工程热力学第四版沈维道童钧耕-第1章
工程热力学课后答案

《工程热力学》 沈维道主编 第四版 课后思想题答案(1~5章)第1章 基本概念⒈ 闭口系与外界无物质交换,系统内质量将保持恒定,那么,系统内质量保持恒定的热力系一定是闭口系统吗? 答:否。
当一个控制质量的质量入流率与质量出流率相等时(如稳态稳流系统),系统内的质量将保持恒定不变。
⒉ 有人认为,开口系统中系统与外界有物质交换,而物质又与能量不可分割,所以开口系不可能是绝热系。
这种观点对不对,为什么?答:不对。
“绝热系”指的是过程中与外界无热量交换的系统。
热量是指过程中系统与外界间以热的方式交换的能量,是过程量,过程一旦结束就无所谓“热量”。
物质并不“拥有”热量。
一个系统能否绝热与其边界是否对物质流开放无关。
⒊ 平衡状态与稳定状态有何区别和联系,平衡状态与均匀状态有何区别和联系?答:“平衡状态”与“稳定状态”的概念均指系统的状态不随时间而变化,这是它们的共同点;但平衡状态要求的是在没有外界作用下保持不变;而平衡状态则一般指在外界作用下保持不变,这是它们的区别所在。
⒋ 倘使容器中气体的压力没有改变,试问安装在该容器上的压力表的读数会改变吗?在绝对压力计算公式b e p p p =+ ()b p p >; b v p p p =- ()b p p <中,当地大气压是否必定是环境大气压?答:可能会的。
因为压力表上的读数为表压力,是工质真实压力与环境介质压力之差。
环境介质压力,譬如大气压力,是地面以上空气柱的重量所造成的,它随着各地的纬度、高度和气候条件不同而有所变化,因此,即使工质的绝对压力不变,表压力和真空度仍有可能变化。
“当地大气压”并非就是环境大气压。
准确地说,计算式中的Pb 应是“当地环境介质”的压力,而不是随便任何其它意义上的“大气压力”,或被视为不变的“环境大气压力”。
⒌ 温度计测温的基本原理是什么?答:温度计对温度的测量建立在热力学第零定律原理之上。
它利用了“温度是相互热平衡的系统所具有的一种同一热力性质”,这一性质就是“温度”的概念。
工程热力学课后思考题答案__第四版_沈维道_童钧耕之欧阳引擎创编

1.闭口系与外界无物质交换,系统内质量保持恒定,那么系统内质量保持恒定的热力系一定是闭口系统吗?欧阳引擎(2021.01.01)不一定,稳定流动系统内质量也保持恒定。
2.有人认为开口系统内系统与外界有物质交换,而物质又与能量不可分割,所以开口系统不可能是绝热系。
对不对,为什么?不对,绝热系的绝热是指热能单独通过系统边界进行传递(传热量),随物质进出的热能(准确地说是热力学能)不在其中。
3.平衡状态与稳定状态有何区别和联系?平衡状态一定是稳定状态,稳定状态则不一定是平衡状态。
4.倘使容器中气体的压力没有改变,试问安装在该容器上的压力表的读数会改变吗?绝对压力计算公式p=pb+pg (p> pb), p= pb -pv (p< pb)气压?当地大气压pb改变,压力表读数就会改变。
当地大气压pb不一定是环境大气压。
5.温度计测温的基本原理是什么?热力学第零定律The zeroth law of thermodynamics enables us to measure temperature. In order to measure temperature of body A, we compare body C — a thermometer — with body A and temperature scales (温度的标尺,简称温标) separately. When they are in thermal equilibrium, they have the same temperature. Then we can know the temperature of body A with temperature scale marked on thermometer.6.经验温标的缺点是什么?为什么?不同测温物质的测温结果有较大的误差,因为测温结果依赖于测温物质的性质。
7.促使系统状态变化的原因是什么?举例说明。
工程热力学第四版课后习题答案

= [0.4 × (0.6 − 0.4) +
其中 n 是定值, p 是压力; 1-13 某种理想气体在其状态变化过程中服从 pv = 常数的规律,
v 是比体积。试据 w =
∫
2
1
⎛p ⎞ pv pdv 导出气体在该过程中做功为 w = 1 1 ⎢1 − ⎜ 2 ⎟ n − 1 ⎢ ⎝ p1 ⎠ ⎣
解:容器中气体压力低于当地大气压力,故绝对压力
p = pb − pv = (755 − 600)mmHg = 155mmHg = 0.0207MPa ′ = 770mmHg 。则此时真空表上的读数为 若容器中绝对压力不变,而大气压力变为 pb ′ = pb ′ − p = (770 − 155)mmHg = 615mmHg pv
第一章 基本概念
1-1 英制系统中采用华氏温标,它规定在标准大气压( 101 325 Pa )下纯水的冰点是
32 °F ,汽点是 212 °F ,试推导华氏温度与摄氏温度的换算关系。
解:
{t}° F − 32
212 − 32 100 − 0 180 9 {t}° F = {t}° C + 32 = {t}° C + 32 100 5
3
1.655 114.71
1.069 163.87
2
0.724 245.81
0.500 327.74
0.396 409.68
0.317 491.61
0.245 573.55
0.193 655.48
0.103 704. Δ V
1
=
(1.655 + 1.069)MPa 2
p1v1 ⎜ 1 − =
⎛
p2 v2 ⎞
工程热力学-ch0-1 绪论

绪论 1593年,伽利略发明制作了第一支空气温度
计。这种气体温度计是用一根细长的玻璃管制成 的。它的一端制成空心圆球形;另一端开口,事 先在管内装进一些带颜色的水,并将这一端倒插 入盛有水的容器中。在玻璃管上等距离地标上刻 度。这样,当外界温度升高时,玻璃球内气体膨 胀,使玻璃管中水位降低;反之,温度较低时, 玻璃球内气体收缩,玻璃管中的水位就会上升。
50%的石油用量。
天然气 ◇西气东输工程,连接沿线用户特别是长江三角洲地区, 全长4000公里。
能耗
◇我国单位GDP能耗为世界的4.7倍。 ◇我国能源转换利用率为29%,比全球平均水平低10%。 ◇我国SO2、NOx、CO2排放量大。
绪论
◆工程热力学是一门关于什么的课程?
热力学,是一门研究物质的能量、能量传递和转换 以及能量与物质性质之间普遍关系的科学。
◇地球自身蕴藏的能量 ◇地球与天体相互作用产生的能量
绪论 能源利用的两 种主要形式
能源开发与利 用的主要发展
◇热利用——直接利用热能,如冶金、化 工、食品等等工业与生活应用。
◇热能的动力利用——将热能转换 为机械能或电能,提供动力,如发 电、发动机等等。
◇核能 ◇风能 ◇太阳能 ◇地热能 ◇潮汐与海洋热能 ◇生物质能 ◇等等。。。
绪论
绪论
我国主要用能状况
煤炭 ◇煤的蕴藏量世界第一,开采量世界第一,但是按目前 消耗速度(30亿吨/年)只能延续200年。
石油
◇石油、天然气资源紧缺,已探储量占世界人均的1/10,
75%依赖进口。 ◇我国经济对石油的需求越来越大,石油消耗量仅次于美国。
2003年进口的原油较2002年增长了31%。交通消耗了我国
沸点较高的特性,制成水银温度计。这种温度
工程热力学课后思考题参考答案__第四版_沈维道_童钧耕主编_高等教育出版社

1.闭口系与外界无物质交换,系统内质量保持恒定,那么系统内质量保持恒定的热力系一定是闭口系统吗?不一定,稳定流动系统内质量也保持恒定。
24p=p b+p g中,压p b67.促使系统状态变化的原因是什么?举例说明。
有势差(温度差、压力差、浓度差、电位差等等)存在。
9.家用电热水器是利用电加热水的家用设备,通常其表面散热可忽略。
取正在使用12(1(2)体先恢复平衡在抽下一块,则又如何?(3)上述两种情况从初态变化到终态,其过程是否都可在p-v图上表示?p14.一刚性容器,中间用绝热隔板分为两部分,A 中存有高压空气,B 中保持真空,如图2-12所示。
若将隔板抽去,分析容器中空气的热力学能将如何变化?若在隔板上有一小孔,气体泄漏入B 中,分析A 、B 两部分压力相同时A 、B 两部分气体热力学能如何变化? 能在。
89.气体流入真空容器,是否需要推动功?推动功的定义为,工质在流动时,推动它下游工质时所作的功。
下游无工质,故不需要推动功。
利用开口系统的一般能量方程式推导的最终结果也是如此。
11.为什么稳定流动开口系内不同部分工质的比热力学能、比焓、比熵等都会改变,而整个系统的∆U CV =0、∆H CV =0、∆S CV=0?控制体的∆U CV=0、∆H CV=0、∆S CV=0是指过程进行时间前后的变化值,稳定流动系统在不同时间内各点的状态参数都不发生变化,所以∆U CV=0、∆H CV=0、∆S CV=0。
稳定流动开口系内不同部分工质的比热力学能、比焓、比熵等的改变仅仅是依坐标的改变。
13.1-1、2-2h3q m3(h3+c f32/2+gz3)如果合流前后流速变化不太大,且势能变化一般可以忽略,则能量方程为:q m1⋅h1+ q m2⋅h2= q m3⋅h3出口截面上焓值h3的计算式h3=(q m1⋅h1+ q m2⋅h2)/ q m3本题中,如果流体反向流动就是分流问题,分流与合流问题的能量方程式是一样的,一般习惯前后反过来写。
工程热力学课后思考题答案__第四版_沈维道_童钧耕主编_高等教育出版社

工程热力学课后思考题答案第1章 基本概念1.闭口系与外界无物质交换,系统内质量保持恒定,那么系统内质量保持恒定的热力系一定是闭口系统吗?不一定,稳定流动系统内质量也保持恒定。
2.有人认为开口系统内系统与外界有物质交换,而物质又与能量不可分割,所 以开口系统不可能是绝热系。
对不对,为什么? 不对,绝热系的绝热是指热能单独通过系统边界进行传递(传热量),随物质进出的热能(准确地说是热力学能)不在其中。
3.平衡状态与稳定状态有何区别和联系?平衡状态一定是稳定状态,稳定状态则不一定是平衡状态。
4.倘使容器中气体的压力没有改变,试问安装在该容器上的压力表的读数会改变吗?绝对压力计算公式p =p b +p g (p > p b ), p = p b -p v (p < p b )中,当地大气压是否必定是环境大气压?可能会的。
因为压力表上的读数为表压力,是工质真实压力与环境介质压力之差。
环境介质压力,譬如大气压力,是地面以上空气柱的重量所造成的,它随着各地的纬度、高度和气候条件不同而有所变化,因此,即使工质的绝对压力不变,表压力和真空度仍有可能变化。
4题图环境大气压是指压力仪表所处的环境的压力。
“当地大气压”并非就是环境大气压。
准确地说,计算式中的Pb 应是“当地环境介质”的压力,而不是随便任何其它意义上的“大气压力”,或被视为不变的“环境大气压力”。
当地大气压就是指的所处地点的大气压力. 任何一个地点的大气压不仅是海拔高度的函数, 而且是天气或者说是气候的函数. 也就是说是时间的函数. 但是某地的大气压随时间的变化并不会很大, 也不会非常频繁. 假如当地大气压仅仅是指所处地点地表附近的大气压, 那么所处地点上方空间中的任何一个位置就不能说成是"当地", 而只能说成是"环境",5.温度计测温的基本原理是什么?热力学第零定律如果两个热力系的每一个都与第三个热力系处于热平衡,则它们彼此也处于热平衡。
工程热力学课后思考题答案--第四版-沈维道-童钧耕主编-高等教育出版社

1.闭口系与外界无物质交换,系统内质量保持恒定,那么系统内质量保持恒定的热力系一定是闭口系统吗?不一定,稳定流动系统内质量也保持恒定。
2.有人认为开口系统内系统与外界有物质交换,而物质又与能量不可分割,所以开口系统不可能是绝热系。
对不对,为什么?不对,绝热系的绝热是指热能单独通过系统边界进行传递(传热量),随物质进出的热能(准GAGGAGAGGAFFFFAFAF确地说是热力学能)不在其中。
3.平衡状态与稳定状态有何区别和联系?平衡状态一定是稳定状态,稳定状态则不一定是平衡状态。
GAGGAGAGGAFFFFAFAF4.倘使容器中气体的压力没有改变,试问安装在该容器上的压力表的读数会改变吗?绝对压力计算公式p=p b+p g (p> p b), pp b -p v (p< p b)中,当地大气压是否必定是环境大气压?当地大气压p b改变,压力表读数就会改变。
当地大气压p b不一定是环境大气压。
5.温度计测温的基本原理是什么?热力学第零定律The zeroth law of thermodynamics enables us to measure temperature. In order to4题图GAGGAGAGGAFFFFAFAFmeasure temperature of body A, we compare body C — a thermometer — with body A and temperature scales(温度的标尺,简称温标) separately. When they are in thermal equilibrium, they have the same temperature. Then we can know the temperature of body A with temperature scale marked on thermometer.6.经验温标的缺点是什么?为什么?GAGGAGAGGAFFFFAFAF不同测温物质的测温结果有较大的误差,因为测温结果依赖于测温物质的性质。
工程热力学课后思考题答案__第四版_沈维道_童钧耕之欧阳语创编

1.闭口系与外界无物质交换,系统内质量保持恒定,那么系统内质量保持恒定的热力系一定是闭口系统吗?不一定,稳定流动系统内质量也保持恒定。
2.有人认为开口系统内系统与外界有物质交换,而物质又与能量不可分割,所以开口系统不可能是绝热系。
对不对,为什么?不对,绝热系的绝热是指热能单独通过系统边界进行传递(传热量),随物质进出的热能(准确地说是热力学能)不在其中。
3.平衡状态与稳定状态有何区别和联系?平衡状态一定是稳定状态,稳定状态则不一定是平衡状态。
4.倘使容器中气体的压力没有改变,试问安装在该容器上的压力表的读数会改变吗?绝对压力计算公式p=pb+pg (p> pb),p= pb-pv (p< pb)中,当地大气压是否必定是环境大气压?当地大气压pb改变,压力表读数就会改变。
当地大气压pb不一定是环境大气压。
5.温度计测温的基本原理是什么?热力学第零定律The zeroth law of thermodynamics enables us to measure temperature. In order to measure temperature of body A, we compare body C —a thermometer — with body A and temperature scales (温度的标尺,简称温标) separately. When they are in thermal equilibrium, they have the same temperature. Then we can know the temperature of body A with temperature scale marked on thermometer.6.经验温标的缺点是什么?为什么?不同测温物质的测温结果有较大的误差,因为测温结果依赖于测温物质的性质。
7.促使系统状态变化的原因是什么?举例说明。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.可逆过程可用状态参数图上实线表示
32
1-6 功和热量
一、功(work)的定义和可逆过程的功
1.功的力学定义 2.功的热力学定义:通过边界传递的能量其全部 效果可表现为举起重物。 3.可逆过程功的计算
W δW
1
2
pAdx pdV
1 1
2
2
▲功是过程量 ▲功可以用p-v图上过程线 与v轴包围的面积表示
1.状态参数是宏观量,是大量粒子的统计平均效 应,只有平 衡态才有状参,系统有多个状态参数,如
p,V , T ,U , H , S
12
2.状态的单值函数。 物理上—与过程无关; 数学上—其微量是全微分。
dx 0
1b 2
dx dx
1a 2
3.状态参数分类 广延量(extensive property) 强度量(intensive property ) 又:广延量的比性质具有强度量特性,如比体积
pv RgT
pV mRgT
pV nRT
T K
摩尔质量
p Pa N/m 2 v m3 /kg
Rg —气体常数 (gas constant) J/(kg K)
R 8.3145J/(mol K) R—通用气体常数 (universal(molargas constant )
33
4.功的符号约定: 系统对外作功为“+”
外界对系统作功为“-”
5.功和功率的单位:
J
或 kJ
J/s W kJ/s kW
附: 1kWh 3600kJ
34
6.讨论 有用功(useful work)概念
Wu W Wl Wp
其中:
pb
f
W—膨胀功(compression/expansion work); Wl—摩擦耗功; Wp_排斥大气功。
例A4001441 例A4002771
1kPa 1103 Pa
18
六、比体积和密度
比体积(specific volume)
V v m
单位质量工质的体积
m3 /kg
kg/m3
密度(density)
m V
单位体积工质的质量
两者关系:
v
1
19
1-4 平衡状态
一、平衡状态(thermodynamic equilibrium state)
• 系统(thermodynamic system, system) 人为分割出来,作为热力学 研究对象的有限物质系统。 • 外界(surrounding ): 与体系发生质、能交换的物系。 • 边界(boundary):
系统与外界的分界面(线)。
5
三、热力系分类
1. 按组元和相 按组元数 单元系(one component system;pure substance system) 多元系(multicomponent system) 按相数 单相系(homogeneous system) 复相系(heterogeneous system)
注意:1)不计恒外力场影响;
2)复相系未必不均匀—湿蒸汽; 单元系未必均匀—气液平衡分离状态。
6
2. 按系统与外界质量交换
闭口系(closed system) (控制质量CM) —没有质量越过边界 开口系(open system) (控制体积CV) —通过边界与外界有质量交换
7
3. 按能量交换 绝热系(adiabatic system)— 与外界无热量交换;
41
三、动力循环(正向循环)(power cycle; direct cycle )
输出净功; 在p-v图及T-s图上顺时针进行; 膨胀线在压缩线上方;吸热线在放热线上方。
42
四、逆向循环(reverse cycle)
▲制冷循环(refrigeration cycle) ▲热泵循环(heat-pump cycle)
第一章 基本概念
Basic Concepts and Definition
1-1 热能和机械能相互转换过程
1-2 热力系统
1-3 工质的热力学状态及其基本状态参数 1-4 平衡状态 1-5 工质的状态变化过程
1-6 功和热量 1-7 热力循环
1
1-1 热能和机械能相互转换的过程
一、热能动力装置(Thermal power plant)
热是无条件的;
功是有条件、限度的。
39
思考题:
容器为刚性绝热,抽去隔板, 重又平衡,过程性质。
逐个抽去隔板,又如何?
40
1-7 热力循环
一、定义:
封闭的热力过程 特性:一切状态参数恢复原值,即
dx 0
二、可逆循环与不可逆循环(reversible cycle and irreversible cycle )
非准静态过程 (nonequilibrium process) 准静态过程,不可逆
pA F cos pb A ( f 0)
准静态过程,可逆
31
讨论: 1.可逆=准静态+没有耗散效应
2.准静态着眼于系统内部平衡,可逆着眼于
系统内部及系统与外界作用的总效果
3.一切实际过程不可逆
4.内部可逆过程的概念
V v m
工程热力学约定用小写字母表示单位质量参数。
13
三、系统状态相同的充分必要条件 系统两个状态相同的充要条件: 所有状态参数一一对应相等 简单可压缩系两状态相同的充要条件: 两个独立的状态参数对应相等
14
四、温度和温标(temperature and temperature scale)
孤立系(isolated system)— 与外界无任何形式的质能交换。
4. 简单可压缩系(simple compressible system) —由可压缩物质组成,无化学反应、与外界有交 换容积变化功的有限物质系统。
注意: 1)闭口系与系统内质量不变的区别; 2)开口系与绝热系的关系; 3)孤立系与绝热系的关系。
28
1-5 工质的状态变化过程
一、准静态过程(quasi-static process; quasi-equilibrium process)
定义:偏离平衡态无穷小,随时 恢复平衡的状态变化过程。 进行条件: 破坏平衡的势—
p, T 无穷小
过程进行无限缓慢 工质有恢复平衡的能力 准静态过程可在状态参数图上用连续实线表示
3
三、热源(heat source; heat reservoir)
定义:工质从中吸取或向之排出热能的物质系统。 • 高温热源—热源 ( heat source ) 低温热源—冷源(heat sink) • 恒温热源(constant heat reservoir) 变温热源
4
一、定义
1-2 热力系统(热力系、系统、体系) 外界和边界
分 类
共同本质:由媒介物通过吸热—膨胀作功—排热
2
二、工质(working substance; working medium)
定义:实现热能和机械能相互转化的媒介物质。
对工质的要求:
1)膨胀性 2)流动性 物质三态中 气态最适宜。
3)热容量
4)稳定性,安全性 5)对环境友善 6)价廉,易大量获取
A部落为系统
—闭口系 A A+B部落为系统—孤立系
B
11
1-3 工质的热力学状态和基本状态参数
一、热力学状态和状态参数
热力学状态(state of thermodynamic system) —系统宏观物理状况的综合 状态参数(state properties) —描述物系所处状态的宏观物理量
二、状态参数的特性和分类
温度的定义: 测温的基础—热力学零定律 (zeroth law of thermodynamics) 热力学温标和国际摄氏温标 (thermodynamics scale; Kelvin scale;absolute temperature scale and internal Celsius temperature scale)
例A7001331
35
用外部参数计算不可逆过程的功
W
2
1
pdV
?
36
W p 0 AH p 0 V
三、热量(heat)
1.定义:仅仅由于温差而 通过边界传递的能量。 2.符号约定:系统吸热“+”; 放热“-” 3.单位: J kJ 4.计算式及状态参数图 (T-s图上)表示
一般地讲:输入净功; 在状态参数图逆时针运行; 吸热小于放热。
43
五、循环经济性指标:
收益 代价
动力循环: 热效率(thermal efficiency) 逆向循环: 制冷系数(coefficient of performance for the refrigeration cycle) 供暖系数(coefficient of performance for the heat-pump cycle)
29
二、可逆过程( reversible process)
定义:系统可经原途径返回原来状 态而在外界不留下任何变化 的过程。
可逆过程与准静态过程的关系
●单纯传热过程 非准静态 不可逆 准静态 可逆