解密07 碰撞与动量守恒-备战2019年高考物理之高频考点解密
解密07 碰撞与动量守恒-备战2019年高考物理之高频考点

考点1 碰撞模型1.碰撞的特点(1)作用时间极短,内力远大于外力,总动量总是守恒的。
(2)碰撞过程中,总动能不增。
因为没有其他形式的能量转化为动能。
(3)碰撞过程中,当两物体碰后速度相等时,即发生完全非弹性碰撞时,系统动能损失最大。
(4)碰撞过程中,两物体产生的位移可忽略。
2.碰撞的种类及遵从的规律两球发生弹性碰撞时满足动量守恒定律和机械能守恒定律。
在光滑的水平面上,质量为m 1的钢球沿一条直线以速度v 0与静止在水平面上的质量为m 2的钢球发生弹性碰撞,碰后的速度分别是v 1、v 2①②由①②可得:③④利用③式和④式,可讨论以下五种特殊情况:a .当12m m >时,10v >,20v >,两钢球沿原方向原方向运动;b .当12m m <时,10v <,20v >,质量较小的钢球被反弹,质量较大的钢球向前运动;c .当12m m =时,10v =,20v v =,两钢球交换速度。
d .当12m m <<时,10v v ≈,20v ≈,m 1很小时,几乎以原速率被反弹回来,而质量很大的m 2几乎不动。
例如橡皮球与墙壁的碰撞。
e .当12m m >>时,0v v ≈,202v v ≈,说明m 1很大时速度几乎不变,而质量很小的m 2获得的速度是原来运动物体速度的2倍,这是原来静止的钢球通过碰撞可以获得的最大速度,例如铅球碰乒乓球。
4.一般的碰撞类问题的分析 (1)判定系统动量是否守恒。
(2)判定物理情景是否可行,如追碰后,前球动量不能减小,后球动量在原方向上不能增加;追碰后,后球在原方向的速度不可能大于前球的速度。
(3)判定碰撞前后动能是否不增加。
(2018·安徽省滁州市定远县育才学校)两个质量相等的小球在光滑水平面上沿同一直线同方向运动,A 球的动量是7 kg·m/s,B 球的动量是5 kg·m/s,A 球追上B 球时发生碰撞,则碰撞后A 、B 两球的动量可能值是A .p A =6 kg·m/s,pB =6 kg·m/s B .p A =3 kg·m/s,p B =9 kg·m/sC .p A =–2 kg·m/s,p B =14 kg·m/sD .p A =–5 kg·m/s,p B =15 kg·m/s 【参考答案】A【试题解析】以A 、B 两球组成的系统为对象。
动量守恒与碰撞的理论解析

动量守恒与碰撞的理论解析动量守恒与碰撞是物理学中重要的概念和理论,用于描述和解析物体之间相互作用的过程。
本文将从理论角度对动量守恒和碰撞进行解析。
1. 动量守恒定律动量守恒是指在一个系统中,如果没有外力作用,系统的总动量始终保持不变。
即一个物体在没有外力作用的情况下,其动量保持不变。
动量(p)是物体的质量(m)与速度(v)的乘积,即p = m·v。
根据牛顿第二定律,物体的动量变化率等于物体所受合外力的大小和方向,所以动量守恒可以表示为ΣF=0,其中ΣF代表合外力的矢量和。
2. 碰撞类型碰撞是指物体之间相互接触的过程。
根据碰撞类型的不同,可以将碰撞分为弹性碰撞和非弹性碰撞。
- 弹性碰撞:在弹性碰撞中,物体相互作用的时间短,相互之间没有能量损失。
碰撞前后,物体的动量和动能都保持不变。
在碰撞中,动量守恒被严格地满足。
- 非弹性碰撞:在非弹性碰撞过程中,物体相互作用的时间相对较长,会有部分能量损失。
碰撞前后,物体的动量仍然保持不变,但是动能会发生改变。
3. 弹性碰撞的理论解析在弹性碰撞中,物体之间的动量守恒可以用以下公式表达:m1v1i + m2v2i = m1v1f + m2v2f其中,m1、v1i、v1f分别表示物体1的质量、碰撞前的速度和碰撞后的速度;m2、v2i、v2f表示物体2的质量、碰撞前的速度和碰撞后的速度。
在弹性碰撞中,动能守恒同样被满足:(1/2)m1v1i^2 + (1/2)m2v2i^2 = (1/2)m1v1f^2 + (1/2)m2v2f^2通过以上两个公式,可以求解碰撞前后物体的速度。
4. 非弹性碰撞的理论解析在非弹性碰撞中,碰撞后物体会发生形变,能量会有一部分转化为其他形式的能量,比如热能。
因此,动能不守恒。
在非弹性碰撞中,只有动量守恒可以得到满足:m1v1i + m2v2i = (m1 + m2)v其中,v表示碰撞后物体的共同速度。
通过求解上述公式,可以得到碰撞后物体的速度。
动量守恒在碰撞问题中的物理知识点应用

动量守恒在碰撞问题中的物理知识点应用在物理学的广袤领域中,碰撞问题一直是一个引人入胜且具有重要实际意义的研究方向。
而动量守恒定律,作为物理学中的基本定律之一,在解决碰撞问题时发挥着关键作用。
首先,让我们来理解一下什么是动量。
动量可以简单地理解为物体的质量与速度的乘积。
它是一个矢量,既有大小又有方向。
想象一下一辆快速行驶的汽车和一辆缓慢行驶的自行车,即使它们的质量可能不同,但由于汽车的速度大,所以汽车具有更大的动量。
而动量守恒定律指的是在一个不受外力或者所受合外力为零的系统中,系统的总动量保持不变。
这就好像是一个封闭的盒子,里面的物体无论怎么相互作用、碰撞,盒子里所有物体的总动量始终不会改变。
在碰撞问题中,动量守恒定律的应用非常广泛。
我们可以将碰撞分为完全弹性碰撞、非完全弹性碰撞和完全非弹性碰撞三种类型。
完全弹性碰撞是一种理想的情况,在这种碰撞中,不仅动量守恒,而且机械能也守恒。
也就是说,碰撞前后系统的总动能不变。
比如两个质量相同的小球,以相同的速度相向运动,碰撞后会各自反向弹回,且速度大小不变。
非完全弹性碰撞则是一种常见的情况,在这种碰撞中,动量守恒,但机械能有损失。
一部分机械能转化为了内能或者其他形式的能量。
例如,一个小球撞击一个静止的木块,小球和木块最终一起运动,这个过程中就有机械能的损失。
完全非弹性碰撞是机械能损失最大的情况。
碰撞后两个物体合为一体,以相同的速度运动。
比如说一辆汽车撞上了一堵墙,然后停了下来,这就是一个完全非弹性碰撞的例子。
在解决具体的碰撞问题时,我们通常会根据已知条件,利用动量守恒定律列出方程。
假设在一个水平方向的碰撞中,物体 A 的质量为 m1,碰撞前的速度为 v1,物体 B 的质量为 m2,碰撞前的速度为 v2,碰撞后它们的速度分别变为v1' 和v2'。
根据动量守恒定律,我们可以得到:m1v1 + m2v2 = m1v1' + m2v2'。
动量守恒定律碰撞反冲现象知识点归纳总结(2)

动量守恒定律、碰撞、反冲现象知识点归纳总结一.知识总结归纳1. 动量守恒定律:研究的对象是两个或两个以上物体组成的系统,而满足动量守恒的物理过程常常是物体间相互作用的短暂时间内发生的。
2. 动量守恒定律的条件:(1)理想守恒:系统不受外力或所受外力合力为零(不管物体间是否相互作用),此时合外力冲量为零,故系统动量守恒。
当系统存在相互作用的内力时,由牛顿第三定律得知,相互作用的内力产生的冲量,大小相等,方向相反,使得系统内相互作用的物体动量改变量大小相等,方向相反,系统总动量保持不变。
即内力只能改变系统内各物体的动量,而不能改变整个系统的总动量。
(2)近似守恒:当外力为有限量,且作用时间极短,外力的冲量近似为零,或者说外力的冲量比内力冲量小得多,可以近似认为动量守恒。
(3)单方向守恒:如果系统所受外力的矢量和不为零,而外力在某方向上分力的和为零,则系统在该方向上动量守恒。
3. 动量守恒定律应用中需注意:(1)矢量性:表达式m 1v 1+m 2v 2=2211v m v m '+'中守恒式两边不仅大小相等,且方向相同,等式两边的总动量是系统内所有物体动量的矢量和。
在一维情况下,先规定正方向,再确定各已知量的正负,代入公式求解。
(2)系统性:即动量守恒是某系统内各物体的总动量保持不变。
(3)同时性:等式两边分别对应两个确定状态,每一状态下各物体的动量是同时的。
(4)相对性:表达式中的动量必须相对同一参照物(通常取地球为参照物).4. 碰撞过程是指物体间发生相互作用的时间很短,相互作用过程中的相互作用力很大,所以通常可认为发生碰撞的物体系统动量守恒。
按碰撞前后物体的动量是否在一条直线上,有正碰和斜碰之分,中学物理只研究正碰的情况;碰撞问题按性质分为三类。
(1)弹性碰撞——碰撞结束后,形变全部消失,碰撞前后系统的总动量相等,总动能不变。
例如:钢球、玻璃球、微观粒子间的碰撞。
(2)一般碰撞——碰撞结束后,形变部分消失,碰撞前后系统的总动量相等,动能有部分损失.例如:木制品、橡皮泥球的碰撞。
专题18 动量守恒定律(碰撞问题)-2019高考物理一轮复习专题详解(解析版)

知识回顾 1.动量守恒条件(1)系统不受外力或合外力为零时,动量守恒. (2)若在某一方向合外力为0,则该方向动量守恒. 2.必须掌握动量守恒定律的两种思想 (1)守恒思想:p =p ′、m 1v 1+m 2v 2=m 1v 1′+m 2v 2′. (2)转化思想:Δp 1=-Δp 2.3.必须明确碰撞问题遵守的三条原则 (1)动量守恒:p 1+p 2=p 1′+p 2′. (2)动能不增加:E k1+E k2≥E k1′+E k2′. (3)速度要符合实际情况. 规律方法应用动量守恒定律解题的基本思路(1)分析题意,明确研究对象,确定所研究的系统是由哪些物体组成的.(2)对各阶段所选系统内的物体进行受力分析,区分系统内力和外力,在受力分析的基础上根据动量守恒定律条件判断能否应用动量守恒定律.(3)明确所研究物体间的相互作用的过程,确定过程的初、末状态,即系统内各个物体的初动量和末动量. (4)规定正方向,确定初、末状态的动量的正、负号,根据动量守恒定律列方程求解. 三类碰撞的分析 (1)弹性碰撞动量守恒:m 1v 1+m 2v 2=m 1v 1′+m 2v 2′,机械能守恒:12m 1v 21+12m 2v 22=12m 1v ′21+12m 2v ′22. (2)完全非弹性碰撞动量守恒、末速度相同:m 1v 1+m 2v 2=(m 1+m 2)v ′,机械能损失最多,机械能的损失: ΔE =12m 1v 21+12m 2v 22-12(m 1+m 2)v ′2 (3)非弹性碰撞动量守恒:m 1v 1+m 2v 2=m 1v ′1+m 2v ′2,机械能有损失,机械能的损失: ΔE =12m 1v 21+12m 2v 22-12m 1v ′21+12m 2v ′22例题分析【例1】 质量相等的A 、B 两球在光滑水平面上沿同一直线、同一方向运动,A 球的动量是7 kg·m/s ,B 球的动量是5 kg·m/s ,当A 球追上B 球发生碰撞,则碰撞后A 、B 两球的动量可能值是( ) A .p A =6 kg·m/s ,p B =6 kg·m/s B .p A =3 kg·m/s ,p B =9 kg·m/s C .p A =-2 kg·m/s ,p B =14 kg·m/s D .p A =-4 kg·m/s ,p B =17 kg·m/s 【答案】 A【例2】.(2017年江色七校联考)光滑水平轨道上有三个木块A 、B 、C ,其中A 质量为m A =3m 、C 质量为m C =2m ,开始时B 、C 均静止,A 以初速度v 0向右运动,A 与B 发生弹性碰撞后分开,B 又与C 发生碰撞并粘在一起,此后A 与B 间的距离保持不变.求B 的质量及B 与C 碰撞前B 的速度大小?【答案】m B =m ,v B =32v 0【解析】A 与B 碰撞过程动量守恒,机械能守恒,设B 的质量为m B ,则 3mv 0=3mv A +m B v B 12×3mv 20=12×3mv 2A +12m B v 2B B 、C 碰撞后与A 的速度相同,由动量守恒定律得: m B v B =(m B +2m )v A联立解得:m B =m ,v B =32v 0【例3】(2017·银川二模)A 、B 两球沿一直线运动并发生正碰,如图为两球碰撞前后的位移图像,a 、b 分别为A 、B 两球碰前的位移图像,c 为碰撞后两球共同运动的位移图像,若A 球质量是m =2 kg ,则由图判断下列结论不正确的是( )A.碰撞前后A的动量变化为4 kg·m/sB.碰撞时A对B所施冲量为-4 N·sC.A、B碰撞前的总动量为3 kg·m/sD.碰撞中A、B两球组成的系统损失的动能为10 J【答案】 C【例4】.(2017·衡水中学期末卷)如图所示,在光滑的水平面上,质量为m1的小球A以速率v0向右运动.在小球A的前方O点处有一质量为m2的小球B处于静止状态,Q点处为一竖直的墙壁.小球A与小球B发生弹性正碰后小球A与小球B均向右运动.小球B与墙壁碰撞后以原速率返回并与小球A在P点相遇,PQ=2PO,则两小球质量之比m1∶m2为()A.7∶5 B.1∶3 C.2∶1 D.5∶3【答案】 D【解析】设A、B两个小球碰撞后的速度分别为v1、v2,由动量守恒定律有m1v0=m1v1+m2v2,发生弹性碰撞,不损失动能,故根据能量守恒定律有:12m 1v 02=12m 1v 12+12m 2v 22,两个小球碰撞后到再次相遇,其速率不变,由运动学规律有v 1∶v 2=PO ∶(PO +2PQ)=1∶5,联立三式可得m 1∶m 2=5∶3,D 项正确. 专题练习1.在光滑水平面上,质量为m 的小球A 正以速度v 0匀速运动.某时刻小球A 与质量为3m 的静止小球B 发生正碰,两球相碰后,A 球的动能恰好变为原来的14.则碰后B 球的速度大小是( )A.v 02B.v 06C.v 02或v 06 D .无法确定【答案】:A2.(2017年山东济宁期末)如图所示,一质量为M =3.0 kg 的长木板B 放在光滑水平地面上,在其右端放一个质量为m =1.0 kg 的小木块A .给A 和B 以大小均为4.0 m/s 、方向相反的初速度,使A 开始向左运动,B 开始向右运动,A 始终没有滑离B .在A 做加速运动的时间内,B 的速度大小可能是( )A .1.8 m/sB .2.4 m/sC .2.8 m/sD .3.0 m/s 【答案】:B【解析】:A 先向左减速到零,再向右做加速运动,在此期间,B 做减速运动,最终它们保持相对静止,设A 减速到零时,B 的速度为v 1,最终它们的共同速度为v 2,取水平向右为正方向,则Mv -mv =Mv 1,Mv 1=(M +m )v 2,可得v 1=83m/s ,v 2=2m/s ,所以在A 做加速运动的时间内,B 的速度大小应大于2 m/s 且小于83m/s ,只有选项B 正确.3.如图所示,光滑水平面上有大小相同的A 、B 两个小球在同一直线上运动.两球质量关系为m B =2m A ,规定向右为正方向,A 、B 两球的动量均为8 kg·m/s ,运动过程中两球发生碰撞,碰撞后A 球的动量增量为-4 kg·m/s ,则( )A .右侧为A 球,碰撞后A 、B 两球的速度大小之比为2∶3 B .右侧为A 球,碰撞后A 、B 两球的速度大小之比为1∶6C .左侧为A 球,碰撞后A 、B 两球的速度大小之比为2∶3D .左侧为A 球,碰撞后A 、B 两球的速度大小之比为1∶6 【答案】:C4.(2017年河北邯郸模拟)质量为m 、速度为v 的A 球与质量为3m 的静止的B 球发生正碰.碰撞可能是弹性的,也可能是非弹性的,因此,碰撞后B 球的速度可能有不同的值,碰撞后B 球的速度大小可能是( ) A .0.6v B .0.4v C .0.2v D .v 【答案】:B【解析】:根据动量守恒定律得mv =mv 1+3mv 2,则当v 2=0.6v 时,v 1=-0.8v ,则碰撞后的总动能E ′k =12m (-0.8v )2+12×3m (0.6v )2=1.72×12mv 2,大于碰撞前的总动能,违反了能量守恒定律,故A 项错误;当v 2=0.4v 时,v 1=-0.2v ,则碰撞后的总动能为E ′k =12m (-0.2v )2+12×3m (0.4v )2=0.52×12mv 2,小于碰撞前的总动能,故可能发生的是非弹性碰撞,B 项正确;当v 2=0.2v 时,v 1=0.4v ,则碰撞后的A 球的速度大于B 球的速度,而两球碰撞,A 球不可能穿透B 球,故C 项错误;当v 2=v 时,v 1=-2v ,显然碰撞后的总动能大于碰撞前的总动能,故D 项错误.5.(多选)(2016年高考·天津卷改编)如图所示,方盒A 静止在光滑的水平面上,盒内有一小滑块B ,盒的质量是滑块的2倍,滑块与盒内水平面间的动摩擦因数为μ.若滑块以速度v 开始向左运动,与盒的左、右壁发生无机械能损失的碰撞,滑块在盒中来回运动多次,最终相对于盒静止,则( )A .此时盒的速度大小为v3B .此时盒的速度大小为v2C .滑块相对于盒运动的路程为v 23μgD .滑块相对于盒运动的路程为v 22μg【答案】:AC【解析】:设滑块的质量为m ,则盒的质量为2m ,对整个过程,由动量守恒定律可得mv =3mv 共,解得v 共=v 3,A 正确.由功能关系可知μmgx =12mv 2-12·3m ⎝⎛⎭⎫v 32,解得x =v 23μg,C 正确. 6.(2017·南平模拟)如图所示,A 、B 两物体质量分别为m A 、m B ,且m A >m B ,置于光滑水平面上,相距较远.将两个大小均为F 的力,同时分别作用在A 、B 上经过相同距离后,撤去两个力,两物体发生碰撞并粘在一起后将( )A .停止运动B .向左运动C .向右运动D .运动方向不能确定 【答案】 C7.如图所示,在光滑水平面上,有A 、B 两个小球沿同一直线向右运动,若取向右为正方向,两球的动量分别是p A =5.0 kg ·m/s ,p B =7.0 kg ·m/s.已知二者发生正碰,则碰后两球动量的增量Δp A 和Δp B 可能是( )A .Δp A =-3.0 kg ·m/s ;ΔpB =3.0 kg ·m/s B .Δp A =3.0 kg ·m/s ;Δp B =3.0 kg ·m/sC .Δp A =3.0 kg ·m/s ;Δp B =-3.0 kg ·m/sD .Δp A =-10 kg ·m/s ;Δp B =10 kg ·m/s 【答案】 A【解析】 A 项,根据碰撞过程动量守恒定律,如果Δp A =-3 kg ·m/s 、Δp B =3 kg ·m/s ,所以碰后两球的动量分别为p ′A =2 kg ·m/s 、p ′B =10 kg ·m/s ,根据碰撞过程总动能可能不增加,是可能发生的,故A 项正确;B 项,两球碰撞过程,系统的动量守恒,两球动量变化量应大小相等,方向相反,若ΔP A =3 kg ·m/s ,Δp B =3 kg ·m/s ,违反了动量守恒定律,不可能,故B 项错误;C 项,根据碰撞过程动量守恒定律,如果Δp A =3 kg ·m/s 、Δp B =-3 kg ·m/s ,所以碰后两球的动量分别为p ′A =8 kg ·m/s 、p ′B =4 kg ·m/s ,由题,碰撞后,两球的动量方向都与原来方向相同,A 的动量不可能沿原方向增大,与实际运动不符,故C 项错误;D 项,如果Δp A =-10 kg ·m/s 、Δp B =10 kg ·m/s ,所以碰后两球的动量分别为p ′A =-5 kg ·m/s 、p ′B =17 kg ·m/s ,可以看出,碰撞后A 的动能不变,而B 的动能增大,违反了能量守恒定律,不可能.故D 项错误.8.如图所示,质量相等的五个物块在光滑水平面上,间隔一定距离排成一条直线.具有初动能E 0的物块1向其它4个静止的物块运动,依次发生碰撞,每次碰撞后不再分开.最后5个物块粘成一个整体.这个整体的动能等于( )A .E 0 B.45E 0 C.15E 0D.125E 0【答案】 C9.(2017·铜仁市四模)(多选)如图所示,弧形轨道置于足够长的水平轨道上,弧形轨道与水平轨道平滑连接,水平轨道上静置一小球B 和C ,小球A 从弧形轨道上离地高h 处由静止释放,小球A 沿轨道下滑后与小球B 发生弹性正碰,碰后小球A 被弹回,B 球与C 球碰撞后粘在一起,A 球弹会后再从弧形轨道上滚下,已知所有接触面均光滑,A 、C 两球的质量相等,B 球的质量为A 球质量的2倍,如果让小球A 从h =0.2 m 处静止释放,则下列说法正确的是(重力加速度为g =10 m/s 2)( )A .A 球从h 处由静止释放则最后不会与B 球再相碰 B .A 球从h 处由静止释放则最后会与B 球再相碰C .A 球从h =0.2 m 处由静止释放则C 球的最后速度为79m/sD .A 球从h =0.2 m 处由静止释放则C 球的最后速度为89 m/s【答案】 AD10.(2017·淄博一模)(多选)如图所示,在质量为M(含支架)的小车中用轻绳悬挂一小球,小球的质量为m 0,小车和小球以恒定速度v 沿光滑水平地面运动,与位于正对面的质量为m 的静止木块发生碰撞,碰撞的时间极短.在此碰撞过程中,下列哪个或哪些说法是可能发生的?( )A .在此过程中小车、木块、摆球的速度都发生变化,分别变为v 1、v 2、v 3,满足(M +m 0)v =Mv 1+mv 2+m 0v 3B .在此碰撞过程中,小球的速度不变,小车和木块的速度分别为v 1和v 2,满足(M +m 0)v =Mv 1+mv 2C .在此碰撞过程中,小球的速度不变,小车和木块的速度都变成u ,满足Mv =(M +m)uD .碰撞后小球摆到最高点时速度变为v 1,木块的速度变为v 2,满足(M +m 0)v =(M +m 0)v 1+mv 2 【答案】 CD【解析】A 项,碰撞的瞬间小车和木块组成的系统动量守恒,摆球的速度在瞬间不变,若碰后小车和木块的速度变为v 1和v 2,根据动量守恒有:Mv =Mv 1+mv 2.若碰后小车和木块速度相同,根据动量守恒定律有:Mv =(M +m)u.故C 项正确,A 、B 两项错误;D 项,碰撞后,小车和小球水平方向动量守恒,则整个过程中,系统动量守恒,则有:(M +m 0)v =(M +m 0)v 1+mv 2,故D 项正确.11.(2017·广东七校联考)(多选)如图所示,图(a)表示光滑平台上,物体A 以初速度v 0滑到上表面粗糙的水平小车上,车与水平面间的动摩擦因数不计;图(b)为物体A 与小车B 的v-t 图像,由此可知( )A .小车上表面长度B .物体A 与小车B 的质量之比C .A 与小车B 上表面的动摩擦因数D .小车B 获得的动能 【答案】 BC12.(2017·天津六校联考)质量为m B =2 kg 的木板B 静止于水平面上,质量为m A =6 kg 的物块A 停在B 的左端,质量为m C =2 kg 的小球C 用长为L =0.8 m 的轻绳悬挂在固定点O.现将小球C 及轻绳拉直至水平位置后由静止释放,小球C 在最低点与A 发生正碰,碰撞作用时间很短为Δt =10-2 s ,之后小球C 反弹所能上升的最大高度h =0.2 m .已知A 、B 间的动摩擦因数μ1=0.2,B 与水平面间的动摩擦因数μ2=0,物块与小球均可视为质点,不计空气阻力,取g =10 m/s 2.求:(1)小球C 与物块A 碰撞过程中所受的撞击力大小; (2)为使物块A 不滑离木板B ,木板B 至少多长? 【答案】 (1)1 200 N (2)0.5 m 【解析】(1)C 下摆过程,根据动能定理有:m C gL =12m C v C 2代入数据解得:碰前C 的速度v C =4 m/s ,C 反弹过程,根据动能定理有:-m C gh =0-12m C v ′C 2解得:碰后C 的速度v ′C =2 m/s取向右为正方向,对C ,根据动量定理有: -F Δt =-m C v ′C -m C v C解得:碰撞过程中C 所受的撞击力大小:F =1 200 N.13.(2017年高考·课标全国卷Ⅱ)如图,光滑冰面上静止放置一表面光滑的斜面体,斜面体右侧一蹲在滑板上的小孩和其面前的冰块均静止于冰面上.某时刻小孩将冰块以相对冰面3 m/s 的速度向斜面体推出,冰块平滑地滑上斜面体,在斜面体上上升的最大高度为h =0.3 m(h 小于斜面体的高度).已知小孩与滑板的总质量为m 1=30 kg ,冰块的质量为m 2=10 kg ,小孩与滑板始终无相对运动.取重力加速度的大小g =10 m/s 2.(1)求斜面体的质量;(2)通过计算判断,冰块与斜面体分离后能否追上小孩? 【答案】m 3=20 kg ; v 2=1 m/s 【解析】:(1)规定向右为速度正方向.冰块在斜面体上运动到最大高度时两者达到共同速度,设此共同速度为v ,斜面体的质量为m 3.由水平方向动量守恒和机械能守恒定律得 m 2v 20=(m 2+m 3)v12m 2v 220=12(m 2+m 3)v 2+m 2gh 且v 20=-3 m/s 为冰块推出时的速度.联立上式且代入题给数据得m 3=20 kg (2)设小孩推出冰块后的速度为v 1,由动量守恒定律有 m 1v 1+m 2v 20=0代入数据得v 1=1 m/s设冰块与斜面体分离后的速度分别为v 2和v 3,由动量守恒和机械能守恒定律得m 2v 20=m 2v 2+m 3v 312m 2v 220=12m 2v 22+12m 3v 23 联立上式且代入数据得v 2=1 m/s由于冰块与斜面体分离后的速度与小孩推出冰块后的速度相同且处在后方,故冰块不能追上小孩.14.(2015年高考·课标全国卷Ⅰ)如图,在足够长的光滑水平面上,物体A 、B 、C 位于同一直线上,A 位于B 、C 之间.A 的质量为m ,B 、C 的质量都为M ,三者均处于静止状态.现使A 以某一速度向右运动,求m 和M 之间应满足什么条件,才能使A 只与B 、C 各发生一次碰撞.设物体间的碰撞都是弹性的.【答案】(5-2)M ≤m <M如果m >M ,第一次碰撞后,A 与C 速度同向,且A 的速度小于C 的速度,不可能与B 发生碰撞;如果m =M ,第一次碰撞后,A 停止,C 以A 碰前的速度向右运动,A 不可能与B 发生碰撞;所以只需考虑m <M 的情况.第一次碰撞后,A 反向运动与B 发生碰撞.设与B 发生碰撞后,A 的速度为v A 2,B 的速度为v B 1,同样有v A 2=m -M m +M v A 1=(m -M m +M )2v 0⑤ 根据题意,要求A 只与B 、C 各发生一次碰撞,应有v A 2≤v C 1⑥联立④⑤⑥式得m 2+4mM -M 2≥0⑦解得m≥(5-2)M⑧另一解m≤-(5+2)M舍去.所以,m和M应满足的条件为(5-2)M≤m<M⑨15.两块厚度相同的木块A和B,紧靠着放在光滑的水平面上,其质量分别为m A=0.5 kg,m B=0.3 kg,它们的下底面光滑,上表面粗糙;另有一质量m C=0.1 kg的滑块C(可视为质点),以v C=25 m/s的速度恰好水平地滑到A的上表面,如图7-2-4所示,由于摩擦,滑块最后停在木块B上,B和C的共同速度为3.0 m/s,求:(1)木块A的最终速度v A;(2)滑块C离开A时的速度v′C.【答案】2.6 m/s;4.2 m/s.(2)为计算v′C我们以B、C为系统,C滑上B后与A分离,C、B系统水平方向动量守恒.C离开A时的速度为v′C,B与A的速度同为v A,由动量守恒定律有m B v A+m C v′C=(m B+m C)v B∴v′C=m B+m C v B-m B v Am C=+-0.3×2.60.1m/s=4.2 m/s.16.如图所示,光滑的水平地面上有一质量为M=3 kg的木板,其左端放有一可看成质点、质量为m=1 kg 的重物,右方有一竖直的墙.重物与木板间的动摩擦因数为μ=0.5.使木板与重物以共同的速度v0=6 m/s向右运动,某时刻木板与墙发生碰撞,经Δt=0.1 s木板以v1=4 m/s的速度返回,重力加速度为g=10 m/s2.求:(1)墙壁对木板的平均作用力;(2)板与墙作用时间很短,忽略碰撞过程中重物的速度变化.若重物不从木板上掉下来,木板的最小长度.(3)木板与墙壁碰撞后,系统产生的内能;(4)木板与墙壁碰撞后,重物向右移动的最大位移.【答案】F =305 N ;L =7.5 m ;37.5 J ;x =3.6 m【解析】 (1)设向左为正方向,板碰后速度为v 1,由动量定理有:(F -μmg )Δt =Mv 1-(-Mv 0)代入数据可求得F =305 N(3)设向左为正方向,重物与木板组成的系统动量守恒:Mv 1-mv 0=(M +m )v 共v 共=1.5 m/s由能量守恒得:ΔE =12Mv 21+12mv 20-12(M +m )v 2共=37.5 J (4)设向左为正方向,当重物速度为零时向右的位移最大,系统动量守恒:Mv 1-mv 0=Mv 2对木板列动能定理:-μmgx =12Mv 22-12Mv 21x =3.6 m17.(2017年湖北六校调考)如图所示,一质量为13m 的人站在质量为m 的小船甲上,以速度v 0在水面上向右运动.另一完全相同的小船乙以速率v 0从右方向左方驶来,两船在一条直线上运动,为避免两船相撞,人从甲船以一定的速率水平向右跃到乙船上,求:为能避免两船相撞,人水平跳出时相对于地面的速率至少多大?【答案】v =257v 0.18.(2017年南昌市一模)如图所示,在光滑水平面上,A 小球以速度v 0运动,与原静止的B 小球碰撞,碰撞后A 球以v =αv 0(待定系数α<1)的速率弹回,并与挡板P 发生完全弹性碰撞,设m B =4m A ,若要求A 球能追上B 再相撞,求α应满足的条件.【答案】13<α≤35. 【解析】:A 、B 碰撞过程,以v 0方向为正方向,由动量守恒定律得m A v 0=-m A αv 0+m B v BA 与挡板P 碰撞后能追上B 发生再碰的条件是αv 0>v B得α>13碰撞过程中损失的机械能ΔE k =12m A v 20-⎣⎡⎦⎤12m A αv 02+12m B v 2B ≥0 得-1≤α≤35所以α满足的条件是13<α≤35. 19.(2017年湖北八校3月模拟)如图所示,质量为3 kg 的小车A 以v 0=4 m/s 的速度沿光滑水平面匀速运动,小车左端固定的支架通过不可伸长的轻绳悬挂质量为1 kg的小球B(可看作质点),小球距离车面0.8 m.某一时刻,小车与静止在水平面上的质量为1 kg的物块C发生碰撞并粘连在一起(碰撞时间可忽略),此时轻绳突然断裂.此后,小球刚好落入小车右端固定的砂桶中(小桶的尺寸可忽略),不计空气阻力,重力加速度g取10 m/s2.求:(1)绳未断前小球与砂桶的水平距离;(2)小车系统最终速度的大小;(3)整个系统损失的机械能.【答案】0.4 m;v2=3.2 m/s;ΔE=14.4 J.。
专题07 碰撞与动量守恒-2019年高考物理备考优生百日闯关系列 Word版含解析

专题07 碰撞与动量守恒第一部分名师综述综合分析近几年的高考物理试题发现,试题在考查主干知识的同时,注重考查基本概念和基本规律。
考纲要求1、理解动量、动量变化量的概念;知道动量守恒的条件。
2、会利用动量守恒定律分析碰撞、反冲等相互作用问题。
命题规律1、动量和动量的变化量这两个概念常穿插在动量守恒定律的应用中考查。
2、动量守恒定律的应用是本部分的重点和难点,也是高考的热点;动量守恒定律结合能量守恒定律来解决碰撞、打击、反冲等问题,以及动量守恒定律与圆周运动、核反应的结合已成为近几年高考命题的热点。
第二部分精选试题一、单选题1.如图所示,左图为大型游乐设施跳楼机,右图为其结构简图。
跳楼机由静止从a自由下落到b,再从b 开始以恒力制动竖直下落到c停下。
已知跳楼机和游客的总质量为m,ab高度差为2h,bc高度差为h,重力加速度为g。
则A.从a到b与从b到c的运动时间之比为2:1B.从a到b,跳楼机座椅对游客的作用力与游客的重力大小相等C.从a到b,跳楼机和游客总重力的冲量大小为D.从b到c,跳楼机受到制动力的大小等于2mg【答案】 A【解析】【详解】A.由题意可知,跳楼机从a运动b过程中做自由落体运动,由可得,下落时间,由可知,运动到b的速度大小为;跳楼机从a运动b过程中做减速运动,同理可得,,解得减速过程的加速度大小为,时间为,故从a到b与从b到c的运动时间之比为,故A正确;B.从a到b,跳楼机做自由落体运动,故跳楼机座椅对游客的作用力为零,故B错误;C.从a到b,根据动量定理可得,则跳楼机和游客总重力的冲量大小为,故C 错误;D.从b到c,根据牛顿第二定律有:,解得跳楼机受到制动力的大小为,故D错误。
2.北京时间2009年3月1日下午15时36分,在距月球表面100km的圆轨道上运行的质量为(连同燃料)的“嫦娥一号”卫星,在北京航天飞行控制中心科技人员的控制下发动机点火。
在极短的时间内以4.92km/s的速度(相对月球表面)向前喷出质量为50kg的气体后,卫星减速。
2019年高考物理之高频考点解密07碰撞与动量守恒(含解析)

考点1 碰撞模型1.碰撞的特点(1)作用时间极短,内力远大于外力,总动量总是守恒的。
(2)碰撞过程中,总动能不增。
因为没有其他形式的能量转化为动能。
(3)碰撞过程中,当两物体碰后速度相等时,即发生完全非弹性碰撞时,系统动能损失最大。
(4)碰撞过程中,两物体产生的位移可忽略。
2.碰撞的种类及遵从的规律3两球发生弹性碰撞时满足动量守恒定律和机械能守恒定律。
在光滑的水平面上,质量为m 1的钢球沿一条直线以速度v 0与静止在水平面上的质量为m 2的钢球发生弹性碰撞,碰后的速度分别是v 1、v 2①②由①②可得:③④利用③式和④式,可讨论以下五种特殊情况:a .当12m m >时,10v >,20v >,两钢球沿原方向原方向运动;b .当12m m <时,10v <,20v >,质量较小的钢球被反弹,质量较大的钢球向前运动;c .当12m m =时,10v =,20v v =,两钢球交换速度。
d .当12m m <<时,10v v ≈,20v ≈,m 1很小时,几乎以原速率被反弹回来,而质量很大的m 2几乎不动。
例如橡皮球与墙壁的碰撞。
e .当12m m >>时,0v v ≈,202v v ≈,说明m 1很大时速度几乎不变,而质量很小的m 2获得的速度是原来运动物体速度的2倍,这是原来静止的钢球通过碰撞可以获得的最大速度,例如铅球碰乒乓球。
4.一般的碰撞类问题的分析 (1)判定系统动量是否守恒。
(2)判定物理情景是否可行,如追碰后,前球动量不能减小,后球动量在原方向上不能增加;追碰后,后球在原方向的速度不可能大于前球的速度。
(3)判定碰撞前后动能是否不增加。
(2018·安徽省滁州市定远县育才学校)两个质量相等的小球在光滑水平面上沿同一直线同方向运动,A 球的动量是7 kg·m/s ,B 球的动量是5 kg·m/s ,A 球追上B 球时发生碰撞,则碰撞后A 、B 两球的动量可能值是 A .p A =6 kg·m/s ,p B =6 kg·m/s B .p A =3 kg·m/s ,p B =9 kg·m/s C .p A =–2 kg·m/s ,p B =14 kg·m/s D .p A =–5 kg·m/s ,p B =15 kg·m/s 【参考答案】A【试题解析】以A 、B 两球组成的系统为对象。
2019年高考物理之高频考点解密07碰撞与动量守恒(附解析)

考点1 碰撞模型1.碰撞的特点(1)作用时间极短,内力远大于外力,总动量总是守恒的。
(2)碰撞过程中,总动能不增。
因为没有其他形式的能量转化为动能。
(3)碰撞过程中,当两物体碰后速度相等时,即发生完全非弹性碰撞时,系统动能损失最大。
(4)碰撞过程中,两物体产生的位移可忽略。
2.碰撞的种类及遵从的规律3两球发生弹性碰撞时满足动量守恒定律和机械能守恒定律。
在光滑的水平面上,质量为m 1的钢球沿一条直线以速度v 0与静止在水平面上的质量为m 2的钢球发生弹性碰撞,碰后的速度分别是v 1、v 2①②由①②可得:③④利用③式和④式,可讨论以下五种特殊情况:a .当12m m >时,10v >,20v >,两钢球沿原方向原方向运动;b .当12m m <时,10v <,20v >,质量较小的钢球被反弹,质量较大的钢球向前运动;c .当12m m =时,10v =,20v v =,两钢球交换速度。
d .当12m m <<时,10v v ≈,20v ≈,m 1很小时,几乎以原速率被反弹回来,而质量很大的m 2几乎不动。
例如橡皮球与墙壁的碰撞。
e .当12m m >>时,0v v ≈,202v v ≈,说明m 1很大时速度几乎不变,而质量很小的m 2获得的速度是原来运动物体速度的2倍,这是原来静止的钢球通过碰撞可以获得的最大速度,例如铅球碰乒乓球。
4.一般的碰撞类问题的分析 (1)判定系统动量是否守恒。
(2)判定物理情景是否可行,如追碰后,前球动量不能减小,后球动量在原方向上不能增加;追碰后,后球在原方向的速度不可能大于前球的速度。
(3)判定碰撞前后动能是否不增加。
(2018·安徽省滁州市定远县育才学校)两个质量相等的小球在光滑水平面上沿同一直线同方向运动,A 球的动量是7 kg·m/s ,B 球的动量是5 kg·m/s ,A 球追上B 球时发生碰撞,则碰撞后A 、B 两球的动量可能值是 A .p A =6 kg·m/s ,p B =6 kg·m/s B .p A =3 kg·m/s ,p B =9 kg·m/s C .p A =–2 kg·m/s ,p B =14 kg·m/s D .p A =–5 kg·m/s ,p B =15 kg·m/s 【参考答案】A【试题解析】以A 、B 两球组成的系统为对象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点1 碰撞模型1.碰撞的特点(1)作用时间极短,内力远大于外力,总动量总是守恒的。
(2)碰撞过程中,总动能不增。
因为没有其他形式的能量转化为动能。
(3)碰撞过程中,当两物体碰后速度相等时,即发生完全非弹性碰撞时,系统动能损失最大。
(4)碰撞过程中,两物体产生的位移可忽略。
2.碰撞的种类及遵从的规律两球发生弹性碰撞时满足动量守恒定律和机械能守恒定律。
在光滑的水平面上,质量为m 1的钢球沿一条直线以速度v 0与静止在水平面上的质量为m 2的钢球发生弹性碰撞,碰后的速度分别是v 1、v 2①②由①②可得:③④利用③式和④式,可讨论以下五种特殊情况:a .当12m m >时,10v >,20v >,两钢球沿原方向原方向运动;b .当12m m <时,10v <,20v >,质量较小的钢球被反弹,质量较大的钢球向前运动;c .当12m m =时,10v =,20v v =,两钢球交换速度。
d .当12m m <<时,10v v ≈,20v ≈,m 1很小时,几乎以原速率被反弹回来,而质量很大的m 2几乎不动。
例如橡皮球与墙壁的碰撞。
e .当12m m >>时,0v v ≈,202v v ≈,说明m 1很大时速度几乎不变,而质量很小的m 2获得的速度是原来运动物体速度的2倍,这是原来静止的钢球通过碰撞可以获得的最大速度,例如铅球碰乒乓球。
4.一般的碰撞类问题的分析 (1)判定系统动量是否守恒。
(2)判定物理情景是否可行,如追碰后,前球动量不能减小,后球动量在原方向上不能增加;追碰后,后球在原方向的速度不可能大于前球的速度。
(3)判定碰撞前后动能是否不增加。
(2018·安徽省滁州市定远县育才学校)两个质量相等的小球在光滑水平面上沿同一直线同方向运动,A 球的动量是7 kg·m/s ,B 球的动量是5 kg·m/s ,A 球追上B 球时发生碰撞,则碰撞后A 、B 两球的动量可能值是A .p A =6 kg·m/s ,pB =6 kg·m/s B .p A =3 kg·m/s ,p B =9 kg·m/sC .p A =–2 kg·m/s ,p B =14 kg·m/sD .p A =–5 kg·m/s ,p B =15 kg·m/s 【参考答案】A【试题解析】以A 、B 两球组成的系统为对象。
设两球的质量均为m 。
当A 球追上B 球时发生碰撞,统动量守恒。
碰撞后总动能为,系统总动能增加,故C 错误;如果p A =–5 kg·m/s ,p B =15 kg·m/s ,碰撞后总动量为p′=–5+15=10 kg·m/s ,系统动量不守恒,故D 错误。
1.(2018·湖北省孝感市八校教学联盟)如图所示,光滑水平面上有大小相同的A 、B 两球在同一直线上运动。
两球质量关系为m A =2m B ,规定向右为正方向,A 、B 两球的动量均为6 kg·m/s ,运动中两球发生碰撞,碰撞后A 球的动量增量为–4 kg·m/s ,则A .左方是A 球,碰撞后A 、B 两球速度大小之比为2:5 B .左方是A 球,碰撞后A 、B 两球速度大小之比为1:10C .右方是A 球,碰撞后A 、B 两球速度大小之比为1:10D .右方是A 球,碰撞后A 、B 两球速度大小之比为2:5 【答案】B2.(2018·福建省南平市)如图甲所示,在光滑水平面上的两小球发生正碰,小球的质量分别为1m 和2m 。
图乙为它们碰撞前后的s t -图象。
已知20.6kg m =,规定水平向右为正方向。
由此可知A .10.5kg m =B .碰撞过程2m 对1m 的冲量为3N s ⋅C .两小球碰撞过程损失的动能为1.5JD .碰后两小球的动量大小相等、方向相反【答案】C3.如图所示,CDE为光滑的轨道,其中ED是水平的,CD是竖直平面内的半圆,与ED相切于D点,且半径R=0.5 m,质量m=0.1 kg的滑块A静止在水平轨道上,另一质量M=0.5 kg的滑块B前端装有一轻质弹簧(A、B均可视为质点)以速度v0向左运动并与滑块A发生弹性正碰,若相碰后滑块A能过半圆最高点C,取重力加速度g=10 m/s2,则:(1)B滑块至少要以多大速度向前运动;(2)如果滑块A恰好能过C点,滑块B与滑块A相碰后轻质弹簧的最大弹性势能为多少?【答案】(1)3 m/s (2)0.375 J【解析】(1)设滑块A过C点时速度为v C,B与A碰撞后,B与A的速度分别为v1、v2,B碰撞前的速度为v0,过圆轨道最高点的临界条件是重力提供向心力,由牛顿第二定律得:2Cv mg mR从D到C,由动能定理得:B与A发生弹性碰撞,碰撞过程动量守恒、能量守恒,以向左为正方向,由动量守恒定律得:Mv0=Mv1+mv2由机械能守恒定律得:由以上代入数据解得:v0=3 m/s(2)由于B与A碰撞后,当两者速度相同时有最大弹性势能E p,设共同速度为v,A、B碰撞过程系统动量守恒、能量守恒,以向左为正方向,由动量守恒定律得:Mv0=(M+m)v由机械能守恒定律得:以上联立并代入数据解得:E p =0.375 J考点2 弹簧模型1.注意弹簧弹力特点及运动过程,弹簧弹力不能瞬间变化。
2.弹簧连接两种形式:连接或不连接。
连接:可以表现为拉力和压力,从被压缩状态到恢复到原长时物体和弹簧不分离,弹簧的弹力从压力变为拉力。
不连接:只表现为压力,弹簧恢复到原长后物体和弹簧分离,物体不再受弹簧的弹力作用。
3.动量和能量问题:动量守恒、机械能守恒,动能和弹性势能之间转化,等效于弹性碰撞。
弹簧被压缩到最短或被拉伸到最长时,与弹簧相连的物体共速,此时弹簧具有最大的弹性势能,系统的总动能最小;弹簧恢复到原长时,弹簧的弹性势能为零,系统具有最大动能。
(2018·湖南省五市十校)如图所示,光滑水平面上质量为m 的小球A 和质量为13m 的小球B ,通过轻质弹簧相连并处于静止状态,弹簧处于自由长度;质量为m 的小球C 以速度0v 沿AB 连线向右匀速运动。
并与小球A 发生弹性正碰。
在小球B 的右侧固定一块弹性挡板(图中未画出)。
当小球B 的速度达到最大时恰与挡板发生正碰,后立刻将挡板搬走。
不计所有碰撞过程中的机械能损失。
弹簧始终处于弹性限度内,小球B 与固定挡板的碰撞时间极短,碰后小球B 的速度大小不变,但方向相反。
则B 与挡板碰后弹簧弹性勢能的最大值m E 为A .20mvB .2012mv C .2016mv D .20116mv 【参考答案】B【试题解析】由题,系统的初动能为E k =2012mv ,而系统的机械能守恒,则弹簧的弹性势能不可能等于1.(2018·河北省巨鹿县二中)如图所示,甲木块的质量为1m ,以速度v 沿光滑水平地面向前运动,正前方有一静止的、质量为2m 的乙木块,乙上连有一轻质弹簧。
甲木块与弹簧接触后A .甲木块的动量守恒B .乙木块的动量守恒C .甲、乙两木块所组成的系统的动量守恒D .甲、乙两木块所组成的系统的动能守恒 【答案】C【解析】甲木块与弹簧接触后,由于弹簧弹力的作用,甲、乙的动量要发生变化,但对于甲、乙所组成的系统因所受合力的冲量为零,故动量守恒,故AB 错误,C 正确;甲、乙两木块所组成系统的动能,一部分转化为弹簧的势能,故系统动能不守恒,故D 错误。
2.(2018·黑龙江省青冈县一中)如图所示,A 、B 两物体的质量之比M A :M B =3:2,原来静止在平板小车C 上,A 、B 间有一根被压缩的弹簧,地面光滑。
当弹簧突然释放后,A 、B 两物体被反向弹开,则A 、B 两物体滑行过程中A .若A 、B 与平板车上表面间的动摩擦因数相同,A 、B 组成的系统动量守恒 B .若A 、B 与平板车上表面间的动摩擦因数之比为2:3,A 、B 组成的系统动量守恒C .若A 、B 所受的动摩擦力大小相等,A 、B 组成的系统动量守恒D .若A 、B 所受的摩擦力大小相等,则A 、B 、C 组成的系统动量不守恒 【答案】BC3.质量均为m =2 kg 的三物块A 、B 、C ,物块A 、B 用轻弹簧相连,初始时弹簧处于原长,A 、B 两物块都以v =3 m/s 的速度在光滑的水平地面上运动,物块C 静止在前方,如图所示。
B 与C 碰撞后二者会粘在一起运动。
求在以后的运动中:(1)从开始到弹簧的弹性势能第一次达到最大时,弹簧对物块A 的冲量; (2)系统中弹性势能的最大值E p 是多少? 【答案】(1)2N s -⋅ (2)p 1.5J E =【解析】(1)根据题意可以知道首先B 与C 发生碰撞后,B 的速度减小,BC 一起向右运动,A 物体没有参加碰撞,速度不变,继续向右运动,这样弹簧被压缩,当三者速度相同时,弹簧压缩量最大,弹性势能最大,则根据动量守恒:整理可以得到:2m/s A v = 根据动量定理:(2)B 、C 碰撞时,B 、C 系统动量守恒,设碰后瞬间两者的速度为1v ,则:解得:1 1.5m/s v =设弹簧的弹性势能最大为p E ,根据机械能守恒得:代入解得为:p 1.5J E =考点3 子弹打木块模型子弹打击木块问题,由于被打击的木块所处情况不同,可分为两种类型:一是被打的木块固定不动;二是被打的木块置于光滑的水平面上,木块被打击后在水平面上做匀速直线运动。
1.木块被固定子弹和木块构成的系统所受合外力不为零,系统动量不守恒,系统内力是一对相互作用的摩擦力,子弹对木块的摩擦力不做功,相反,木块对子弹的摩擦力做负功,使子弹动能的一部分或全部转化为系统的内能。
由动能定理可得:Q f s =⋅,式中f 为子弹受到的平均摩擦力,s 为子弹相对于木块运动的距离。
2.木块置于光滑水平面上子弹和木块构成系统不受外力作用,系统动量守恒,系统内力是一对相互作用的摩擦力,子弹受到的摩擦力做负功,木块受到的摩擦力做正功。
如图所示,设子弹质量为m ,水平初速度为v 0,置于光滑水平面上的木块质量为M 。
若子弹未穿过木块,则子弹和木块最终共速为v 。
由动量守恒定律: ①对于子弹,由动能定理:②对于木块,由动能定理:212f L Mv ⋅=③由①②③可得:④系统动能的减少量转化为系统内能Q(1)若s d =时,说明子弹刚好穿过木块,子弹和木块具有共同速度v 。
(2)若s d <时,说明子弹未能穿过木块,最终子弹留在木块中,子弹和木块具有共同速度v 。
(3)当s d >时,说明子弹能穿过木块,子弹射穿木块时的速度大于木块的速度。