2018年山东省高密市七年级第二学期期末数学考试真题卷

合集下载

2018-2019学年鲁教版(五四制)七年级下数学期末检测试题含答案.docx

2018-2019学年鲁教版(五四制)七年级下数学期末检测试题含答案.docx

期末检测试题( 时间 :120 分钟满分:150分)一、选择题 ( 每小题 4 分, 共 48 分)1.(2018 北京 ) 方程组的解为( D )(A)(B)(C)(D)解析 : 法一将4组解分别代入原方程组,只有D选项同时满足两个方程,故选D.法二由①得 x=y+3, ③把③代入②得 ,3(y+3)-8y=14,解得 y=-1,将y=-1 代入③得 x=2.所以方程组的解为故选 D.2.(2018 烟台 ) 下列说法正确的是 ( A )(A)367 人中至少有 2 人生日相同(B)任意掷一枚均匀的骰子 , 掷出的点数是偶数的概率是(C)天气预报说明天的降水概率为 90%,则明天一定会下雨(D)某种彩票中奖的概率是 1%,则买 100 张彩票一定有 1 张中奖解析 : 一年最多 366 天, 所以 367 人中至少有 2 人生日相同 , 选项 A正确 ;任意掷一枚均匀的骰子, 掷出的点数是偶数的概率应是, 选项 B 错误 ;天气预报说明天的降水概率为 90%,只是说降雨的可能性较大 , 但不能说明天一定会下雨 , 选项 C 错误 ;某种彩票中的概率是1%,并不是 100 彩票一定有 1 中 ,D. 故 A.3.(2018 日照 ) 如 , 将一副直角三角板按中所示位置放, 保持两条斜互相平行 , ∠ 1 等于( D )(A)30 °(B)25 °(C)20 °(D)15 °解析 : 因一副直角三角板的两条斜互相平行,所以∠ 3=∠2=45°,因∠ 4=30°, 所以∠ 1=∠3- ∠4=15°. 故 D.4.(2018 江 ) 小明将如所示的分成 n(n 是正整数 ) 个扇形 , 并使得各个扇形的面都相等 , 然后他在些扇形区域内分偶数数字 2,4,6, ⋯,2n( 每个区域内注 1 个数字 , 且各区域内注的数字互不相同 ), 1 次, 当停止 , 若事件“指所落区域注的数字大于 8”的概率是,n 的取 ( C )(A)36 (B)30 (C)24 (D)18解析 : 因事件“指所落区域注的数字大于8”的概率是,所以= . 解得 n=24. 故 C.5.如 , 已知点 P到 AE,AD,BC的距离相等 , 下列法 : ①点 P 在∠ BAC的平分上 ; ②点 P在∠CBE的平分上 ; ③点 P 在∠ BCD的平分上 ; ④点 P是∠ BAC,∠CBE,∠BCD的平分的交点 , 其中正确的是 ( A )(A)①②③④ (B) ①②③(C) ②③(D)④解析 : 因为点 P 到 AE,AD,BC的距离相等 ,所以点 P在∠ BAC的平分线上 , 故①正确 ; 点 P在∠ CBE的平分线上 , 故②正确 ; 点 P在∠ BCD的平分线上 , 故③正确 ; 点 P 是∠ BAC,∠CBE,∠BCD的平分线的交点 , 故④正确 , 综上所述 , 正确的是①②③④ . 故选 A.6.如图,AB,CD 交于 O点, 且互相平分 , 则图中全等三角形有 ( C )(A)2 对(B)3 对(C)4 对(D)5 对解析 : 题图中的全等三角形有△AOC≌△ BOD,△BOC≌△ AOD,△ABC≌△ BAD,△ACD≌△ BDC,共 4 对.故选 C.7. 已知点 P(a+1,- +1)关于原点的对称点在第四象限, 则 a 的取值范围在数轴上表示正确的是( C )解析 : 因为点 P(a+1,- +1) 关于原点的对称点在第四象限,所以点 P 在第二象限 ,所以解不等式组得a<-1. 故选 C.8.如图, △ABC为等边三角形 ,D 是 BC边上一点 , 在 AC边上取一点 F, 使 CF=BD,在 AB边上取一点 E, 使BE=DC,则∠ EDF的度数为 ( C )(A)30 °(B)45 °(C)60 °(D)70 °解析 : 易证△ BED≌△CDF(SAS),得∠ BED=∠CDF,又因为∠ EDF+∠CDF=∠B+∠BED,所以∠ EDF=∠B=60°.故选 C.9.(2018 台州 ) 学校八年级师生共466 人准备参加社会实践活动. 现已预备了 49 座和 37 座两种客车共 10 辆, 刚好坐满 . 设 49 座客车 x 辆,37 座客车 y 辆, 根据题意可列出方程组 ( A )(A)(B)(C)(D)解析 : 根据题意 49座客车 x 辆,37 座客车 y 辆, 可知 x+y=10, 根据对应车辆载人数可知49x+37y=466,故选 A.10.如图 , 一条公路修到湖边时 , 需拐弯绕湖而过 , 如果第一次拐的∠ A 是 120°, 第二次拐的∠ B 是150°, 第三次拐的角是∠ C, 这时恰好和第一次拐弯之前的道路平行, 则∠ C的度数为 ( C )(A)100 °(B)120°(C)150 °(D)160 °解析 : 法一延长AB,EC交于点D,根据题意∠ D=∠A=120°;在△ BCD中, ∠BCD=∠ABC-∠D=150°-120 °=30°,所以∠ BCE=180°- ∠BCD=180°-30 °=150°,故选 C.法二过点 B 作 BD∥AE,因为 AE∥CF,所以 AE∥BD∥CF,所以∠ ABD=∠A=120°, 因为∠ ABC=150°,所以∠ CBD=∠CBA-∠ABD=150°-120 °=30°,因为已证得 CF∥BD,所以∠ CBD+∠C=180°,所以∠ C=180°- ∠CBD=180°-30 °=150°.故选 C.11. 关于 x 的不等式组的解集中至少有 5 个整数解 , 则正数 a 的最小值是 ( B )(A)3 (B)2 (C)1(D)解析 :解不等式①得x≤a, 解不等式②得 x>- a.则不等式组的解集是 - a<x≤a.因为不等式组至少有 5 个整数解 ,所以 a-(- a) ≥5, 解得 a≥2.所以正数 a 的最小是 2. 故 B.12. 如 , 在第 1 个△A1BC中, ∠B=30°,A 1B=CB;在 A1B 上任取一点 D,延 CA1到 A2, 使 A1A2=A1D, 得到第 2 个△A1A2D;在 A2D上任取一点 E, 延 A1A2到 A3, 使 A2A3=A2E, 得到第 3 个△ A2A3E, ⋯按此做法下去 , 第 n 个三角形中以 A n点的内角度数是 ( C )(A)( ) n·75°(B)( ) n-1·65°(C)( ) n-1·75°(D)( ) n·85°解析 : 因 A1B=CB,∠B=30°,所以∠ C=∠BA1C=75°.又因 A1 A2=A1D,1 2121× 75°=( )2-1 2 323 2 1所以∠ A A D=∠ A DA=∠ DAC=×75°; 同理 , ∠ A A E= ∠ A EA=∠ DAA = × ×75°=( ) 3-1×75°; ∠A3A4F=( ) 4-1×75°; ⋯第n 个三角形中以A n点的内角度数是n-1( )×75°.二、填空 ( 每小 4 分, 共 24 分)13.(2018 化 ) 如 , 一游板由大小相等的小正方形格子构成. 向游板随机投一枚, 中黑色区域的概率是.解析 : 设小正方形的边长为1,所以击中黑色区域的概率是= .14.(2018 菏泽 ) 不等式组的最小整数解是0 .解析 : 解不等式组 , 得-1<x ≤2,所以其最小整数解是0.15.(2018 镇江一模 ) 如图 ,l 1∥l 2, △ABC的顶点 B,C 在直线 l 2上, 已知∠ A=40°, ∠1=60°, 则∠ 2的度数为100°.解析 : 因为 l 1∥l 2,所以∠ 3=∠1=60°,因为∠ A=40°,所以∠ 2=∠A+∠3=100°.16. 如图 , 在△ABC中,AB=AC,∠BAC=36°,DE 是线段 AC的垂直平分线 , 若 BE=a,AE=b,则用含a,b 的代数式表示△ ABC的周长为 2a+3b .解析 : 由题意 , 得 AC=AB=a+b,∠B=∠ACB=(180°-36 °) ÷2=72°,因为 DE垂直平分线段 AC,所以 EA=EC,所以∠ ECA=∠A=36°,所以∠ ECB=36°, ∠BEC=72°,所以 CB=CE=b,故△ ABC的周长为 2a+3b.17.(2018 滨州 ) 若关于 x,y 的二元一次方程组的解是则关于a,b的二元一次方程组的解是.解析 : 观察两个方程组的结构特点,a+b 相当于 x,a-b 相当于 y,故可直接得出解得从而得出二元一次方程组的解是18. 若不等式组无解,则m的取值范围是m< .解析 : 解不等式 2x-3 ≥0, 得 x≥ ,要使不等式组无解 , 则 m< .三、解答题 ( 共 78 分)(1)(2018武汉)(2)(2018宁夏)解:(1) ②- ①, 得 x=6,把x=6 代入① , 得 y=4.所以原方程组的解为(2)解不等式①得 ,x ≤-1,解不等式②得 ,x>-7,所以 , 原不等式组的解集为 -7<x ≤-1.20.(8 分) 如图所示 , 已知 DF⊥AB于点 F, ∠A=40°, ∠D=50°, 求∠ ACB的度数 .解: 在 Rt△AFG中, ∠AGF=90°- ∠A=90°-40 °=50°, 所以∠ CGD=∠AGF=50°.所以∠ ACB=∠CGD+∠D=50°+50°=100°.21.(8 分) 如图 , ∠ACB=90°,BD 平分∠ ABE,CD∥AB交 BD于 D,∠1=20°, 求∠ 2 的度数.解: 因为 BD平分∠ ABE,∠1=20°,所以∠ ABC=2∠1=40°.因为 CD∥AB,所以∠ DCE=∠ABC=40°.因为∠ ACB=90°,所以∠ 2=90°-40 °=50°.22.(8分)(2018高青期末)如图,在△ ACB中,AC=BC,AD为△ACB的高线,CE为△ ACB的中线,求证:∠DAB=∠ACE.证明 : 因为 AC=BC,CE为△ ACB的中线 ,所以∠ CAB=∠B,CE⊥AB,所以∠ CAB+∠ACE=90°.因为 AD为△ ACB的高线 , 所以∠ D=90°.所以∠ DAB+∠B=90°,所以∠ DAB=∠ACE.23.(10 分) 为了解学生的体能情况 , 随机选取了 1 000 名学生进行调查 , 并记录了他们对长跑、短跑、跳绳、跳远四个项目的喜欢情况 , 整理成以下统计表 , 其中“√”表示喜欢 , “×”表示不喜欢.项目长跑短跑跳绳跳远学生数200√×√√300×√×√150√√√×200√×√×150√×××(1)估计学生同时喜欢短跑和跳绳的概率 ;(2)估计学生在长跑、短跑、跳绳、跳远中同时喜欢三个项目的概率;(3)如果学生喜欢长跑 , 则该同学同时喜欢短跑、跳绳、跳远中哪项的可能性大 ?解 :(1) 同时喜欢短跑和跳绳的概率为= .(2) 同时喜欢三个项目的概率为= .(3)喜欢长跑的 700 人中 , 有 150 人选择了短跑 ,550 人选择了跳绳 ,200 人选择了跳远 , 于是喜欢长跑的学生又同时喜欢跳绳的可能性大 .24.(10 分) 在数学学习中 , 及时对知识进行归纳和整理是完善知识结构的重要方法 . 善于学习的小明在学习了一次方程 ( 组) 、一元一次不等式和一次函数后 , 把相关知识归纳整理如下 :(1)请你根据以上方框中的内容在下面数字序号后写出相应的结论:①; ②; ③; ④.(2)如果点 C的坐标为 (1,3),求不等式 kx+b≤k1x+b1的解集 .解:(1) ①kx+b=0;②③kx+b>0;④kx+b<0.(2)由图象可知 , 不等式 kx+b≤k1x+b1的解集是 x≥1.25.(12 分) 蔬菜经营户老王 , 近两天经营的是白菜和西兰花.(1)昨天的白菜和西兰花的进价和售价如表 , 老王用 600 元批发白菜和西兰花共 200 市斤 , 当天售完后老王一共能赚多少元钱 ?(2)今天因进价不变 , 老王仍用 600 元批发白菜和西兰花共 200 市斤 . 但在运输中白菜损坏了 10%,而西兰花没有损坏仍按昨天的售价销售 , 要想当天售完后所赚的钱不少于昨天所赚的钱 , 请你帮老王计算 , 应怎样给白菜定售价 ?( 精确到 0.1 元)白菜西兰花进价 ( 元/ 市斤 ) 2.8 3.2售价 ( 元/ 市斤 )4 4.5解 :(1)设老王批发了白菜 x 市斤和西兰花 y 市斤 , 根据题意得 ,解得(4-2.8)×100+(4.5-3.2)×100=250(元).答: 当天售完后老王一共能赚 250 元钱 .(2) 设白菜的售价为 t 元.100×(1-10%)t+100 ×4.5-600 ≥250,t ≥≈4.44.答 : 白菜的售价不低于 4.5 元/ 市斤 .26.(12 分)(2018 高青期末 ) 已知△ ABD与△ GDF都是等腰直角三角形 ,BD 与 DF均为斜边 (BD<DF).如图 ,B,D,F 在同一直线上 , 过 F 作 MF⊥GF于点 F, 取 MF=AB,连接 AM交 BF 于点 H,连接 GA,GM.(1)求证 :AH=HM;(2)请判断△ GAM的形状 , 并给予证明 ;(3)请用等式表示线段 AM,BD,DF的数量关系 , 不必说明理由 .(1)证明 : 因为 MF⊥GF,所以∠ GFM=90°,因为△ ABD与△ GDF都是等腰直角三角形 ,所以∠ DFG=∠ABD=45°,所以∠ HFM=90°-45 °=45°,所以∠ ABD=∠HFM,因为 AB=MF,∠AHB=∠MHF,所以△ AHB≌△ MHF,所以 AH=HM.(2)解: △GAM是等腰直角三角形 , 理由是 : 因为△ ABD与△ GDF都是等腰直角三角形 ,所以 AB=AD,DG=FG,∠ADB=∠GDF=45°,所以∠ ADG=∠GFM=90°,因为 AB=FM,所以 AD=FM,又DG=FG,所以△ GAD≌△ GMF,所以 AG=MG,∠AGD=∠MGF,所以∠ AGD+∠DGM=∠MGF+∠DGM=90°,所以△ GAM是等腰直角三角形 .222(3) 解:AM =BD+DF.。

2018七年级(下)期末数学试卷

2018七年级(下)期末数学试卷

七年级(下)期末数学试卷一、选择题:本大题包括15个小题,每小题3分,共45分1.(3分)下列运算中,结果是b5的是()A.(b2)3B.b3•b2C.b10÷b2D.(﹣b)52.(3分)下面每组数分别是三根小木棒的长度,它们能摆成三角形的是()A.12cm,3cm,6cm B.8cm,16cm,8cm C.6cm,6cm,13cm D.2cm,3cm,4cm 3.(3分)目前,中东呼吸综合征在韩国的爆发引起全球的普遍关注,现知某冠状病毒的直径大约为0.00000006米,用科学记数法表示为()A.0.6×10﹣7米 B.6×10﹣8米C.6×10﹣9米D.6×10﹣7米4.(3分)下列交通标志中,轴对称图形的个数是()A.4个 B.3个 C.2个 D.1个35.一种商品的售价为120元,由于购买的人多,商家便提价25%销售,但提价后,商品滞销,商家只好再降价x%,使商品售价恢复到了原价,那么x%=()A.25 B.20 C. 25% D. 2.6、(3分)如图所示,△ABD≌△CDB,下面四个结论中,不正确的是()(7题图(8 (9题图)A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBD D.AD∥BC,且AD=BC8.(3分)如图,直线l1∥l2,∠A=124°,∠B=86°,则∠1+∠2=()A.30°B.35°C.36°D.40°9.(3分)如图,两条笔直的公路l1、l2相交于点O,村庄C的村民在公路的旁边建三个加工厂A、B、D.已知AB=BC=CD=DA=5公里,村庄C到公路l1的距离为4公里,则村庄C到公路l2的距离是()A.3km B.4km C.5km D.6km10.一个多边形的内角和是它的外角和的2倍,则这个多边形是()A.四边形B.五边形C.六边形D.七边形11.能够铺满地面的正多形组合是()A 正五边形和正方形B 正六边形和正方形C正八边形和正方形 D 正十边形和正方形12.(3分)如果一个三角形是轴对称图形,且有一个内角是60°,那么这个三角形是()A.等边三角形B.等腰直角三角形C.等腰三角形D.含30°角的直角三角形13.(3分)图(1)是一个长为2m,宽为2n(m>n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()A.2mn B.(m+n)2C.(m﹣n)2D.m2﹣n214.(3分)一列从济南开往日照的动车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图,有下列结论:①火车的长度为180米;②火车的速度为40米/秒;③火车整体都在隧道内的时间为25秒;④隧道长度为1000米.其中正确的结论是()A.①②③B.②③C.③④D.②③④(14)(15(18)15.(3分)如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连接DH与BE相交于点G,下列结论正确的有()个.=S四边形GHCE.①BF=AC;②AE=BF;③∠A=67.5°;④△DGF是等腰三角形;⑤S四边形ADGEA.5个 B.2个 C.4个 D.3个二、填空题:本大题包括6小题,每小题3分,共18分16.(3分)已知16b2a﹣12a2b+4ab=A•B,其中A=4ab,则B=.17.(3分)已知等腰三角形的两边长分别是4和9,则周长是.18.(3分)直线l1∥l2,一块含45°角的直角三角板如图放置,∠1=89°,则∠2=.19.(3分)如果9x2﹣mx+4是完全平方式,则m=.20.(3分)如图,DE 是AB 的垂直平分线,交AC 于点D ,若AC=6 cm ,BC=4 cm ,则△BDC 的周长是 .(20题图) (21题图) (23题图)21.(3分)如图,已知AB=20米,MA ⊥AB 于A ,MA=10米,射线BD ⊥AB 于B ,P 点从B 点向A 运动,每秒走2米,Q 点从B 点向D 运动,每秒走3米,P 、Q 同时从B 出发,则出发 秒后,在线段MA 上有一点C ,使△CAP 与△PBQ 全等.三、解答题:本大题包括7小题,共57分22 1解方程:)10(4371-=--x x 2 解方程组⎩⎨⎧=+=-n m n m 25332(2)先化简,再求值:(y +x )(y ﹣x )﹣y (x +2y )+y 2,其中x=1,y=﹣2.23.(7分)(1)如图,直线a ∥b ,AC ⊥AB ,AC 交直线b 于点C ,请问∠1与∠2有怎样的数量关系?(2)如图,四边形ABCD 中,E 点在AD 上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE ,请问△ABC 与△DEC 全等吗?如果全等请说明理由.243.(8分)(1)问题发现:如图1,△ACB 和△DCE 均为等边三角形,点A 、D 、E 在同一直线上,连接BE .填空:①∠AEB的度数为;②AD与BE的数量关系.(2)拓展探究:图2,△ACB和△DCE均为等腰三角形,∠ACB=∠DCE=90°,点A、D、E在同一只显示行,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM、AE、BE之间的数量关系,并说明理由.26.(9分)观察下面的几个算式:①16×14=224=1×(1+1)×100+6×4;②23×27=621=2×(2+1)×100+3×7;③32×38=1216=3×(3+1)×100+2×8;…(1)仿照上面的书写格式,请迅速写出81×89的结果;(2)请你自己模仿上面数的特点再举出一个例子,并按照上面格写出结果;(3)用多项式的乘法验证你所发现的规律(提示:可设这两个两位数分别是(10n+a),(10n+b),其中a+b=10)27.(9分)外国语学校1号班车与2号班车每天从初中部出发往返于初中部与高中部两地之间.2号班车比1号班车多往返一趟,如图表示2号班车距初中部的路程y(单位:千米)与所用时间x (单位:小时)之间变化关系的图象.已知1号班车比2号班车晚半小时出发.到达高中部后休息1小时,然后按原路原速返回.结果比2号班车最后一次返回初中部早了半个小时.(1)2号班车的速度为千米/销售;(2)请在图中画出1号班车距初中部的路程y(千米)与所用时间x(小时)的变化关系的图象;(3)两车在图中相遇的次数为次;3、小明想在两种灯中选购一种,其中一种是10瓦(即0.01千瓦)的节能灯,售价50元,另一种是100瓦(即0.1千瓦)的白炽灯,售价5元,两种灯的照明效果一样,使用寿命也相同(3000小时内)节能灯售价高,但较省电,白炽灯售价低,但用电多,电费0.5元/千瓦·时(1)照明时间500小时选哪一种灯省钱?(2)照明时间1500小时选哪一种灯省钱?(3)照明多少时间用两种灯费用相等?2014-2015学年山东省济南外国语学校七年级(下)期末数学试卷参考答案一、选择题:本大题包括15个小题,每小题3分,共45分1.B;2.D;3.B;4.B;5.D;6.C;7.C;8.A;9.B;10.A;11.B;12.A;13.C;14.B;15.C;二、填空题:本大题包括6小题,每小题3分,共18分16.4b﹣3a+1;17.22;18.44°;19.±12;20.10cm;21.4;三、解答题:本大题包括7小题,共57分22.;23.;24.;25.60°;AD=BE;26.;27.60;2;28.;。

17-18第二学期期末测试七年级数学答案

17-18第二学期期末测试七年级数学答案

2017~2018学年度第二学期期末学业水平调研测试七年级数学及答案说明:1、本试卷共4页,共25小题,考试时间为100分钟,满分120分.2、考生务必用黑色字迹的签字笔或钢笔在答题卡上填写自己的考生号,并用2B 铅笔把对应号码的标号涂黑,在指定位置填写学校,姓名,试室号和座位号.3、选择题每小题选出答案后,用2B 铅笔把答题卡对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案.4、非选择题必须在指定区域内,用黑色字迹的签字笔或钢笔作答,如需改动,先划掉原来答案,然后再写上新答案;不准使用铅笔或涂改液,不按以上要求作答的答案无效.5、考生务必保持答题卡的整洁,不折叠答题卡,考试结束后,只交回答题卡.一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选选项涂黑.1、如图,直线a ,b 与直线l 相交,则下列说法错误的是( ) A 、1∠与2∠互为对顶角 B 、1∠与3∠互为邻补角 C 、1∠与4∠是一对同旁内角 D 、2∠与4∠是一对内错角2、计算 4的值,结果是( )A 、2B 、-2C 、±2D 、2±3、在平面直角坐标系中,第二象限的点P 到x 轴的距离为3,到y 轴的距离为4,则点P 的坐标是( )A 、(3,4)B 、(-3,4)C 、(4,3)D 、(-4,3) 4、如图,点O 是直线AB 外的点,点C ,D 在AB 上,且AB OC ⊥,若5=OA ,4=OB ,2=OC ,3=OD ,则点O 到直线AB 的距离是( )A 、5B 、4C 、2D 、35、已知关于x ,y 的二元一次方程53=+y kx 有一组解为⎩⎨⎧==12y x ,则k 的值为( )A 、1B 、2C 、3D 、4lba 3 12 4第1题图OA第4题图BEAD第10题图OBEA CD 第14题图6、已知1-<a ,则下列不等式中,错误的是( ) A 、33-<a B 、33<-a C 、12<+a D 、32>-a7、经调查,某班同学上学所用的交通工具中,自行车占60%,公交车占30%,其它占10%,用扇形图描述以上统计数据,则公交车对应的扇形的圆心角的度数是( )A 、︒216B 、︒120C 、︒108D 、︒60 8、下列说法正确的是( )A 、无限小数都是无理数B 、无理数都是无限小数C 、带根号的数都是无理数D 、无理数能写成分数形式 9、下列说法错误的是( )A 、在同一平面内,过一点有且只有一条直线与已知直线垂直B 、连接直线外一点与直线上各点的所有线段中,垂线段最短C 、在同一平面内,不重合的两条直线互相平行D 、经过直线外一点,有且只有一条直线与这条直线平行10、如图,在三角形ABC 中,点D 是AB 上的点,由条件AC DE ⊥于点E ,DE ∥BC 得出的下列结论中,不正确的是( )A 、CDE BCD ∠=∠B 、︒=∠90ACBC 、B ADE ∠=∠D 、DCE BDC ∠=∠二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11、7-的相反数是 . 12、计算:=-+3)32( . 13、不等式1152<+x 的解集是 .14、如图,直线AB 与CD 相交于点O ,OA 平分COE ∠,若︒=∠30AOE ,则DOE ∠的度数是 .15、在直角坐标系中,线段CD 是由线段AB 平移得到,点A (-3,-2)的对应点为C (2,1),则点B (-1,2)的对应点D 的坐标是 .第18题图1PBAB A CD第18题图216、如图,8块相同的长方形地砖拼成一个长方形,则每块长方形地砖的面积是 2cm .答案:一、选择题 C A D C A B C B C D二、填空题 11、7 12、2 13、3<x 14、︒120 15、(4,5) 16、675 三、解答题(一)(本大题3小题,每小题6分,共18分) 17、计算:53325161643-+-+.34533534+=-++=(评分说明:计算364占1分,计算25161-,533-各占2分,答案正确占1分)18、画图题:(1)如图1,已知点P 是直线AB 外一点,用三角尺画图:过点P 作AB PM ⊥,垂足为M ; (2)如图2,已知直线AB 与CD ,请画出直线EF ,使EF 与直线AB 、CD 都相交,在所构成的八个角中,用数字表示其中的一对同位角.解:(1)评分说明:准确画出图形给3分,其中会过点P 作直线、用直角画出垂直线、标注垂足各占1分;(2)共3分.其中画出EF ,用数字表示同位角,写出结果各占1分.19、已知四个点的坐标,A (-3,-2),B (2,-2),C (3,1),D (-2,1). (1)在直角坐标系中描出A ,B ,C ,D 四个点;(2)连结AB 、CD ,写出线段AB ,CD 的位置关系和数量关系.解:(1)略 4分(准确描出一个点1分)(2)AB ∥CD,CD AB =; 6分(每个结论占1分)第16题图四、解答题(二)(本大题3小题,每小题7分,共21分) 20、解方程组:⎩⎨⎧=-=+112312y x y x .解:①+②得,124=x , 2分3=x , 3分把3=x 代入①得,123=+y ,1-=y , 6分∴这个方程组的解是⎩⎨⎧-==13y x . 7分或由①得,y x 21-=③, 1分 代入②得,112)21(3=--y y , 3分 解得1-=y , 4分 把1-=y 代入③得,3)1(21=-⨯-=x , 6分∴这个方程组的解是⎩⎨⎧-==13y x . 7分21、解不等式组:⎪⎩⎪⎨⎧-<--≥+-x x x x 6)1(31324,并求该不等式组的正整数解.解:不等式x x ≥+-324的解是2≤x , 2分 不等式x x -<--6)1(31的解是1->x , 4分 ∴不等式组的解是21≤<-x , 6分 ∴不等式组的正整数解是1,2. 7分22、某校为了解该校七年级同学对排球、篮球和足球三种球类运动项目的喜爱情况(每位同学必须且只须选择最喜爱的一种运动项目),进行了随机抽样调查,并将调查结果统计后,绘制成如下表和不完整的统计图表.(1)填空:=m ,=n ,=p ; (2)补全条形统计图;(3)若七年级学生总人数为900人,请你估计七年级学生喜爱足球运动项目的人数.解:(1)50=m ,14=n ,%20=p ; 3分 (2)略 5分 (3)900×20%=180(人) 7分五、解答题(三)(本大题3小题,每小题9分,共27分)23、某养牛场每天可用的饲料不超过1000kg ,原有30头大牛和15头小牛,1天要用饲料675kg ;一周后又购进12头大牛和5头小牛,这时1天要用饲料940kg .(1)求每头大牛和每头小牛1天各用饲料多少kg ?(2)一段时间后,大牛已全部上市出售,原来的小牛也长成大牛,需要再购进大牛和小牛若干头继续饲养.经测算,养牛场养牛数刚好80头,且尽量多养大牛将获得最大效益,问养牛场应购进多少头大牛和小牛才获得最大效益?解:(1)设每头大牛1天用饲料x kg ,每头小牛1天用饲料y kg , 1分依题意得,⎩⎨⎧=+=+94020426751530y x y x , 3分解得,⎩⎨⎧==520y x , 5分 答:每头大牛1天用饲料20kg ,每头小牛1天用饲料5kg ; 6分 (2)设最多购进m 头大牛,第24题图BA CD123依题意得,1000)60(5)20(20≤-++m m , 7分 解得,20≤m , 8分答:最多购进20头大牛,此时需购进40头小牛,使养牛数刚好80头牛并获得最大效益, 9分24、(1)在下面括号内,填上推理的根据,并完成下面的证明:如图,在四边形ABCD 中,BD 平分ABC ∠,31∠=∠.求证:AD ∥BC . 证明:∵BD 平分ABC ∠,∴21∠=∠( ), 又∵31∠=∠(已知),∴∠ ∠= ( ), ∴AD ∥BC ( );(2)请根据本题给出的图形举出反例,判定命题“相等的角是对顶角”是假命题;(3)命题“在四边形ABCD 中,AB ∥CD ,AD ∥BC ,那么C A ∠=∠”是真命题吗?如果是,写出推理过程(要求写出每一步的推理依据),如果不是,请举出反例.解:(1)分别填写:角平分线的定义、32∠=∠、等量代换、内错角相等,两直线平行 每个1分,共4分(2)BD 平分ABC ∠,21∠=∠,但它们不是对顶角, 5分 ∴命题“相等的角是对顶角”是假命题; 6分 (3)命题是真命题,证明如下: ∵AB ∥CD ,∴︒=∠+∠180C ABC (两直线平行,同旁内角互补), 7分 ∵AD ∥BC ,∴︒=∠+∠180A ABC (两直线平行,同旁内角互补), 8分 ∴C A ∠=∠(等角的补角相等). 9分 若证明过程正确给2分,但推理根据没有写或有写错的,全部扣1分25、如图,在直角坐标系中,点O 为坐标原点,直线AB 与两条坐标轴交于点A 、B ,OB OA <,过OB 的中点C 作直线CD 交AB 于点D ,使1∠=∠CDB ,过点D 作AB DE ⊥交x 轴于点E ,交y 轴于点F .已知直线AB 上的点的坐标是二元一次方程2443=+y x 的解.(1)写出点A 、B 、C 的坐标;(2)证明:OB CD ⊥(要求写出每一步的推理依据);(3)若点D 、E 的坐标都是方程734=-y x 的解,求四边形OADE 的面积. 解:(1)A (0,6),B (8,0),C (4,0); 3分 (2)∵OAB ∠=∠1(对顶角相等), 4分 又1∠=∠CDB (已知),∴CDB OAB ∠=∠(等量代换), ∴CD ∥y 轴(同位角相等,两直线平行), 5分 ∴︒=∠=∠90AOB DCB (两直线平行,同位角相等), ∴OB DC ⊥(垂直的定义); 6分 (3)由OB DC ⊥,得点D 的横坐标为4, 7分 ∴D (4,3),E (47,0), ∴425478=-=EB , 8分 ∴四边形OADE 的面积81173425216821=⨯⨯-⨯⨯=S . 9分。

鲁教版2018学年度初一数学第二学期期末测试题(含答案详解)

鲁教版2018学年度初一数学第二学期期末测试题(含答案详解)

鲁教版2018学年度初一数学第二学期期末测试题(含答案详解)1.如图,直线AB ∥CD ∥EF ,且∠ABE=70°,∠ECD=150°,则∠BEC=( )A .50°B .30°C .20°D .40°2.如果多项式x 2+mx+16是一个完全平方式,则m 的值是( ) A .±4 B .4 C .±8 D .83.如图,点F ,E 分别在线段AB 和CD 上,下列条件能判定AB ∥CD 的是( ) A .∠1=∠2 B .∠1=∠4 C .∠4=∠2 D .∠3=∠44.已知是一个有理数的平方,则n 不能取以下各数中的哪一个A .30B .32C .D .95.如图,下列说法中错误的是( )A .∠3与∠5是同位角B .∠4和∠5是同旁内角C .∠2和∠4是对顶角D .∠1和∠5是同位角6.如图,直线a ∥b ,直线l 与a ,b 分别相交于A ,B 两点,AC ⊥AB 交b 于点C ,∠1=40°,则∠2的度数是( ) A .40°B .45°C .50°D .60°7.如图,直线AB 、CD 相交于点O ,EO ⊥AB 于点O ,则图中∠1与∠2的关系是( )A .对顶角 B .等角 C .互余的角 D .互补的角8.要整齐地栽一行树,只要确定两端的树坑的位置,就能确定这一行树坑所在的直线,这里用到的数学知识是( ) A .两点之间的所有连线中,线段最短 B .经过两点有一条直线,并且只有一条直线C .直线外一点与直线上各点连接的所有线段中,垂线段最短D .经过一点有且只有一条直线与已知直线垂直 9.如图,a ∥b ,∠1=70°,则∠2等于( ) A .20° B .35° C .70° D .110° 10.下列算式中,结果等于a 5的是( ) A .a 2+a 3B .a 2•a 3C .a 5÷aD .(a 2)311.同底数幂相除:底数_____,指数_____;用式子表示: m na a =________12.为了了解湖南电视台《超级女声》节目的收视率,应该采用的调查方式是抽______ (填“全面调查”或“抽样调查”). 13.108°21′36″=________° 14.计算:的结果是__________.15.计算:2002×1998= _____16.若∠AOB=7518',∠AOC=2753',则∠BOC=_______.17.如图,分别过矩形ABCD的顶点A、D作直线、,使,与边BC交于点P,若∠1=38°,则∠BPD的度数为__________ .18.如图所示,点E在AC的延长线上,有下列条件∠1=∠2,②∠3=∠4,③∠A=∠DCE,④∠D=∠DCE,⑤∠A+∠ABD=180°,⑥∠A+∠ACD=180°,其中能判断AB∥CD的是_____.19.已知一个角的度数为27°18′43″,则它的余角度数等于________.20.如图1所示∠AOB的纸片,OC平分∠AOB,如图2把∠AOB沿OC对折成∠COB (OA与OB重合),从O点引一条射线OE,使∠BOE=∠EOC,再沿OE把角剪开,若剪开后得到的3个角中最大的一个角为76°,则∠AOB=_____________°.21.一个角的余角比它的补角的还少12°,求这个角的度数.22.计算:(x﹣2y)(x+2y)﹣y(x﹣4y);23.为了解七年级同学对三种元旦活动方案的意见,校学生会对七年级全体同学进行了一次调查(每人至多赞成一种方案).结果有115人赞成方案1,62人赞成方案2,40人赞成方案3,8人弃权,请用扇形图描述这些数据,并对校学生会采用的哪种方案组织元旦活动提出建议.24.在星期一的第八节课,我校体育老师随机抽取了九年级的总分学生进行体育中考的模拟测试,并对成绩进行统计分析,绘制了频数分布表和统计图,按得分划分成A、B、C、D、E、F六个等级,并绘制成如下两幅不完整的统计图表.请你根据图表中的信息完成下列问题:(1)本次抽样调查的样本容量是.其中m=,n=.(2)扇形统计图中,求E等级对应扇形的圆心角α的度数;(3)我校九年级共有700名学生,估计体育测试成绩在A、B两个等级的人数共有多少人?(4)我校决定从本次抽取的A等级学生(记为甲、乙、丙、丁)中,随机选择2名成为学校代表参加全市体能竞赛,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率.25.先化简,再求值:,其中x =1,y =1.26.如图,和的角平分线相交于点H,,,求证:。

山东省2018-2019年七年级下册期末数学试卷含答案

山东省2018-2019年七年级下册期末数学试卷含答案

山东省2018-2019年七年级下册期末数学试卷含答案1. 9的平方根为()A. 3B. -3C. ±32. 在平面直角坐标系中,点(1,-3)在()A. 第一象限B. 第二象限C. 第三象限3. 下列调查方式,你认为最合适的是()A. 日光灯管厂要检测一批灯管的使用寿命,采用全面调查方式B. 旅客上飞机前的安检,采用抽样调查方式C. 了解北京市居民日平均用水量,采用全面调查方式4. 如图,能判定EB∥AC的条件是()A. ∠C=∠ABEB. ∠A=∠ABEC. ∠C=∠ABD5. 课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(,)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()A. (5,4)B. (4,5)C. (3,4)6. 若m>n,则下列不等式中成立的是()A. m+a<n+bB. ma<nbC. ma>na7. 在方程组中,如果是它的一个解,那么a,b的值是()A. a=4,b=0B. a=-4,b=0C. a=1,b=28. 如图,数轴上的A、B、C、D四点中,与数-5表示的点最接近的是()A. 点AB. 点BC. 点C9. 20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵。

设男生有x人,女生有y人,根据题意,列方程组正确的是()A. 3x+2y=52x+y=20B. 2x+3y=52x+y=20C. 3x+2y=20x+y=52D. 2x+3y=2010. 关于x、y的二元一次方程组2x+y=ax-3y=b的解为(x,y)=(2,-2),则a,b的值分别是()A. a=-2,b=-8B. a=8,b=-2C. a=2,b=-815. 下面是一个按某种规律排列的数阵:1 2 34 5 67 8 n根据数阵排列的规律,第n(n是整数,且n≥3)行从左向右数第n-2个数是3n-6。

(2) 解方程组:$\begin{cases}2x-3y=1 \\3x+4y=717. 解不等式组:$\begin{cases}x+2y<2 \\3x-4y \leq 5根据以上信息,解答下列问题:(1) 问这次被抽检的电动汽车共有几辆?并补全条形统计图;(1) 在图中画出$\triangle A'B'C'$;(2) 写出点$A'$、$B'$的坐标;(1) 求每辆$A$型车和$B$型车的售价各为多少元。

2018年七年级下期末考试数学试题及答案8

2018年七年级下期末考试数学试题及答案8

FEDCBA七年级下期末考试数学试题及答案一、选择题(本大题共10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1. 下列数中,是无理数的是A. 0B. 71-C. 3D. 2 2. 下面4个图形中,∠1与∠2是对顶角的是21212121A. B. C. D.3、已知点P 在第四象限,且P 到x 轴的距离为3,到y 轴的距离为4,则P 点的坐标为( )A .(3,-4)B .(-3,4)C .(4,-3)D .(-4,3) 4.下列调查中,适宜采用全面调查方式的是 A. 了解全国中学生的视力情况 B. 调查某批次日光灯的使用寿命 C. 调查市场上矿泉水的质量情况D. 调查机场乘坐飞机的旅客是否携带了违禁物品 5.已知正方形的面积是17,则它的边长在( )A .5与6之间B .4与5之间C .3与4之间D .2与3之间 6.下列说法错误..的是 A. 1的平方根是1 B. 0的平方根是0C. 1的算术平方根是1D. -1的立方根是-1 7.若a >b ,则下列不等式变形错误的是( )A .a+1>b+1B .C .3a ﹣4>3b ﹣4D .4﹣3a >4﹣3b8.如图1,下列条件能判定AD ∥BC 的是A. ∠C =∠CBEB. ∠C +∠ABC =180°C. ∠FDC =∠CD. ∠FDC =∠A 9.下列命题中,是真命题的是A . 若b a >,则a >b B. 若a >b ,则b a > C. 若b a =,则22b a = D. 若22b a =,则b a =图110.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺.设木长为x 尺,绳子长为y 尺,则下列符合题意的方程组是A. ⎪⎩⎪⎨⎧+=+=1215.4x y x yB. ⎪⎩⎪⎨⎧-=+=1215.4x y x yC. ⎪⎩⎪⎨⎧+=-=1215.4x y x yD. ⎪⎩⎪⎨⎧-=-=1215.4x y x y11.关于x 的不等式组21111x x a -⎧⎨+⎩≤>恰好只有两个整数解,则a 的取值范围为A. 56a ≤<B. 56a <≤C. 6a 4≤<D. 46a <≤ 12.已知点P (x ,y )的坐标满足|x|=3,且xy <0,则点P 的坐标是( )A .(3,-2)B .(-3,2)C .(3,-4)D .(-3,4)二、填空题(本大题有8小题,每小题3分,共24分) 12.不等式2x+5>4x ﹣1的正整数解是 .11. 若36.25=5.036,6.253=15.906,则253600=__________。

2018年初一下学期,期末数学试题,word版含答案

2018年初一下学期,期末数学试题,word版含答案

2018年初一数学第二学期期末考试试卷注意事项:1、本试卷共三大题29小题,满分130分,考试时间120分钟°考生作答时,将答案答在规定的答题纸范围内,答在本试卷上无效。

2、答题时使用0.5毫米黑色中性(签字)笔书写,字体工整、笔迹清楚。

一、选择题(本大题共8小题,每小题3分,共24分)把下列各题中正确答案前面的字母填涂在答题纸上.1.下列事件是必然事件的是A .三角形的内角和是360°B .打开电视机,正在直播足球比赛C .1+3 >2D .抛掷1个均匀的骰子,6点向上2.甲型H1N1.流感病毒的直径大约为0.00000008米,用科学记数法表示为A .0.8×10-7米B .8×10-8米C .8×10-9米D .8×10-7米3.下面是一名学生所做的4道练习题:①(-3)0=1;②a 3+a 3=a 6;③4m -4=414m;④(xy 2)3=x 3y 6,他做对的个数是 A .0 B .1 C .2 D .34.把一张宽度相等的纸条按如图所示的方式折叠,则∠1的度数等于A .65°B .55°C .45°D .50°5.学校为了了解300名初一学生的体重情况,从中抽取30名学生进行测量,下列说法正确的是A .总体是300B .样本容量为30C .样本是30名学生D .个体是每个学生6.下列长度的三条线段,能组成三角形的是A .1,2,3B .1,4,2C .2,3,4D .6,2,37.如果100x 2-kxy +9y 2是一个完全平方式,那么K 的值为A .3600B .60C .±100D .±608.如图,在AB 、AC 上各取一点E 、D ,使AE =AD ,连结BD 、CE 相交于点O ,再连结AO 、BC ,若∠1=∠2,则图中全等三角形共有A .5对B .6对C .7对D .8对二、填空题(本大题共10小题,每小题3分,共30分)9.若一个多边形的内角和是它外角和的3倍,则这个多边形是 ▲ 边形.10.分解因式:a4-1=▲.11.计算:(-2a5)÷(-a)2=▲.12.如图,AB//CD,∠B=75°,∠D=35°,则∠E的度数为=▲.13.已知二元一次方程2x+3y=4,用x的代数式表示y,则y=▲.14.如图,△ABC中,∠C=90°,DB平分∠ABC,E为AB中点,DE⊥AB,若BC=5 cm,则AB=▲ cm.15.已知关于x、y的方程组3326x ayx by-=⎧⎨+=⎩的解是21xy=⎧⎨=⎩则a+b=▲.16.化简:(x+y)2-3(x2-2y2)=▲.17.如果2x÷16y=8,则2x-8y=▲.18.三角形的两边长分别是3和6,第三边长为偶数,则三角形的周长为▲.三、解答题(本大题共11小题,共76分)19.计算:(本题共2小题,每小题4分,满分8分)(1)-3(a4)3+(-2a3)2·(-a2)3(2)(-14)0+(-2)2+(13)-220.因式分解(本题共2小题,每小题4分,满分8分)(1)3a(x-y)-5b(y-x)(2)a3b+2a2b-3ab21.解下列方程组:(本题共2小题,每小题4分,满分8分)(1)5616795x yx y+=⎧⎨-=⎩(2)1226310x y zx y zx y z++=⎧⎪+-=⎨⎪-+=⎩22.(本题满分5分)作图与探究(不写作法,保留作图痕迹,并用0.5毫米黑色签字笔描深痕迹)如图,∠DBC和∠ECB是△ABC的两个外角°(1)用直尺和圆规分别作∠DBC和∠ECB的平分线,设它们相交于点P;(2)过点P分别画直线AB、AC、BC的垂线段PM、PN、PQ,垂足为M、N、Q;(3) PM、PN、PQ相等吗?(直接写出结论,不需说明理由)23.(本题满分5分)如图,AB=AD,AC=AE,∠BAD=∠CAE,则∠B与∠D相等吗?请说明理由.24.(本题共2小题,每小题5分,满分10分)(1)先化简,再求值:(2a+b)(2a-b)+3(2a-b)2+(-3a)(4a-3b),其中a=-1,b=2.(2)已知:a m=2,a n=4,a k=32,求a3m+2n-k的值25.(本题满分6分)把一堆书分给几名学生,如果每人分到4本,那么多4本;如果每人分到5本,那么最后1名学生只分到3本.问:一共有多少名学生?多少本书?26.(本题满分6分)如图,线段AC、BD相交于点O,OA=OC,OB=OD.(1)求证:△OAB≌△OCD;(2)过点O任意作一条与AB、CD都相交的直线MN,交点分别为M、N,试问:OM=ON成立吗?若成立,请进行证明;若不成立,请说明理由.27.(本题满分7分)某初中对该校八年级学生的视力进行了检查,发现学生患近视的情况严重.为了进一步查明情况,校方从患近视的16岁学生中随机抽取了一个样本,对他们初患近视的年龄进行了调查,并制成频率分布表和频率分布直方图(部分),如图所示(各组含最大年龄,不含最小年龄).(1)频率分布表中a、b、c的值分别为a=▲,b=▲,c=▲;(2)补全频率分布直方图;(3)初患近视两年内属于假性近视,若及时矫正,则视力可恢复正常.请你计算在抽样的学生中,经矫正可以恢复正常视力的人数占总人数的百分比.28.(本题满分6分)某公园的门票价格如下表所示:某中学七年级(1)、(2)两个班计划去游览该公园,其中(I)班的人数较少,不足50人;(2)班人数略多,有50多人.如果两个班都以班为单位分别购票,则一共应付1172元,如果两个班联合起来,作为一个团体购票,则需付1078元.(1)列方程求出两个班各有多少学生;(2)如果两个班联合起来买票,是否可以买单价为9元的票?你有什么省钱的方法来帮他们买票呢?请给出最省钱的方案.29.(本题满分7分)已知CD是经过∠BCA顶点C的一条直线,CA=CB.E、F分别是直线CD上两点(不重合),且∠BEC=∠CFA=∠a(1)若直线CD经过∠BCA的内部,且E、F在射线CD上,请解决下面问题:①若∠BCA=90°,∠a=90°,请在图1中补全图形,并证明:;BE=CF,EF=BE AF②如图2,若0°<∠BCA<180°,请添加一个关于∠a与∠BCA关系的条件▲,使①中的两个结论仍然成立;(2)如图3,若直线CD经过∠BCA的外部,∠a=∠BCA,请写出EF、BE、AF三条线段数量关系(不要求证明).。

【新课标-精品卷】2017-2018学年最新山东省初中七年级下期末数学试卷(有答案)

【新课标-精品卷】2017-2018学年最新山东省初中七年级下期末数学试卷(有答案)

2017-2018学年山东省七年级(下)期末数学试卷一、选择题(本题满分24分,共有8道小题,每小题3分)1.“任意买一张电影票,座位号是奇数”,此事件是( )A.不可能事件B.不确定事件C.必然事件 D.确定事件2.下列各式中,不能用平方差公式计算的是( )A.(4x﹣3y)(﹣3y﹣4x) B.(2x2﹣y2)(2x2+y2)C.(a+b﹣c)(﹣c﹣b+a) D.(﹣x+y)(x﹣y)3.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是( )A.∠3=∠4B.∠1=∠2C.∠D=∠DCE D.∠D+∠ACD=180°4.有下列长度的三条线段,能组成三角形的一组是( )A.5cm、3cm、4cm B.1cm、1cm、2cm C.1cm、2cm、3cm D.6cm、10cm、3cm5.已知:如图,AB=AD,∠1=∠2,以下条件中,不能推出△ABC≌△ADE的是( )A.AE=AC B.∠B=∠D C.BC=DE D.∠C=∠E6.将一张矩形的纸对折,然后用笔尖在上面扎出“B”,再把它铺平,你可见到( )A.B.C.D.7.如图,在“妙手推推推”的游戏中,主持人出示了一个9位数,让参加者猜商品价格.被猜的价格是一个4位数,也就是这个9位中从左到右连在一起的某4个数字.如果参与者不知道商品的价格,从这些连在一起的所有4位数中,任意猜一个,求他猜中该商品价格的概率( )A.B.C.D.8.如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式:①(2a+b)(m+n);②2a(m+n)+b(m+n);③m(2a+b)+n(2a+b);④2am+2an+bm+bn,你认为其中正确的有( )A.①② B.③④ C.①②③D.①②③④二、填空题(本题满分24分,共有8道小题,每小题3分)9.一个袋中装有6个红球,5个黄球,3个白球,每个球除颜色外都相同,任意摸出一球,摸到__________球的可能性最小.10.根据图示的程序计算函数值,若输入的x的值为,则输出的结果为__________.11.如图,在△ABC中,∠B=63°,∠C=47°,AD和AE分别是它的高和角平分线,则∠DAE=__________°.12.如图,转动的转盘停止转动后,指针指向黑色区域的概率是__________.13.在一个不够透明的盒子里,放有x个除颜色外其他完全相同的小球,期中有8个黄颜色的小球.每次摸球前将盒子里的小球摇匀,任意摸出一个小球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在20%,那么可以推算出x=__________.14.如图,∠B=∠E=90°,AB=a,DE=b,AC=CD,∠D=60°,∠A=30°,则BE=__________.15.点D、E分别在等边△ABC的边AB、BC上,将△BDE沿直线DE翻折,使点B落在B1处,DB1、EB1分别交边AC于点F、G.若∠ADF=80°,则∠CGE=__________.16.自然数中有许多奇妙而有趣的现象,很多秘密等待着我们去探索!比如:对任意一个自然数,先将其各位数字求和,再将其和乘以3后加上1,多次重复这种操作运算,运算结果最终会得到一个固定不变的数R,它会掉入一个数字“陷阱”,永远也别想逃出来,没有一个自然数能逃出它的“魔掌”.那么最终掉入“陷阱”的这个固定不变的数R=__________.三、作图题(本题满分6分,共2个小题,(1)小题4分,(2)小题2分)17.(1)已知:如图1,线段a,b和∠α.求作:△ABC,使AB=a,AC=b,∠BAC=∠α.(用圆规、直尺作图,不写作法,但要保留作图痕迹.)(2)如图2,由4×4个相同的小正方形拼成的正方形网格,先将期中两个小正方形涂黑(如图2).请你用两种不同的方法分别在图中再将两个空白的小正方形涂黑,使4×4正方形网格成为轴对称图形.四、解答题(本题满分66分)18.计算(1)(﹣1)2014+﹣(3.14﹣π)0;(2)(8a4b3c)÷3a2b3•;(3)先化简再求值:﹣(3a3b﹣2ab3)÷(﹣ab)﹣(﹣a﹣2b)(﹣a+2b)﹣(﹣2a)2,其中a=﹣2,b=1.19.如图,已知∠EFD=∠BCA,BC=EF,AF=DC,则AB=DE.请通过完成以下填空的形式说明理由.证明:∵AF=DC(已知)∴AF+__________=DC+__________(等式的性质)即__________=__________在△ABC和△DEF中BC=EF(已知)∠__________=∠__________(已知)__________=__________(已证)∴__________≌__________ (SAS)∴__________=__________ (全等三角形的对应边相等)20.本商场为了吸引顾客,设立了一个可以自由转动的转盘,如图所示,并规定:顾客消费100元以上(不包括100元),就能获得一次转动转盘的机会,如果转盘停止后,指针正好对准打折区域顾客就可以获得此项待遇(转盘等分成8份,指针停在每个区域的机会相等).(1)甲顾客消费80元,是否可获得转动转盘的机会?(2)乙顾客消费150元,获得打折待遇的概率是多少?(3)丙顾客消费120元,获得五折待遇的概率是多少?21.如图,有一条两岸平行的河流,一数学实践活动小组在无法涉水过河情况下,成功测得河的宽度,他们的做法如下:①正对河流对岸的一颗树A,在河的一岸选定一点B;②沿河岸直走15步恰好到达一树C处,继续前行15步到达D处;③自D处沿河岸垂直的方向行走,当到达A树正好被C树遮挡住的E处时,停止行走;④测得DE的长就是河宽.请你运用所学知识说明他们做法是正确的.22.如图,梯形ABCD上底的长是4,下底的长是x,高是6.(1)求梯形ABCD的面积y与下底长x之间的关系式;(2)用表格表示当x从10变到16时(每次增加1),y的相应值;(3)x每增加1时,y如何变化?说明你的理由.23.如图,在等腰△ABC中,CB=CA,延长AB至点D,使DB=CB,连接CD,以CD为边作等腰△CDE,使CE=CD,∠ECD=∠BCA,连接BE交CD于点M.(1)BE=AD吗?请说明理由;(2)若∠ACB=40°,求∠DBE的度数.24.阅读理解基本性质:三角形中线等分三角形的面积.如图,AD是△ABC边BC上的中线,则S△ABD =S△ACD=S△ABC理由:∵AD是△ABC边BC上的中线∴BD=CD又∵S△ABD=BD×AH;S△ACD=CD×AH∴S△ABD =S△ACD=S△ABC∴三角形中线等分三角形的面积基本应用:(1)如图1,延长△ABC的边BC到点D,使CD=BC,连接DA.则S△ACD 与S△ABC的数量关系为:__________;(2)如图2,延长△ABC的边BC到点D,使CD=BC,延长△ABC的边CA到点E,使AE=AC,连接DE.则S△ACD与S△ABC的数量关系为:__________(请说明理由);(3)在图2的基础上延长AB到点F,使FB=AB,连接FD,FE,得到△DEF(如图3).则S△EFD 与S△ABC的数量关系为:__________;拓展应用:如图4,点D是△ABC的边BC上任意一点,点E,F分别是线段AD,CE的中点,且△ABC的面积为18cm2,则△BEF的面积为__________cm2.25.如图(1)B地在A地的正东方向,某一时刻,乙车从B地开往A地,1小时后,甲车从A地开往B地,当甲车到达B地的同时乙车也到达A地.如图(2),横轴x(小时)表示行驶时间(从乙车出发的时刻开始计时),纵轴y(千米)表示两车与A地的距离.请根据图象信息解答下列问题:(1)求A,B两地的距离;(2)求甲、乙两车的速度;(3)求乙车出发多长时间与甲车相遇.七年级(下)期末数学试卷一、选择题(本题满分24分,共有8道小题,每小题3分)1.“任意买一张电影票,座位号是奇数”,此事件是( )A.不可能事件B.不确定事件C.必然事件 D.确定事件【考点】随机事件.【分析】根据随机事件的定义进行解答即可.【解答】解:∵任意买一张电影票,座位号不是奇数就是偶数,∴任意买一张电影票,座位号是奇数,此事件是不确定事件.故选B.【点评】本题考查的是随机事件,熟知在一定条件下,可能发生也可能不发生的事件,称为随机事件是解答此题的关键.2.下列各式中,不能用平方差公式计算的是( )A.(4x﹣3y)(﹣3y﹣4x) B.(2x2﹣y2)(2x2+y2)C.(a+b﹣c)(﹣c﹣b+a) D.(﹣x+y)(x﹣y)【考点】平方差公式.【分析】根据平方差公式的定义进行分析解答即可,两个数的和与这两个数差的积,等于这两个数的平方差,这个公式就叫做乘法的平方差公式.【解答】解:A、原式=(﹣3y+4x)(﹣3y﹣4x),可以运用平方差公式,故本选项错误;B、符合两个数的和与这两个数差的积的形式,可以运用平方差公式,故本选项错误;C、可以把﹣c+a看做一个整体,故原式=(﹣c+a+b)(﹣c+a﹣b),可以运用平方差公式,故本选项错误;D、不能整理为两个数的和与这两个数差的积的形式,所以不可以运用平方差公式,故本选项正确.故选D.【点评】本题主要考查平方差公式的定义,关键在于逐项分析,找到不符合平方差公式定义的选项.3.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是( )A.∠3=∠4B.∠1=∠2C.∠D=∠DCE D.∠D+∠ACD=180°【考点】平行线的判定.【分析】根据平行线的判定分别进行分析可得答案.【解答】解:A、根据内错角相等,两直线平行可得BD∥AC,故此选项错误;B、根据内错角相等,两直线平行可得AB∥CD,故此选项正确;C、根据内错角相等,两直线平行可得BD∥AC,故此选项错误;D、根据同旁内角互补,两直线平行可得BD∥AC,故此选项错误;故选:B.【点评】此题主要考查了平行线的判定,关键是掌握平行线的判定定理.4.有下列长度的三条线段,能组成三角形的一组是( )A.5cm、3cm、4cm B.1cm、1cm、2cm C.1cm、2cm、3cm D.6cm、10cm、3cm【考点】三角形三边关系.【分析】看哪个选项中两条较小的边的和大于最大的边即可.【解答】解:A、3+4>5,能构成三角形,故此选项正确;B、1+1=2,不能构成三角形,故此选项错误;C、1+2=3,不能构成三角形,故此选项错误;D、6+3<10,不能构成三角形,故此选项错误.故选A.【点评】此题主要考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.5.已知:如图,AB=AD,∠1=∠2,以下条件中,不能推出△ABC≌△ADE的是( )A.AE=AC B.∠B=∠D C.BC=DE D.∠C=∠E【考点】全等三角形的判定.【分析】求出∠BAC=∠DAE,再根据全等三角形的判定定理逐个判断即可.【解答】解:∵∠1=∠2,∵∠1+∠DAC=∠2+∠DAC,∴∠BAC=∠DAE,A、符合SAS定理,即能推出△ABC≌△ADE,故本选项错误;B、符合ASA定理,即能推出△ABC≌△ADE,故本选项错误;C、不符合全等三角形的判定定理,即不能推出△ABC≌△ADE,故本选项正确;D、符合AAS定理,即能推出△ABC≌△ADE,故本选项错误;故选C.【点评】本题考查了全等三角形的判定定理的应用,能熟练地掌握全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有:SAS,ASA,AAS,SSS.6.将一张矩形的纸对折,然后用笔尖在上面扎出“B”,再把它铺平,你可见到( )A.B.C.D.【考点】生活中的轴对称现象.【分析】认真观察图形,首先找出对称轴,根据轴对称图形的定义可知只有C是符合要求的.【解答】解:观察选项可得:只有C是轴对称图形.故选:C.【点评】本题考查轴对称图形的定义,如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴,仔细观察图形是正确解答本题的关键.7.如图,在“妙手推推推”的游戏中,主持人出示了一个9位数,让参加者猜商品价格.被猜的价格是一个4位数,也就是这个9位中从左到右连在一起的某4个数字.如果参与者不知道商品的价格,从这些连在一起的所有4位数中,任意猜一个,求他猜中该商品价格的概率( )A.B.C.D.【考点】概率公式.【分析】首先由题意可得:共有6种等可能的结果,他猜中该商品价格的只有1种情况,再利用概率公式求解即可求得答案.【解答】解:∵共有6种等可能的结果,他猜中该商品价格的只有1种情况,∴他猜中该商品价格的概率为:.故选B.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.8.如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式:①(2a+b)(m+n);②2a(m+n)+b(m+n);③m(2a+b)+n(2a+b);④2am+2an+bm+bn,你认为其中正确的有( )A.①② B.③④ C.①②③D.①②③④【考点】多项式乘多项式.【专题】计算题.【分析】①大长方形的长为2a+b,宽为m+n,利用长方形的面积公式,表示即可;②长方形的面积等于左边,中间及右边的长方形面积之和,表示即可;③长方形的面积等于上下两个长方形面积之和,表示即可;④长方形的面积由6个长方形的面积之和,表示即可.【解答】解:①(2a+b)(m+n),本选项正确;②2a(m+n)+b(m+n),本选项正确;③m(2a+b)+n(2a+b),本选项正确;④2am+2an+bm+bn,本选项正确,则正确的有①②③④.故选D.【点评】此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.二、填空题(本题满分24分,共有8道小题,每小题3分)9.一个袋中装有6个红球,5个黄球,3个白球,每个球除颜色外都相同,任意摸出一球,摸到白球的可能性最小.【考点】可能性的大小.【分析】分别求出摸出各种颜色球的概率,即可比较出摸出何种颜色球的可能性最小.【解答】解:因为袋中装有6个红球,5个黄球,3个白球,共有14个球,①为红球的概率是=;②为黄球的概率是;③为白球的概率是;所以摸出白球的可能性最小.故答案为:白.【点评】本题主要考查可能性的大小,只需求出各自所占的比例大小即可,求比例时,应注意记清各自的数目.10.根据图示的程序计算函数值,若输入的x的值为,则输出的结果为.【考点】函数值.【专题】计算题.【分析】首先对输入的x的值作出判断,1<≤2,然后将该x的值代入相应的函数解析式即可求出答案.【解答】解:因为x=,所以1<x≤2,所以y=﹣+2=.【点评】本题主要考查了分段函数的知识,解决问题时需先将自变量的值做一个判断,再求出相应的函数值,11.如图,在△ABC中,∠B=63°,∠C=47°,AD和AE分别是它的高和角平分线,则∠DA E=8°.【考点】三角形内角和定理;三角形的角平分线、中线和高.【分析】根据三角形的内角和等于180°求出∠BAC,再根据角平分线的定义求出∠BAE,根据直角三角形两锐角互余求出∠BAD,然后根据∠DAE=∠BAE﹣∠BAD计算即可得解.【解答】解:∵∠B=63°,∠C=47°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣63°﹣47°=70°,∵AE是三角形的平分线,∴∠BAE=∠BAC=×70°=35°,∵AD是三角形的高,∴∠BAD=90°﹣∠B=90°﹣63°=27°,∴∠DAE=∠BAE﹣∠BAD=35°﹣27°=8°.故答案为:8.【点评】本题考查了三角形的内角和定理,三角形的角平分线的定义,高线的定义,是基础题,熟记定理与概念并准确识图,理清图中各角度之间的关系是解题的关键.12.如图,转动的转盘停止转动后,指针指向黑色区域的概率是.【考点】几何概率.【专题】计算题.【分析】设圆的半径为R,根据圆的面积公式和扇形的面积公式得到圆的面积=πR2,黑色区域的面积==πR2,然后用黑色区域的面积比圆的面积即可得到针指向黑色区域的概率.【解答】解:设圆的半径为R,∴圆的面积=πR2,黑色区域的面积==πR2,∴转动的转盘停止转动后,指针指向黑色区域的概率==.故答案为.【点评】本题考查了几何概率的求法:先求出整个图形的面积n,再计算某事件所占有的面积m,则这个事件的概率=.也考查了扇形的面积公式.13.在一个不够透明的盒子里,放有x个除颜色外其他完全相同的小球,期中有8个黄颜色的小球.每次摸球前将盒子里的小球摇匀,任意摸出一个小球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在20%,那么可以推算出x=40.【考点】利用频率估计概率.【分析】利用频率估计概率得到摸到黄球的概率为20%,然后根据概率公式计算x的值即可.【解答】解:根据题意得=20%,解得x=40,所以这个不透明的盒子里大约有40个除颜色外其他完全相同的小球.故答案为40.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.14.如图,∠B=∠E=90°,AB=a ,DE=b ,AC=CD ,∠D=60°,∠A=30°,则BE=a+b .【考点】全等三角形的判定与性质.【分析】由直角三角形的性质求出∠DCE=∠A,由AAS 证明△ABC≌△CED,得出对应边相等BC=DE=b ,CE=AB=a ,即可得出结果.【解答】解:∵∠E=90°,∠D=60°,∴∠DCE=90°﹣60°=30°=∠A,在△ABC 和△CED 中,,∴△ABC≌△CED(AAS ),∴BC =DE=b ,CE=AB=a ,∴BE=BC+CE=a+b.故答案为:a+b .【点评】本题考查了全等三角形的判定与性质、直角三角形的性质;证明三角形全等得出对应边相等是解决问题的关键.15.点D 、E 分别在等边△ABC 的边AB 、BC 上,将△BDE 沿直线DE 翻折,使点B 落在B 1处,DB 1、EB 1分别交边AC 于点F 、G .若∠ADF=80°,则∠CGE=80°.【考点】相似三角形的判定与性质;翻折变换(折叠问题).【专题】操作型;数形结合.【分析】由对顶角相等可得∠CGE=∠FGB 1,由两角对应相等可得△ADF∽△B 1GF ,那么所求角等于∠ADF 的度数.【解答】解:由翻折可得∠B 1=∠B=60°,∴∠A=∠B=60°,1∵∠AFD=∠GFB,1∴△ADF∽△BGF,1GF,∴∠ADF=∠B1,∵∠CGE=∠FGB1∴∠CGE=∠ADF=80°.故答案为:80°【点评】本题考查了翻折变换问题;得到所求角与所给角的度数的关系是解决本题的关键.16.自然数中有许多奇妙而有趣的现象,很多秘密等待着我们去探索!比如:对任意一个自然数,先将其各位数字求和,再将其和乘以3后加上1,多次重复这种操作运算,运算结果最终会得到一个固定不变的数R,它会掉入一个数字“陷阱”,永远也别想逃出来,没有一个自然数能逃出它的“魔掌”.那么最终掉入“陷阱”的这个固定不变的数R=13.【考点】规律型:数字的变化类.【专题】规律型.【分析】根据题意列出式子可知计算方法是:如自然数12,则3(1+2)+1=10,3(1+0)+1=4,3(4+0)+1=13,3(1+3)+1=13…所以这个固定不变的数R=13.【解答】解:随便写出一个自然数,按照题中的做法可知,这个固定不变的数R=13.【点评】主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.三、作图题(本题满分6分,共2个小题,(1)小题4分,(2)小题2分)17.(1)已知:如图1,线段a,b和∠α.求作:△ABC,使AB=a,AC=b,∠BAC=∠α.(用圆规、直尺作图,不写作法,但要保留作图痕迹.)(2)如图2,由4×4个相同的小正方形拼成的正方形网格,先将期中两个小正方形涂黑(如图2).请你用两种不同的方法分别在图中再将两个空白的小正方形涂黑,使4×4正方形网格成为轴对称图形.【考点】利用轴对称设计图案;作图—复杂作图.【分析】(1)以∠α的顶点为原点A,以A为圆心,以线段a的长为半径画圆,交∠α的一边为B,以点A 为圆心,线段b的长为半径画圆,交∠α的另一边为C,连接BC,则△ABC即为所求;(2)根据轴对称的性质画出图形即可.【解答】解:(1)如图1所示;;(2)如图2所示..【点评】本题考查的是利用轴对称设计图案,熟知轴对称的性质是解答此题的关键.四、解答题(本题满分66分)18.计算(1)(﹣1)2014+﹣(3.14﹣π)0;(2)(8a4b3c)÷3a2b3•;(3)先化简再求值:﹣(3a3b﹣2ab3)÷(﹣ab)﹣(﹣a﹣2b)(﹣a+2b)﹣(﹣2a)2,其中a=﹣2,b=1.【考点】整式的混合运算—化简求值;零指数幂;负整数指数幂.【分析】(1)根据有理数的乘方法则、零指数幂、负整数指数幂的运算法则计算即可;(2)根据单项式的混合运算法则以及积的乘方法则计算;(3)根据多项式除单项式、乘法公式以及合并同类项的法则进行化简,代入计算即可.【解答】解:(1)(﹣1)2014+﹣(3.14﹣π)0=1+4﹣1=4;(2)(8a4b3c)÷3a2b3•=a2c•a6b2=a8b2c;(3)﹣(3a3b﹣2ab3)÷(﹣ab)﹣(﹣a﹣2b)(﹣a+2b)﹣(﹣2a)2=3a2﹣2b2﹣a2+4b2﹣4a2=2b2﹣2a2,其当a=﹣2,b=1时,原式=2×4﹣2×1=6.【点评】本题考查的是整式的混合运算,掌握零指数幂、负整数指数幂的运算法则是解题的关键,注意化简求值时,要把整式化为最简.19.如图,已知∠EFD=∠BCA,BC=EF,AF=DC,则AB=DE.请通过完成以下填空的形式说明理由.证明:∵AF=DC(已知)∴AF+FC=DC+FC(等式的性质)即AC=DF在△ABC和△DEF中BC=EF(已知)∠BCA=∠EFD(已知)AC=DF(已证)∴△ABC≌△DEF(SAS)∴AB=DE (全等三角形的对应边相等)【考点】全等三角形的判定与性质.【专题】推理填空题.【分析】先求出AC=DF,由SAS证明△ABC≌△≌DEF,得出对应边相等即可.【解答】解:∵AF=DC(已知),∴AF+FC=DC+FC(等式的性质)即 AC=DF,在△ABC和△DEF中,,∴△ABC≌△≌DEF(SAS),∴AB=DE(全等三角形的对应边相等);故答案为:FC,FC;AC,DF;BCA,EFD;AC,DF;△ABC,△DEF;AB,DE.【点评】本题考查了全等三角形的判定与性质;熟练掌握全等三角形的判定方法,由三角形全等得出对应边相等是解决问题的关键.20.本商场为了吸引顾客,设立了一个可以自由转动的转盘,如图所示,并规定:顾客消费100元以上(不包括100元),就能获得一次转动转盘的机会,如果转盘停止后,指针正好对准打折区域顾客就可以获得此项待遇(转盘等分成8份,指针停在每个区域的机会相等).(1)甲顾客消费80元,是否可获得转动转盘的机会?(2)乙顾客消费150元,获得打折待遇的概率是多少?(3)丙顾客消费120元,获得五折待遇的概率是多少?【考点】概率公式.【分析】(1)由顾客消费100元以上(不包括100元),就能获得一次转动转盘的机会,即可得甲顾客消费80元,不能获得转动转盘的机会;(2)由共有8种等可能的结果,获得打折待遇的有5种情况,直接利用概率公式求解即可求得答案;(3)由共有8种等可能的结果,获得五折待遇的有2种情况,直接利用概率公式求解即可求得答案.【解答】解:(1)∵顾客消费100元以上(不包括100元),就能获得一次转动转盘的机会,∴甲顾客消费80元,不能获得转动转盘的机会;(2)∵共有8种等可能的结果,获得打折待遇的有5种情况,∴乙顾客消费150元,获得打折待遇的概率是:;(3)∵共有8种等可能的结果,获得五折待遇的有2种情况,∴获得五折待遇的概率是:=.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.21.如图,有一条两岸平行的河流,一数学实践活动小组在无法涉水过河情况下,成功测得河的宽度,他们的做法如下:①正对河流对岸的一颗树A,在河的一岸选定一点B;②沿河岸直走15步恰好到达一树C处,继续前行15步到达D处;③自D处沿河岸垂直的方向行走,当到达A树正好被C树遮挡住的E处时,停止行走;④测得DE的长就是河宽.请你运用所学知识说明他们做法是正确的.【考点】全等三角形的判定与性质.【专题】应用题.【分析】根据AB⊥BD,ED⊥BD可知∠ABC=∠EDC,再由BC=DC,∠ACB=∠ECD可得出△ABC≌△EDC,由全等三角形的性质即可得出结论.【解答】解:∵AB⊥BD,ED⊥BD,∴∠ABC=∠EDC=90°.在△ABC与△EDC中,,∴△ABC≌△EDC(ASA),∴DE=AB,即测得DE的长就是河宽.【点评】本题考查的是全等三角形的判定与性质,熟知全等三角形的对应边相等是解答此题的关键.22.如图,梯形ABCD上底的长是4,下底的长是x,高是6.(1)求梯形ABCD的面积y与下底长x之间的关系式;(2)用表格表示当x从10变到16时(每次增加1),y的相应值;(3)x每增加1时,y如何变化?说明你的理由.【考点】函数关系式;函数的表示方法.【分析】(1)利用梯形面积公式得出y与x之间的关系;(2)结合关系式列表计算得出相关数据;(3)利用(1)中关系式,进而得出x每增加1时,y的变化.【解答】解:(1)∵梯形ABCD上底的长是4,下底的长是x,高是6,∴梯形ABCD的面积y与下底长x之间的关系式为:y=(4+x)×6=12﹣3x;(2)理由:y1=12﹣3x,y2=12﹣3(x+1)=12﹣3x﹣3=9﹣3x,y 2﹣y1=9﹣3x﹣(12﹣3x)=﹣3,及x每增加1时,y减小3.【点评】此题主要考查了函数关系式以及函数的变化,正确得出函数关系式是解题关键.23.如图,在等腰△ABC中,CB=CA,延长AB至点D,使DB=CB,连接CD,以CD为边作等腰△CDE,使CE=CD,∠ECD=∠BCA,连接BE交CD于点M.(1)BE=AD吗?请说明理由;(2)若∠ACB=40°,求∠DBE的度数.【考点】全等三角形的判定与性质.【分析】(1)求出∠BCE=∠ACD,根据SAS证出△BCE≌△ACD,得出对应边相等即可;(2)由等腰三角形的性质和三角形内角和定理求出∠A=∠ABC=70°,由△BCE≌△ACD,得出对应角相等∠EBC=∠A=70°,再由三角形的外角性质得出∠DBE=∠ACB=40°即可.【解答】(1)解:BE=AD;理由如下:∵∠ECD=∠BCA,∴∠ECD+∠BCD=∠BCA+∠BCD,∴∠BCE=∠ACD,在△BCE和△ACD中,,∴△BCE≌△ACD(SAS),∴BE=AD.(2)解:∵CB=CA,∠ACB=40°,∴∠A=∠ABC=70°,由(1)得:△BCE≌△ACD,∴∠EBC=∠A=70°,∵∠DBC=∠DBE+∠EBC=∠ACB+∠ACB,∴∠DBE=∠ACB=40°.【点评】本题考查了全等三角形的判定与性质、等腰三角形的性质、三角形内角和定理、三角形的外角性质;证明三角形全等是解决问题的关键.24.阅读理解基本性质:三角形中线等分三角形的面积.如图,AD是△ABC边BC上的中线,则S△ABD =S△ACD=S△ABC理由:∵AD是△ABC边BC上的中线∴BD=CD又∵S△ABD=BD×AH;S△ACD=CD×AH∴S△ABD =S△ACD=S△ABC∴三角形中线等分三角形的面积基本应用:(1)如图1,延长△ABC的边BC到点D,使CD=BC,连接DA.则S△ACD 与S△ABC的数量关系为:S△ABC=S△ACD;(2)如图2,延长△ABC的边BC到点D,使CD=BC,延长△ABC的边CA到点E,使AE=AC,连接DE.则S△ACD与S△ABC 的数量关系为:S△CDE=2S△ABC(请说明理由);(3)在图2的基础上延长AB到点F,使FB=AB,连接FD,FE,得到△DEF(如图3).则S△EFD 与S△ABC的数量关系为:S△EFD =7S△ABC;拓展应用:如图4,点D是△ABC的边BC上任意一点,点E,F分别是线段AD,CE的中点,且△ABC的面积为18cm2,则△BEF的面积为4.5cm2.【考点】面积及等积变换.【分析】(1)由△ABC 与△ACD 中BC=CD ,由三角形中线等分三角形的面积即可结果;(2)连接AD ,由CD=BC ,由三角形中线等分三角形的面积,同理可得△AED 与△ADC 面积相等,而△CDE 面积等于两三角形面积之和,即可得出结果;(3)连接AD ,EB ,FC ,根据第二问的思路,同理可得阴影部分的面积等于6倍的△ABC 面积,即可得出结果;拓展应用:点E 是线段AD 的中点,由三角形中线等分三角形的面积,求得S △BCE =S △ABC ,由点F 是线段CE 的中点,根据三角形中线等分三角形的面积,求得S △BEF =S △BCF =S △BCE ,即可求出△BEF 的面积.【解答】解:(1)∵BC=CD,三角形中线等分三角形的面积,∴S △ABC =S △ACD ;故答案为:S △A BC =S △ACD ;(2)连接AD ,如图1所示:∵BC=CD,三角形中线等分三角形的面积,∴S △ABC =S △ADC ,同理S △ADE =S △ADC ,∴S △CDE =2S △ABC ;故答案为:S △CDE =2S △ABC ;(3)连接AD ,EB ,FC ,如图2所示:由(2)得:S △CDE =2S △ABC ,同理可得:S △AEF =2S △ABC ,S △BFD =2S △ABC ,∴S △EFD=S △CDE +S △AEF +S △BFD +S △ABC =2S △ABC +2S △ABC +2S △ABC +S △ABC =7S △ABC ;故答案为:S △EFD =7S △ABC ;拓展应用:∵点E 是线段AD 的中点,由三角形中线等分三角形的面积,∴S △ABE =S △BDE ,S △ACE =S △CDE ,∴S △BCE =S △ABC ,∵点F 分别是线段CE 的中点,由三角形中线等分三角形的面积,∴S △BEF =S △BCF =S △BCE ,∴S △BEF =S △ABC =×18=4.5(cm 2);故答案为:4.5.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档