半导体二极管的特性及主要参数
半导体二极管的特性P区N区与电流的正向导通

半导体二极管的特性P区N区与电流的正向导通半导体二极管是一种重要的电子元件,它在电子设备中起到了至关重要的作用。
在了解半导体二极管的特性之前,我们需要先了解其主要的组成部分——P区和N区。
同时,在正向导通的过程中,电流的流动也是十分重要的。
接下来,我将分别介绍P区和N区的特性以及电流的正向导通。
一、P区的特性:P区是由掺入了少量三价杂质元素(如硼或铝)的硅材料组成的,因此P区具有正电荷。
P区与纯净的硅材料(即N区)交界处形成了一个PN结。
P区具有以下特点:1. 正电荷:P区内的杂质原子会失去一个电子,形成正离子,因此P区带有正电荷。
2. 空穴:由于杂质原子失去电子,P区形成了一种称为“空穴”的正电荷载流子,空穴的数量与杂质原子的浓度成正比。
3. 导电能力较低:由于空穴的流动速度相对较慢,P区的导电能力较弱。
二、N区的特性:N区是由掺入了少量五价杂质元素(如磷或砷)的硅材料构成的,因此N区具有负电荷。
N区具有以下特点:1. 负电荷:N区内的杂质原子会获得一个额外的电子,形成负离子,因此N区带有负电荷。
2. 自由电子:由于杂质原子额外获得电子,N区形成了一种称为“自由电子”的负电荷载流子,自由电子的数量与杂质原子的浓度成正比。
3. 导电能力较强:自由电子的流动速度相对较快,N区的导电能力较强。
三、电流的正向导通:当半导体二极管处于正向偏置时,即P区连接正极而N区连接负极时,电流开始导通。
这一过程可以通过以下几个步骤来解释:1. 电子注入:在正向偏置下,N区的自由电子会向PN结移动,而P区的空穴则向相反方向移动。
当自由电子与空穴在PN结附近相遇时,它们会发生复合,并产生新的载流子。
2. 负偏转电势:由于复合过程所产生的新的载流子具有较低的能量,它们会被负偏转的电场推动,继续向P区内迁移。
3. 电流流动:当新的载流子到达P区后,它们会继续与P区的空穴发生复合,并释放出一定的能量。
这一能量的释放会使得新的载流子继续向前迁移,从而形成了电流的流动。
二极管三极管主要参数

二极管三极管主要参数二极管和三极管是半导体器件中常见的两种元件,它们在电子电路中具有重要的作用。
下面将详细介绍二极管和三极管的主要参数。
一、二极管的主要参数:1.电压额定值:也称为反向工作电压(VR)或正向导通电压(VF),表示二极管在正向和反向工作时能够承受的最大电压。
对于正向工作,一般为0.7V左右,而对于反向工作,一般为数十V至几百V。
2.最大定向电流:指二极管在正向工作时能够承受的最大电流,也称为连续电流(IF),一般为几毫安到几十安。
3.反向漏电流:指二极管在反向工作时的漏电流,也称为反向电流(IR),一般为几微安到几毫安。
4.开启时间和关断时间:也称为导通时间和截止时间,指二极管从关断到开启、从开启到关断的时间,一般为纳秒或微秒级。
5.反向恢复时间:指二极管在从正向工作状态转为反向工作状态时,恢复正常的导通特性所需的时间,一般为纳秒或微秒级。
6.动态电阻:指二极管在正向工作时的电压变化与电流变化的比值,一般在工作点附近呈线性关系。
7.耐压能力:指二极管在正向和反向工作时能够承受的最大电压,一般为几十伏到几百伏。
二、三极管的主要参数:1.当前放大倍数:也称为直流电流放大倍数(hFE)或β值,指输入电流和输出电流之间的比值,一般为几十至几千。
2.基极电流:也称为输入电流(IB),指输入信号经过基极向集电极注入的电流。
3.饱和电流:也称为最大电流(IC),指当三极管的基极电流达到一定值时,集电极电流不能再继续增大的电流值。
4.最大功耗:指三极管能够承受的最大功率,一般为几十毫瓦到几瓦。
5.最大频率:指三极管能够工作的最高频率,一般为几十MHz到几GHz。
6.最小输入电压:指三极管能够正常工作的最小输入电压。
7.最大输入电压:指三极管能够承受的最大输入电压。
三、总结:二极管主要参数包括电压额定值、最大定向电流、反向漏电流、开启时间和关断时间、反向恢复时间、动态电阻和耐压能力。
这些参数主要描述了二极管在正向和反向工作时的性能。
二极管参数解读

二极管参数解读二极管是一种半导体器件,具有正向导电特性。
它是电子学领域中最简单的一种元件,也是最重要的一种元件之一。
二极管的参数是指在正常工作状态下,二极管具有的一些特定物理性质和电学性能。
通过解读二极管的参数,可以更好地理解和应用二极管,提高电子电路设计和应用的技术水平。
## 一、二极管的基本参数### 1.1 正向导通特性正向导通特性是指在二极管的正向工作状态下,二极管具有导通电流的特性。
该特性由二极管的正向电压与正向电流之间的关系来描述,一般用正向截止电压和正向导通电压来表示。
正向截止电压是指在二极管的正向工作状态下,二极管开始导通的最小电压,它是二极管的重要参数之一;而正向导通电压是指在二极管正向工作状态下,正向导通电流达到额定值时的电压。
### 1.2 反向漏电流和反向击穿电压反向漏电流是指在二极管的反向工作状态下,二极管产生的漏电流。
这一参数决定了二极管的反向耐压性能。
反向击穿电压是指在二极管的反向工作状态下,二极管发生击穿的最小电压。
### 1.3 绝对最大额定值绝对最大额定值是指二极管可以承受的最大电压、电流和功率值,超出这些数值会导致二极管的损坏。
## 二、二极管参数的解读与应用### 2.1 正向导通特性对二极管应用的影响正向导通特性对二极管的应用至关重要。
在设计电子电路时,需要根据二极管的正向截止电压和正向导通电压来合理选择二极管,以保证电路的正常工作。
### 2.2 反向漏电流和反向击穿电压对二极管应用的影响反向漏电流和反向击穿电压是描述二极管反向电压承受能力的重要参数。
在设计反向保护电路时,需要考虑二极管的反向漏电流和反向击穿电压,以确保二极管在反向工作状态下不会损坏。
### 2.3 绝对最大额定值对二极管应用的影响绝对最大额定值是指二极管可以承受的最大电压、电流和功率值。
在实际应用中,需要根据电路的实际工作条件和环境来选择合适的二极管,以确保二极管不会超出其绝对最大额定值而损坏。
(整理)半导体二极管的主要参数.

1.反向饱和漏电流IR指在二极管两端加入反向电压时,流过二极管的电流,该电流与半导体材料和温度有关。
在常温下,硅管的IR为纳安(10-9A)级,锗管的IR为微安(10-6A)级。
2.额定整流电流IF指二极管长期运行时,根据允许温升折算出来的平均电流值。
目前大功率整流二极管的IF值可达1000A。
3.最大平均整流电流IO在半波整流电路中,流过负载电阻的平均整流电流的最大值。
这是设计时非常重要的值。
4.最大浪涌电流IFSM允许流过的过量的正向电流。
它不是正常电流,而是瞬间电流,这个值相当大。
5.最大反向峰值电压VRM即使没有反向电流,只要不断地提高反向电压,迟早会使二极管损坏。
这种能加上的反向电压,不是瞬时电压,而是反复加上的正反向电压。
因给整流器加的是交流电压,它的最大值是规定的重要因子。
最大反向峰值电压VRM指为避免击穿所能加的最大反向电压。
目前最高的VRM值可达几千伏。
6.最大直流反向电压VR上述最大反向峰值电压是反复加上的峰值电压,VR是连续加直流电压时的值。
用于直流电路,最大直流反向电压对于确定允许值和上限值是很重要的.7.最高工作频率fM由于PN结的结电容存在,当工作频率超过某一值时,它的单向导电性将变差。
点接触式二极管的fM值较高,在100MHz以上;整流二极管的fM较低,一般不高于几千赫。
8.反向恢复时间Trr当工作电压从正向电压变成反向电压时,二极管工作的理想情况是电流能瞬时截止。
实际上,一般要延迟一点点时间。
决定电流截止延时的量,就是反向恢复时间。
虽然它直接影响二极管的开关速度,但不一定说这个值小就好。
也即当二极管由导通突然反向时,反向电流由很大衰减到接近IR时所需要的时间。
大功率开关管工作在高频开关状态时,此项指标至为重要。
9.最大功率P二极管中有电流流过,就会吸热,而使自身温度升高。
最大功率P为功率的最大值。
具体讲就是加在二极管两端的电压乘以流过的电流。
这个极限参数对稳压二极管,可变电阻二极管显得特别重要。
二极管的主要参数

二极管的主要参数二极管是一种主要由两个电极(即正极和负极)组成的电子器件。
它是半导体器件的一种,具有一些重要的参数,下面将详细介绍这些参数。
1.额定峰值反向电压(VR):指二极管所能承受的最大反向电压。
当反向电压高于额定峰值时,会导致二极管击穿,失去正常功能。
2.额定直流正向电流(IF):指在正向电压下,二极管所能承受的最大电流。
当超过额定直流正向电流时,二极管可能会过载损坏。
3.最大导通电流(IFM):指二极管在导通状态下所能承受的最大电流。
超过该电流,二极管可能会由于过热而损坏。
4.静态电阻(RS):指二极管正向导通时的电阻。
该参数影响二极管的电压降和功耗。
5.正向压降(VF):指二极管正向导通时的电压降。
不同类型的二极管具有不同的正向压降,这个参数会影响电路的设计和功耗。
6. 动态电阻(rd):指在二极管正向导通时,电压变化与电流变化之比。
动态电阻决定了二极管的响应速度和频率特性。
7.反向漏电流(IR):指二极管在反向电压下的漏电流。
该参数影响二极管的反向恢复速度和反向漏电功耗。
8. 反向恢复时间(trr):指二极管由正向导通到反向截止状态的时间。
这个时间决定了二极管在高频应用中的性能。
9. 反向恢复电荷(Qrr):指正向导通状态下,当二极管截止时,由于载流子的复合和电荷移动而产生的额外电荷。
这个参数决定了二极管的反向恢复能力。
10. 热阻(Rth):指二极管在正常工作温度下的散热能力。
较低的热阻可以帮助降低二极管的温度,提高其可靠性和寿命。
除了以上提到的参数,还有一些其他参数也很重要,例如温度系数、漂移电流、噪声系数等。
这些参数在不同应用场合下扮演着不同的角色,并且通过适当的选择和优化可以使二极管在电路中发挥出最佳的性能。
总结起来,二极管的主要参数可以分为电流参数、电压参数、速度参数和热参数等几个方面。
在实际应用中,选择合适的二极管必须综合考虑这些参数,并与具体的电路需求相匹配,以确保电路的稳定和可靠性。
半导体二极管参数的测量

2.二极管的主要参数 (1)最大整流电流 I FM
指管子长期工作时,允许通过的最大正向 平均电流。 (2)反向电流
指在一定温度条件下,二极管承受了反向 工作电压、又没有反向击穿时,其反向电 流值。 (3)反向最大工作电压 VRM 指管子运行时允许承受的最大反向电压。 应小于反向击穿电压。
(4)直流电阻
如果有且只有两个脚间的电阻无论正反向都无穷大那么这两个脚一定是集电极和发射极剩下的那个脚就是基极判别发射极和集电极的依据是
4.2.4
半导体二极管参数的测量
二极管是整流、检波、限幅、钳位 等电路中的主要器件。
一、半导体二极管的特性和主要参数
1.二极管的主要特性
二极管最主要的特性是单向导电特性,即二极 管正向偏置时导通;反向偏置时截止。
2.用数字万用表测量三极管
3.用晶体管特性图示仪测量三极管
二、测量原理和常规测试方法
1.模拟万用表测量三极管 可判断b、c、e,并估测电流放大倍数。
(1)基极的判定 利用PN结的单向导电性进行判别。 假设一个基极,分别测两个PN结的正向电阻和 反向电阻。基极判断出来后,还可以判断管型。
具体步骤
用模拟万用表红黑表 笔分别测量三极管任 意两个脚,每两个脚 正反都测量一次。如 果有且只有两个脚间 的电阻无论正反向都 无穷大,那么这两个 脚一定是集电极和发 射极,剩下的那个脚 就是基极b。
黑
100kΩ 万 用 表 E
R0
红
(a)判断c、e的测量接线图
(3)电流放大倍数的估测
测量集电极和发射极间的电阻(对NPN, 黑笔接集电极,红笔接发射极;PNP的相 反),用手捏着基极和集电极,观察表针 摆动幅度的大小,表针摆动越大,β值越大。 一般数字万用表都有测量三极管的功能, 将晶体管插入测试孔就可以读出β值。
二极管的原理与特性

二极管的原理与特性
二极管是由两个半导体材料,通常是p型半导体和n型半导体材料组成的器件。
它具有以下特性:
1. 半导体材料的特性:p型半导体含有掺杂的准价电子,n型半导体含有掺杂的自由电子。
两种材料的掺杂导致电荷载流子浓度不均匀,形成一个p-n结。
2.正向偏置特性:当二极管的正极连接到p型半导体,负极连接到n型半导体时,将会形成正向偏置。
此时,电子从n型区域流向p型区域,空穴从p型区域流向n型区域。
这种情况下,二极管处于导通状态,电流可以通过。
3.反向偏置特性:当二极管的正极连接到n型半导体,负极连接到p型半导体时,将会形成反向偏置。
此时,由于p-n结的形成,阻止了电流的通过,二极管处于截止状态。
4.电流流动特性:二极管的电流流动主要包括漏极电流和饱和电流。
在正向偏置下,漏极电流主要是由于热发射而产生,而在反向偏置下,由于p-n结形成了耗尽层,几乎没有电流流动。
5.电压特性:正向偏置时,二极管的电压降非常小,约为0.7伏。
当反向偏置达到一定程度时,二极管会击穿,形成漏电流。
总结来说,二极管是一种具有导通和截止状态的电子器件,能够根据正向或反向偏置来控制电流的流动。
它可用于整流、保护电路、信号调节等应用领域。
二极管特性及参数

二极管特性及参数一、二极管的特性:二极管是一种最简单的半导体器件,它具有单向导电性。
二极管由P 型半导体和N型半导体组成,P型半导体区域被称为P区,N型半导体区域被称为N区,P区和N区之间形成的结被称为PN结。
在PN结两侧形成的电场称为势垒,势垒会阻碍电流的流动,只有当正向电压施加在二极管上时,电流才能流过。
二极管的工作特性如下:1.正向工作特性:当二极管的正端连接到正电压源,负端连接到负电压源时,二极管处于正向偏置状态。
此时,PN结的势垒被削弱,电流可以流动。
二极管的正向电压(Vf)越大,通过二极管的电流(If)越大。
正向工作特性遵循指数规律,即电流与电压之间存在指数关系。
2.反向工作特性:当二极管的正端连接到负电压源,负端连接到正电压源时,二极管处于反向偏置状态。
此时,PN结的势垒会增加,电流几乎不能流动。
只有当反向电压(Vr)超过二极管的反向击穿电压时,才会发生逆向击穿,电流急剧增加。
二、二极管的参数:1.极限值参数:-峰值反向电压(VRM):反向电压的最大值,一般用来表示二极管的耐压能力。
-峰值反向电流(IFM):反向电流的最大值,一般用来表示二极管的耐流能力。
-正向电压降(VF):正向工作时,PN结两侧产生的电压降。
-正向电流(IF):通过二极管的最大电流。
2.定常态参数:- 正向阻抗(Forward resistance):在正向工作状态下,二极管的阻抗大小。
正向阻抗与正向电流大小有关,一般用欧姆表示。
- 反向电流(Reverse current):在反向工作状态下,二极管的电流大小。
- 反向传导电导(Reverse conductance):在反向工作状态下,PN结的反向传导电导值,与反向电流大小有关。
3.动态参数:- 正向导通压降(Forward voltage drop):当二极管处于正向工作状态时,二极管两端的电压降。
- 动态电电渡特性(Forward dynamic electrical characteristics):反映在零偏电流条件下,PN结在正向电压下的电流特性关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
iv
un
等效电路模型
伏安特性
2、恒压降模型
iV
Uth iv 斜率1/ rD Uth U uV
uv = Uth
0.7 V (Si) 0.2 V (Ge)
rv
Uth
3、二极管的折线近似模型
I uv
U rv I
Uth
第一章
半导体二极管
4、小信号模型 如果二极管在它的伏安特性的某一小范围 内工作,例如静态工作点Q 附近工作,则可把 伏安特性看成一条直线,其斜率的倒数就是所 求的小信号模型的微变电阻。
正极 引线 N 型锗片 铝合金 负极 小球 引线 N型锗 外壳 触丝
正极引线
PN 结 金锑 合金
正极 负极 引线 引线
P N
P 型支持衬底
负极引线
点接触型
面接触型
底座
集成电路中平面型
第一章
半导体二极管
二、二极管的伏安特性
iV /mA
0 U Uth
uV /V
iV = 0
ቤተ መጻሕፍቲ ባይዱU BR
IR
正向特性
–25
– 0.02 – 0.04 0 0.4 0.8 U / V V
UV / V
硅管的伏安特性
锗管的伏安特性
第一章
半导体二极管
三、 二极管的主要参数
IV U (BR) URM O IF UV
1. IF — 最大整流电流(最大正向平均电流)
2. URM — 最高反向工作电压,为 UBR / 2
3. IR — 反向饱和电流(越小单向导电性越好) 4. fM — 最高工作频率(超过时单向导电性变差)
反 反向特性 O Uth 向 击 死区 穿 电压
Uth = 0.5 V (硅管) 0.1 V (锗管)
U Uth iV 急剧上升
Uth = (0.6 0.8) V 硅管 0.7 V (0.1 0.3) V 锗管 0.2 V
UBR U 0 U < UBR
iV = IR < 0.1 A(硅) 几十 A (锗) 反向电流急剧增大 (反向击穿)
第一章
半导体二极管
1.2
半导体二极管的特性及 主要参数
一、 二极管的结构与符号 二、 二极管的伏安特性
三、 二极管的主要参数 四、 二极管电路的分析方法
第一章
半导体二极管
一、 半导体二极管的结构 构成: PN 结 + 引线 + 管壳 = 二极管
符号:
VD 分类: 点接触型 硅二极管 按材料分 按结构分 面接触型 锗二极管 平面型
第一章
半导体二极管
反向击穿类型: 电击穿 — PN 结未损坏,断电即恢复。
热击穿 — PN 结烧毁。
特别注意: 温度对二极管的特性有显著影响。当温度升高 时,正向特性曲线向左移,反向特性曲线向下移。 变化规律是:在室温附近,温度每升高1℃,正向 压降约减小2~2.5mV,温度每升高10℃,反向电 流约增大一倍。
第一章
半导体二极管
影响工作频率的原因 — PN 结的电容效应
结论: 1. 低频时,因结电容很小,对 PN 结影响很小。 高频时,因容抗减小,使结电容分流,导致单向 导电性变差。 2. 结面积小时结电容小,工作频率高。
第一章
半导体二极管
四、二极管电路的分析方法 1、理想模型
特性 iV uV 符号及 等效模型 S S
第一章
半导体二极管
温度对二极管特性的影响
IV / mA
60 40 20 –50
80C 20C
–25
0 – 0.02 0.4
UV / V
T 升高时,
UV(th)以 (2 2.5) mV/ C 下降
第一章
半导体二极管
IV / mA
60 40 20 –50
IV / mA
15 10 5
– 50 – 25 –0.01 0 0.2 –0.02 0.4