波尔共振实验(精)

合集下载

大学生波尔共振仪实验报告

大学生波尔共振仪实验报告

大学生波尔共振仪实验报告一、实验目的本实验旨在通过使用波尔共振仪,探究原子核磁共振的原理和应用,并学习实验仪器的使用方法。

二、实验原理1. 原子核磁共振的原理原子核磁共振是指当原子核处于外加磁场中时,通过吸收或发射辐射能级间的能量差的现象。

原子核在磁场中会产生自旋角动量,而不同的原子核具有不同的自旋量子数。

当外加磁场的能级间距与自旋角动量的的频率匹配时,会发生共振吸收或发射现象。

2. 波尔共振仪的原理波尔共振仪是一种用于测量原子核磁共振的仪器。

它通过加在待测样品上的射频电磁场和恒定磁场,使样品中的原子核发生共振吸收或发射现象,并通过探测电路将信号转换为电压信号进行测量。

三、实验步骤1. 加样将待测样品(如氢氧化钠溶液)注入样品管中,并将样品管放置在波尔共振仪的仪器槽中。

2. 调整磁场调整波尔共振仪上的磁场强度,使其与待测样品的共振频率匹配。

根据样品的特性和磁场强度的不同,调整频率区间,并逐渐逼近共振频率。

3. 测量信号通过波尔共振仪上的探测电路,将吸收或发射的信号转换为电压信号。

调整探测器的灵敏度,确保测量的信号质量。

4. 记录数据记录实验测得的原子核磁共振的频率和电压信号。

可以通过改变样品的浓度、温度等条件,观察其对共振频率和信号强度的影响。

四、实验结果与分析通过实验测量,我们得到了不同条件下原子核磁共振的频率和电压信号。

通过对数据的分析,我们可以得出以下结论:1. 不同样品的原子核磁共振频率不同,这是由于不同原子核的自旋量子数和能级分布不同所致。

例如,氢原子核的共振频率为常见的400 MHz 左右,氟原子核的共振频率则为常见的200 MHz左右。

2. 原子核磁共振的信号强度与样品的浓度、温度等因素有关。

当样品浓度较低或温度较高时,信号强度会减弱。

这是由于原子核在高浓度或低温条件下,由于相互作用引起的线宽增大,从而使信号质量变差。

五、实验总结通过本次实验,我们深入了解了原子核磁共振的原理和应用,并学习了波尔共振仪的使用方法。

波尔共振数实验报告

波尔共振数实验报告

一、实验目的1. 研究波尔共振仪中弹性摆轮受迫振动的幅频特性和相频特性。

2. 研究不同阻尼力矩对受迫振动的影响,观察共振现象。

3. 学习用频闪法测定运动物体的某些量,例如相位差。

4. 学习系统误差的修正。

二、实验原理物体在周期外力的持续作用下发生的振动称为受迫振动,这种周期性的外力称为强迫力。

如果外力是按简谐振动规律变化,那么稳定状态时的受迫振动也是简谐振动,此时,振幅保持恒定,振幅的大小与强迫力的频率和原振动系统无阻尼时的固有振动频率以及阻尼系数有关。

在受迫振动状态下,系统除了受到强迫力的作用外,同时还受到回复力和阻尼力的作用。

所以在稳定状态时物体的位移、速度变化与强迫力变化不是同相位的,存在一个相位差。

当强迫力频率与系统的固有频率相同时,产生共振,此时振幅最大,相位差为90°。

波尔共振振动是一种常见的物理现象,共振是特殊的振动,为了趋利避害在工程技术和科学研究领域中对其给予了足够的重视。

目前,电力传输采用的是高压输电法。

而据报载,2007年6月美国麻省理工学院的物理学家索尔加斯克领导的一个小组,成功地利用无线输电技术,点亮了距离电源2米远的灯泡!无线输电法原理的核心就是共振。

人们期待着能在更远的距离实现无线输电,那时生产和生活方式将会发生一场重大变革。

三、实验仪器与材料1. 波尔共振仪2. 频闪仪3. 秒表4. 阻尼力矩调整装置5. 数据记录表格四、实验步骤1. 将波尔共振仪的弹性摆轮调整至初始位置,并记录初始位移。

2. 调整阻尼力矩调整装置,使阻尼力矩为0。

3. 开启波尔共振仪,调节强迫力频率,使摆轮发生受迫振动。

4. 利用频闪仪测定摆轮的相位差。

5. 改变强迫力频率,重复步骤3和4,记录不同频率下的振幅和相位差。

6. 调整阻尼力矩,重复步骤3至5,观察不同阻尼力矩对振幅和相位差的影响。

7. 计算振幅和相位差的平均值,分析数据,得出结论。

五、实验结果与分析1. 当强迫力频率等于系统的固有频率时,振幅达到最大值,发生共振现象。

玻尔共振仪实验报告

玻尔共振仪实验报告

玻尔共振仪实验报告一、实验目标1.学习并掌握玻尔共振仪的原理及操作方法。

2.通过实验,观察共振现象,了解共振频率、品质因数等参数。

3.掌握共振曲线、阻尼曲线的测量方法,理解阻尼对振荡系统的影响。

二、实验原理玻尔共振仪是一种用于研究振荡系统的共振特性的实验装置。

其核心部分是一个弹性元件(如音叉或弹簧振子),通过电磁驱动或压电驱动方式使其振动。

当外加驱动力频率与弹性元件的固有频率相同时,系统发生共振,振幅达到最大值。

三、实验步骤1.准备实验器材:玻尔共振仪、信号源、示波器、频率计、扫频信号发生器。

2.搭建实验装置:将玻尔共振仪放置在稳定的实验台上,连接信号源、示波器、频率计等设备。

3.调整信号源:设置信号源的输出频率,使接近玻尔共振仪的固有频率。

4.观察共振现象:通过示波器观察共振现象,记录振幅最大时的频率值。

5.测量阻尼曲线:改变信号源的频率,观察振幅随频率的变化,绘制阻尼曲线。

6.数据处理与分析:整理实验数据,分析共振频率、品质因数等参数,理解阻尼对振荡系统的影响。

7.清理实验现场:实验结束后,断开连接的线路,将实验器材归位。

四、数据分析与结论通过对实验数据的分析,我们可以得到以下结论:1.共振频率:当外加驱动力频率与弹性元件的固有频率相同时,系统发生共振,此时振幅达到最大值。

通过实验数据,我们可以确定玻尔共振仪的共振频率。

2.品质因数:品质因数(Q值)是衡量振荡系统性能的一个重要参数。

Q值越高,表示系统的能量损耗越小,振荡越稳定。

通过阻尼曲线的测量,我们可以计算出玻尔共振仪的Q值。

3.阻尼对振荡系统的影响:阻尼的存在会使振荡系统的振幅逐渐减小,直至消失。

在阻尼曲线的测量过程中,我们可以观察到随着阻尼的增大,共振频率点向低频方向移动,且振幅减小。

这表明阻尼对振荡系统的行为具有重要影响。

通过本次实验,我们深入了解了玻尔共振仪的工作原理和操作方法,掌握了共振现象的观察和测量方法。

同时,通过对实验数据的分析,我们能够更好地理解阻尼对振荡系统的影响。

大物实验报告-波尔共振仪

大物实验报告-波尔共振仪

实验报告:波尔共振仪实验一、摘要实验简介&意义:振动是自然界的基本运动形式之一,简谐振动是最简单最基本的振动。

而借助波尔共振仪,则可以研究阻尼振动及受迫振动的基本规律。

实验目的:(1)学习测量振动系统基本参量的方法。

(2)观察共振现象,研究波尔共振仪摆轮受迫振动的幅频特性和相频特性。

(3)观测不同粘滞阻尼对受迫振动的影响。

关键词:波尔共振仪,阻尼振动,受迫振动二、实验原理共振仪的摆轮与弹簧组成了一个扭转振动系统,假定弹簧刚度系数和摆轮转动惯量均不变,并认为只存在与角速度成正比的粘滞阻尼这一种阻尼作用,阻尼为零时,振动系统满足运动方程d2θdt2+ω02θ=0(1)如果有粘滞阻尼力矩,则满足运动方程d2θdt2+2ζω0dθdt+ω02θ=0(2)当阻尼比0≠ζ<1时,系统进行振幅不断衰减的振动,解方程可得出阻尼振动周期为T d =T/√1−ζ2当共振仪电机带动偏心轮转动时,可以证明,弹簧支座一阶近似下作简谐角振动,满足方程α(t)=αm cosωt,αm为摇杆摆幅。

这时摆轮的运动方程为J d2θdt2+γdθdt+kθ=kαm cosωt(3)等效于受周期性外力矩作用的受迫振动。

稳态解的振幅和相位差分别为θm=√(1−ωω02)2+(2ζωω0)2(4)φ=arctan(2ζωω0)(1−ω2ω02)(5)三、实验仪器&实验步骤实验仪器:波耳共振仪,包括:(1)振动系统:A&B(2)激振装置:电机&E、M (3)相位角测量装置:F&闪光灯(4) 电磁阻尼系统:K 实验步骤:1、最小阻尼时测定摆轮振动周期T dj 与振幅θj 的关系将阻尼开关置于0档,,周期选择档置于10位置,每按一次复位按钮,读取显示的10个周期平均值并记录10个周期中首尾两次的振幅,求出平均值,在30~150°范围内测量6组数据。

2、测量最小阻尼比周期选择置于1位置,拨动摆轮至起始角为120-180°,松开使其自由摆动,对每K 个周期读取一次振幅值θj ,由等间隔振幅值求对数缩减,进而求出阻尼比。

波尔共振实验报告总结

波尔共振实验报告总结

波尔共振实验报告总结一、引言波尔共振实验是一种基于量子力学的实验,通过利用强磁场和微波辐射来观测原子核自旋共振现象。

本文将详细介绍波尔共振实验的原理、实验过程及结果,并对其意义和应用进行探讨。

二、原理1. 原子核自旋原子核由质子和中子组成,两者都带有自旋。

在没有外界磁场时,由于质子和中子自旋方向随机分布,整个原子核的总自旋为零。

但在外界磁场作用下,原子核会出现能级分裂,不同能级之间的跃迁会产生特定频率的辐射信号。

2. 磁共振当处于外界磁场中的物质受到与其固有频率相同的电磁波辐射时,会发生共振吸收现象。

这种现象被称为磁共振。

3. 波尔共振波尔共振是指通过微波辐射来观测原子核自旋共振现象。

当微波频率与原子核自旋固有频率相等时,即可观测到吸收峰。

三、实验过程1. 实验仪器波尔共振实验仪器主要由磁铁、微波源、探测器和数据采集系统组成。

2. 实验步骤(1)调整磁场:将样品放置在磁铁中央,调整磁场强度和方向,使其符合实验要求。

(2)微波辐射:打开微波源,调节频率和功率,使其与样品的自旋固有频率相等。

(3)观测吸收峰:通过探测器观测吸收峰的出现和强度,并记录数据。

(4)分析数据:根据记录的数据绘制出吸收峰图像,并进行分析。

四、结果分析通过波尔共振实验可以得到样品的自旋固有频率及其与外界磁场的相互作用。

根据吸收峰的位置和强度可以确定样品的化学成分及其浓度。

此外,还可以通过改变微波频率或磁场强度来观测不同化学物质的共振现象。

五、应用与意义1. 化学分析波尔共振技术广泛应用于化学分析领域,可用于测定样品中某种特定成分的浓度。

2. 医学诊断波尔共振技术在医学诊断中也有广泛应用,如核磁共振成像技术就是基于波尔共振原理。

3. 物理研究波尔共振实验不仅可以用于化学分析和医学诊断,还可以用于物理研究,如研究原子核结构、自旋动力学等方面。

六、结论通过本次实验,我们深入了解了波尔共振的原理和实验过程,并掌握了使用波尔共振技术进行化学分析的方法。

波尔共振实验的实验报告

波尔共振实验的实验报告

波尔共振实验的实验报告探究波尔共振现象,研究并验证波尔共振条件,探讨其应用。

实验器材:1. 音叉2. 杆状支架3. 音叉支架4. 线性驱动器5. 光电门及接口电路6. 示波器7. 工作台8. 调节螺丝9. 实验线缆实验原理:波尔共振是指当共振单元(音叉)的频率与谐振腔的声学模式的固有频率相等时,能量传递到谐振腔内,使其能量最大化的现象。

共振的波尔共振条件是\displaystyle n\lambda =2L,其中\displaystyle n为整数,\displaystyle\lambda为波长,\displaystyle L为谐振腔的长度。

实验步骤:1. 将杆状支架安装在工作台上,放置音叉支架,并将音叉放置在音叉支架上。

2. 将线性驱动器固定在杆状支架上,并连接示波器。

3. 插入示波器的串口电缆,连接到电脑上的波形显示器。

4. 调节谐振腔的长度,使其与音叉的频率相等。

5. 调节线性驱动器的频率,观察示波器上显示的波形变化。

6. 测量共振频率,根据波尔共振条件n\lambda =2L进行计算。

实验结果:在实验中,我们通过调节谐振腔的长度和音叉的频率,观察到了波尔共振现象。

当音叉的频率与谐振腔的声学模式固有频率相等时,能量传递到谐振腔内,使其能量最大化。

根据波尔共振条件n\lambda =2L,我们可以通过测量谐振腔的长度和共振频率来计算波长。

实验讨论:1. 我们可以通过调节谐振腔的长度来改变共振频率。

当谐振腔的长度改变时,共振频率也会相应改变。

2. 在实验中,我们使用了线性驱动器控制音叉的频率,可以通过调节线性驱动器的频率来观察到波尔共振现象。

3. 在实验中,我们还使用了示波器来观察波形的变化。

当共振发生时,示波器上显示的波形会出现明显的变化。

4. 实验结果与理论一致,波尔共振条件n\lambda =2L得到了验证。

通过测量共振频率和谐振腔的长度,可以计算出波长,并验证理论公式。

实验结论:通过实验,我们验证了波尔共振条件n\lambda =2L,并观察到了波尔共振现象。

波尔共振实验报告

波尔共振实验报告

波尔共振实验报告一、实验目的。

本实验旨在通过波尔共振实验,验证氢原子的波尔模型,并测定氢原子的能级。

二、实验原理。

波尔模型是描述氢原子结构的经典模型,它假设氢原子中的电子围绕原子核做圆周运动,且只能存在于一系列特定的能级上。

当电子从高能级跃迁到低能级时,会释放出特定频率的光子,形成光谱线。

根据波尔模型,电子跃迁的频率与能级之间存在着特定的关系,即波尔频率公式,f=RH(1/n1^2-1/n2^2),其中RH为里德堡常数,n1和n2分别为起始能级和结束能级。

三、实验装置。

本实验采用的实验装置主要包括,氢放电管、光栅光谱仪、数字示波器、高压电源等。

四、实验步骤。

1. 将氢放电管连接至高压电源,通电使其放电产生氢原子光谱。

2. 将光栅光谱仪与数字示波器连接,通过光栅光谱仪获取氢原子光谱线,并利用数字示波器记录光谱线的频率。

3. 根据记录的光谱线频率,利用波尔频率公式计算氢原子的能级。

五、实验结果与分析。

经过实验测量和计算,得到氢原子的能级如下,n=1,2,3,4,5,6...,对应的波尔频率分别为f1, f2, f3, f4, f5, f6...。

通过对实验数据的分析,可以得到氢原子的能级与波尔频率之间的关系,验证了波尔模型的正确性。

六、实验结论。

本实验通过波尔共振实验,验证了氢原子的波尔模型,并成功测定了氢原子的能级。

实验结果与理论预期相符,证明了波尔模型对氢原子结构的描述是准确的。

七、实验总结。

通过本次实验,我深刻理解了波尔模型对氢原子结构的描述,以及波尔频率与能级之间的关系。

同时,实验过程中我也学会了运用光栅光谱仪和数字示波器进行光谱线的测量和记录,提高了实验操作的能力。

八、参考文献。

1. 蔡大炮,杨小炮.原子物理学.北京,科学出版社,2008.2. 王大炮,刘小炮.原子与分子物理学实验指导.北京,高等教育出版社,2010.以上就是本次波尔共振实验的实验报告,谢谢阅读。

波尔共振实验

波尔共振实验

波尔共振实验在机械制造和建筑工程等科技领域中受迫振动所导致的共振现象引起工程技术人员极大注意,既有破坏作用,但也有许多实用价值。

众多电声器件是运用共振原理设计制作的。

此外,在微观科学研究中“共振”也是一种重要研究手段,例如利用核磁共振和顺磁贡研究物质结构等。

表征受迫振动性质是受迫振动的振幅—频率特性和相位—频率特性(简称幅频和相频特性)。

本实验中采用波尔共振仪定量测定机械受迫振动的幅频特性和相频特性,并利用频闪方法来测定动态的物理量----相位差。

【实验目的】1、 研究波尔共振仪中弹性摆轮受迫振动的幅频特性和相频特性。

2、 学习用频闪法测定运动物体的某些量,例相位差。

【实验原理】物体在周期外力的持续作用下发生的振动称为受迫振动,这种周期性的外力称为强迫力。

如果外力是按简谐振动规律变化,那么稳定状态时的受迫振动也是简谐振动,此时,振幅保持恒定,振幅的大小与强迫力的频率和原振动系统无阻尼时的固有振动频率以及阻尼系数有关。

在受迫振动状态下,系统除了受到强迫力的作用外,同时还受到回复力和阻尼力的作用。

所以在稳定状态时物体的位移、速度变化与强迫力变化不是同相位的,存在一个相位差。

当强迫力频率与系统的固有频率相同时产生共振,此时振幅最大,相位差为90°。

实验采用摆轮在弹性力矩作用下自由摆动,在电磁阻尼力矩作用下作受迫振动来研究受迫振动特性,可直观地显示机械振动中的一些物理现象。

当摆轮受到周期性强迫外力矩t cos M M 0ω=的作用,并在有空气阻尼和电磁阻尼的媒质中运动时(阻尼力矩为dtd bθ-)其运动方程为 t cos M dt d b k dtd J 022ω+θ-θ-=θ (1)式中,J 为摆轮的转动惯量,θ-k 为弹性力矩,0M 为强迫力矩的幅值,ω为强迫力的圆频率。

令 J k 20=ω,Jb2=β,J m m 0=则式(1)变为t cos m dt d 2dtd 2022ω=θω+θβ+θ (2) 当0cos =t m ω时,式(2)即为阻尼振动方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
β
2
β 1<β -π /2 β β
2
β
3
2
1
0 1.0

1.0
幅频特性
相频特性
实验内容
测定摆轮振幅θ不同时与其对应的固有周 期T0
测定阻尼系数β 测定受迫振动的幅频特性和相频特性曲线
产生共振时:22 02m ( ) (2)
2 0 2
1
r 2
2 0
2
T T 2 1 m 0 tg tg r2 2 2 2 0 (T T0 ) 2 2 2 2 0
实验原理
θ β
1
Φ
0 β 1<β 2<β
波尔共振实验
五邑大学物理实验中心
振动
振动:物体在一定位置附近所作的往复的 运动。 运转的机器、海浪的起伏、地震、晶体中 的原子。。。 广义的振动:任何一个物理量随时间的周 期性变化。

共振
共振是指一个物理系统在特定频率下, 以最大振幅做振动的情形。 收音机选台、乐器的音响共振、核磁共 振、电路的共振、语言的产生。。。 军队在通过桥梁时,须将步伐转变为便 步走。1831年在英国,一队士兵通过曼 彻斯特附近的布劳顿吊桥时,整齐的正 步使桥梁发生共振而倒塌。
M0 k b 令 ,2 , m J J J
2 0
阻尼力矩
周期性强迫外力矩
d d 2 2 0 m cost 2 dt dt
2
实验原理
1e
t
cos( f t ) 2 cos(t 0 )
达到稳态以后:
2 cos(t 0 )
受迫振动
d 2x dx 2 2 0 x h cost 2 dt dt
x Aet cos( f t 0 ) B cos(t )
实验装置-波尔共振仪
实验原理
运动方程:
d d J 2 k b M 0 cost dt dt
2
转动惯量 弹性力矩

共振

塔科马海峡大桥
振动的分类
无阻尼自由振动—简谐振动
d 2x 2 0x 0 2 dt
x A cos(0t 0 )
x Ae t cos( f t 0 ) f 02 2
驱动力
阻尼振动(减幅振动)
d 2x dx 2 2 x0 0 2 dt dt
相关文档
最新文档