高二2-3第一二章综合卷1

合集下载

无锡外国语学校高中数学选修2-3第一章《计数原理》测试卷(包含答案解析)

无锡外国语学校高中数学选修2-3第一章《计数原理》测试卷(包含答案解析)

一、选择题1.重阳节,农历九月初九,谐音是“久”,有长久之意,人们常在此日感恩敬老,是我国民间的传统节日.某校在重阳节当日安排6位学生到两所敬老院开展志愿服务活动,要求每所敬老院至少安排2人,则不同的分配方案数是( ) A .50B .40C .35D .302.()()4221x x x -+-的展开式中x 项的系数为( )A .9-B .5-C .7D .83.从0,1,2,3,…,9中选出三个不同数字组成一个三位数,其中能被3整除的三位数个数为( ) A .252B .216C .162D .2284.电影院一排10个位置,甲、乙、丙三人去看电影,要求他们坐在同一排,那么他们每人左右两边都有空位且甲坐在中间的坐法的种数为( ) A .40B .36C .32D .205.若多项式()210011x x a a x +=++()()91091011a x a x +++++,则9a =( )A .9B .10C .-9D .-106.为深入贯彻实施党中央布置的“精准扶贫”计划,某地方党委政府决定安排5名党员干部到4个贫困村驻村扶贫,每个贫困村至少分配1名党员干部,则不同的分配方案共有( ) A .264种B .480种C .240种D .720种7.某科技小组有四名男生两名女生.现从中选出三名同学参加比赛,其中至少有一名女生入选的不同选法种数为( ) A .36CB .1225C CC .12212424C C C C +D .36A8.从4台甲型和5台乙型电视机中任意取出3台,其中甲型与乙型电视机都要取到,则不同的取法种数为( ) A .40B .50C .60D .709.甲乙和其他2名同学合影留念,站成两排两列,且甲乙两人不在同一排也不在同一列,则这4名同学的站队方法有( ) A .8种B .16种C .32种D .64种10.有5位同学参加青少年科技创新大赛的3个不同项目,要求每位同学参加一个项目且每个项目至少有一位同学,则不同的参加方法种数为( ) A .80 B .120 C .150 D .360 11.现有6位同学站成一排照相,甲乙两同学必须相邻的排法共有多少种?( ) A .720B .360C .240D .12012.式子22223459C C C C ++++=( )A .83B .84C .119D .120二、填空题13.62x x ⎛⎫- ⎪⎝⎭展开式中常数项为________.14.已知()723801238()(21)x m x a a x a x a R x a x m +-=+++++∈,若127a =,则()81ii i a =⋅∑的值为_______.15.已知数列{}n a 共有21项,且11a =, 2115a =,11(1,2,3,,20)k k a a k +-==,则满足条件的不同数列{}n a 有______个. 16.已知集合{}123456,,,,,AB C a a a a a a =,且集合{}123,,A B C a a a =,则集合A 、B 、C 所有可能的情况有__________种.17.在停课不停学期间,某校有四位教师参加三项不同的公益教学活动,每位教师任选一项,则每个项目都有该校教师参加的概率为________(结果用数值表示). 18.计算2222223456C C C C C ++++=______.19.将5名上海世博会的志愿者分配到中国馆、美国馆、英国馆工作,要求每个国家馆至少分配一名志愿者且其中甲、乙两名志愿者不同时在同一个国家馆工作,则不同的分配方案有________种.20.某中学安排,,,A B C D 四支小队去3所不同的高校参观,上午每支小队各参观一所高校,下午A 小队有事返回学校,其余三支小队继续参观.要求每支小队上下午参观的高校不能相同,且每所高校上午和下午均有小队参观,则不同的安排有_____种.三、解答题21.从6名运动员中选出4人参加4100⨯接力赛,分别求满足下列条件的安排方法种数: (1)甲、乙两人都不跑中间两棒; (2)甲、乙二人不都跑中间两棒.22.袋中有相同的5个白球和4个黑球,从中任意摸出3个,求下列事件发生的概率. (1)摸出的全是白球或全是黑球、 (2)摸出的白球个数多于黑球个数.23.我校学生会进行换届选举,共选举出7名学生会委员,其中甲、乙、丙是上一届的委员,现对7名成员进行如下分工.(1)若学生会正、副主席两职位只能由甲、乙、丙三人选两人担任,则有多少种不同的分工方法;(2)若甲不担任学生会主席,乙不能担任组织委员,则有多少种不同的分工方法? 24.设(,)(1)n f x n x =+,*n N ∈. (1)设260126(,6)f x a a x a x a x =++++,求0246a a a a +++的值;(2)求12320192019201920192019232019C C C C +++⋯+的值; (3)*n N ∈,化简01122310144444n n n n n n n n n n C C C C C -----++++.25.已知.(1)若,求及的值;(2)若,求最大的系数;(3)定义,若化简.26.某中学将要举行校园歌手大赛,现有4男3女参加,需要安排他们的出场顺序.(结果..用数字作答.....) (1)如果3个女生都不相邻,那么有多少种不同的出场顺序?(2)如果女生甲在女生乙的前面(可以不相邻),那么有多少种不同的出场顺序? (3)如果3位女生都相邻,且女生甲不在第一个出场,那么有多少种不同的出场顺序?【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】先把6人分成两组,再安排到两所敬老院,由此可得. 【详解】先分组再安排:6人可按3,3分组或2,4分组,然后再安排到敬老院,方法为32266222()50C C A A +⨯=.故选:A 【点睛】关键点点睛:本题考查分组分配问题,涉及到平均分组和不平均分组,平均分组时要除以组数的阶乘.n 个不同元素按12,,,k m m m 分成k 组,若12,,,k m m m 两两不等,则分组数为312112kkmm m m n n m n m m m C C C C ---,若12,,,k m m m 中仅有i 个数相等,则分组数为312112kkm m m m n n m n m m mi iC C C C A---.2.A解析:A 【分析】将()()4221x x x -+-化简为:2444(1)(1)2(1)x x x x x --+--,写出4(1)x -二项展开式的通项公式(4)14(1)rr r r T C x -+=⋅-,即可求得答案.【详解】()()42244421(1)(1)2(1)x x x x x x x x -+---+-=-4(1)x -二项展开式的通项公式(4)14(1)r r r r T C x -+=⋅- 24(1)x x -中不含x 项,无需求解.4(1)x x --中含x 项,即当4r =时(44444)(1)x C xx --⋅⋅=--42(1)x -中含x 项,即当3r =时(43)34328(1)C x x -⋅=-- ∴ ()()4221x x x -+-的展开式中x 项9x -故选:A. 【点睛】本题考查求二项式展开式中常数项,解题关键是掌握二项展开式的通项公式,考查分析能力和计算能力,属基础题.3.D解析:D 【分析】根据题意将10个数字分成三组:即被3除余1的有1,4,7;被3除余2的有2,5,8;被3整除的有3,6,9,0,若要求所得的三位数被3整除,则可以分类讨论:每组自己全排列,每组各选一个,再利用排列与组合的知识求出个数,进而求出答案. 【详解】解:将10个数字分成三组,即被3除余1的有{1,4,7},被3除余2的有{2,5,8},被3整除的有{3,6,9,0}.若要求所得的三位数被3整除,则可以分类讨论:①三个数字均取自第一组{1,4,7}中,或均取自第二组{2,5,8}中,有33212A =个; ②若三个数字均取自第三组{3,6,9,0},则要考虑取出的数字中有无数字0,共有324318A A -=个;③若三组各取一个数字,第三组中不取0,有11133333162C C C A ⋅⋅⋅=个, ④若三组各取一个数字,第三组中取0,有112332236C C A ⋅⋅⋅=个, 这样能被3整除的数共有12+18+162+36228=个. 故选:D. 【点睛】本题考查分类计数原理和排列组合知识,如何分类是关键,属于中档题.4.A解析:A 【分析】根据题意,先排好7个空座位,注意空座位是相同的,其中6个空位符合条件,将3人插入6个空位中,注意甲必须在三人中间,然后再排乙,丙,最后用分步计数原理求解. 【详解】除甲、乙、丙三人的座位外,还有7个座位,它们之间共可形成六个空, 三人从6个空中选三位置坐上去有36C 种坐法, 又甲坐在中间,所以乙、丙有22A 种方法,所以他们每人左右两边都有空位且甲坐在中间的坐法有36C 2240A ⋅=种. 故选:A . 【点睛】本题主要考查排列组合的实际应用,还考查了分析问题的能力,属于中档题.5.D解析:D 【解析】()()9011010019910999991...1[...]nn n x C C x C x a x a C C x C x +=++⇒+=++,()10101a x +=019910101010101010(...)a C C x C x C x ++++,根据已知条件得9x 的系数为0,10x 的系数为19999910101010101010011a a C a C a a C =-⎧⋅+⋅=⎧⇒⇒⎨⎨=⋅=⎩⎩ 故选D. 6.C解析:C 【分析】先从5个党员干部里选2个,再从4个贫困村里选1个接受选出的2个党员,剩下的3名党员分配给3个贫困村,即得解. 【详解】先从5个党员干部里选2个,有25C 种方法,再从4个贫困村里选1个接受选出的2个党员,有14C 种方法,剩下的3名党员分配给3个贫困村,有33A 种方法.所以共有213543240C C A =种方法.故选:C. 【点睛】本题主要考查排列组合的综合应用,意在考查学生对这些知识的理解掌握水平.7.C解析:C 【分析】分只有一名女生入选和有二名女生入选两种情况,结合分步乘法计数原理以及分类加法计数原理,即可得出答案. 【详解】当只有一名女生入选时,先选1名女生,有12C 种,再选2名男生,有24C 种,则根据分步乘法计数原理可知,有1224C C 种当有二名女生入选时,选选2名女生,有22C 种,再选1名男生,有14C 种,则根据分步乘法计数原理可知,有2124C C 种所以从中选出三名同学参加比赛,其中至少有一名女生入选的不同选法种数为12212424C C C C +故选:C 【点睛】本题主要考查了组合的应用,涉及了分步乘法计数原理以及分类加法计数原理的应用,属于中档题.8.D解析:D 【分析】根据题意,可分为2种情况,①取出的3台电视机为:甲型1台与乙型2台,②取出的3台电视机为:甲型2台与乙型1台,结合组合数的公式,即可求解. 【详解】根据题意,可分为2种情况,①取出的3台电视机为:甲型1台与乙型2台,共有124540C C =种不同的取法; ②取出的3台电视机为:甲型2台与乙型1台,共有214530C C =种不同的取法, 由分类计数原理,可得不同的取法共有403070+=种. 故选:D. 【点睛】本题主要考查了分类计数原理,以及组合数公式的应用,其中解答中合理分类,结合组合数的公式求解是解答的关键,着重考查了分析问题和解答问题的能力.9.A解析:A 【分析】根据题意,分3步进行讨论:先在4个位置中任选一个安排甲,再安排乙,最后将剩余的2个人,安排在其余的2个位置,分别求出每一步的情况数目,由分步计数原理计算可得答案. 【详解】根据题意,分3步进行讨论:1、先安排甲,在4个位置中任选一个即可,有14C 4=种选法;2、在与甲所选位置不在同一排也不在同一列只有一个位置,安排乙,即1种选法;3、将剩余的2个人,安排在其余的2个位置,有222A =种安排方法; 则这4名同学的站队方法有4128⨯⨯=种; 故选:A . 【点睛】本题主要考查排列、组合的综合应用,注意要优先分析受到限制的元素,属于中档题.10.C解析:C 【分析】根据题意,分清楚有两种情况,利用公式求得结果. 【详解】根据题意,可知有两种情况,一种是有三位同学去参加同一个项目,一种是有两个项目是两位同学参加,所以不同的参加方法种数为22333535332210310661502C C C A A A ⋅⨯⋅+⋅=⨯+⨯=种, 故选:C. 【点睛】该题考查的是有关排列组合的综合题,涉及到的知识点有分类计数加法计数原理,排列组合综合题,属于中档题目.11.C解析:C 【分析】6名同学排成一排,其中甲、乙两人必须排在一起,这是相邻问题,一般用“捆绑法”.将甲乙两名同学“捆绑”在一起,看成一个元素,再与剩下的4人一起全排列,根据分步计数原理即可得出结果. 【详解】将甲乙“捆绑”在一起看成一个元素,与其余4人一起排列, 而甲和乙之间还有一个排列, 共有5252240A A =. 故选:C. 【点睛】本题考查了排列组合、两个基本原理的应用,相邻问题“捆绑法”求解,属于基础题.12.C解析:C 【分析】根据组合数的计算公式111rr r n n n C C C ++++=,化简运算,即可求解.【详解】由题意,根据组合数的计算公式111rr r n n n C C C ++++=,可得22223459C C C C ++++=32222334591C C C C C +++++-322244591C C C C =++++-32235591011119C C C C =+++-==-=.故选:C. 【点睛】本题主要考查了组合数的化简与运算,其中解答中熟记组合数的运算公式,准确运算是解答的关键,着重考查了计算能力.二、填空题13.240【分析】先求出二项式的展开式的通项公式令的指数等于求出的值即可求得展开式中的常数项【详解】展开式的通项公式令所以的展开式的常数项为故答案为【点睛】本题主要考查二项展开式定理的通项与系数属于简单解析:240 【分析】先求出二项式6x⎛⎝的展开式的通项公式,令x 的指数等于0,求出r 的值,即可求得展开式中的常数项. 【详解】6x⎛- ⎝展开式的通项公式3662166(2),rr r r r r r T C x C x --+⎛==⨯-⨯ ⎝令36342r r -=⇒=,所以6x ⎛ ⎝的展开式的常数项为4462240C ⨯=,故答案为240. 【点睛】本题主要考查二项展开式定理的通项与系数,属于简单题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式1C rn r rr n T ab -+=;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.14.43【分析】因为的展开通项为:根据求的将所给等式两边求导即可求得的值【详解】的展开通项为:又等式两边求导可得:令得:故答案为:【点睛】本题解题关键是掌握多项式系数的求法和导数基础知识考查了分析能力和解析:43 【分析】因为7(21)x -的展开通项为:777177(2)(1)(1)2rrr rr r r r T C x C x ---+=⋅⋅-⋅-⋅⋅=,根据127a =,求的m ,将所给等式两边求导,即可求得()81i i i a =⋅∑的值.【详解】7(21)x -的展开通项为:777177(2)(1)(1)2r r r rr r r r T C x C x ---+=⋅⋅-⋅-⋅⋅= 又777()(21)(21)(21)x m x x x m x +--+-=∴7661777011(1)2(1)211427a C m C m =⨯-⋅+⨯--+==⋅∴2m =80187(2)(21)x x a a x a x +-=++⋯+等式两边求导可得:762712381(21)(2)7(21)2238x x x a a x a x a x ⋅-++⋅⋅-⋅=+++⋯+6(21)(211428)x x x =--++67128(1627)(21)28x x a a x a x =+-=++⋯+令1x =,得:1282843a a a ++⋯=+∴()8143i i i a =⋅=∑故答案为:43 【点睛】本题解题关键是掌握多项式系数的求法和导数基础知识,考查了分析能力和计算能力,属于中档题.15.【分析】转化条件得或求出满足的个数再利用组合的知识即可得解【详解】或设满足的个数为解得结合组合的应用满足要求的数列有个故答案为:【点睛】本题考查了数列递推公式的应用考查了组合的应用与转化化归思想属于解析:1140【分析】转化条件得11k k a a +-=或11k k a a +-=-,求出满足11k k a a +-=的个数,再利用组合的知识即可得解. 【详解】11k k a a +-=, ∴11k k a a +-=或11k k a a +-=-,设满足11k k a a +-=的个数为x ,()()()211212*********a a a a a a a a -=-+-+⋅⋅⋅+-=, ∴()()20114x x +-⋅-=,解得17x =,结合组合的应用,满足要求的数列有20217301140C C ==个. 故答案为:1140. 【点睛】本题考查了数列递推公式的应用,考查了组合的应用与转化化归思想,属于中档题.16.【分析】由可知集合均含有元素作出韦恩图可知元素可以放在除之外的个区域中每个元素有个选择利用分步乘法计数原理可得结果【详解】如下图所示集合被分为了个区域由可知集合均含有元素则元素可以放在除之外的个区域 解析:216【分析】 由{}123,,AB C a a a =,可知集合A 、B 、C 均含有元素1a 、2a 、3a ,作出韦恩图,可知元素4a 、5a 、6a 可以放在除A B C ⋂⋂之外的6个区域中,每个元素有6个选择,利用分步乘法计数原理可得结果. 【详解】如下图所示,集合A 、B 、C 被分为了7个区域,由{}123,,AB C a a a =,可知集合A 、B 、C 均含有元素1a 、2a 、3a ,则元素4a 、5a 、6a 可以放在除A B C ⋂⋂之外的6个区域中,每个元素有6个选择,由分步乘法计数原理可知,所有可能的情况种数为36216=. 故答案为:216. 【点睛】本题考查排列组合问题,考查分步乘法计数原理的应用,考查运算求解能力,属于中等题.17.【分析】根据题意先求出四位教师参加三项不同的公益教学活动每位教师任选一项的所有情况有种每个项目都有该校教师参加的情况有种即可求得相应的概率【详解】解:由于四位教师参加三项不同的公益教学活动每位教师任解析:49【分析】根据题意,先求出四位教师参加三项不同的公益教学活动,每位教师任选一项的所有情况有43种,每个项目都有该校教师参加的情况有2343C A ⋅种,即可求得相应的概率. 【详解】解:由于四位教师参加三项不同的公益教学活动,每位教师任选一项的情况有:433333⨯⨯⨯=(种),而每个项目都有该校教师参加的情况有:234336C A ⋅=(种), 则每个项目都有该校教师参加的概率为:436439=. 故答案为:49. 【点睛】本题考查概率的计算和分步乘法的计数原理,以及排列组合的应用,考查分析计算能力.18.35【分析】根据组合数的性质计算可得;【详解】解:故答案为:【点睛】本题考查组合数的性质属于中档题解析:35 【分析】根据组合数的性质11mm mn n n C C C -++=计算可得;【详解】解:2222223456C C C C C ++++3222233456C C C C C =++++ 32224456C C C C =+++ 322556C C C =++3266C C =+ 3776535321C ⨯⨯===⨯⨯故答案为:35 【点睛】本题考查组合数的性质,属于中档题.19.114【分析】本题是一个分类计数问题每个国家馆至少分配一名志愿者则有两种不同的情况当按照221安排时共有当按照113安排时有其中包括甲和乙在一个馆里的情况减去不合题意的结果即可【详解】由题意知本题是解析:114 【分析】本题是一个分类计数问题,每个国家馆至少分配一名志愿者,则有两种不同的情况,当按照2,2,1安排时,共有223533902C C A =,当按照1,1,3安排时,有335360C A =,其中包括甲和乙在一个馆里的情况,减去不合题意的结果即可. 【详解】由题意知本题是一个分类计数问题,每个国家馆至少分配一名志愿者,则有两种不同的情况, 每一个馆的人数分别是2,2,1;1,1,3 当按照2,2,1安排时,共有223533902C C A =,当按照1,1,3安排时,有335360C A =, 其中包括甲和乙在一个馆里的情况, 当甲和乙在同一个馆里时,共有234336C A =, ∴满足条件的排列法共有906036114+-=,故答案为:114. 【点睛】本题考查计数原理的应用,解题的关键是先分组再做分配,考查加法原理和乘法原理的实际应用,属于中等题.20.【分析】本题属于分组分配问题可按上午参观时A 是否与其他小队分在一组进行讨论分上下午两步安排参观即可得出答案【详解】若与中的某一支小队分在一组上午有种参观方法下午参观时三支小队不去各自上午参观的高校有解析:【分析】本题属于分组分配问题,可按上午参观时A 是否与其他小队分在一组进行讨论,分上下午两步安排参观,即可得出答案. 【详解】若A 与B 、C 、D 中的某一支小队分在一组,上午有1333C A ⋅种参观方法, 下午参观时B 、C 、D 三支小队不去各自上午参观的高校,有2种方法, 故有1333236C A ⋅⋅=种;若B 、C 、D 中某两支队分在一组,上午有2333C A ⋅种参观方法, 下午再安排时,也有2种方法, 故有2333236C A ⋅⋅=种. 所以一共有363672+=种. 故答案为:72. 【点睛】本题考查考查分组分配问题,注意其中的分类分步,属于中档题.三、解答题21.(1)144(2)336 【分析】(1)第一步,安排中间2个位置,第二步,安排首尾2个位置,利用乘法原理可得结论. (2)利用间接法,任意排法,再去掉甲、乙跑中间的安排方法即可得解; 【详解】解:(1)先选跑中间的两人有24A 种,再从余下的4人中选跑1、4棒的有24A ,则共有2244144A A =种.(2)用间接法:“不都跑”的否定是“都跑”,所以用任意排法46A ,再去掉甲、乙跑中间的安排方法2224A A 种,故满足条件的安排方法有246224336A A A =-种. 【点睛】本题考查计数原理的运用问题,解题的关键是正确分步.注意甲乙都不跑中间,包括了甲乙可能都不上场的情形.22.(1)16(2)2542【分析】(1)从袋中任意摸出3个球有39C 种不同情况,摸出的全是白球有35C 种不同情况,摸出的全是黑球有34C 种不同情况,计算概率得到答案.(2)摸出的3个球都是白球的事件,记为M ;摸出2个白球,1个黑球的事件,记为N .计算概率得到答案. 【详解】(1)设从袋中摸出的3个球全是白球或全是黑球的事件为A , 从袋中任意摸出3个球有39C 种不同情况, 摸出的全是白球有35C 种不同情况, 摸出的全是黑球有34C 种不同情况,因为从袋中任意摸出3个球的所有情况都是等可能的,所以()3354391041846C C P A C ++===. (2)设从袋中摸出的白球个数多于黑球个数的事件为B . 事件B 包含两个基本事件:第一个,摸出的3个球都是白球的事件,记为M ; 第二个,摸出2个白球,1个黑球的事件,记为N .()3539542C P M C ==,()21543940108421C C P N C ===. 所以,()()()51025422142P B P M P N =+=+=. 【点睛】本题考查了概率的计算,意在考查学生的计算能力. 23.(1)720;(2)3720. 【分析】(1)由学生会正、副主席两职位只能由甲乙丙三人中选出两人担任,利用排列、组合计算即可;(2)甲不担任学生会主席,乙不担任组织委员,可用间接法计算,即可求解. 【详解】(1)由题意,学生会正、副主席两职位只能由甲乙丙三人中选出两人担任, 则有225325720C A A =种不同的分工.(2)甲不担任学生会主席,乙不担任组织委员,则有76576523720A A A -+=种不同的分工. 【点睛】本题主要考查了排列、组合及其简单的计数原理的应用,其中解答中认真审题,合理利用排列数、组合数的公式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.24.(1)32.(2)201820192⨯.(3)54n.【分析】(1)利用赋值法求解,令1x =和1x =-,两式相加可得;(2)利用11k k n n kC nC --=可求;(3)结合式子特点构造(41)n +可求. 【详解】(1)令1x =,得60126264a a a a +++⋯+== ① 令1x =-,得01260a a a a -+-⋯+= ② ①+②得024632a a a a +++=;(2)因为11k k n n kC nC --=所以12320192019201920192019232019C C C C ++++=()12201820182018201820182019C C C C ++++201820192=⨯;(3)01122310144444n n n n n n n n n n C C C C C -----+++⋯++011221144444n n n n nn n nnnC C C CC ---⎡⎤=+++++⎣⎦15(41)44nn=+=. 【点睛】本题主要考查二项式定理的应用,结合组合数的性质,侧重考查数学解题模型的构建能力. 25.(1)(2)(3)【解析】 【分析】(1)由赋值法得到相应的数值;(2)将参数值代入表达式得到其通项公式为,由不等式,可得到,进而得到;(3)按照组合数的展开公式,分组求和即可. 【详解】 (1)若,,令,则, 令,则所以.(2)若,其通项公式为,由不等式解得,且,∴.所以.(3)若,【点睛】本题考查二项式定理的应用,以及组合数公式的相关运算,考查推理能力与计算能力,属于中等题。

人教版高中地理必修第二册第一章综合测试试卷含答-案答案在前1

人教版高中地理必修第二册第一章综合测试试卷含答-案答案在前1

第一章综合测试答案解析一、1.【答案】D【解析】我国人口密度东西差异原因,应该从自然环境因素和社会经济因素等方面去综合考虑。

2.【答案】B【解析】要想缩小地区间的人口密度差异,无论是提高人口出生率还是进行移民都不能从根本上解决问题,应该从西部地区生态环境的改善和地区经济发展上进行努力。

3.【答案】B【解析】根据轮廓可判断A 处是欧洲,B 处是南亚,C 处是东亚和东南亚。

南亚成为人类大陆,即说明其人口分布稠密,这与其自然条件优越、农业发达有关。

4.【答案】C【解析】从位置上看,D 处位于亚欧大陆中部,成为人口孤岛,说明其周围地区人口稀少,而在此区域内人口稠密。

5.【答案】B【解析】自然环境因素是影响人口分布的最基本的因素,但随着生产力水平的提高,自然环境因素的影响逐渐减小;在社会经济因素中,生产力发展水平对人口分布的影响最显著。

另外,历史、宗教、习俗等因素也对人口分布产生影响。

6.【答案】C【解析】海拔越高,人口密度越小;湿润地区人口密度大。

两图的纵坐标都为人口密度。

左图中的横坐标为海拔,右图中的横坐标为年降水量。

所以本题选择C 选项。

【考点】地理图表的判读能力7.【答案】B【解析】图中A 点海拔接近4 000 米,可能为青藏高原地区;E 点降水量小,应位于西北地区,可能为塔克拉玛干沙漠;C 点海拔低,应位于东部沿海地区;D 点降水量大,人口密度高,应位于南方沿海地区。

所以本题选择B 选项。

8.【答案】C【解析】从图中信息看,箭头B 代表了国际人口迁移,选项中只有我国明清时期人口移居东南亚和来我国工作的外籍工人属于国际人口迁移。

9.【答案】A【解析】箭头A 代表的是国内人口迁移,目前我国国内的人口迁移的主要流向是由中、西部地区向东部地区迁移。

10.【答案】A【解析】读图分析可知,外出农民工增量变化曲线在2010~2011 年斜率最陡,由此可判断该时段我国外出农民工增量变化最显著。

11.【答案】B【解析】人口出生率对外出农民工增量变化无明显影响;外出农民工户籍转变成城市居民户籍极少,不是影响外出农民工增量变化的主要原因;由于近年来国家鼓励农民工返乡创业,导致跨省外出农民工数量减少;东部沿海地区产业转型升级,对农民工劳动技能要求提高,农民工因劳动技能低,外出就业困难,使外出农民工增量减小。

人教版高中地理必修第二册第一章综合测试试卷含答-案答案在前2

人教版高中地理必修第二册第一章综合测试试卷含答-案答案在前2

第一章综合测试答案解析一、1.【答案】B【解析】根据所学知识,我国东部地区位于地势第二、三级阶梯,地势平坦;地处我国季风区,气候温和湿润;河流众多,水源丰富,自然条件优越;西部地区位于内陆,以高原、山地为主,地势起伏大,气候干旱,自然条件恶劣;所以我国人口东多西少;民族分布、国家政策、宗教信仰对我国总体人口分布的特点影响较小,故A、C、D 错误,该题选B。

2.【答案】B【解析】浦东地区位于我国东部地区,开发浦东新区能够提供更多的就业机会,会促进人口向东迁移,故A 错误;实施西部大开发会促进西部地区的发展,提供更多的发展机会,促使人口向西部迁移,故B 正确;东北工业区位于我国东部地区,振兴东北工业区能够提供更多的就业机会,会促进人口向东迁移,故C 错误;长江沿岸经济带既包括东部地区的部分省份也包括西部地区的部分省份,所以发展长江沿岸经济带对人口的东西迁移影响不大,可能会促进人口从南、北方迁往长江沿岸地区,故D 错误。

所以该题选B。

3.【答案】C【解析】根据图示两条曲线分别是不同生产力水平条件下生活质量与人口规模的相关关系,从图中可以看出,不同的生产力水平条件下,生活质量都是随人口规模的增大先提高后降低,生活质量的最高值所对应的人口规模就是在一定生产力水平条件下的最佳人口规模。

故判断P 为生产力发展水平较低时的最佳人口规模,P′为生产力水平较高时的最佳人口规模。

故选C。

4.【答案】D【解析】结合上题分析,当人口水平低于最佳人口规模时,人口的增长和生活质量的提高呈正相关;当人口水平高于最佳人口规模时,人口的增长将导致生活质量的下降。

故选D。

5.【答案】C【解析】虽然县镇的医疗卫生条件与过去相比得到了改善,但与城市相比仍没有优越性,所以这并不是导致农民工回流的拉力,A 错误;虽然农村的基础设施与过去相比得到了改善,但与城市相比仍没有优越性,所以这并不是导致农民工回流的拉力,B 错误;随着经济的发展,城市住房、子女教育等生活成本提高,使这些农民工在城市生活的压力增大,高昂的生活成本可能导致农民工回流,C 正确;经济因素是人口迁移的主要因素,环境质量日趋恶化不是农民工回流的主要原因,D 错误。

高二数学选修2-2综合测试题一

高二数学选修2-2综合测试题一

高二数学综合测试试题(理科)第Ⅰ卷 (选择题 共60分) 2013-04一.选择题(本大题共12小题,每小题5分,共60分.) 1.i 是虚数单位,复数73ii-=+ ( ) A .2i + B .2i - C .2i -+ D .2i --2.一物体作直线运动,其位移s 与时间t 的关系是23t t s -=,则物体的初速度为 ( ) A .3B .0C .2-D .t 23-3.函数)(x f 的图象如图所示,下列数值排序正确的是 ( )A .)2()3()3(')2('0f f f f -<<<B .)2(')2()3()3('0f f f f <-<<C .)2()3()2(')3('0f f f f -<<<D .)3(')2(')2()3(0f f f f <<-< 4.若函数)1('2)(2xf x x f +=,则)0('f 等于 ( ) A . 0 B .2 C .2- D .4- 5.若函数b bx x x f 33)(3+-=在)1,0(内有极小值,则 ( )A .10<<bB .1<bC .0>bD .21<b 6.函数51232)(23+--=x x x x f 在]3,0[上的最大值和最小值分别是( )A .15,4--B .4,5-C .15,5-D .16,5- 7.设函数)(x f 在],[b a 上是连续函数,下列说法成立的个数是( )①⎰⎰+=+bab adx x f dx x f 1)(2]1)(2[; ② ⎰⎰=babadx x f dx x f 22])([)]([③ 若⎰>badx x f 0)(,则)(x f 在],[b a 上恒正 ④ 若)(x f 在],[b a 上恒正,则⎰>badx x f 0)(A .0B .1C .2D .3 8.函数)(x f 的定义域为开区间),(b a ,其导函数)('x f 在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点( ) A .1个 B .2个 C .3个 D .4个9.若)2ln(21)(2++-=x b x x f 在),1(+∞-上是减函数,则b 的取值范围是( ) A .),1[+∞- B .),1(+∞- C .)1,(--∞ D .]1,(--∞10.设b a <,函数)()(2b x a x y --=的图象可能是( )A .B .C .D .11.曲线)12ln(-=x y 上的点到直线032=+-y x 的最短距离为( )A .0B .52C .53D .5 12.若函数x xx f sin )(=,且1021<<<x x ,设11sin x x a =,22sin x x b =,则a ,b 的大小关系是( ) A .b a = B .b a < C .b a > D .不能确定第Ⅱ卷 (非选择题 共90分)二.填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上.) 13.函数x x y ln 212-=的单调减区间是 ; 14.若2=x 是函数2)()(b x x x f -=的极大值点,则函数)(x f 的极大值为 ;15.定积分dx x x )1(12+-⎰的值是 ;16.由曲线22+=x y 与直线x y 3=,0=x ,2=x 所围成平面图形的面积等于 .三.解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.) 17.(本小题满分10分)设)(x f 是连续函数,且⎰+=1)(2)(dt t f x x f ,求)(x f .18.(本小题满分12分)已知数列{}n a 的前n 项和n S 满足11,0,.2n n n na S a n N a *=+->∈且 (1)求123,,a a a ,并猜想数列{}n a 的通项公式; (2)试证明(1)中你的猜想.19.(本小题满分12分) 设)(x f y =是二次函数,方程0)(=x f 有两个相等的实根,且22)('+=x x f .(1)求)(x f y =的表达式;(2)若直线)10(<<-=t t x 把)(x f y =的图象与两坐标轴所围成图形的面积二等分,求t 的值.20.(本小题满分12分)用总长m 8.14的钢条制作一个长方体容器的框架.如果所制作容器的底面的一边比另一边长m 5.0,那么高为多少时容器的容积最大?并求出其最大容积.21.(本题满分12分)已知函数c bx ax x x f +++=23)(在32-=x 与1=x 时都取得极值. (1)求a 、b 的值及函数)(x f 的单调区间;(2)若对]2,1[-∈x ,不等式2)(c x f <恒成立,求c 的取值范围.22.(本小题满分12分)已知函数x x x f ln 21)(2+=. (1)求函数)(x f 在],1[e 上的最大值和最小值; (2)当),1[∞+∈x 时,求证:332)(x x f <.。

高二有机化学第二章综合测试题(附答案)

高二有机化学第二章综合测试题(附答案)

高二有机化学第二章综合测试题学校:题号 一 二 三 四 总分 得分注意事项: 2、请将答案正确填写在答题卡上第1卷评卷人 得分一、单选题( )A.碳原子性质较活泼, 除了C 之间可以成键外,与其他元素也可形成化学键。

B.碳原子间能形成单键,也能形成双键或叁键,进而形成碳链或碳环C.易溶于汽油、酒精、苯等有机溶剂中的物质不一定是有机物D.有机物所发生的反应,一般比较复杂,速度缓慢,并且还常伴有副反应发生 2.下列有关烷烃的叙述中,正确的是( ) ①在烷烃分子中,所有的化学键都是单键②烷烃中除甲烷外,很多都能使酸性4KMnO 溶液的紫色褪去 ③分子通式为22C H n n 的烃不一定是烷烃④所有的烷烃在光照条件下都能与氯气发生取代反应 ⑤光照条件下,乙烷通入溴水中,可使溴水褪色 A.①③⑤B.②③C.①④D.①②④3.以下化学用语正确的是( )A.乙烯的结构简式:CH 2CH 2B.乙醇的分子式:CH 3CH 2OHC. 22CH F 的电子式:D.甲醛的结构式:4.下列各组物质互为同系物的是( ) A.乙二醇与丙三醇 B.与C.乙醇与2-丙醇D.与5.烷烃是1mol烯烃R和1mol氢气发生加成反应后的产物,则R可能的结构简式有( )A.4种B.5种C.6种D.7种6.下列关于物质的制备、鉴别与除杂的说法正确的是( )A. 乙烷中混有少量乙烯:通入氢气在一定条件下反应,使乙烯转化为乙烷B. 只用溴水就能将苯、己烯、四氯化碳、淀粉碘化钾溶液区分开C. 氯气与甲烷按照比例 2:1 在光照条件下反应制备纯净的二氯甲烷D. 苯与溴水混合后加入 FeBr3,发生放热反应,制备密度大于水的溴苯7.乙炔在不同条件下可以转化成许多化合物,如图,下列叙述错误的是( )A.正四面体烷的二氯代物只有1种B.乙炔生成乙烯基乙炔是加成反应C.等质量的苯与乙烯基乙炔完全燃烧时的耗氧量不同D.与环辛四稀互为同分异构体8.在一定条件下,甲苯可生成二甲苯混合物和苯。

高中生物 综合测试卷(第1~3章)(一)(含解析)新人教版必修第一册.-新人教版高中第一册生物试题

高中生物 综合测试卷(第1~3章)(一)(含解析)新人教版必修第一册.-新人教版高中第一册生物试题

第1~3章综合测试卷(一)一、选择题:本题共15小题,每小题2分,共30分。

每小题只有一个选项符合题目要求。

1.下列各项组合中,能体现生命系统由简单到复杂的正确顺序的是( )①一个池塘②池塘中的一条鲫鱼③鲫鱼的表皮细胞④表皮细胞中的水和蛋白质分子⑤某池塘中所有的鲫鱼⑥某池塘中所有的鱼⑦某池塘中的所有生物A.④③②⑤⑦① B.③②⑤⑦①C.③②⑤⑥⑦① D.③②⑤①2.一位昆虫学家正在研究某一种蜜蜂的社会行为;一位果树专家正在研究某种果树的丰产措施。

他们研究的对象分别属于生命系统的哪个层次( )A.种群、生态系统 B.群落、生态系统C.物种、种群 D.种群、群落3.下列关于原核细胞与真核细胞的叙述,正确的是( )A.原核细胞和真核细胞都具有染色体B.原核细胞中没有核糖体,真核细胞中含有核糖体C.原核细胞没有以核膜为界限的细胞核,真核细胞有细胞核D.原核细胞的DNA分布于拟核,真核细胞的DNA分布于细胞核4.如图所示的四个方框代表细菌、衣藻、木耳和蓝藻,其中阴影部分表示它们都具有的某种物质或结构。

下列哪种物质或结构不可能出现在阴影部分中( )A.染色体 B.RNAC.DNA D.核糖体5.在可溶性还原糖、脂肪、蛋白质的鉴定实验中,对实验材料的选择叙述,错误的是( )A.马铃薯块茎中含有较多的糖且近于白色,可用于进行可溶性还原糖的鉴定B.花生种子富含脂肪且子叶肥厚,是用于脂肪鉴定的好材料C.大豆种子蛋白质含量高,是进行蛋白质鉴定的理想材料D.鸡蛋清含蛋白质多,是进行蛋白质鉴定的动物材料6.下列能正确表示蛋白质分子由简到繁的结构层次的一组是( )①氨基酸②C、H、O、N等元素③氨基酸分子脱水缩合④多肽⑤形成一定的空间结构A.①②③④⑤ B.②①④③⑤C.②①③⑤④ D.②①③④⑤7.下图中甲、乙依次为蛋白质、核酸的基本组成单位结构示意图。

下列叙述错误的是( )A.①可为羧基或氨基,R基的种类决定了蛋白质基本组成单位的种类B.图甲的种类、数目及排列顺序影响蛋白质的多样性C.若④是脱氧核糖,则图乙可以是SARS病毒核酸的基本组成单位D.若⑤是胞嘧啶,则图乙可代表胞嘧啶脱氧核糖核苷酸8.在探索外星球是否存在生命的过程中,科学家始终把寻找水作为最关键的环节。

人教A版高中数学选修2-3全册同步练习及单元检测含答案

人教A版高中数学选修2-3全册同步练习及单元检测含答案

⼈教A版⾼中数学选修2-3全册同步练习及单元检测含答案⼈教版⾼中数学选修2~3 全册章节同步检测试题⽬录第1章《计数原理》同步练习 1.1测试1第1章《计数原理》同步练习 1.1测试2第1章《计数原理》同步练习 1.1测试3第1章《计数原理》同步练习 1.2排列与组合第1章《计数原理》同步练习 1.3⼆项式定理第1章《计数原理》测试(1)第1章《计数原理》测试(2)第2章同步练习 2.1离散型随机变量及其分布列第2章同步练习 2.2⼆项分布及其应⽤第2章测试(1)第2章测试(2)第2章测试(3)第3章练习 3.1回归分析的基本思想及其初步应⽤第3章练习 3.2独⽴性检验的基本思想及其初步应⽤第3章《统计案例》测试(1)第3章《统计案例》测试(2)第3章《统计案例》测试(3)1. 1分类加法计数原理与分步乘法计数原理测试题⼀、选择题1.⼀件⼯作可以⽤2种⽅法完成,有3⼈会⽤第1种⽅法完成,另外5⼈会⽤第2种⽅法完成,从中选出1⼈来完成这件⼯作,不同选法的种数是()A.8 B.15C.16 D.30答案:A2.从甲地去⼄地有3班⽕车,从⼄地去丙地有2班轮船,则从甲地去丙地可选择的旅⾏⽅式有()A.5种B.6种C.7种D.8种答案:B3.如图所⽰为⼀电路图,从A 到B 共有()条不同的线路可通电()A.1 B.2 C.3 D.4答案:D4.由数字0,1,2,3,4可组成⽆重复数字的两位数的个数是()A.25 B.20 C.16 D.12答案:C5.李芳有4件不同颜⾊的衬⾐,3件不同花样的裙⼦,另有两套不同样式的连⾐裙.“五⼀”节需选择⼀套服装参加歌舞演出,则李芳有()种不同的选择⽅式()A.24 B.14 C.10 D.9答案:B 6.设A ,B 是两个⾮空集合,定义{}()A B a b a A b B *=∈∈,,|,若{}{}0121234P Q ==,,,,,,,则P *Q 中元素的个数是()A.4 B.7 C.12 D.16答案:C⼆、填空题7.商店⾥有15种上⾐,18种裤⼦,某⼈要买⼀件上⾐或⼀条裤⼦,共有种不同的选法;要买上⾐,裤⼦各⼀件,共有种不同的选法.答案:33,2708.⼗字路⼝来往的车辆,如果不允许回头,共有种⾏车路线.答案:129.已知{}{}0341278a b ∈∈,,,,,,,则⽅程22()()25x a y b -+-=表⽰不同的圆的个数是.答案:1210.多项式123124534()()()()a a a b b a a b b ++++++··展开后共有项.答案:1011.如图,从A →C ,有种不同⾛法.答案:612.将三封信投⼊4个邮箱,不同的投法有种.答案:34三、解答题 13.⼀个⼝袋内装有5个⼩球,另⼀个⼝袋内装有4个⼩球,所有这些⼩球的颜⾊互不相同.(1)从两个⼝袋内任取⼀个⼩球,有多少种不同的取法?(2)从两个⼝袋内各取⼀个⼩球,有多少种不同的取法?解:(1)549N =+=种;(2)5420N =?=种.14.某校学⽣会由⾼⼀年级5⼈,⾼⼆年级6⼈,⾼三年级4⼈组成.(1)选其中1⼈为学⽣会主席,有多少种不同的选法?(2)若每年级选1⼈为校学⽣会常委,有多少种不同的选法?(3)若要选出不同年级的两⼈参加市⾥组织的活动,有多少种不同的选法?解:(1)56415N =++=种;(2)564120N =??=种;(3)56644574N =?+?+?=种15.已知集合{}321012()M P a b =---,,,,,,,是平⾯上的点,a b M ∈,.(1)()P a b ,可表⽰平⾯上多少个不同的点?(2)()P a b ,可表⽰多少个坐标轴上的点?解:(1)完成这件事分为两个步骤:a 的取法有6种,b 的取法也有6种,∴P 点个数为N =6×6=36(个);(2)根据分类加法计数原理,分为三类:①x 轴上(不含原点)有5个点;②y 轴上(不含原点)有5个点;③既在x 轴,⼜在y 轴上的点,即原点也适合,∴共有N =5+5+1=11(个).1. 1分类加法计数原理与分步乘法计数原理测试题⼀、选择题 1.从集合{ 0,1,2,3,4,5,6}中任取两个互不相等的数a ,b 组成复数a bi +,其中虚数有() A .30个 B .42个 C .36个 D .35个答案:C2.把10个苹果分成三堆,要求每堆⾄少1个,⾄多5个,则不同的分法共有() A .4种 B .5种 C .6种 D .7种答案:A3.如图,⽤4种不同的颜⾊涂⼊图中的矩形A ,B ,C ,D 中,要求相邻的矩形涂⾊不同,则不同的涂法有() A .72种 B .48种 C .24种 D .12种答案:A4.教学⼤楼共有五层,每层均有两个楼梯,由⼀层到五层的⾛法有() A .10种 B .52种C.25种D.42种答案:D5.已知集合{}{}023A B x x ab a b A ===∈,,,,,|,则B 的⼦集的个数是()A.4 B.8 C.16 D.15答案:C6.三边长均为正整数,且最⼤边长为11的三⾓形的个数为()A.25 B.26 C.36 D.37答案:C⼆、填空题7.平⾯内有7个点,其中有5个点在⼀条直线上,此外⽆三点共线,经过这7个点可连成不同直线的条数是.答案:128.圆周上有2n 个等分点(1n >),以其中三个点为顶点的直⾓三⾓形的个数为.答案:2(1)n n -9.电⼦计算机的输⼊纸带每排有8个穿孔位置,每个穿孔位置可穿孔或不穿孔,则每排可产⽣种不同的信息.答案:25610.椭圆221x y m n+=的焦点在y 轴上,且{}{}123451234567m n ∈∈,,,,,,,,,,,,则这样的椭圆的个数为.答案:20 11.已知集合{}123A ,,ü,且A 中⾄少有⼀个奇数,则满⾜条件的集合A 分别是.答案:{}{}{}{}{}13122313,,,,,,,12.整数630的正约数(包括1和630)共有个.答案:24三、解答题 13.⽤0,1,2,3,4,5六个数字组成⽆重复数字的四位数,⽐3410⼤的四位数有多少个?解:本题可以从⾼位到低位进⾏分类.(1)千位数字⽐3⼤.(2)千位数字为3:①百位数字⽐4⼤;②百位数字为4: 1°⼗位数字⽐1⼤;2°⼗位数字为1→个位数字⽐0⼤.所以⽐3410⼤的四位数共有2×5×4×3+4×3+2×3+2=140(个).14.有红、黄、蓝三种颜⾊旗⼦各(3)n n >⾯,任取其中三⾯,升上旗杆组成纵列信号,可以有多少种不同的信号?若所升旗⼦中不允许有三⾯相同颜⾊的旗⼦,可以有多少种不同的信号?若所升旗⼦颜⾊各不相同,有多少种不同的信号?解: 1N =3×3×3=27种; 227324N =-=种; 33216N =??= 种.15.某出版社的7名⼯⼈中,有3⼈只会排版,2⼈只会印刷,还有2⼈既会排版⼜会印刷,现从7⼈中安排2⼈排版,2⼈印刷,有⼏种不同的安排⽅法.解:⾸先分类的标准要正确,可以选择“只会排版”、“只会印刷”、“既会排版⼜会印刷”中的⼀个作为分类的标准.下⾯选择“既会排版⼜会印刷”作为分类的标准,按照被选出的⼈数,可将问题分为三类:第⼀类:2⼈全不被选出,即从只会排版的3⼈中选2⼈,有3种选法;只会印刷的2⼈全被选出,有1种选法,由分步计数原理知共有3×1=3种选法.第⼆类:2⼈中被选出⼀⼈,有2种选法.若此⼈去排版,则再从会排版的3⼈中选1⼈,有3种选法,只会印刷的2⼈全被选出,有1种选法,由分步计数原理知共有2×3×1=6种选法;若此⼈去印刷,则再从会印刷的2⼈中选1⼈,有2种选法,从会排版的3⼈中选2⼈,有3种选法,由分步计数原理知共有2×3×2=12种选法;再由分类计数原理知共有6+12=18种选法.第三类:2⼈全被选出,同理共有16种选法.所以共有3+18+16=37种选法.1. 1 分类加法计数原理与分步乘法计数原理综合卷⼀.选择题:1.⼀个三层书架,分别放置语⽂书12本,数学书14本,英语书11本,从中取出⼀本,则不同的取法共有()(A ) 37种(B ) 1848种(C ) 3种(D ) 6种2.⼀个三层书架,分别放置语⽂书12本,数学书14本,英语书11本,从中取出语⽂、数学、英语各⼀本,则不同的取法共有()(A ) 37种(B ) 1848种(C ) 3种(D ) 6种3.某商业⼤厦有东南西3个⼤门,楼内东西两侧各有2个楼梯,从楼外到⼆楼的不同⾛法种数是()(A ) 5 (B )7 (C )10 (D )124.⽤1、2、3、4四个数字可以排成不含重复数字的四位数有()(A )265个(B )232个(C )128个(D )24个5.⽤1、2、3、4四个数字可排成必须含有重复数字的四位数有()(A )265个(B )232个(C )128个(D )24个6.3科⽼师都布置了作业,在同⼀时刻4名学⽣都做作业的可能情况有()(A )43种(B )34种(C )4×3×2种(D ) 1×2×3种7.把4张同样的参观券分给5个代表,每⼈最多分⼀张,参观券全部分完,则不同的分法共有()(A )120种(B )1024种(C )625种(D )5种8.已知集合M={l ,-2,3},N={-4,5,6,7},从两个集合中各取⼀个元素作为点的坐标,则这样的坐标在直⾓坐标系中可表⽰第⼀、⼆象限内不同的点的个数是()(A )18 (B )17 (C )16 (D )109.三边长均为整数,且最⼤边为11的三⾓形的个数为()(A )25 (B )36 (C )26 (D )3710.如图,某城市中,M 、N 两地有整齐的道路⽹,若规定只能向东或向北两个⽅向沿途中路线前进,则从M 到N 不同的⾛法共有()(A )25 (B )15 (C)13 (D )10 ⼆.填空题:11.某书店有不同年级的语⽂、数学、英语练习册各10本,买其中⼀种有种⽅法;买其中两种有种⽅法.12.⼤⼩不等的两个正⽅形玩具,分别在各⾯上标有数字1,2,3,4,5,6,则向上的⾯标着的两个数字之积不少于20的情形有种.13.从1,2,3,4,7,9中任取不相同的两个数,分别作为对数的底数和真数,可得到个不同的对数值.14.在连结正⼋边形的三个顶点组成的三⾓形中,与正⼋边形有公共边的有个.15.某班宣传⼩组要出⼀期向英雄学习的专刊,现有红、黄、⽩、绿、蓝五种颜⾊的粉笔供选⽤,要求在⿊板中A 、B 、C 、D 每⼀部分只写⼀种颜⾊,如图所⽰,相邻两块颜⾊不同,则不同颜⾊的书写⽅法共有种.三.解答题:16.现由某校⾼⼀年级四个班学⽣34⼈,其中⼀、⼆、三、四班分别为7⼈、8⼈、9⼈、10⼈,他们⾃愿组成数学课外⼩组.(1)选其中⼀⼈为负责⼈,有多少种不同的选法?(2)每班选⼀名组长,有多少种不同的选法?(3)推选⼆⼈做中⼼发⾔,这⼆⼈需来⾃不同的班级,有多少种不同的选法?17.4名同学分别报名参加⾜球队,蓝球队、乒乓球队,每⼈限报其中⼀个运动队,不同的报名⽅法有⼏种?[探究与提⾼]1.甲、⼄两个正整数的最⼤公约数为60,求甲、⼄两数的公约数共有多个?2.从{-3,-2,-1,0,l,2,3}中,任取3个不同的数作为抛物线⽅程y=ax2+bx+c(a≠0)的系数,如果抛物线过原点,且顶点在第⼀象限,这样的抛物线共有多少条?3.电视台在“欢乐今宵”节⽬中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的群众来信,甲信箱中有30封,⼄信箱中有20封.现由主持⼈抽奖确定幸运观众,若先确定⼀名幸运之星,再从两信箱中各确定⼀名幸运伙伴,有多少种不同的结果?综合卷1.A 2.B 3.D 4.D 5.B 6.B 7.D 8.B 9.B 10.B11.30;300 12.513.17 14.40 15.1801. 2排列与组合1、排列综合卷1.90×9l ×92×……×100=()(A )10100A (B )11100A (C )12100A (D )11101A 2.下列各式中与排列数mn A 相等的是()(A )!(1)!-+n n m (B )n(n -1)(n -2)……(n -m) (C )11m n nA n m --+ (D )111m n n A A --3.若 n ∈N 且 n<20,则(27-n )(28-n)……(34-n)等于()(A )827n A - (B )2734nn A -- (C )734n A - (D )834n A -4.若S=123100123100A A A A ++++,则S 的个位数字是()(A )0 (B )3 (C )5 (D )85.⽤1,2,3,4,5这五个数字组成没有重复数字的三位数,其中偶数共有()(A )24个(B )30个(C )40个(D )60个6.从0,l ,3,5,7,9中任取两个数做除法,可得到不同的商共有()(A )20个(B )19个(C )25个(D )30个7.甲、⼄、丙、丁四种不同的种⼦,在三块不同⼟地上试种,其中种⼦甲必须试种,那么不同的试种⽅法共有()(A )12种(B )18种(C )24种(D )96种8.某天上午要排语⽂、数学、体育、计算机四节课,其中体育不排在第⼀节,那么这天上午课程表的不同排法共有()(A )6种(B )9种(C )18种(D )24种9.有四位司机、四个售票员组成四个⼩组,每组有⼀位司机和⼀位售票员,则不同的分组⽅案共有()(A )88A 种(B )48A 种(C )44A ·44A 种(D )44A 种10.有4位学⽣和3位⽼师站在⼀排拍照,任何两位⽼师不站在⼀起的不同排法共有()(A )(4!)2种(B )4!·3!种(C )34A ·4!种(D )3 5A ·4!种11.把5件不同的商品在货架上排成⼀排,其中a ,b 两种必须排在⼀起,⽽c ,d 两种不能排在⼀起,则不同排法共有()(A )12种(B )20种(C )24种(D )48种⼆.填空题::12.6个⼈站⼀排,甲不在排头,共有种不同排法.13.6个⼈站⼀排,甲不在排头,⼄不在排尾,共有种不同排法.14.五男⼆⼥排成⼀排,若男⽣甲必须排在排头或排尾,⼆⼥必须排在⼀起,不同的排法共有种.15.将红、黄、蓝、⽩、⿊5种颜⾊的⼩球,分别放⼊红、黄、蓝、⽩、⿊5种颜⾊的⼝袋中,但红⼝袋不能装⼊红球,则有种不同的放法.16.(1)有5本不同的书,从中选3本送给3名同学,每⼈各⼀本,共有种不同的送法;(2)有5种不同的书,要买3本送给3名同学,每⼈各⼀本,共有种不同的送法.三、解答题:17.⼀场晚会有5个唱歌节⽬和3个舞蹈节⽬,要求排出⼀个节⽬单(1)前4个节⽬中要有舞蹈,有多少种排法?(2)3个舞蹈节⽬要排在⼀起,有多少种排法?(3)3个舞蹈节⽬彼此要隔开,有多少种排法?18.三个⼥⽣和五个男⽣排成⼀排.(1)如果⼥⽣必须全排在⼀起,有多少种不同的排法?(2)如果⼥⽣必须全分开,有多少种不同的排法?(3)如果两端都不能排⼥⽣,有多少种不同的排法?(4)如果两端不能都排⼥⽣,有多少种不同的排法?(5)如果三个⼥⽣站在前排,五个男⽣站在后排,有多少种不同的排法?综合卷1.B 2.D 3.D 4.C 5.A 6.B 7.B 8.C 9.D 10.D 11.C12.600 13.504 14.480 15.9616.(1) 60;(2) 12517.(1) 37440;(2) 4320;(3) 1440018.(1) 4320;(2) 14400;(3) 14400;(4) 36000;(5) 7202、组合综合卷⼀、选择题:1.下列等式不正确的是()(A )!!()!mn n C m n m =- (B )11mm n n m C C n m++=- (C )1111m m n n m C C n +++=+ (D )11m m n n C C ++= 2.下列等式不正确的是()(A )m n m n n C C -= (B )11m m mm m m C C C -++=(C )123455555552C C C C C ++++= (D )11 111m m m m n n n n C C C C --+--=++3.⽅程2551616x x x C C --=的解共有()(A )1个(B )2个(C )3个(D )4个4.若372345n n n C A ---=,则n 的值是()(A )11 (B )12 (C )13 (D )145.已知7781n n n C C C +-=,那么n 的值是()(A )12 (B )13 (C )14 (D )15 6.从5名男⽣中挑选3⼈,4名⼥⽣中挑选2⼈,组成⼀个⼩组,不同的挑选⽅法共有()(A )3254C C 种(B ) 3254C C 55A 种(C ) 3254A A 种(D ) 3254A A 55A 种7.从4个男⽣,3个⼥⽣中挑选4⼈参加智⼒竞赛,要求⾄少有⼀个⼥⽣参加的选法共有()(A )12种(B )34种(C )35种(D )340种8.平⾯上有7个点,除某三点在⼀直线上外,再⽆其它三点共线,若过其中两点作⼀直线,则可作成不同的直线()(A )18条(B )19条(C )20条(D )21条9.在9件产品中,有⼀级品4件,⼆级品3件,三级品2件,现抽取4个检查,⾄少有两件⼀级品的抽法共有()(A )60种(B )81种(C )100种(D )126种10.某电⼦元件电路有⼀个由三节电阻串联组成的回路,共有6个焊点,若其中某⼀焊点脱落,电路就不通.现今回路不通,焊点脱落情况的可能有()(A )5种(B )6种(C )63种(D )64种⼆.填空题:11.若11m m n n C xC --=,则x= .12.三名教师教六个班的课,每⼈教两个班,分配⽅案共有种。

天津雍阳中学高中数学选修2-3第一章《计数原理》检测卷(包含答案解析)

天津雍阳中学高中数学选修2-3第一章《计数原理》检测卷(包含答案解析)

一、选择题1.已知5台机器中有2台存在故障,现需要通过逐台检测直至区分出2台故障机器为止.若检测一台机器的费用为800元,则所需检测费的均值为( ) A .2800元B .2880元C .3500元D .3600元2.已知19,3X B ⎛⎫~ ⎪⎝⎭,则()E X 、()D X 的值依次为( ). A .3,2B .2,3C .6,2D .2,63.从某班6名学生(其中男生4人,女生2人)中任选3人参加学校组织的社会实践活动.设所选3人中女生人数为ξ,则数学期望E ξ=( ) A .1B .45C .75D .24.先后抛掷三次一枚质地均匀的硬币,落在水平桌面上, 设事件A 为“第一次正面向上”,事件B 为“后两次均反面向上”,则概率(|)P B A =( ) A .12B .13 C .14 D .385.抛掷一枚均匀的硬币4次,则出现正面的次数多于反面的概率( ) A .38B .12C .516D .7166.将一枚质地均匀的硬币抛掷四次,设X 为正面向上的次数,则()03P X <<等于( ) A .18B .38C .58D .787.某工厂生产的零件外直径(单位:cm )服从正态分布()10,0.04N ,今从该厂上、下午生产的零件中各随机取出一个,测得其外直径分别为9.75cm 和9.35cm ,则可认为( )A .上午生产情况异常,下午生产情况正常B .上午生产情况正常,下午生产情况异常C .上、下午生产情况均正常D .上、下午生产情况均异常8.根据以往数据统计,某酒店一商务房间1天有客人入住的概率为45,连续2天有客人入住的概率为35,在该房间第一天有客人入住的条件下,第二天也有客人入住的概率为( ) A .13B .12C .35D .349.口袋中装有大小、轻重都无差别的5个红球和4个白球,每一次从袋中摸出2个球,若颜色不同,则为中奖每次摸球后,都将摸出的球放回口袋中,则3次摸球恰有1次中奖的概率为().A.80243B.100243C.80729D.10072910.将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落,小球在下落的过程中,将3次遇到黑色障碍物,最后落入A袋或B袋中.已知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是12,则小球落A袋中的概率为().A.18B.14C.38D.3411.设X为随机变量,且1:,3X B n⎛⎫⎪⎝⎭,若随机变量X的方差()43D X=,则()2P X== ( )A.4729B.16C.20243D.8024312.已知随机变量X的分布列为则E(6X+8)=()A.13.2 B.21.2 C.20.2 D.22.2二、填空题13.中国光谷(武汉)某科技公司生产一批同型号的光纤通讯仪器,每台仪器的某一部件由三个电子元件按如图方式连接而成,若元件1或元件2正常工作,且元件3正常工作,则该部件正常工作.由大数据统计显示:三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,210).且各个元件能否正常工作相互独立.现从这批仪器中随机抽取1000台检测该部件的工作情况(各部件能否正常工作相互独立),那么这1000台仪器中该部件的使用寿命超过1000小时的平均值为______台.14.数轴上有一质点,从原点开始每次等可能的向左或向右移动一个单位,则移动4次后,该质点的坐标为2的概率为________.15.某人乘车从A 地到B 地,所需时间(分钟)服从正态分布N (30,100),求此人在40分钟至50分钟到达目的地的概率为__________.参考数据:若2~(,)Z N μσ,则()0.6826P Z μσμσ-<<+=,(22)0.9544P Z μσμσ-<<+=,(33)0.9974P Z μσμσ-<<+=.16.设在15个相同类型的产品中有2个是次品,每次任取1个,共取3次,并且每次取出后不放回,若以ξ表示取出次品的个数,则()E ξ=________.17.已知随机变量ξ服从正态分布()21,N σ,若(3)0.0442P ξ>=,则(13)P ξ≤≤=________.18.(理)设随机变量ξ的概率分布律如下表所示:x0 1 2()P x ξ= abc其中a ,b ,c 成等差数列,若随机变量ξ的均值为43,则ξ的方差为__________. 19.已知随机变量ξ所有的取值为1,2,3,对应的概率依次为1p 、2p 、1p ,若随机变量ξ的方差12D ξ=,则12p p +的值是 _________. 20.1000名学生成绩近似服从正态分布N (100,100),则成绩在120分以上的考生人数约为_________.[注:正态总体()2,N μσ在区间(),,μσμσ-+()()2,2,3,3μσμσμσμσ-+-+内取值的概率分别为0.683, 0.954, 0.997]三、解答题21.某学校为了了解学生对新冠病毒的传播和预防知识的掌握情况,学校决定组织一次有关新冠病毒预防知识竞答.竞答分为必答题(共5题)和选答题(共2题)两部分.每位同学答题相互独立,且每道题答对与否互不影响.已知甲同学答对每道必答题的概率为45,答对每道选答题的概率为25.(1)求甲恰好答对4道必答题的概率;(2)在选答阶段,若选择回答且答对奖励5分,答错扣2分,选择放弃回答得0分.已知甲同学对于选答的两道题,选择回答和放弃回答的概率均为12,试求甲同学在选答题阶段,得分X 的分布列.22.为加快推进我区城乡绿化步伐,植树节之际,决定组织开展职工义务植树活动,某单位一办公室现安排4个人去参加植树活动,该活动有甲、乙两个地点可供选择.约定:每个人通过掷一枚质地均匀的骰子决定自己去哪个地点植树,掷出点数为1或2的人去甲地,掷出点数大于2的人去乙地.(1)求这4个人中恰有2人去甲地的概率;(2)求这4个人中去甲地的人数大于去乙地的人数的概率;(3)用,X Y 分别表示这4个人中去甲、乙两地的人数,记||X Y ξ=-,求随机变量ξ的分布列与数学期望()E ξ.23.国庆70周年阅兵式上的女兵们是一道靓丽的风景线,每一名女兵都是经过层层筛选才最终入选受阅方队,筛选标准非常严格,例如要求女兵身高(单位:cm )在区间[]165,175内.现从全体受阅女兵中随机抽取200人,对她们的身高进行统计,将所得数据分为[)165,167,[)167,169,[)169,171,[)171,173,[]173,175五组,得到如图所示的频率分布直方图,其中第三组的频数为75,最后三组的频率之和为0.7.(1)请根据频率分布直方图估计样本的平均数x 和方差2s (同一组中的数据用该组区间的中点值代表);(2)根据样本数据,可认为受阅女兵的身高X (cm )近似服从正态分布()2,N μσ,其中μ近似为样本平均数x ,2σ近似为样本方差2s .(i )求()167.86174.28P X <<;(ii )若从全体受阅女兵中随机抽取10人,求这10人中至少有1人的身高在174.28cm 以上的概率.参考数据:若()2~,X N μσ,则()0.6826P X μσμσ-<<+=,()220.9544P X μσμσ-<<+=11510.7≈,100.95440.63≈,90.97720.81≈,100.97720.79≈.24.某企业有甲、乙两个研发小组,他们研究新产品成功的概率分别为34和35,现安排甲组研发新产品A,乙组研发新产品B,设甲、乙两组的研发相互独立.(1)求恰好有一种新产品研发成功的概率;(2)若新产品A研发成功,预计企业可获得利润120万元,不成功则会亏损50万元;若新产品B研发成功,企业可获得利润100万元,不成功则会亏损40万元,求该企业获利ξ万元的分布列和期望.25.甲、乙两名篮球运动员,甲投篮一次命中的概率为23,乙投篮一次命中的概率为12,若甲、乙各投篮三次,设X为甲、乙投篮命中的次数的差的绝对值,其中甲、乙两人投篮是否命中相互没有影响.(1)若甲、乙第一次投篮都命中,求甲获胜(甲投篮命中数比乙多)的概率;(2)求X的分布列及数学期望.26.已知某高校综合评价有两步:第一步是材料初审,若材料初审不合格,则不能进入第二步面试;若材料初审合格,则进入第二步面试.只有面试合格者,才能获得该高校综合评价的录取资格,现有A,B,C三名学生报名参加该高校的综合评价,假设A,B,C三位学生材料初审合格的概率分别是13,12,14;面试合格的概率分别是12,13,23.(1)求A,B两位考生有且只有一位考生获得录取资格的概率;(2)记随机变量X为A,B,C三位学生获得该高校综合评价录取资格的人数,求X的概率分布与数学期望.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】设检测机器所需检测费为X,则X的可能取值为2000,3000,4000,分别求出相应的概率,由此能求出所需检测费的均值.【详解】设检测机器所需检测费为X,则X的可能取值为1600,2400,3200,211(1600)5410P X==⨯=,2313213213(2400)54354354310P X==⨯⨯+⨯⨯+⨯⨯=,133(3200)110105P X ==--=, 则133()160024003200280010105E X =⨯+⨯+⨯=. 故选:A. 【点睛】本题考查了独立事件概率的求法,离散型随机变量的数学期望的求法,考查对立事件概率计算公式,是中档题.2.A解析:A 【分析】直接利用二项分布公式计算得到答案. 【详解】19,3X B ⎛⎫~ ⎪⎝⎭,则()=⨯=1933E X ,()1191233D X ⎛⎫=⨯⨯-= ⎪⎝⎭故选:A 【点睛】本题考查了二项分布,意在考查学生对于二项分布的理解.3.A解析:A 【解析】 【分析】随机变量随机ξ的所有可能的取值为0,1,2.分别求出其对应的概率,列出分布列,求期望即可. 【详解】随机变量ξ的所有可能的取值为0,1,2,P (ξ=0)30423615C C C ==,()214236315C C P C ξ===, ()124236125C C P C ξ===, 所有随机变量ξ的分布列为:所以ξ的期望()0121555E ξ=⨯+⨯+⨯= ,故选A . 【点睛】本题考查了离散型随机变量的期望,属于中档题.4.C解析:C 【分析】由先后抛掷三次一枚质地均匀的硬币,得出事件A “第一次正面向上”,共有4种不同的结果,再由事件A “第一次正面向上”且事件B “后两次均反面向上”,仅有1中结果,即可求解. 【详解】由题意,先后抛掷三次一枚质地均匀的硬币,共有2228⨯⨯=种不同的结果, 其中事件A “第一次正面向上”,共有4种不同的结果,又由事件A “第一次正面向上”且事件B “后两次均反面向上”,仅有1中结果, 所以()()1(|)4P AB P B A P A ==,故选C. 【点睛】本题主要考查了条件概率的计算,其中解答中认真审题,准确得出事件A 和事件A B 所含基本事件的个数是解答的关键,着重考查了运算能力,属于基础题.5.C解析:C 【分析】掷一枚均匀的硬币4次,则出现正面的次数多于反面的次数包含出现4次正面和出现3次正面一次反面,由此能求出出现正面的次数多于反面的次数的概率. 【详解】掷一枚均匀的硬币4次,则出现正面的次数多于反面的次数包含出现4次正面和出现3次正面一次反面,∴出现正面的次数多于反面的次数的概率:4433441115()()22216p C C =+⋅=. 故选C . 【点睛】本题考查概率的求法,是基础题,解题时要认真审题,注意互斥事件概率计算公式的合理运用.6.C解析:C 【解析】分析:先确定随机变量得取法12X =,,再根据独立重复试验求概率. 详解:因为14244411(1)(),(2)(),22P x C P x C ====所以142444411105(03)(1)(2)()(),2228P x P x P x C C <<==+==+== 选C.点睛:n 次独立重复试验事件A 恰好发生k 次得概率为(1)kkn kn C p p --.其中p 为1次试验种A 发生得概率.7.B解析:B 【解析】分析:根据3σ原则判断.详解:因为服从正态分布()10,0.04N ,所以10,0.2(100.23,100.23)(9.4,10.6)x μσ==∴∈-⨯+⨯= 所以上午生产情况正常,下午生产情况异常, 选B.点睛:利用3σ原则求概率问题时,要注意把给出的区间或范围与正态变量的μ,σ进行对比联系,确定它们属于(μ-σ,μ+σ),(μ-2σ,μ+2σ),(μ-3σ,μ+3σ)中的哪一个.8.D解析:D 【分析】首先设出所求的概率为P ,根据题中的条件,可以列出P 所满足的等量关系式,从而求得相应的结果. 【详解】设第二天也有客人入住的概率为P ,根据题意有43=55P ⋅,解得34P =,故选D.【点睛】该题考查的是有关两个事件同时发生的概率问题,也可以看做是有关条件概率的问题,在解题的过程中,需要正确应用公式求得结果.9.A解析:A 【解析】每次摸球中奖的概率为114529C C 2059C 36==,由于是有放回地摸球,故3次摸球相当于3次独立重复实验,所以3次摸球恰有1次中奖的概率2135580C 199243P ⎛⎫=⨯⨯-= ⎪⎝⎭. 故选A .点睛:判断一个随机变量是否服从二项分布,要看两点:①是否为n 次独立重复试验,在每次试验中事件A 发生的概率是否均为p ;②随机变量是否为在这n 次独立重复试验中某事件发生的次数,且()()1n kk kn p X k C p p -==-表示在独立重复试验中,事件A 恰好发生k 次的概率.10.D解析:D 【解析】由于小球每次遇到黑色障碍物时,有一次向左和两次向右或两次向左和一次向右下落时,小球将落入A 袋,所以22123311113()C 1C 122224P A ⎛⎫⎛⎫⎛⎫⎛⎫=⋅⋅-+⋅⋅-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 故选D .11.D解析:D 【解析】随机变量X 满足二项分布,所以1224(),3393D x npq n n ==⨯⨯==n=6,所以224612(2)()()33P X C ===80243,选D.12.B解析:B 【解析】由题意知,E(X)=1×0.2+2×0.4+3×0.4=2.2,∴E(6X +8)=6E(X)+8=6×2.2+8=21.2.选B.二、填空题13.375【分析】由正态分布可知每个元件正常工作超过10000小时的概率为从而求出部件正常工作超过10000小时的概率再根据二项分布求出平均值【详解】由正态分布可知每个元件正常工作超过10000小时的概解析:375 【分析】由正态分布可知,每个元件正常工作超过10000小时的概率为12,从而求出部件正常工作超过10000小时的概率,再根据二项分布求出平均值. 【详解】由正态分布可知,每个元件正常工作超过10000小时的概率为12, 则部件正常工作超过10000小时的概率为21131228⎡⎤⎛⎫-⨯=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,又1000台仪器的该部件工作服从二项分布,所以平均值为310003758⨯=台. 故答案为:375. 【点睛】本题考查正态分布和相互独立事件及二项分布,考查逻辑推理能力、运算求解能力.14.【分析】由题意分析可知质点4次运动中有1次向左3次向右根据独立事件的概率公式求解【详解】由题意可知质点移动4次后位于坐标为2的位置说明4次中有1次向左3次向右并且每次向左或向右的概率都是所以移动4次解析:14【分析】由题意分析可知质点4次运动中有1次向左,3次向右,根据独立事件的概率公式求解. 【详解】由题意可知质点移动4次后位于坐标为2的位置,说明4次中有1次向左,3次向右,并且每次向左或向右的概率都是12,所以移动4次后,该质点的坐标为2的概率314111224p C ⎛⎫⎛⎫=⨯⨯= ⎪ ⎪⎝⎭⎝⎭.故答案为:14【点睛】本题考查独立事件概率的实际应用问题,属于基础题型,本题的关键是抽象出质点运动方向,以及概率类型.15.1359【分析】根据正态曲线的对称性求出概率即可;【详解】解:∵∴∴又∴∴∴∵∴因此此人在40分钟至50分钟到达目的地的概率是故答案为:【点睛】本题考查正态曲线的性质属于中档题解析:1359 【分析】根据正态曲线的对称性求出概率即可; 【详解】解:∵()0.6826P X μσμσ-<<+=,∴10.6826()2P X μσ->+=,∴()1P X μσ<+=-10.682610.6826222-=+.又(22)0.9544P X μσμσ-<<+=,∴10.9544(2)2P X μσ->+=,∴10.954410.9544(2)1222P X μσ-<+=-=+,∴(2)(2)P X P X μσμσμσ+<<+=<+-()P X μσ<+10.954410.6826()2222=+-+1(0.95440.6826)2=⨯-0.1359=. ∵30μ=,10σ=,∴(4050)0.1359P X <<=.因此,此人在40分钟至50分钟到达目的地的概率是0.1359. 故答案为:0.1359【点睛】本题考查正态曲线的性质,属于中档题.16.【分析】根据题意可知取出次品的个数可能的值为012利用排列组合知识求出对应的概率从而得到分布列代入数学期望公式求解即可【详解】由题意知取出次品的个数可能的值为012所以可得的分布列为: 0 1 2解析:25. 【分析】根据题意可知,取出次品的个数ξ可能的值为0、1、2,利用排列组合知识求出对应的概率,从而得到分布列,代入数学期望公式求解即可. 【详解】由题意知,取出次品的个数ξ可能的值为0、1、2,∴()0321331522035C C P C ξ===,()1221331512135C C P C ξ===, ()212133151235C C P C ξ===, 所以可得ξ的分布列为:则()0123535355E ξ=⨯+⨯+⨯=. 故答案为:25【点睛】本题考查离散型随机变量的分布列和数学期望;考查运算求解能力;正确列出随机变量的分布列是求解本题的关键;属于中档题.17.4558【分析】随机变量服从正态分布根据对称性可求得的值再根据概率的基本性质可求得【详解】因为所以故所以故答案为:04558【点睛】本题考查了正态分布曲线的对称性属于基础题解析:4558 【分析】随机变量ξ服从正态分布()21,N σ,(3)0.0442P ξ>=,根据对称性可求得(1)P ξ<-的值,再根据概率的基本性质,可求得(13)P ξ≤≤. 【详解】因为(3)0.0442P ξ>=,所以(1)0.0442P ξ<-=,故(13)1(3)(1)0.9116P P P ξξξ-≤≤=->-<-=. 所以(13)0.4558P ξ≤≤=. 故答案为:0.4558. 【点睛】本题考查了正态分布曲线的对称性,属于基础题.18.【分析】根据题意已知成等差数列随机变量的均值为列出方程组得由此能求出【详解】解:由随机变量的概率分布律得:①因为成等差数列所以②而随机变量的均值为则③联立①②③得所以故答案为:【点睛】本题考查方差的解析:59【分析】根据题意,已知a ,b ,c 成等差数列,随机变量ξ的均值为43,列出方程组,得16a =,13b =,12c =,由此能求出()D ξ. 【详解】解:由随机变量ξ的概率分布律得:1a b c ++=,① 因为a ,b ,c 成等差数列,所以2b a c =+,② 而随机变量ξ的均值为43,则 40123a b c ⨯+⨯+⨯=,③联立①②③,得16a =,13b =,12c =, 所以2224141415012363()(3329()))(D ξ=-⨯+-⨯+-⨯=. 故答案为:59. 【点睛】本题考查方差的求法,以及离散型随机变量的分布列、等差数列的性质等基础知识.19.【分析】先由分布列的性质可得再利用数学期望公式解得进而根据方差公式求得代入得到不难得到的值【详解】由分布列的性质可得即则故答案为:【点睛】本题考查离散型分布的期望与方差考查分布列的性质的应用属于基础题解析:34【分析】先由分布列的性质可得1221p p +=,再利用数学期望公式解得2E ξ=,进而根据方差公式求得1p ,代入1221p p +=得到2p ,不难得到12p p +的值 【详解】由分布列的性质可得1211p p p ++=,即1221p p +=,()12112122342222E p p p p p p p ξ=++=+=+=,()()()2221211112223222D p p p p ξ∴=-+-+-==,则114p =, 2111121242p p ∴=-=-⨯=, 12113424p p ∴+=+= 故答案为:34【点睛】本题考查离散型分布的期望与方差,考查分布列的性质的应用,属于基础题20.23【分析】由题意结合正态分布的性质首先求得之间的考生人数然后求解120分以上的考生人数即可【详解】在之间的为954在120分以上的为【点睛】关于正态曲线在某个区间内取值的概率求法:①熟记P(μ-σ解析:23 【分析】由题意结合正态分布的性质首先求得(80,120)之间的考生人数,然后求解120分以上的考生人数即可. 【详解】(100,100),100,10N μσ==在(2,2)(80,120)μσμσ-+=之间的为10000.954⨯=954.∴在120分以上的为1(1000954)232⨯-=.【点睛】关于正态曲线在某个区间内取值的概率求法:①熟记P (μ-σ<X ≤μ+σ),P (μ-2σ<X ≤μ+2σ),P (μ-3σ<X ≤μ+3σ)的值. ②充分利用正态曲线的对称性和曲线与x 轴之间面积为1.三、解答题21.(1)256625;(2)答案见解析. 【分析】(1)根据相互独立事件的概率公式解之即可;(2)甲得分的可能性为4-分,2-分,0分,3分,5分和10分,然后根据相互独立事件的概率公式求出相应的概率,列出分布列即可. 【详解】(1)甲恰好答对4道必答题的概率为4454125655625P C ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭. (2)依题意,每道题选择回答并答对的概率为121255⨯=,选择回答且答错的概率为1332510⨯=,选择放弃回答的概率为12.甲得分的可能性为4-分,2-分,0分,3分,5分和10分. 所以9(4)100P X =-=, 121133(2)C 22510P X ⎛⎫=-=⨯⨯= ⎪⎝⎭, 111(0)224P X ==⨯=, 1211233(3)C 225525P X ⎛⎫⎛⎫==⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭, 21121(10)22525P X ⎛⎫==⨯⨯= ⎪⎝⎭.所以X 的分布列为22.(1)827;(2)19;(3)分布列答案见解析,数学期望:14881. 【分析】(1)参加甲游戏的概率P=13,设"这4个人中恰有k 人去参加甲游戏"为事件A k (k =0,1,2,3,4),可求这4个人中恰有2个人去参加甲游戏的概率()2P A ,计算即可得出结果; (2)由(1)可知求()()34P A P A +;(3)ξ的所有可能取值为0,2,4,写出其对应的概率和分布列. 【详解】依题意知,这4个人中每个人去甲地的概率为13,去乙地的概率为23.设“这4个人中恰有i 人去甲地”为事件0,1,2,3,4i A i =(),则4-412()()()33iiii P A C =.(1)这4个人中恰有2人去甲地的概率为22224128()()()3327P A C ==(2)设“这4个人中去甲地的人数大于去乙地的人数”为事件B ,则34B A A =⋃,由于3A 与4A 互斥,故3144443341211()()()3339PB P A PC C A =++==()()(). 所以这4个人中去甲地的人数大于去乙地的人数的概率为19. (3)ξ的所有可能的取值为0,2,4,由于1A 与3A互斥,0A 与4A 互斥, 故28270PP A ξ===()(),1340812P P A P A ξ==+=()()(), 0417814P P A P A ξ==+=()()(). 所以ξ的分布列为:故1714827801818124Eξ=⨯+⨯+⨯=(). 【点睛】本小题主要考查古典概型及其概率计算公式、互斥事件、事件的相互独立性、离散型随机变量的分布列与数学期望等基础知识,考查运用概率知识解决简单实际问题的能力.应用性问题是高考命题的一个重要考点,近年来都通过概率问题来考查,且常考常新,对于此类考题,要注意认真审题,对二项分布的正确判读是解题的关键,属于一般难度题型. 23.(1)170x =,2 4.6s =;(2)(i )0.8185;(ii )0.21 【分析】(1)由题意求出各组频率,由平均数公式及方差公式即可得解; (2)(i )由题意结合正态分布的性质即可得解;(ii )由题意结合正态分布的性质可得()174.280.0228P X >=,再由()10110.0228P =--即可得解.【详解】(1)由题知第三组的频率为750.375200=, 则第五组的频率为0.70.3750.12520.075--⨯=, 第二组的频率为10.70.0520.2--⨯=,所以五组频率依次为0.1,0.2,0.375,0.25,0.075,故0.11660.21680.3751700.251720.075174170x =⨯+⨯+⨯+⨯+⨯=,22222(170166)0.1(170168)0.2(170172)0.25(170174)0.075s =-⨯+-⨯+-⨯+-⨯4.6=;(2)由题知170μ=, 2.14σ==≈, (i )()()167.86174.282P X P X μσμσ<<=-<<+()()()222P X P X P X μσμσμσμσμσμσ-<<+--<<+=-<<++0.95440.68260.68260.81852-=+=;(ii )()()10.9544174.2820.02282P X P X μσ->=>+==, 故10人中至少有1人的身高在174.28cm 以上的概率:()1010110.022810.977210.790.21P =--=-≈-=.【点睛】本题考查了频率分布直方图的应用,考查了正态分布的应用,属于中档题. 24.(1)920;(2)见解析,121.5万元. 【分析】(1)设恰好有一种新产品研发成功为事件A ,利用相互独立与互斥事件的概率计算公式可得P (A );(2)由题可得设企业可获得利润为ξ,则ξ的取值有﹣90,50,80,220.利用相互独立试验同时发生的概率计算方法分别得到每种情况的概率,列出分布列,算出期望即可. 【详解】解:(1)设恰好有一种新产品研发成功为事件A ,则 P (A )=(134-)3354⨯+⨯(135)920=;(2)由题可得设企业可获得利润为ξ,则ξ的取值有﹣90,50,80,220. 由独立试验的概率计算公式可得,P (ξ=0)=(134-)(135)110=,P (ξ=50)33314520⎛⎫=-⨯=⎪⎝⎭, P (ξ=80)33314510⎛⎫=⨯-= ⎪⎝⎭, P (ξ=220)3394520=⨯=, ∴ξ的分布列如下:则数学期望E (ξ)9010=-⨯+50802010⨯+⨯+22020⨯=121.5万元. 【点睛】本题主要考查离散型随机变量的分布列与均值的计算,考查了学生的运算求解能力. 25.(1)49;(2)分布列见解析,1 【分析】(1)甲获胜的情况为3:1,3:2,2:1分别计算概率即可得解;(2)X 的所有可能取值是0,1,2,3,分别计算概率,写出分布列,计算数学期望. 【详解】(1)甲以3:1获胜的概率221211329P ⎛⎫⎛⎫=⨯= ⎪ ⎪⎝⎭⎝⎭, 甲以3:2获胜的概率22122212C 329P ⎛⎫⎛⎫=⨯= ⎪ ⎪⎝⎭⎝⎭, 甲以2:1获胜的概率213221113329P C ⎛⎫=⨯⨯⨯= ⎪⎝⎭, 则甲获胜的概率1231214.9999P P P P =++=++= (2)由题意可得X 的所有可能取值是0,1,2,3.3323232112233333333112112112(0)C C C C C C 323323323P X ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==⨯+⨯⨯⨯⨯+⨯⨯⨯⨯+⨯⨯ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭311111722161262724⎛⎫⨯=+++=⎪⎝⎭; 33232333212133331121121121(2)C C C C 3233233232P X ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==⨯⨯+⨯⨯⨯+⨯⨯⨯+⨯⨯ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭11115723618924=+++=; 33331121111(3)32322162724P X ⎛⎫⎛⎫⎛⎫⎛⎫==⨯+⨯=+=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭; 75111(1)124242424P X ==---=. X 的分布列为故()0123 1.24242424E X =⨯+⨯+⨯+⨯= 【点睛】此题考查求解概率和分布列,根据分布列求解期望,关键在于准确求解概率. 26.(1)518(2)详见解析 【分析】(1)记“A ,B 两位考生有且只有一位考生获得录取资格”为事件M ,分别算出A ,B 考生获得录取资格的概率,再分两类求解.(2)随机变量X 可能的取值为:0,1,2,3,分别求出A ,B ,C 考生获得录取资格的概率,再根据A ,B ,C 三位考生获得高校综合评价录取资格的人数服从二项分布,列出分布列再求期望. 【详解】(1)记“A ,B 两位考生有且只有一位考生获得录取资格”为事件M A 考生获得录取资格的概率为111326⨯=;B 考生获得录取资格的概率为111236⨯=; 所以15515()666618P M =⨯+⨯= 答:A ,B 两位考生有且只有一位考生获得录取资格的概率为518; (2)随机变量X 可能的取值为:0,1,2,3 C 考生获得录取资格的概率为121436⨯=,由(1)得A ,B 两位考生获得录取资格的概率均为16, 所以A ,B ,C 三位考生获得高校综合评价录取资格的人数X ~B (3,16), 则0335125(0)()6216P X C ===,1235175(1)()()66216P X C ===, 2235115(2)()()66216P X C ===,33311(3)()6216P X C ===,随机变量X 的概率分布表如下:125751511()01232162162162162E X=⨯+⨯+⨯+⨯=(人)答:X的数学期望为12人.【点睛】本题主要考查独立事件的概率以及离散型随机变量的分布列及期望,还考查了运算求解的能力,属于中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二2-3第一二章综合测试卷(一)
一、选择题
1.在100件产品中,有3件是次品,现从中任意抽取5件,其中至少有2件次品的取法种数为 ( )
A .23397C C
B .2332397397
C C +C C C .514100397C -C C
D .5510097C -C
2.222223410
C C C C ++++ 等于( ) A .990 B .165 C .120
D .55
3.二项式30
32a a ⎛⎫- ⎪⎝
⎭的展开式的常数项为第( )项 A . 17 B .18 C .19 D .20
4.设2921101211(1)(21)(2)(2)(2)x x a a x a x a x ++=+++++++ ,则 01211a a a a ++++ 的值为( ) A .2- B .1- C .1 D .2
5.从6名学生中,选出4人分别从事A 、B 、C 、D 四项不同的工作,若其中,甲、乙两人不能从事工作A ,则不同的选派方案共有( )
A .96种
B .180种
C .240种
D .280种
6.设随机变量ξ服从B (6,12
),则P (ξ=3)的值是( ) A .516 B .316
C . 58
D .38 7.在某一试验中事件A 出现的概率为p ,则在n 次试验中A 出现k 次的概率为( )
A .1-k p
B .()k n k p p --1 C.1-()k p -1 D .()k n k
k n p p C --1
8.从1,2,……,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是( )
A .95
B .94
C .2111
D .21
10 二、填空题
9.已知3-21010
C =C x x ,则x = __________. 10. A 、B 、C 、
D 、
E 五人并排站成一排,若A ,B 必须相邻,且B 在A 的左边,
那么不同的排法共有 种
11.已知二项分布满足2
(6,)3
X B ,则P(X=2)=_________. 12.有4台设备,每台正常工作的概率均为0.9,则4台中至少有3台能正常工作的概率为 .(用小数作答)
13.从1,2,3,…,9九个数字中选出三个不同的数字a ,b ,c ,且a <b <c ,作抛物线y =ax 2+bx +c ,则不同的抛物线共有 条(用数字作答).
三、解答题:(本大题共4小题,共60分。

写出详细的解答或证明过程) 14 .(本小题满分14分)
已知57A 56C n n
=,且(1-2x )n =a 0+a 1x +a 2x 2+a 3x 3+……+a n x n . (Ⅰ)求n 的值;
(Ⅱ)求a 1+a 2+a 3+……+a n 的值.
15.(本小题满分16分) 已知某类型的高射炮在它们控制的区域内击中具有某种速度敌机的概率为15
.(Ⅰ)假定有5门这种高射炮控制某个区域,求敌机进入这个区域后被击中的概率;
(Ⅱ)要使敌机一旦进入这个区域内有90%以上的概率被击中,至少需要布置几门这类高射炮?(参考数据lg 20.301=,lg30.4771=)。

相关文档
最新文档