MATLAB解方程与函数极值

合集下载

matlab计算多元函数极值极其极值点

matlab计算多元函数极值极其极值点

matlab计算多元函数极值极其极值点《从简到繁,深入探讨matlab计算多元函数极值极其极值点》1. 引言在数学中,多元函数是一种以多个变量为自变量的函数,它与一元函数有着本质的区别。

而计算多元函数的极值及其极值点是数学分析中一个重要且复杂的问题。

本文将从简到繁地探讨如何利用matlab来计算多元函数的极值及其极值点,以帮助读者更深入地理解这一数学概念。

2. 多元函数的极值我们需要明确什么是多元函数的极值。

对于一个多元函数,如果在某一点处的函数值大于或小于其邻域内所有其他点处的函数值,那么这个点就是该多元函数的极大值点或极小值点。

而这个极值点所对应的函数值就是多元函数的极值。

在matlab中,可以通过最优化工具箱中的相关函数来计算多元函数的极值,比如fmincon函数用于求解约束极小化问题。

3. 计算多元函数的极值为了更具体地说明如何在matlab中计算多元函数的极值,我们以一个简单的二元函数为例:z = f(x, y) = x^2 + y^2。

我们希望找到这个函数的极值及其极值点。

我们需要定义这个函数并选定初始点,然后利用matlab中的优化函数进行计算。

具体的代码如下:```matlab% 定义目标函数fun = @(x) x(1).^2 + x(2).^2;% 设定初始点x0 = [1, 2];% 求解极小值[x, fval] = fmincon(fun, x0, A, b, Aeq, beq, lb, ub, nonlcon);```在这段代码中,我们首先利用@(x)定义了目标函数f(x, y) = x^2 + y^2,然后设定了初始点x0 = [1, 2]。

最后利用fmincon函数计算了函数的极小值x和其对应的函数值fval。

通过这个简单的例子,读者可以初步了解如何在matlab中计算多元函数的极值。

4. 深入探讨除了简单的二元函数外,实际应用中常常遇到更复杂的多元函数,这时利用matlab计算极值就显得尤为重要。

MATLAB求函数零点与极值

MATLAB求函数零点与极值

MATLAB求函数零点与极值
1. roots函数
针对多项式求零点(详见MATLAB多项式及多项式拟合)
2. fzero函数
返回⼀元函数在某个区间内的的零点.
x0 = fzero(@(x)x.^2-3*x-4,[1,5]);
只能求区间⾥⾯的⼀个零点,并且要求在给定区间端点函数值异号,所以使⽤之前应该先作图,得出单个零点分布的区间,然后使⽤该函数求零点.若有多个零点,则需多次使⽤该函数.
如需求上例中的全部零点,先作图
fplot(@(x)x.^2-3*x-4,[-10,10]);
得知两个零点的分布区间,然后两次使⽤fzero函数求对应区间的零点.
x1 = fzero(@(x)x.^2-3*x-4,[-2,0]);
x2 = fzero(@(x)x.^2-3*x-4,[2,6]);
3. solve函数
求⼀元函数(⽅程)的零点.
x0 = solve('x^2-3*x-4=0','x');
注意⽅程需包含’=0’部分,另外,不建议直接将⽅程写在函数solve的参数部分,可以⽤符号运算的⽅法.
4. fminbnd函数
求⼀元函数在某个区间内的最⼩值和对应的最⼩值点.
[x0,fmin]=fminbnd(@(x)x+1/(x+1),-0.5,2);
求极值与极值点之前须估计极值点的区间,保证在该区间没有使得函数值趋于⽆穷的点.。

matlab二元函数求极值 遗传所引发

matlab二元函数求极值 遗传所引发

Matlab二元函数求极值是一个常见的数学问题,而遗传算法作为一种优化方法,在解决这个问题上也发挥了重要作用。

在本文中,我将对matlab二元函数求极值和遗传算法的相互关系进行深度探讨,并共享我个人对这一主题的理解。

1. Matlab二元函数求极值的基本概念Matlab是一种用于数值计算和可视化的高级技术计算语言和交互式环境。

在数学建模和优化问题中,经常会遇到需要求解二元函数的极值的情况。

这就涉及到了寻找函数在给定范围内的最大值或最小值的问题。

通过利用Matlab中的优化工具箱和相关函数,我们可以高效地求解二元函数的极值点,从而得到函数在特定区域内的最优解。

2. 遗传算法在优化问题中的应用遗传算法是一种模拟自然选择与遗传机制的计算方法,常用于解决优化问题。

它通过模拟自然界中的进化过程,通过选择、交叉和变异等操作,逐步优化解的质量,最终找到问题的最优解。

在实际应用中,遗传算法被广泛应用于解决复杂的优化问题,包括函数极值求解、组合优化、参数优化等多个领域。

3. Matlab二元函数求极值中遗传算法的应用在Matlab中,我们可以利用遗传算法工具箱来解决二元函数的极值求解问题。

通过将二元函数极值求解问题转化为适应度函数的优化问题,我们可以使用Matlab中优化工具箱中的遗传算法求取最优解。

遗传算法能够在多样化的解空间中高效地搜索最优解,从而在众多解空间中找到最优的极值点。

4. 个人观点与理解我认为,Matlab二元函数求极值与遗传算法的结合,为解决复杂的优化问题提供了一种高效的方法。

遗传算法能够通过对解的多样性进行搜索,找到最优解的潜力非常大。

当我们将遗传算法与Matlab中强大的数值计算和优化工具箱相结合,就可以更快、更精确地求解二元函数的极值,从而解决实际问题中的优化难题。

在本文中,我对Matlab二元函数求极值和遗传算法的应用进行了探讨,并共享了个人观点和理解。

通过深入探讨这一主题,相信读者对于如何利用遗传算法来解决Matlab二元函数求极值问题会有更深入的理解。

用Matlab软件求多元函数的偏导数和极值

用Matlab软件求多元函数的偏导数和极值

数学实验五 用Matlab 软件求多元函数的偏导数和极值一、多元函数的偏导数1.调用格式一:diff('多元函数','自变量',n)其中,n 为所求偏导数的阶数.例1 已知y x z 2cos 2=,求x z ∂∂、x y z ∂∂∂2和22y z ∂∂. 解 打开M文件编辑窗口,在其中输入下面命令集:pzpx=diff('x^2*cos(2*y)','x')p2zpypx=diff(pzpx,'y')p2zpy2=diff('x^2*cos(2*y)','y',2)取名为exa9保存,再在命令窗口中输入命令exa9,程序运行结果如下:pzpx =2*x*cos(2*y)p2zpypx =-4*x*sin(2*y)p2zpy2 =-4*x^2*cos(2*y)即y x x z 2cos 2=∂∂,y x x y z 2sin 42−=∂∂∂,y x yz 2cos 4222−=∂∂. 2.调用格式二:syms x y z …diff(f,自变量,n)例2 已知)5sin(32z y x u +−=,求x u ∂∂、x y z u ∂∂∂∂3和33z u ∂∂. 解 在命令行中依次输入:syms x y zu=sin(x^2-y^3+5*z);ux=diff(u,x);uxy=diff(ux,y);uxyz=diff(uxy,z);uz3=diff(u,z,3);ux,uxyz,uz3运行结果如下:ux =2*cos(x^2-y^3+5*z)*xuxyz =30*cos(x^2-y^3+5*z)*y^2*xuz3 =-125*cos(x^2-y^3+5*z)即)5cos(232z y x x xu +−=∂∂,)5cos(303223z y x xy x y z u +−=∂∂∂∂, )5cos(1253233z y x zu +−−=∂∂. 二、隐函数的导数在Matlab 中没有直接求隐函数导数的命令,但可调用Maple 中求隐函数导数的命令,调用格式如下:maple('implicitdiff(f(u,x,y,z,…,)=0,u,x)')例3 求由多元方程xyz z y x =++222所确定的隐函数dxz ∂. 解 在命令行中输入:pzpx=maple('implicitdiff(x^2+y^2+z^2-x*y*z=0,z,x)')运行结果是:pzpx =(2*x-y*z)/(-2*z+x*y)即 zxy yz x x z 22−−=∂∂. 三、多元函数的极(或最)值在Matlab 中同样有求多元函数的极(或最)小值的函数,但由于多元函数的形式比较复杂,不同情况用到不同的Matlab 函数.若要求多元函数u 在某一区域的极(或最)大值,可转化为求u −在该区域内的极(或最)小值.1.非线性无约束情形求极(或最)小值点或极(或最)小值的调用格式是:[x,fval]=fminsearch(‘f ’,x0)f 是被最小化的目标函数名,x0是求解的初始值向量.例4 求二元函数2331042),(y xy xy x y x f +−+=的最值点和最值.解 打开M文件编辑窗口,在其中输入下面命令集:%必须对自变量进行转化x=x(1),y=x(2)[Xmin,fmin]=fminsearch('2*x(1)^3+4*x(1)*x(2)^3-10*x(1)*x(2)+x(2)^2',[0,0]);[Xmax,Fmin]=fminsearch('-2*x(1)^3-4*x(1)*x(2)^3+10*x(1)*x(2)-x(2)^2',[0,0]);fmax=-Fmin;Xmin,fminXmax,fmax取名为exa10保存,再在命令窗口中输入命令exa10,程序运行结果如下:Xmin =1.0016 0.8335fmin =-3.3241Xmax =-1.0000 1.0000fmax =2.非线性有约束情形非线性有约束优化问题的数学模型如下:式中,x,b,beq,lb 和ub 是向量,A 和Aeq 是矩阵,c(x)和ceq(x)为函数,返回标量.f(x),c(x)和ceq(x)可以是非线性函数.求极(或最)小值点或极(或最)小值的调用格式如下:[x,fval]=fmincon('fun',x0,A,b,Aeq,beq,lb,ub,nonlcon)nonlcon 参数计算非线性不等式约束c(x)<=0和非线性等式约束ceq(x)=0.例5 求表面积为6m 2的体积最大的长方体体积.解 设长方体的长、宽、高分别为x1、x2、x3,则f(x)=-x(1)*x(2)*x(3),S.t x(1)*x(2)+x(2)*x(3)+x(3)*x(1)-3=0,x(i)>0,i=1,2,3.⑴ 建立函数文件fun1打开M文件编辑窗口,在其中输入下面命令集:function F=fun1(x) %函数文件必须是function 开头F=-x(1)*x(2)*x(3);单击“保存”按钮,自动取名为fun1,再击保存.⑵ 建立非线性约束函数文件yceqfunction [c,ceq]=yceq(x)c=x(1)*x(2)+x(2)*x(3)+x(3)*x(1)-3;ceq=[];保存方法同上,自动取名为yceq ,再击保存.⑶ 编制主程序:打开M文件编辑窗口,在其中输入下面命令集:x0=[3;3;3]; %给长宽高一个初值A=[];b=[];Aeq=[];beq=[];lb=[0,0,0];ub=[];[xmax,fmin]=fmincon('fun1',x0,A,b,Aeq,beq,lb,ub,'yceq'); %函数要加单引号Vmax=-fmin;xmax,Vmax取名为exa11保存,再在命令窗口中输入命令exa11,程序运行结果如下:xmax =1.00001.00001.0000Vmax =ubx lb beqx Aeq bx A x ceq x c x f Min ≤≤≤⋅≤⋅=≤0)(0)()(四、上机实验1.用help命令查看函数diff,fminsearch和fmincon等的用法.2.上机验证上面各例.3.作相关小节练习中多元函数的偏导数,极(或最)值.。

用MATLAB求极值

用MATLAB求极值

用MATLAB求极值灵活的运用MATLAB的计算功能,可以很容易地求得函数的极值。

例3.6.1 求223441x xyx x++=++的极值解首先建立函数关系:s yms s ↙y=(3*x^2+4*x+4)/( x^2+x+1); ↙然后求函数的驻点:dy=diff(y); ↙xz=solve(dy) ↙xz=[0] [-2]知道函数有两个驻点x1=0和x2=-2,考察函数在驻点处二阶导数的正负情况:d2y=diff(y,2); ↙z1=limit(d2y,x,0) ↙z1=-2z2=limit(d2y,x,-2) ↙z2=2/9于是知在x1=0处二阶导数的值为z1=-2,小于0,函数有极大值;在x2=-2处二阶导数的值为z2=2/9,大于0,函数有极小值。

如果需要,可顺便求出极值点处的函数值:y1=limit(y,x,0) ↙y1=4y2=limit(y,x,-2) ↙y2=8/3事实上,如果知道了一个函数的图形,则它的极值情况和许多其它特性是一目了然的。

而借助MA TLAB的作图功能,我们很容易做到这一点。

例3.6.2画出上例中函数的图形解syms x ↙y=(3*x^2+4*x+4)/( x^2+x+1); ↙得到如下图形ezplot(y) ↙如何用MATLAB求函数的极值点和最大值比如说y=x^3+x^2+1,怎样用matlab来算它的极值和最大值?求极值:syms x y>> y=x^3+x^2+1>> diff(y) %求导ans =3*x^2 + 2*x>> solve(ans)%求导函数为零的点ans =-2/3极值有两点。

求最大值,既求-y的最小值:>> f=@(x)(-x^3-x^2-1)f =@(x)(-x^3-x^2-1)>> x=fminunc(f,-3,3)% 在-3;-3范围内找Warning: Gradient must be provided for trust-region method;using line-search method instead.> In fminunc at 354Optimization terminated: relative infinity-norm of gradient less than options.TolFun.x =-0.6667>> f(x)ans =-1.1481在规定范围内的最大值是1.1481由于函数的局限性,求出的极值可能是局部最小(大)值。

第7章 MATLAB解方程与函数极值

第7章  MATLAB解方程与函数极值

Jacobi迭代法的 迭代法的MATLAB函数文件 函数文件Jacobi.m如下: 如下: 迭代法的 函数文件 如下 function [y,n]=jacobi(A,b,x0,eps) if nargin==3 eps=1.0e-6; elseif nargin<3 error return end D=diag(diag(A)); %求A的对角矩阵 求 的对角矩阵 L=-tril(A,-1); %求A的下三角阵 求 的下三角阵 U=-triu(A,1); %求A的上三角阵 求 的上三角阵 B=D\(L+U); f=D\b; y=B*x0+f; n=1; %迭代次数 迭代次数 while n y=B*x0+f; n=n+1; end
迭代法求解下列线性方程组。 例7-6 用Gauss-Serdel迭代法求解下列线性方程组。设迭代 迭代法求解下列线性方程组 初值为0,迭代精度为10 初值为 ,迭代精度为 -6。 在命令中调用函数文件gauseidel.m,命令如下: 在命令中调用函数文件 ,命令如下: A=[10,-1,0;-1,10,-2;0,-2,10]; b=[9,7,6]'; [x,n]=gauseidel(A,b,[0,0,0]',1.0e-6)
分解求解例7-1中的线性方程组 例7-4 用Cholesky分解求解例 中的线性方程组。 分解求解例 中的线性方程组。 命令如下: 命令如下: A=[2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4]; b=[13,-9,6,0]'; R=chol(A) ??? Error using ==> chol Matrix must be positive definite 命令执行时,出现错误信息,说明A为非正定矩阵。 命令执行时,出现错误信息,说明 为非正定矩阵。 为非正定矩阵

MATLAB解方程与函数极值(IV)

MATLAB解方程与函数极值(IV)
符号方程求解
使用Matlab的`syms`和`solve`函数求解符 号方程,例如:x^2-2=0。
函数极值实例
一元函数极值
使用Matlab的`fminbnd`函数求解一元函数的极小值,例如 :f(x)=x^2。
多元函数极值
使用Matlab的`fminsearch`函数求解多元函数的极小值,例 如:f(x,y)=(x-1)^2+(y-2)^2。
变量与数据类型
在MATLAB中,变量名必须以字母开头,可以 包含字母、数字和下划线。
01
数值型变量可以是标量、向量或矩阵,可 以进行各种数值运算。
03
02
MATLAB支持多种数据类型,包括数值型、 字符型、逻辑型和结构体等。
04
字符型变量用于存储文本数据,可以进行 字符串操作。
逻辑型变量用于存储布尔值,可以进行逻 辑运算。
MATLAB具有高效的数值计算能力,支持多种编程语言和操作系统。
Matlab编程基础
01
MATLAB是一种解释型语言,语法相对简单, 易于学习。
03
MATLAB提供了丰富的函数库,可以方便地实现各 种算法和数据处理。
02
MATLAB支持向量和矩阵运算,可以进行高效 的数值计算。
04
MATLAB的编程风格简洁明了,易于阅读和维护。
积分方程求解
数值积分
使用Matlab的数值积分函数,如 `quad`、`quadl`等,对函数进行积 分。这些函数返回积分的近似值。
符号积分
使用Matlab的符号计算工具箱进行符号 积分。例如,`syms x`和`int(f, x)`,其 中`f`是函数句柄,表示对函数进行积分。
03 函数极值
单变量函数极值

matlab函数求极值

matlab函数求极值

1
0.95
0.9
0.85
0.8
0.75
0.7
0.65
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
2、 多元函数的极值
函数命令:fminsearch 调用格式:[x,feval,exitflag,output]=fminsearch(fun,x0,optipons) % 求在x0附近的极值 例4:求 f ( x, y) 100( y x 2 ) 2 (1 x) 2 的极小值.
Simpson算法计算积分 Lobatto算法计算积分
ax,tol) %二重积分
ymax,zmin,zmax,tol)
%三重积分
例1:求I=
e
1 0
x2
dx
.
(1)利用quad,quadl计算 format long I=quad('exp(-x.^2)',0,1,1e-8) Il=quadl('exp(-x.^2)',0,1,1e-8) I= 0.74682413285445 Il = 0.74682413398845
y = 1 ./ ((x-.3).^2 + .01) + 1 ./ ((x-.9).^2 + .04) - 6; if nargout==2, out1 = x; out2 = y; else out1 = y; end [x,y]=fminbnd(@humps,0.5,0.8) x= 0.6370 y= 11.2528 xx=0:0.001:2; yy=humps(xx); plot(xx,yy)
4、数值积分
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7.1.2 迭代解法 迭代解法非常适合求解大型系数矩阵的方程组。在数值分析 中,迭代解法主要包括 Jacobi迭代法、Gauss-Serdel迭代 法、超松弛迭代法和两步迭代法。 1.Jacobi迭代法 对于线性方程组Ax=b,如果A为非奇异方阵,即 aii≠0(i=1,2,…,n),则可将A分解为A=D-L-U,其中D为对 角阵,其元素为A的对角元素,L与U为A的下三角阵和上 三角阵,于是Ax=b化为: x=D-1(L+U)x+D-1b 与之对应的迭代公式为: x(k+1)=D-1(L+U)x(k)+D-1b 这就是Jacobi迭代公式。如果序列{x(k+1)}收敛于x,则x必 是方程Ax=b的解。
Jacobi迭代法的MATLAB函数文件Jacobi.m如下: function [y,n]=jacobi(A,b,x0,eps) if nargin==3 eps=1.0e-6; elseif nargin<3 error return end D=diag(diag(A)); %求A的对角矩阵 L=-tril(A,-1); %求A的下三角阵 U=-triu(A,1); %求A的上三角阵 B=D\(L+U); f=D\b; y=B*x0+f; n=1; %迭代次数 while norm(y-x0)>=eps x0=y; y=B*x0+f; n=n+1; end
第7章 MATLAB解方程与函数极值 7.1 线性方程组求解 7.2 非线性方程数值求解 7.3 常微分方程初值问题的数值解法 7.4 函数极值
7.1 线性方程组求解 7.1.1 直接解法 1.利用左除运算符的直接解法 对于线性方程组Ax=b,可以利用左除运算符“\”求解: x=A\b
例7-1 用直接解法求解下列线性方程组。 命令如下: A=[2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4]; b=[13,-9,6,0]'; x=A\b
(2) QR分解 对矩阵X进行QR分解,就是把X分解为一个正交矩阵Q和一 个上三角矩阵R的乘积形式。QR分解只能对方阵进行。 MATLAB的函数qr可用于对矩阵进行QR分解,其调用格 式为: [Q,R]=qr(X):产生一个一个正交矩阵Q和一个上三角矩阵R, 使之满足X=QR。 [Q,R,E]=qr(X):产生一个一个正交矩阵Q、一个上三角矩阵 R以及一个置换矩阵E,使之满足XE=QR。 实现QR分解后,线性方程组Ax=b的解x=R\(Q\b)或 x=E(R\(Q\b))。
例7-9 求下列非线性方程组在(0.5,0.5) 附近的数值解。 (1) 建立函数文件myfun.m。 function q=myfun(p) x=p(1); y=p(2); q(1)=x-0.6*sin(x)-0.3*cos(y); q(2)=y-0.6*cos(x)+0.3*sin(y); (2) 在给定的初值x0=0.5,y0=0.5下,调用fsolve函数求方程 的根。 x=fsolve('myfun',[0.5,0.5]',optimset('Display','off')) x= 0.6354 0.3734
例7-4 用Cholesky分解求解例7-1中的线性方程组。 命令如下: A=[2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4]; b=[13,-9,6,0]'; R=chol(A) ??? Error using ==> chol Matrix must be positive definite 命令执行时,出现错误信息,说明A为非正定矩阵。
例7-7 分别用Jacobi迭代和Gauss-Serdel迭代法求解下列线性 方程组,看是否收敛。 命令如下: a=[1,2,-2;1,1,1;2,2,1]; b=[9;7;6]; [x,n]=jacobi(a,b,[0;0;0]) [x,n]=gauseidel(a,b,[0;0;0])
7.2 非线性方程数值求解 7.2.1 单变量非线性方程求解 在MATLAB中提供了一个fzero函数,可以用来求 单变量非线性方程的根。该函数的调用格式为: z=fzero('fname',x0,tol,trace) 其中fname是待求根的函数文件名,x0为搜索的起 点。一个函数可能有多个根,但fzero函数只给出 离x0最近的那个根。tol控制结果的相对精度,缺 省时取tol=eps,trace• 定迭代信息是否在运算中 指 显示,为1时显示,为0时不显示,缺省时取 trace=0。
例7-5 用Jacobi迭代法求解下列线性方程组。设迭代初值为0, 迭代精度为10-6。 在命令中调用函数文件Jacobi.m,命令如下: A=[10,-1,0;-1,10,-2;0,-2,10]; b=[9,7,6]'; [x,n]=jacobi(A,b,[0,0,0]',1.0e-6)
2.Gauss-Serdel迭代法 在Jacobi迭代过程中,计算时,已经得到,不必再用,即原 来的迭代公式Dx(k+1)=(L+U)x(k)+b可以改进为 Dx(k+1)=Lx(k+1)+Ux(k)+b,于是得到: x(k+1)=(D-L)-1Ux(k)+(D-L)-1b 该式即为Gauss-Serdel迭代公式。和Jacobi迭代相比, Gauss-Serdel迭代用新分量代替旧分量,精度会高些。
(3) Cholesky分解 如果矩阵X是对称正定的,则Cholesky分解将矩阵X分解成 一个下三角矩阵和上三角矩阵的乘积。设上三角矩阵为R, 则下三角矩阵为其转置,即X=R'R。MATLAB函数 chol(X)用于对矩阵X进行Cholesky分解,其调用格式为: R=chol(X):产生一个上三角阵R,使R'R=X。若X为非对称 正定,则输出一个出错信息。 [R,p]=chol(X):这个命令格式将不输出出错信息。当X为对 称正定的,则p=0,R与上述格式得到的结果相同;否则p 为一个正整数。如果X为满秩矩阵,则R为一个阶数为 q=p-1的上三角阵,且满足R'R=X(1:q,1:q)。 实现Cholesky分解后,线性方程组Ax=b变成R‘Rx=b,所以 x=R\(R’\b)。
将求得的解代回原方程,可以检验结果是否正确,命令如下: q=myfun(x) q= 1.0e-009 * 0.2375 0.2957 可见得到了较高精度的结果。
7.3 常微分方程初值问题的数值解法 7.3.1 龙格-库塔法简介 7.3.2 龙格-库塔法的实现 基于龙格-库塔法,MATLAB提供了求常微分方程数值 解的函数,一般调用格式为: [t,y]=ode23('fname',tspan,y0) [t,y]=ode45('fname',tspan,y0) 其中fname是定义f(t,y)的函数文件名,该函数文件必须返回 一个列向量。tspan形式为[t0,tf],表示求解区间。y0是初始 状态列向量。t和y分别给出时间向量和相应的状态向量。
例7-10 设有初值问题,试求其数值解,并与精确解相比较 (精确解为y(t)=)。 (1) 建立函数文件funt.m。 function yp=funt(t,y) yp=(y^2-t-2)/4/(t+1); (2) 求解微分方程。 t0=0;tf=10; y0=2; [t,y]=ode23('funt',[t0,tf],y0); %求数值解 y1=sqrt(t+1)+1; %求精确解 t' y' y1' y为数值解,y1为精确值,显然两者近似。
例7-2 用LU分解求解例7-1中的线性方程组。 命令如下: A=[2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4]; b=[13,-9,6,0]'; [L,U]=lu(A); x=U\(L\b) 或采用LU分解的第2种格式,命令如下: [L,U ,P]=lu(A); x=U\(L\P*b)
例7-6 用Gauss-Serdel迭代法求解下列线性方程组。设迭代 初值为0,迭代精度为10-6。 在命令中调用函数文件gauseidel.m,命令如下: A=[10,-1,0;-1,10,-2;0,-2,10]; b=[9,7,6]'; [x,n]=gauseidel(A,b,[0,0,0]',1.0e-6)
Gauss-Serdel迭代法的MATLAB函数文件gauseidel.m如下: function [y,n]=gauseidel(A,b,x0,eps) if nargin==3 eps=1.0e-6; elseif nargin<3 error return end D=diag(diag(A)); %求A的对角矩阵 L=-tril(A,-1); %求A的下三角阵 U=-triu(A,1); %求A的上三角阵 G=(D-L)\U; f=(D-L)\b; y=G*x0+f; n=1; %迭代次数 while norm(y-x0)>=eps x0=y; y=G*x0+f; n=n+1; end
例7-11 求解著名的Van der Pol方程。 例7-12 有Lorenz模型的状态方程,试绘制系统相平面图。
7.4 函数极值 MATLAB提供了基于单纯形算法求解函数极值的函数 fmin和fmins,• 们分别用于单变量函数和多变量函数的 它 最小值,其调用格式为: x=fmin('fname',x1,x2) x=fmins('fname',x0) 这两个函数的调用格式相似。其中fmin函数用于求单变量函 数的最小值点。fname是被最小化的目标函数名,x1和x2 限定自变量的取值范围。fmins函数用于求多变量函数的 最小值点,x0是求解的初始值向量。
相关文档
最新文档