时,时针所在位置为刻度10,分针所在位置为刻度12;当两针重合时,分针必须追上50个小刻度,设分针速度为“l”,有时针速度为“112”,于是需要时间:1650(1)541211÷-=.所以,再过65411分钟,时针与分针将第一次重合.第二次重合时显然为12点整,所以再经过65(1210)6054651111-⨯-=分钟,时针与分针第二次重合.标准的时钟,每隔56511分钟,时针与分针重合一次. 我们来熟悉一下常见钟表(机械)的构成:一般时钟的表盘大刻度有12个,即为小时数;小刻度有60个,即为分钟数.所以时针一圈需要12小时,分针一圈需要60分钟(1小时),时针的速度为分针速度的112.如果设分针的速度为单位“l”,那么时针的速度为“112”.【巩固】钟表的时针与分针在4点多少分第一次重合?【解析】此题属于追及问题,追及路程是20格,速度差是11111212-=,所以追及时间是:11920211211÷=(分)。

【巩固】现在是3点,什么时候时针与分针第一次重合?【解析】根据题意可知,3点时,时针与分针成90度,第一次重合需要分针追90度,490(60.5)1611÷-=(分)【例 3】钟表的时针与分针在8点多少分第一次垂直?【解析】32711此题属于追及问题,但是追及路程是4401525-=格(由原来的40格变为15格),速度差是11111212-=,所以追及时间是:11325271211÷=(分)。

【例 4】2点钟以后,什么时刻分针与时针第一次成直角?【解析】根据题意可知,2点时,时针与分针成60度,第一次垂直需要90度,即分针追了90+60=150(度),3150(60.5)2711÷-=(分)【例 5】8时到9时之间时针和分针在“8”的两边,并且两针所形成的射线到“8”的距离相等.问这时是8时多少分?【解析】8点整的时候,时针较分针顺时针方向多40格,设在满足题意时,时针走过x格,那么分针走过40-x格,所以时针、分针共走过x+(40-x)=40格.于是,所需时间为11240(1)361213÷+=分钟,即在8点123613分钟为题中所求时刻.【例 6】现在是10点,再过多长时间,时针与分针将第一次在一条直线上?【解析】时针的速度是360÷12÷60=0.5(度/分),分针的速度是360÷60=6(度/分),即分针与时针的速度差是6-0.5=5.5(度/分),10点时,分针与时针的夹角是60度,,第一次在一条直线时,分针与时针的夹角是180度,,即分针与时针从60度到180度经过的时间为所求。

,所以答案为9(18060) 5.52111-÷=(分)【巩固】在9点与10点之间的什么时刻,分针与时针在一条直线上?【解析】根据题意可知,9点时,时针与分针成90度,第一次在一条直线上需要分针追90度,第二次在一条直线上需要分针追270度,答案为490(60.5)1611÷-=(分)和1270(60.5)4911÷-=(分)【例 7】晚上8点刚过,不一会小华开始做作业,一看钟,时针与分针正好成一条直线。

做完作业再看钟,还不到9点,而且分针与时针恰好重合。

小华做作业用了多长时间?【解析】根据题意可知,从在一条直线上追到重合,需要分针追180度,8180(60.5)3211÷-=(分)【例 8】某人下午六时多外出买东西,出门时看手表,发现表的时针和分针的夹角为1100,七时前回家时又看手表,发现时针和分针的夹角仍是1100.那么此人外出多少分钟?【解析】如下示意图,开始分针在时针左边1100位置,后来追至时针右边1100位置.于是,分针追上了1100+1100=2200,对应2206格.所需时间为2201(1)40612÷-=分钟.所以此人外出40分钟.评注:通过上面的例子,看到有时是将格数除以1(1)12+,有时是将格数除以1(1)12-,这是因为有时格数是时针、分针共同走过的,对应速度和;有时格数是分针追上时针的,对应速度差.对于这个问题,大家还可以将题改为:“在9点多钟出去,9点多钟回来,两次的夹角都是1100”,答案还是40分钟.【例 9】上午9点多钟,当钟表的时针和分针重合时,钟表表示的时间是9点几分?【解析】时针与分针第一次重合的经过的时间为:11451491211⎛⎫÷-=⎪⎝⎭(分),当钟表的时针和分针重合时,钟表表示的时间是9点14911分。

【例 10】小红上午8点多钟开始做作业时,时针与分针正好重合在一起。

10点多钟做完时,时针与分针正好又重合在一起。

小红做作业用了多长时间?【解析】8点多钟时,时针和分针重合的时刻为:17401431211⎛⎫÷-=⎪⎝⎭(分)10点多钟时,时针和分针重合的时刻为:16501541211⎛⎫÷-= ⎪⎝⎭(分)67101054843210111111-=时分时分时分,小红做作业用了1021011时分时间 【例 11】 小红在9点与10点之间开始解一道数学题,当时时针和分针正好成一条直线,当小红解完这道题时,时针和分针刚好第一次重合,小红解这道题用了多少时间?【解析】 9点和10点之间分针和时针在一条直线上的时刻为:14151161211⎛⎫÷-= ⎪⎝⎭(分),时针与分针第一次重合的时刻为: 11451491211⎛⎫÷-= ⎪⎝⎭(分),所以这道题目所用的时间为:148491632111111-=(分) 【例 12】 一部动画片放映的时间不足1时,小明发现结束时手表上时针、分针的位置正好与开始时时针、分针的位置交换了一下。

这部动画片放映了多长时间?【解析】 根据题意可知,时针恰好走到分针的位置,分针恰好走到时针的位置,它们一共走了一圈,即5360(60.5)5513÷+=(分) 【例 13】 有一座时钟现在显示10时整。

那么,经过多少分钟,分针与时针第一次重合;再经过多少分钟,分针与时针第二次重合?【解析】 根据题意可知,10点时,时针与分针成60度,第一次重合需要分针追360-60=300(度),6300(60.5)5411÷-=(分)第二次重合需要追360度,即56511分。

模块二、时间标准及闹钟问题【例 14】 钟敏家有一个闹钟,每时比标准时间快2分。

星期天上午9点整,钟敏对准了闹钟,然后定上铃,想让闹钟在11点半闹铃,提醒她帮助妈妈做饭。

钟敏应当将闹钟的铃定在几点几分上?【解析】 闹钟与标准时间的速度比是62:60=31:30, 11点半与9点相差 150分, 根据十字交叉法,闹钟走了 150×31÷30=155(分),所以 闹钟的铃应当定在11点35分上。

【例 15】 小翔家有一个闹钟,每时比标准时间慢2分。

有一天晚上9点整,小翔对准了闹钟,他想第二天早晨6∶40起床,于是他就将闹钟的铃定在了6∶40。

这个闹钟响铃的时间是标准时间的几点几分?【解析】 闹钟与标准时间的速度比是 58:60=29:30 晚上9点与次日早晨6点40分相差580分, 即 标准时间过了 580×30÷29=600(分),所以 标准时间是7点。

【例 16】 有一个时钟每时快20秒,它在3月1日中午12时准确,下一次准确的时间是什么时间?【解析】 时钟与标准时间的速度差是 20秒/时,因为经过12小时,时钟的指针回到起始的位置,所以到下一次准确时间时,时钟走了 12×3600÷20=2160(小时) 即 90天, 所以 下一次准确的时间是5月30日中午12时。

【例 17】小明家有两个旧挂钟,一个每天快20分,另一个每天慢30分。

现在将这两个旧挂钟同时调到标准时间,它们至少要经过多少天才能再次同时显示标准时间?【解析】快的挂钟与标准时间的速度差是20分/天,慢的挂钟与标准时间的速度差是30分/天,快的每标准一次需要12×60÷30=24(天),慢的每标准一次需要12×60÷20=36(天),24与36的最小公倍数是72,所以它们至少要经过72天才能再次同时显示标准时间。

【例 18】某科学家设计了只怪钟,这只怪钟每昼夜10时,每时100分(如右图所示)。

当这只钟显示5点时,实际上是中午12点;当这只钟显示6点75分时,实际上是什么时间?【解析】标准钟一昼夜是24×60=1440(分),怪钟一昼夜是100×10=1000(分),怪钟从5点到6点75分,经过175分,根据十字交叉法,1440×175÷1000=252(分),即4点12分。

【例 19】手表比闹钟每时快60秒,闹钟比标准时间每时慢60秒。

8点整将手表对准,12点整手表显示的时间是几点几分几秒?【解析】按题意,闹钟走3600秒手表走3660秒,而在标准时间的一小时中,闹钟走了3540秒。

所以在标准时间的一小时中手表走3660÷3600×3599 = 3599(秒)即手表每小时慢1秒,所以12点时手表显示的时间是11点59分56秒。

相关文档
最新文档