平方差公式和完全平方公式基础拔高练习(含答案)

合集下载

平方差公式与完全平方公式试题含答案

平方差公式与完全平方公式试题含答案

仁(2-1 )解:(2+1) (22+1) (24+1) =2=16102420482 +1) +12048(2 +1) +1乘法公式的复习一、复习:(a+b)(a-b)=a 2-b2 (a+b) 2=a2+2ab+b2 (a-b) 2=a2-2ab+b2归纳小结公式的变式,准确灵活运用公式:① 位置变化,(X4y y+X px2_y2 ② 符号变化,(以+y X4_y”_x j_y2= x 2_y2③ 指数变化,(X2*y2)(x2-y2尸x4y ④ 系数变化,(2a+b[2a—b)=4a2_b2⑤换式变化,Ry 飞z+m p[xy_(z+m)H xy)-(z+m j= X2y2-( z2+2zm+m)=x2y2—z2—2zmn^⑥增项变化,(x-y+z 胚―y—z R X—y j_z2以2-2xy +y2-z2⑦连用公式变化,x y x_y x2 y2 = x2_y2 x2 y2 =x^y4⑧逆用公式变化,(X-y+z 匚(X4y-Z $=[[x-y+z)飞x+y-z 卩耿-y+z 卜(x+y-z)]=2x(_2y +2z)一 4xy +4xz例1已知a • b = 2,ab =1,求a2 b2的值。

解:T (a b)2 =a22ab b2二a2b2 = (a b)2-2abI a b = 2, ab =1二a2b2=22_2 1 = 2例2•已知a=8,ab =2,求(a -b)2的值。

解:••• (a b)2=a22ab b2(a -b)2二a2-2ab b22 2 2 2(a b) 「(a -b) = 4ab 二(a b) - 4ab = (a -b)2 2■/ a b=8,ab = 2 • (a-b)2= 82- 4 2 =56例3:计算199*2000 X 1998〖解析〗此题中2000=1999+1, 1998=1999-1,正好符合平方差公式。

解:19992-2000 X 1998 =1999 2- (1999+1)X( 1999-1 )=1999 2- (19992-1 2) =199口19992+1 =1例4:已知a+b=2, ab=1,求a2+b2和(a-b) 2的值。

平方差公式与完全平方公式试题(含答案)

平方差公式与完全平方公式试题(含答案)

乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2(a+b)2=a 2+2ab+b 2(a-b)2=a 2-2ab+b 2归纳小结公式的变式,准确灵活运用公式:① 位置变化,(x +y )(-y +x )=x 2-y 2② 符号变化,(-x +y )(-x -y )=(-x )2-y 2= x 2-y 2③ 指数变化,(x 2+y 2)(x 2-y 2)=x 4-y 4④ 系数变化,(2a +b )(2a -b )=4a 2-b 2⑤ 换式变化,[xy +(z +m )][xy -(z +m )]=(xy )2-(z +m )2= x 2y 2-(z 2+2zm +m 2)=x 2y 2-z 2-2zm -m 2⑥ 增项变化,(x -y +z )(x -y -z )=(x -y )2-z 2=x 2-2xy +y 2-z 2⑦ 连用公式变化,(x +y )(x -y )(x 2+y 2)=(x 2-y 2)(x 2+y 2)=x 4-y 4⑧ 逆用公式变化,(x -y +z )2-(x +y -z )2=[(x -y +z )+(x +y -z )][(x -y +z )-(x +y -z )] =2x (-2y +2z ) =-4xy +4xz例1.已知2=+b a ,1=ab ,求22b a +的值。

解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+b a ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。

解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +-∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。

平方差公式与完全平方公式试题含答案

平方差公式与完全平方公式试题含答案

乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2 (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2 归纳小结公式的变式,准确灵活运用公式:① 位置变化,(x +y )(-y +x )=x 2-y 2 ② 符号变化,(-x +y )(-x -y )=(-x )2-y 2= x 2-y 2 ③ 指数变化,(x 2+y 2)(x 2-y 2)=x 4-y 4 ④ 系数变化,(2a +b )(2a -b )=4a 2-b 2⑤ 换式变化,[xy +(z +m )][xy -(z +m )]=(xy )2-(z +m )2= x 2y 2-(z 2+2zm +m 2)=x 2y 2-z 2-2zm -m 2 ⑥ 增项变化,(x -y +z )(x -y -z )=(x -y )2-z 2 =x 2-2xy +y 2-z 2 ⑦ 连用公式变化,(x +y )(x -y )(x 2+y 2)=(x 2-y 2)(x 2+y 2)=x 4-y 4⑧ 逆用公式变化,(x -y +z )2-(x +y -z )2=[(x -y +z )+(x +y -z )][(x -y +z )-(x +y -z )] =2x (-2y +2z ) =-4xy +4xz 例1.已知2=+b a ,1=ab ,求22b a +的值。

解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+ ∵2=+b a ,1=ab ∴22b a +=21222=⨯- 例2.已知8=+b a ,2=ab ,求2)(b a -的值。

解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +- ∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a - ∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯- 例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。

平方差公式提高测试卷(含答案)

平方差公式提高测试卷(含答案)

平方差公式提高测试卷(含答案) 平方差公式提高测试卷时间:90分钟,总分100分。

一、选择题(本大题共10小题,共30.0分)1.下列各式中,能运用平方差公式进行计算的是()。

A。

(2a+3a)(2a−3a)B。

(−a+0.5)(−a−0.5)C。

(a+a)(−a−a)D。

(2a2+a2)(2a2+a2)2.计算2009×2011−的结果是()。

A。

1B。

−1C。

2008D。

−20083.下列算式能用平方差公式计算的是()。

A。

(2a+a)(2a−a)B。

(−2a−1)(−2a−1)C。

(3a−a)(−3a+a)D。

(−a−a)(−a+a)4.下列式子可以用平方差公式计算的是()。

A。

(a−4)(4−a)B。

(−a−3)(3−a)C。

(a+a)(−a−a)D。

(−a−a)(−a+a)5.下列运算正确的是()。

A。

a2⋅a2=2a2B。

a2−a2=(a+a)(a−a)C。

(1+2a)2=1+2a+4a2D。

(2a+3)(2a−3)=4a2−96.下列各式能用平方差公式计算的是()。

A。

(2a+a)(2a−a)B。

a2+a2=a4C。

(−a−a)(−a+a)D。

(−a+1)(a+1)=1−a27.与(7a−a2)之积等于a4−49a2的因式为()。

A。

(7a−a2)B。

(7a+a2)C。

(−7a−a2)D。

(a2−7a)8.计算(a4+1)(a2+1)(a+1)(a−1)的结果是()。

A。

a8+1B。

a8−1C。

(a+1)8D。

(a−1)89.如果一个正整数能表示为两个正整数的平方差,那么这个正整数称为“智慧数”,按你的理解,下列4个数中不是“智慧数”的是()。

A。

2002B。

2003C。

2004D。

200510.下列计算不正确的是()。

A。

(2a+1)(2a−1)=4a2−1B。

(a+3)(a−3)=a2−9C。

(−a−a)(−a+a)=a2−a2D。

(3a−a)(−3a+a)=9a2−a2二、填空题(本大题共10小题,共30.0分)11.如果a2=5,a2=3,那么(a+a)(a−a)=______。

平方差公式与完全平方公式试题含答案

平方差公式与完全平方公式试题含答案

乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2 (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2归纳小结公式的变式,准确灵活运用公式:① 位置变化,?x ?y ???y ?x ??x 2?y 2 ② 符号变化,??x ?y ???x ?y ????x ?2?y 2? x 2?y 2 ③ 指数变化,?x 2?y 2??x 2?y 2??x 4?y 4 ④ 系数变化,?2a ?b ??2a ?b ??4a 2?b 2⑤ 换式变化,?xy ??z ?m ???xy ??z ?m ????xy ?2??z ?m ?2? x 2y 2??z 2?2zm +m 2??x 2y 2?z 2?2zm ?m 2 ⑥ 增项变化,?x ?y ?z ??x ?y ?z ???x ?y ?2?z 2 ?x 2?2xy ?y 2?z 2⑦ 连用公式变化,?x ?y ??x ?y ??x 2?y 2???x 2?y 2??x 2?y 2??x 4?y 4⑧ 逆用公式变化,?x ?y ?z ?2??x ?y ?z ?2???x ?y ?z ???x ?y ?z ????x ?y ?z ???x ?y ?z ???2x ??2y ?2z ? ??4xy ?4xz例1.已知2=+b a ,1=ab ,求22b a +的值。

解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+b a ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。

解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +-∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。

平方差公式与完全平方公式试题含答案

平方差公式与完全平方公式试题含答案

乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2 (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2 归纳小结公式的变式,准确灵活运用公式:① 位置变化,(x +y )(-y +x )=x 2-y 2 ② 符号变化,(-x +y )(-x -y )=(-x )2-y 2= x 2-y 2 ③ 指数变化,(x 2+y 2)(x 2-y 2)=x 4-y 4 ④ 系数变化,(2a +b )(2a -b )=4a 2-b 2⑤ 换式变化,[xy +(z +m )][xy -(z +m )]=(xy )2-(z +m )2= x 2y 2-(z 2+2zm +m 2)=x 2y 2-z 2-2zm -m 2 ⑥ 增项变化,(x -y +z )(x -y -z )=(x -y )2-z 2 =x 2-2xy +y 2-z 2 ⑦ 连用公式变化,(x +y )(x -y )(x 2+y 2)=(x 2-y 2)(x 2+y 2)=x 4-y 4⑧ 逆用公式变化,(x -y +z )2-(x +y -z )2=[(x -y +z )+(x +y -z )][(x -y +z )-(x +y -z )] =2x (-2y +2z ) =-4xy +4xz 例1.已知2=+b a ,1=ab ,求22b a +的值。

解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+ ∵2=+b a ,1=ab ∴22b a +=21222=⨯- 例2.已知8=+b a ,2=ab ,求2)(b a -的值。

解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +- ∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a - ∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯- 例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。

平方差公式与完全平方公式试题(含答案)

平方差公式与完全平方公式试题(含答案)

乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2(a+b)2=a 2+2ab+b 2(a-b)2=a 2-2ab+b 2(a+b)(a 2-ab+b 2)=a 3+b 3(a-b)(a 2+ab+b 2)=a 3-b 3归纳小结公式的变式,准确灵活运用公式: ① 位置变化,x y y x x 2y 2 ② 符号变化,x y x yx2y 2 x 2y 2③ 指数变化,x 2y 2x 2y 2x 4y 4 ④ 系数变化,2ab 2ab 4a2b 2 ⑤ 换式变化,xy zmxyzmxy 2zm 2x 2y 2z m z m x 2y 2z 2zmzm m 2x 2y 2z 22zmm 2 ⑥ 增项变化,x yz xyzx y 2z 2 x y xy z 2 x 2xyxy y 2z 2x 22xyy 2z 2 ⑦ 连用公式变化,x yxy x 2y 2x 2y 2x 2y 2x 4y 4 ⑧ 逆用公式变化,xy z 2x y z 2xyzxyzx y z x y z2x 2y 2z4xy4xz例1.已知2=+b a ,1=ab ,求22b a +的值。

解:∵=+2)(b a222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+ba ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。

解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +- ∴-+2)(b a=-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+ba ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。

解:19992-2000×1998 =19992-(1999+1)×(1999-1) =19992-(19992-12)=19992-19992+1 =1例4:已知a+b=2,ab=1,求a 2+b 2和(a-b)2的值。

平方差公式与完全平方公式试题(含答案)

平方差公式与完全平方公式试题(含答案)

乘法公式的复习一、复习:(a+b)(a-b)=a2-b2 (a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2 (a+b)(a2-ab+b2)=a3+b3 (a-b)(a2+ab+b2)=a3-b3归纳小结公式的变式,准确灵活运用公式:①位置变化,(x+y)(-y+x)=x2-y2②符号变化,(-x+y)(-x-y)=(-x)2-y2= x2-y2③指数变化,(x2+y2)(x2-y2)=x4-y4④系数变化,(2a+b)(2a-b)=4a2-b2⑤换式变化,[xy+(z+m)][xy-(z+m)]=(xy)2-(z+m)2=x2y2-(z+m)(z+m)=x2y2-(z2+zm+zm+m2)=x2y2-z2-2zm-m2⑥增项变化,(x-y+z)(x-y-z)=(x-y)2-z2=(x-y)(x-y)-z2=x2-xy-xy+y2-z2=x2-2xy+y2-z2⑦连用公式变化,(x+y)(x-y)(x2+y2)=(x2-y2)(x2+y2)=x 4-y 4⑧ 逆用公式变化,(x -y +z )2-(x +y -z )2=[(x -y +z )+(x +y -z )][(x -y +z )-(x +y -z )] =2x (-2y +2z )=-4xy +4xz例1.已知2=+b a ,1=ab ,求22b a +的值。

解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+b a ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。

解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +-∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平方差公式
◆基础训练
1.(a2+b2)(a2-b2)=(____)2-(____)2=______.2.(-2x2-3y2)(2x2-3y2)=(____)2-(____)2=_____.3.20×19=(20+____)(20-____)=_____-_____=_____.4.9.3×10.7=(____-_____)(____+____)=____-_____.5.20062-2005×2007的计算结果为()
A.1 B.-1 C.2 D.-2
6.在下列各式中,运算结果是b2-16a2的是()
A.(-4a+b)(-4a-b) B.(-4a+b)(4a-b)
C.(b+2a)(b-8a) D.(-4a-b)(4a-b)7.运用平方差公式计算.
(1)102×98 (2)23
4
×3
1
4
(3)-2.7×3.3
(4)1007×993 (5)121
3
×11
2
3
(6)-19
4
5
×20
1
5
(7)(3a+2b)(3a-2b)-b(a-b)(8)(a-1)(a-2)(a+1)(a+2)(9)(a+b)(a-b)+(a+2b)(a-2b)
(10)(x+2y)(x-2y)-(2x+5y)(2x-5y)
(11)(2m-5)(5+2m)+(-4m-3)(4m-3)
(12)(a+b)(a-b)-(a-3b)(a+3b)+(-2a+3b)(-2a-3b)
◆综合应用
8.(3a+b)(____)=b2-9a2;(a+b-m)(____)=b2-(a-m)2.
9.先化简,再求值:(3a+1)(3a-1)-(2a-3)(3a+2),其中a=-1
3

10.运用平方差公式计算:
(1)
22005
2005200042006
-⨯
;(2)99×101×10 001.
11.解方程:
(1)2(x+3)(x-3)=x2+(x-1)(x+1)+2x
(2)(2x-1)(2x+1)+3(x+2)(x-2)=(7x-1)(x+1)12.计算:(4x-3y-2a+b)2-(4x+3y+2a-b)2.
◆拓展提升
13.若a+b=4,a2-b2=12,求a,b的值.
完全平方公式
◆基础训练
1.完全平方公式:(a+b)2=______,(a-b)2=______.即两数的_____的平方等于它们的_____,加上(或减去)________.
2.计算:
(1)(2a+1)2=(_____)2+2·____·_____+(____)2=________;
(2)(2x-3y)2=(_____)2-2·____·_____+(_____)2=_______.3.(____)2=a2+12ab+36b2;(______)2=4a2-12ab+9b2.
4.(3x+A)2=9x2-12x+B,则A=_____,B=______.
5.m2-8m+_____=(m-_____)2.
6.下列计算正确的是()
A.(a-b)2=a2-b2 B.(a+2b)2=a2+2ab+4b2
C.(a2-1)2=a4-2a2+1 D.(-a+b)2=a2+2ab+b2
7.运算结果为1-2ab2+a2b4的是()
A.(-1+ab2)2 B.(1+ab2)2 C.(-1+a2b2)2 D.(-1-ab2)2 8.计算(x+2y)2-(3x-2y)2的结果为()
A.-8x2+16xy B.-4x2+16xy C.-4x2-16xy D.8x2-16xy 9.计算(a+1)(-a-1)的结果是()
A.-a2-2a-1 B.-a2-1 C.a2-1 D.-a2+2a-1 10.运用完全平方公式计算:
(1)(a+3)2(2)(5x-2)2(3)(-1+3a)2
(4)(1
3
a+
1
5
b)2(5)(-a-b)2(6)(-a+
1
2
)2
(7)(xy+4)2(8)(a+1)2-a2(9)(-2m2-1
2
n2)2
(10)1012(11)1982(12)19.92 11.计算:
(1)(a+2b)(a-2b)-(a+b)2(2)(x-1
2
)2-(x-1)(x-2)
12.解不等式:(2x-5)2+(3x+1)2>13(x2-10)+2.
◆综合应用
13.若(a+b)2+M=(a-b)2,则M=_____.
14.已知(a-b)2=8,ab=1,则a2+b2=_____.
15.已知x+y=5,xy=3,求(x-y)2的值
16.一个圆的半径为rcm,当半径减少4cm后,这个圆的面积减少多少平方厘米?
◆拓展提升
17.已知x+1
x
=3,试x2+
2
1
x
和(x-
1
x
)2的值。

相关文档
最新文档