人教版七年级上期中测试数学试题(含答案)

合集下载

人教版七年级上册数学期中考试试卷(含答案)

人教版七年级上册数学期中考试试卷(含答案)

人教版七年级上册数学期中考试试卷(含答案)人教版七年级上册数学期中考试试卷(含答案)一、选择题1. 以下哪个数是整数?A. √2B. 3/4C. -5D. 0.752. 下列有理数中,绝对值最大的是:A. -3B. 1/3C. 0D. -5/63. 对于非零有理数a,以下等式成立的是:A. a^2 = -aB. a * a = -aC. a * a = aD. a^2 = a二、填空题1. 计算:5/6 + 2/3 = ____2. 将72cm^2写成平方分米为____(注:1平方分米=100平方厘米)3. 若a = -2/3,b = 1/2,求ab的值。

三、解答题1. 线段AB的长度为3.2厘米,线段CD的长度为7.5厘米,求AB与CD的比值。

2. 小明从家到学校的距离为4千米,他刚走了2千米,这时他离学校还有多远?3. 将小数-0.125改写成分数。

四、应用题1. 一块长方形花坛长为12米,宽为8米,小明要用花砖铺满这个花坛。

每块花砖的正方形面积为0.25平方米,小明需要多少块花砖?2. 甲乙两个人同时从A地出发,以相同的速度向B地行驶,甲车开车时图示速度为75千米/小时,乙车开车时图示速度为80千米/小时。

若甲车到达B地用时比乙车早30分钟,求A到B地的距离。

五、解答题1. 有理数运算的要点是什么?请分析有理数的加法、减法、乘法和除法运算的规律和特点。

2. 计算题:5/12 + 4/9 - 1/3 + 2/5 = ____ ---答案:一、选择题1. C2. D3. A二、填空题1. 11/62. 0.723. -1/3三、解答题1. AB与CD的比值为 32/752. 离学校还有 2千米3. -0.125可以写成 -1/8四、应用题1. 需要 384 块花砖2. A到B地的距离为 100 千米五、解答题1. 有理数运算的要点是:符号相同的有理数相加减,绝对值大的数保留符号;符号相反的有理数相加减,先求绝对值相加减,再给结果加上原来的符号;有理数相乘除,符号相同为正,符号不同为负。

人教版七年级上学期期中数学试题(含答案)

人教版七年级上学期期中数学试题(含答案)

人教版七年级上学期期中数学试卷及答案一、选择题(每小题2分,共12分) 1.8的相反数是( ) A .8B .18C .8-D .18-2.计算2(3)-的结果等于( ) A .6B .6-C .9D .—93.在下列选项中,既是分数,又是负数的是( ) A .8B .15-C .12D .2-4.下列式子中:a -,23abc ,x y -,3x ,32872x x -+,整式有( ) A .2个B .3个C .4个D .5个5.若单项式235y a b 与单项式32x a b 是同类项,则x y +的值是( ) A .3B .5C .7D .86.一个长方形的周长为l ,若长方形的长为a ,则该长方形的宽为( ) A .2la - B .12a- C .l a -D .12a二、填空题(每小题3分,共24分) 7.23-的倒数是_______. 8.单项式2445x y -的系数是_______.9.多项式2312245xy x y --的常数项是_______. 10.据统计,全国共有学生团员48300000名,数据48300000用科学记数法表示为_______. 11.用四舍五入法将5.1289精确到百分位的近似值为_______.12.数轴上点A 表示的数为0.3点.B 表示的数为13-,则这两点中距离原点较近的是点______(填“A ”或“B ”). 13.我市某天最低气温是5C -︒,最高气温比最低气温高8℃,则这天的最高气温是_______℃. 14.如果关于x 、y 的多项式21(2)13axy a y --+是三次三项式,则a 的值为_______. 三、解答题(每小题5分,共20分) 15.计算:216()32⨯-.16.计算:3221(2)9()()32-+⨯-÷-. 17.化简:()()32232x y x y ---.18.把下列各式的序号填入相应集合的括号内;①22123a b ab +;②1a b-;③0;④223m n +;⑤15mm -;⑥235x y -=;⑦263a abc k ++单项式集合:{ …}; 多项式集合:{ …}. 四、解答题(每小题7分,共28分)19.(1)请把下面不完整的数轴画完整,并在数轴上标出下列各数:-3,12-,4,2.5. (2)比较(1)中各数的大小(用“<”号连接).20.先化简,再求值:()22222336x y x y⎡⎤----+⎣⎦,其中 x 、y 满足()2110x y ++-=.21.已知a 、b 互为相反数;c 、d 互为倒数,2m =,求()()20223612a cd m +-+--的值.22.已知多项式2134331m x y x y x --+--与单项式42x y 的次数相同.(1)求m 的值;(2)把这个多项式按x 的降幂排列. 五、解答题(每小题8分,共16分)23.某同学计算22256x xy y -+减去某个多项式.由于粗心,误算为加上这个多项式,而得到22744y xy x --+,请你帮他求出正确的答案.24.如图是一块长为30cm ,宽为2xcm 的长方形铁片,从中挖去直径分别为2x cm .2y cm 的四个半圆(已知2230x y +<).(1)用含x 、y 的式子表示剩下铁片的面积;(2)当6x =,2y =时,剩下铁片的面积是多少平方厘米(结果保留π)? 六、解答题(每小题10分,共20分)25.某灯具厂为抓住商业契机,计划每天生产某种景观灯300盏以便投入市场进行销售.但由于各种原因,实际每天生产景观灯数与计划每天生产景观灯数相比有出入,下表是该灯具厂上周的生产情况(增产记为正,减产记为负):(1)求该灯具厂上周实际生产景观灯多少盏?(2)该灯具厂实行每天计件工资制,每生产一盏景观灯可得50元,若超计划完成任务,则超过部分每盏另外奖励15元,少生产一盏扣20元,那么该灯具厂工人上周的工资总额是多少元?26.如图.点A 、C 、B 在数轴上表示的数分别是→3,1、5.动点P 、Q 同时出发,动点P 从点A 出发,以每秒4个单位长度的速度沿A →B →A 运动.回到点A 时停止运动;动点Q 从点C 出发,以每秒1个单位长度的速度沿C →B 向终点B 运动,设点P 的运动时间为t (s ).(1)当点P 到达点B 时,点Q 表示的数为______; (2)当t =1时,求点P 、Q 之间的距离;(3)当点P 沿A →B 运动时,用含t 的式子表示点P 、Q 之间的距离;(4)当点P 沿B →A 运动时,若点P 、B 之间的距离是2,直接写出点Q 、B 之间的距离.参考答案一、1.C 2.C 3.B 4.C 5.B 6.A二、7.32-8.45- 9.22 10.74.8310⨯ 11.5.13 12.A 13.3 14.-2 三、15.解:原式216643132=⨯-⨯=-=.16.解:原式16=-. 17.解:原式y =18.解:单项式集合:{③,⑤,…}; 多项式集合{①,④,⑦…}; 四、19.解:(1)数轴如下:(2)13 2.542-<-<<. 20.解:原式2266x y =--.∵2|1|(1)0x y ++-=,∴1x =-, 1y =,∴原式11=-. 21.解:根据题意,每0a b +=,1cd =,2m =或2-.当2m =时,原式20223(01)(1)223146=⨯-+--⨯=-+-=-;当2m =-吋,原式20223(01)(1)2(2)3142=⨯-+--⨯-=-++=.22.解:(1)4m =.(2)按x 的降幂排列为4323331x x y x y -+--.五、23.解:由题意可得()()2222744256y xy x x xy y --+--+222222744256132y xy x x xy y y xy x =--+-+-=-++,∴()2222256132x xy y y xy x -+--++22222256132619x xy y y xy x xy y =-++--=-+, 即正确的答案是2619xy y -+.24.解:(1)剩下铁片的面积为()22260cm x x y ππ--. (2)当6x =, 2y =时,剩下铁片的面积为2(36040)cm π-.六、25.解:(1)()()()()()()30043006300330010300530011(3002)2109++-+-+++-+++-=(盖) 答:该灯具厂上周实际生产景观灯2109盏..(2)()()4101115635220 37532055++⨯-+++⨯=-=(元). 55210950105505+⨯=(元). 答:该灯具厂工人上周的工资总额是105505元. 26.解:(1)3.(2)当1t =时,点P 表示的数是3411-+⨯=,点Q 表示的数是1+1=2,所以点P 、Q 之间的距离是1. (3)当点P 沿A →B 运动时,若点P 、Q 重合前,则点Q 表示的数大于点P 表示的数,所以()13443t t t +--+=-,所以点P 、Q 之间的距离为4—3t ;当点P 、Q 重合时,点P 、Q 之间的距离是0;当点P 超过点Q 时,则点P 表示的数大于点Q 表示的数,所以()34134t t t -+-+=-,所以点P 、Q 之间的距离为3t -4. (4)1.5.。

人教版七年级上学期期中数学试卷(含答案)

人教版七年级上学期期中数学试卷(含答案)

人教版七年级第一学期期中数学试卷一、选择题(每小题3分,共30分)1.(3分)﹣2022的相反数是()A.﹣B.C.﹣2022D.20222.(3分)计算(﹣2)﹣(﹣4)的结果等于()A.﹣2B.2C.﹣6D.63.(3分)截至2021年12月31日,全国共有少先队员110425000名,该数据用科学记数法表示为()A.110.425×106B.11.0425×107C.1.10425×108D.0.110425×1094.(3分)四位同学所画的数轴分别如下,其中正确的是()A.B.C.D.5.(3分)计算:8×5的结果是()A.8B.25C.40D.416.(3分)某地8:00的气温是﹣2℃,15:00的气温比8:00的气温上升了5℃,则该地15:00的气温是()A.2℃B.3℃C.4℃D.5℃7.(3分)从﹣4,5,﹣3,2中任取两个数相乘,所得积最大的是()A.﹣20B.12C.10D.﹣88.(3分)两个有理数a,b表示在数轴上如图所示,则有理数a,b,﹣a,﹣b的大小关系是()A.a<b<﹣b<﹣a B.a<﹣a<b<﹣b C.﹣b<b<a<﹣a D.﹣b<﹣a<a<b9.(3分)下列说法正确的是()A.﹣15x2y的系数是﹣15,次数是2B.多项式﹣x3﹣2x2y2+3y2有3项,次数是4C.单项式x的系数和次数都是0D.多项式4x2﹣4x2y+y2的次数是210.(3分)新冠疫情期间,某药店对一品牌橡胶手套进行优惠促销,将原价m元的橡胶手套每盒以元售出,则以下四种说法中可以准确表达该药店促销方法的是()A.将原价打6折之后,再降低8元B.将原价降低8元之后,再打3折C.将原价降低8元之后,再打6折D.将原价打8折之后,再降低6元二、填空题(每小题2分,共10分)11.(2分)有理数的倒数是.12.(2分)化简分数:﹣=.13.(2分)计算:(+5)+(﹣6)+(﹣4)=.14.(2分)王叔叔把3000元存入银行,银行的利率存一年的是3%,存两年的是3.75%,王叔叔存了两年,到期时他取回元.15.(2分)如图,搭一个三角形需要3根火柴,搭两个三角形需要5根火柴,搭三个三角形需要7根火柴,…,按这个规律,搭n个这样的三角形的需要火柴棒根数为.三、解答题(共60分)16.(6分)计算:(﹣0.5)+3+2.75+(﹣5).17.(6分)计算:﹣22×[5﹣(﹣1)2022]+|﹣1+5|.18.(6分)先化简,后求值:x2y+2(2xy2﹣3x2y)﹣3(xy2﹣2x2y+1),其中x=﹣2,y=1.19.(6分)一甲虫从点A开始左右来回爬行8次,如果规定向右为正,向左为负,这8次爬行的记录如下:+10、﹣9、+8、﹣6、+7.5、﹣6、+8、﹣7(单位:cm).(1)求甲虫停止运动时,所在位置距A点多远?(2)如果该甲虫运动的速度是2cm/s,那么甲虫来回爬行8次一共需要多长时间?20.(6分)科技改变生活,当前网络销售日益盛行,许多农商采用网上销售的方式进行营销,实现脱贫致富.小明把自家种的柚子放到网上销售,计划每天销售100千克,但实际每天的销售量与计划销售量相比有增减,超过计划量记为正,不足计划量记为负.下表是小王第一周柚子的销售情况:星期—二三四五六日柚子销售超过或不足计划量情况(单位:千克)+3﹣5﹣2+11﹣7+13+5(1)小王第一周实际销售柚子的总量是多少千克?(3)若小王按8元/千克进行柚子销售,平均运费为3元/千克,则小王第一周销售柚子一共收入多少元?21.(6分)小明家最近刚购置了一套商品房,如图是这套商品房的平面图(阴影部分)(单位:m).(1)请用含字母x,y的式子表示这套房子的总面积:(2)若x=5,y=8,并且房价为每平方米0.5万元,则购买这套房子共需要多少万元?22.(6分)已知A=3x2﹣x+2y﹣4xy,B=x2﹣2x﹣y+xy﹣5.(1)求A﹣3B;(2)若+|xy+1|=0,求A﹣3B的值.23.(6分)阅读材料:若点A,B在数轴上分别表示有理数a,b,则A,B两点间的距离表示为AB=|a﹣b|.例如:|x﹣3|表示的几何意义是:数轴上的有理数x对应的点与有理数3对应的点之间的距离.解决问题:根据上述材料,解答下列问题:(1)若|x﹣3|=|x+1|,请求出x的值;(2)请求出式子|x﹣3|+|x+1|的最小值.(参考答案与详解)一、选择题(每小题3分,共30分)1.(3分)﹣2022的相反数是()A.﹣B.C.﹣2022D.2022【解答】解:﹣2022的相反数是2022,故选:D.2.(3分)计算(﹣2)﹣(﹣4)的结果等于()A.﹣2B.2C.﹣6D.6【解答】解:(﹣2)﹣(﹣4)=﹣2+4=2,故选:B.3.(3分)截至2021年12月31日,全国共有少先队员110425000名,该数据用科学记数法表示为()A.110.425×106B.11.0425×107C.1.10425×108D.0.110425×109【解答】解:110425000=1.10425×108.故选:C.4.(3分)四位同学所画的数轴分别如下,其中正确的是()A.B.C.D.【解答】解:A选项的数轴1,2的位置不对,故不符合题意;B选项的数轴有单位长度,有正方向,有原点,故符合题意;C选项的数轴正数和负数的位置反了,不符合题意;D选项的数轴单位长度不一致,故不符合题意;故选:B.5.(3分)计算:8×5的结果是()A.8B.25C.40D.41【解答】解:8×5=×5=41.故选:D.6.(3分)某地8:00的气温是﹣2℃,15:00的气温比8:00的气温上升了5℃,则该地15:00的气温是()A.2℃B.3℃C.4℃D.5℃【解答】解:﹣2+5=3(℃),即该地15:00的气温是3℃.故选:B.7.(3分)从﹣4,5,﹣3,2中任取两个数相乘,所得积最大的是()A.﹣20B.12C.10D.﹣8【解答】解:积最大的是(﹣4)×(﹣3)=12,故选:B.8.(3分)两个有理数a,b表示在数轴上如图所示,则有理数a,b,﹣a,﹣b的大小关系是()A.a<b<﹣b<﹣a B.a<﹣a<b<﹣b C.﹣b<b<a<﹣a D.﹣b<﹣a<a<b【解答】解:由题意可知,a<b<0,∴a<b<﹣b<﹣a.故选:A.9.(3分)下列说法正确的是()A.﹣15x2y的系数是﹣15,次数是2B.多项式﹣x3﹣2x2y2+3y2有3项,次数是4C.单项式x的系数和次数都是0D.多项式4x2﹣4x2y+y2的次数是2【解答】解:A、﹣15x2y的系数是﹣15,次数是3,故A不符合题意;B、多项式﹣x3﹣2x2y2+3y2有3项,次数是4,正确,故B符合题意;C、单项式x的系数是1,次数是1,故C不符合题意;D、多项式4x2﹣4x2y+y2的次数是3,故D不符合题意,故选:B.10.(3分)新冠疫情期间,某药店对一品牌橡胶手套进行优惠促销,将原价m元的橡胶手套每盒以元售出,则以下四种说法中可以准确表达该药店促销方法的是()A.将原价打6折之后,再降低8元B.将原价降低8元之后,再打3折C.将原价降低8元之后,再打6折D.将原价打8折之后,再降低6元【解答】解:的意义是将原价打6折之后,再降低8元.故选:A.二、填空题(每小题2分,共10分)11.(2分)有理数的倒数是.【解答】解:有理数的倒数是.故答案为:.12.(2分)化简分数:﹣=﹣.【解答】解:﹣=﹣=﹣,故答案为:﹣.13.(2分)计算:(+5)+(﹣6)+(﹣4)=﹣5.【解答】解:(+5)+(﹣6)+(﹣4)=5+[(﹣6)+(﹣4)]=5+(﹣10)=﹣5.故答案为:﹣5.14.(2分)王叔叔把3000元存入银行,银行的利率存一年的是3%,存两年的是3.75%,王叔叔存了两年,到期时他取回3225元.【解答】解:3000+3000×3.75%×2=3000+225=3225(元),∴到期时他取回3225元,故答案为:3225.15.(2分)如图,搭一个三角形需要3根火柴,搭两个三角形需要5根火柴,搭三个三角形需要7根火柴,…,按这个规律,搭n个这样的三角形的需要火柴棒根数为2n+1.【解答】解:搭1个三角形需要火柴棒的根数为:3,搭2个三角形需要火柴棒的根数为:5=3+2=3+2×1,搭3个三角形需要火柴棒的根数为:7=3+2+2=3+2×2,…搭n个三角形需要火柴棒的根数为:3+2(n﹣1)=2n+1,故答案为:2n+1.三、解答题(共60分)16.(6分)计算:(﹣0.5)+3+2.75+(﹣5).【解答】解:原式=[(﹣0.5)+(﹣5.5)]+(3.25+2.75)=﹣6+6=0.17.(6分)计算:﹣22×[5﹣(﹣1)2022]+|﹣1+5|.【解答】解:﹣22×[5﹣(﹣1)2022]+|﹣1+5|=﹣4×(5﹣1)+4=﹣4×4+4=﹣16+4=﹣12.18.(6分)先化简,后求值:x2y+2(2xy2﹣3x2y)﹣3(xy2﹣2x2y+1),其中x=﹣2,y=1.【解答】解:原式=x2y+4xy2﹣6x2y﹣3xy2+6x2y﹣3=(1﹣6+6)x2y+(4﹣3)xy2﹣3=x2y+xy2﹣3,当x=﹣2,y=1时,原式=(﹣2)2×1+(﹣2)×12﹣3=4×1﹣2×1﹣3=4﹣2﹣3=﹣1.19.(6分)一甲虫从点A开始左右来回爬行8次,如果规定向右为正,向左为负,这8次爬行的记录如下:+10、﹣9、+8、﹣6、+7.5、﹣6、+8、﹣7(单位:cm).(1)求甲虫停止运动时,所在位置距A点多远?(2)如果该甲虫运动的速度是2cm/s,那么甲虫来回爬行8次一共需要多长时间?【解答】解:(1)10﹣9+8﹣6+7.5﹣6+8﹣7=10+8+7.5+8﹣9﹣6﹣6﹣7=33.5﹣28=5.5(cm),答:停止时所在位置距A点5.5cm,在A点的右方;(2)10+9+8+6+7.5+6+8+7=61.5(cm),61.5÷2=30.75(秒).答:共用30.75秒.20.(6分)科技改变生活,当前网络销售日益盛行,许多农商采用网上销售的方式进行营销,实现脱贫致富.小明把自家种的柚子放到网上销售,计划每天销售100千克,但实际每天的销售量与计划销售量相比有增减,超过计划量记为正,不足计划量记为负.下表是小王第一周柚子的销售情况:星期—二三四五六日+3﹣5﹣2+11﹣7+13+5柚子销售超过或不足计划量情况(单位:千克)(1)小王第一周实际销售柚子的总量是多少千克?(3)若小王按8元/千克进行柚子销售,平均运费为3元/千克,则小王第一周销售柚子一共收入多少元?【解答】解:(1)3﹣5﹣2+11﹣7+13+5+100×7=18+700=718(千克).答:小王第一周实际销售柚子的总量是718千克.(2)718×(8﹣3)=718×5=3590(元).答:小王第一周销售柚子一共收入3590元.21.(6分)小明家最近刚购置了一套商品房,如图是这套商品房的平面图(阴影部分)(单位:m).(1)请用含字母x,y的式子表示这套房子的总面积:(2)若x=5,y=8,并且房价为每平方米0.5万元,则购买这套房子共需要多少万元?Array【解答】解:(1)这套房子的总面积为:3x+xy+6y+3x=(6x+6y+xy)m2,答:这套房子的总面积为(5x+6y+xy)m2;(2)当x=5,y=8时,房子的总面积为:30+48+40=118(m2),0.5×118=59(万元),答:购买这套房子共需要59万元.22.(6分)已知A=3x2﹣x+2y﹣4xy,B=x2﹣2x﹣y+xy﹣5.(1)求A﹣3B;(2)若+|xy+1|=0,求A﹣3B的值.【解答】解:(1)∵A=3x2﹣x+2y﹣4xy,B=x2﹣2x﹣y+xy﹣5,∴A﹣3B=(3x2﹣x+2y﹣4xy)﹣3(x2﹣2x﹣y+xy﹣5)=3x2﹣x+2y﹣4xy﹣3x2+6x+3y﹣3xy+15=5x+5y﹣7xy+15;(2)∵+|xy+1|=0,∴x+y﹣=0,xy+1=0,∴x+y=,xy=﹣1,∴A﹣3B=5x+5y﹣7xy+15=5(x+y)﹣7xy+15=5×﹣7×(﹣1)+15=4+7+15=26.23.(6分)阅读材料:若点A,B在数轴上分别表示有理数a,b,则A,B两点间的距离表示为AB=|a﹣b|.例如:|x﹣3|表示的几何意义是:数轴上的有理数x对应的点与有理数3对应的点之间的距离.解决问题:根据上述材料,解答下列问题:(1)若|x﹣3|=|x+1|,请求出x的值;(2)请求出式子|x﹣3|+|x+1|的最小值.【解答】解:(1)∵|x﹣3|=|x+1|,∴x=(﹣1+3)=1;(2)由数轴得:|x﹣3|+|x+1|≤4,∴式子|x﹣3|+|x+1|的最小值为4.。

人教版七年级上学期期中数学试卷(含解析)

人教版七年级上学期期中数学试卷(含解析)

人教版七年级第一学期期中数学试卷及答案一、选择题(每小题4分,共12小题,共48分)1.在数字:、﹣1、、0中,最小的数是()A.B.﹣1C.D.02.下列各式中不是整式的是()A.3a B.C.D.03.下列方程中是一元一次方程的是()A.=2B.x+1=y+2C.x﹣1=3x D.x2﹣2=04.|﹣3|的相反数是()A.﹣3B.3C.D.﹣5.若x与3互为相反数,则x+1等于()A.﹣2B.4C.﹣4D.26.若单项式a m+1b3与﹣a3b n是同类项,则m n值是()A.3B.4C.6D.87.若a﹣b=1,则代数式2a﹣2b﹣1的值为()A.1B.﹣1C.2D.﹣28.某企业今年1月份产值为a万元,2月份比1月份减少了15%,3月份比2月份增加了5%,则3月份的产值为()A.(a+15%)(a﹣5%)万元B.(a﹣15%)(a+5%)万元C.a(1+15%)(1﹣5%)万元D.a(1﹣15%)(1+5%)万元9.已知mx=my,字母m为任意有理数,下列等式不一定成立的是()A.mx+1=my+1B.x=y C.πmx=πmy D.mx=my10.若|m﹣1|+m=1,则m一定()A.大于1B.小于1C.不小于1D.不大于111.如图,表中给出的是2021年1月份的月历,任意选取“工”型框中的7个数(如阴影部分所示).请你运用所学的数学知识来研究,则这7个数的和不可能是()A.161B.91C.78D.4912.三张大小不一的正方形纸片按如图1和图2方式分别放置于相同的长方形中,它们既不重叠也无空隙,记图1阴影部分周长之和为m,图2阴影部分周长为n,要求m与n的差,只需知道一个图形的周长,这个图形是()A.整个长方形B.图①正方形C.图②正方形D.图③正方形二、填空题(每小题3分,共8小题,共24分)13.(3分)经历百年风雨,中国共产党从小到大、由弱到强,从建党时50多名党员,发展成为今天已经拥有超过95000000党员的世界第一大政党,将数字95000000用科学记数法表示为.14.(3分)计算:25+(﹣12)﹣(﹣7)的结果为.15.(3分)若方程3x k﹣2=7是一元一次方程,那么k=.16.(3分)点A在数轴上表示数3,一只蚂蚁从点A出发向正方向爬了2个单位长度到了点B,则点B所表示的数是.17.(3分)按下图的程序计算,若输入n=32,则输出结果是.18.(3分)若多项式ax2+3x﹣1与2x2﹣bx﹣4的差不含x2项和x项,则ab=.19.(3分)已知|a|=5,|b|=3,若|a+b|=a+b,则a+b=.20.(3分)学校组织劳动实践活动,组织一组同学把两片草地的草割完.已知两片草地一大一小,大的比小的大一倍,大家先都在大片草地上割了半天,午后分成两组,一半人继续在大片草地上割,到下午收工时恰好割完,另一半人到小片草地割,到收工时还剩一小块,且这一小块草地恰好是一个人一天的工作量,由此可知,此次参加社会实践活动的人数为人.三.解答题(共8小题,共78分)21.(8分)画出数轴标出表示下列各数的点,并用“<”把下列各数连接起来.3,﹣3,|﹣2|,0,﹣2222.(8分)计算:(1)(﹣5)×(﹣7)×2;(2)﹣14+(﹣2)÷(﹣)﹣|﹣9|.23.(10分)解方程:(1)5x﹣4=x+4;(2)﹣=1+.24.(10分)(1)化简:ab+3b2﹣(2b2+ab);(2)先化简,再求代数式3x2y﹣[2xy﹣(2xy﹣x2y)]﹣xy的值,其中x=﹣2,y=﹣1.25.(10分)“抗击新冠疫情,人人有责”,学校作为人员密集的场所,要求老师和同学们进入校门后按照要求佩戴好口罩.巴川量子中学初一的鑫鑫从学校了解到,上周五这一天,七年级各班共使用口罩500只,喜欢统计的鑫鑫本周统计了七年级各班每天的口罩使用情况,制作了如下的一个统计表,以500只为标准,其中每天超过500只的记为“+”,每天不足500只的记为“﹣”,统计表格如下:周一周二周三周四周五﹣14+11﹣20+48﹣5(1)本周哪一天七年级同学使用口罩最多,数量是多少只?(2)若同学们佩戴的口罩分为两种,一种是普通医用口罩,价格为1元一只,另外一种为N95型口罩,价格为3元一只,其中本周所用的普通医用口罩的数量比N95型口罩多520只,求本周七年级所有同学们购买口罩的总金额?26.(10分)为奖励同学们在班级文化展中的精彩演出,老师让洪洪到文体超市购买若干个文具作为奖品,其中文具袋标价每个10元,笔记本标价每本8元,签字笔标价每支6元.请认真审题,解决下面两个问题:(1)洪洪在买文具袋时与老板进行了如图的对话,请认真阅读图片,求出洪洪原计划购买文具袋的个数.(2)除了文具袋,洪洪还需要购买笔记本和签字笔,经和老板协商,笔记本和签字笔也可享受八五折优惠,最后购买笔记本和签字笔一共支付了612元,且购得的笔记本和签字笔数量恰好能让每位同学得到1个笔记本和两只签字笔,问洪洪班里共有多少名同学?27.(10分)定义.对于一个四位自然数n,若其百位数字等于其个位数字与十位数字之和,其千位数字等于其十位数字与百位数字之和,则称这个四位自然数n为“加油数”,并将该“加油数”的各个数位数字之和记为F(n).例如:5413是“加油数”,因为5413的个位数字是3,十位数字是1,百位数字是4,千位数字是5,且3+1=4,1+4=5,所以543是“加油数”,则F(5413)=5+4+1+3=13;19734不是“加油数”,因为9734的个位数字是4,十位数字是3,百位数字是7,千位数字是9,而4+3=7,但3+7=10≠9,所以9734不是“加油数”.(1)判断.8624和3752是不是“加油数”并说明理由;(2)若x,y均为“加油数”,其中x的个位数字为1,y的十位数字为2,且F(x)+F(y)=30,求所有满足条件的“加油数”x.28.(12分)数轴是一种特定的几何图形,利用数轴能形象地表示数,在数轴的问题中,我们常常用到数形结合的思想,并借助方程解决问题.如图1,在数轴上,点A表示数﹣8,点C表示的数为2,点B表示的数为6.(1)点P从点A出发,以2个单位/秒的速度向右运动,同时,点Q从点B出发,以1个单位/秒的速度向左运动,经过多久两点相遇?(2)如图2,我们将图1的数轴沿点O和点C各折一次后会得到一个新的图形,与原来相比,线段AO和CB 仍然水平,线段OC处产生了一个坡度,我们称这样的数轴为“坡数轴”,其中O为“坡数轴”原点,在“坡数轴”上,每个点对应的数就是把“坡数轴”拉直后对应的数.记“坡数轴”上A到B的距离为A和B拉直后距离:即=AO+OC+CB,其中AO、OC、CB代表线段长度.在“坡数轴”上,上坡时点的移动速度变为水平路线上移动速度的一半,下坡时移动速度变为水平路线上移动速度的2倍.①点P从点A出发,以2个单位/秒的速度沿着“坡数轴”向右运动,同时点Q从点B出发,以1个单位l秒的速度沿着“坡数轴”向左运动,经过多久,=2?②点P从A处沿“坡数轴”以每秒2个单位长度的速度向右移动,当移到点C时,立即掉头返回(掉头时间不计),在P出发的同时,点Q从B处沿“坡数轴”以每秒1个单位长度的速度向左移动,当P重新回到A点所有运动结束,设P点运动时间为t秒,在移动过程中,何时?直接写出t的值.参考答案与试题解析一、选择题(每小题4分,共12小题,共48分)1.在数字:、﹣1、、0中,最小的数是()A.B.﹣1C.D.0【分析】利用“负数<0<正数,两个负数比大小,绝对值大的反而小”比较大小.【解答】解:∵负数<0<正数,两个负数比大小,绝对值大的反而小,||>|﹣1|,∴<﹣1<0<,∴最小的数是.故选:A.【点评】本题考查了有理数的大小比较,解题的关键是熟知有理数大小比较方法“两个负数比大小,绝对值大的反而小”.2.下列各式中不是整式的是()A.3a B.C.D.0【分析】根据单项式与多项式统称为整式,根据整式及相关的定义解答即可.【解答】解:A、3a是单项式,是整式,故本选项不符合题意;B、既不是单项式,又不是多项式,不是整式,故本选项符合题意;C、是单项式,是整式,故本选项不符合题意;D、0是单项式,是整式,故本选项不符合题意;故选:B.【点评】本题主要考查整式的相关的定义,解决此题的关键是熟记整式的相关定义;单项式与多项式统称为整式.3.下列方程中是一元一次方程的是()A.=2B.x+1=y+2C.x﹣1=3x D.x2﹣2=0【分析】根据一元一次方程的定义即可求出答案.只含有一个未知数(元),且未知数的次数是1,这样的整式方程叫一元一次方程.【解答】解:A.不是整式方程,故本选项不合题意;B.含有两个未知数,不是一元一次方程,故本选项不合题意;C.是一元一次方程,故本选项符合题意;D.未知数的最高次数2次,不是一元一次方程,故本选项不合题意;故选:C.【点评】本题考查一元一次方程,解题的关键是正确运用一元一次方程的定义,本题属于基础题型.4.|﹣3|的相反数是()A.﹣3B.3C.D.﹣【分析】根据绝对值定义得出|﹣3|=3,再根据相反数的定义:只有符号相反的两个数互为相反数作答.【解答】解:∵|﹣3|=3,∴3的相反数是﹣3.故选:A.【点评】此题主要考查了绝对值,相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0,难度适中.5.若x与3互为相反数,则x+1等于()A.﹣2B.4C.﹣4D.2【分析】根据相反数的概念:只有符号不同的两个数是互为相反数,即可得出x的值,即可得出答案.【解答】解:∵x与3互为相反数,∴x=﹣3,∴x+1=﹣3+1=﹣2.故选:A.【点评】此题主要考查了相反数,正确掌握相反数的定义是解题关键.6.若单项式a m+1b3与﹣a3b n是同类项,则m n值是()A.3B.4C.6D.8【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得出m、n的值,代入计算即可得出答案.【解答】解:∵单项式a m+1b3与﹣a3b n是同类项,∴m+1=3,n=3,∴m=2,n=3,∴m n=23=8.故选:D.【点评】本题考查了同类项的知识,属于基础题,掌握同类项中的两个相同是解答本题的关键.7.若a﹣b=1,则代数式2a﹣2b﹣1的值为()A.1B.﹣1C.2D.﹣2【分析】首先把2a﹣2b﹣1化成2(a﹣b)﹣1;然后把a﹣b=1代入化简后的算式计算即可.【解答】解:∵a﹣b=1,∴2a﹣2b﹣1=2(a﹣b)﹣1=2×1﹣1=2﹣1=1.故选:A.【点评】此题主要考查了代数式求值问题,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.8.某企业今年1月份产值为a万元,2月份比1月份减少了15%,3月份比2月份增加了5%,则3月份的产值为()A.(a+15%)(a﹣5%)万元B.(a﹣15%)(a+5%)万元C.a(1+15%)(1﹣5%)万元D.a(1﹣15%)(1+5%)万元【分析】根据3月份、2月份与1月份的产值的百分比的关系列式计算即可求解.【解答】解:∵今年1月份产值为a万元,2月份比1月份减少了15%,∴2月份的产值为a(1﹣15%)万元,∵3月份比2月份增加了5%,∴3月份的产值为a(1﹣15%)(1+5%)万元.故选:D.【点评】本题考查了列代数式,理解各月之间的百分比的关系是解题的关键.9.已知mx=my,字母m为任意有理数,下列等式不一定成立的是()A.mx+1=my+1B.x=y C.πmx=πmy D.mx=my【分析】根据等式的性质2进行准确运用辨别.【解答】解:根据等式的性质1,等式mx=my两边都加1可得mx+1=my+1,故选项A不符合题意;∵m可能为0,∴根据等式的性质2,等式mx=my两边都除以m可能无意义,故选项B符合题意;∵π≠0,∴根据等式的性质2,等式mx=my两边都乘以π可得πmx=πmy,故选项C不符合题意;∵,∴根据等式的性质2,等式mx=my两边都乘以可得mx=my,故选项D不符合题意;故选:B.【点评】此题考查了等式性质的应用能力,关键是能准确理解性质,并在运用等式性质2时,明确等式两边都除以的数是否为0.10.若|m﹣1|+m=1,则m一定()A.大于1B.小于1C.不小于1D.不大于1【分析】把|m﹣1|+m=1,转化为|m﹣1|=1﹣m,再根据绝对值的性质判断即可.【解答】解:∵|m﹣1|+m=1,∴|m﹣1|=1﹣m,∴m﹣1≤0,∴m≤1,故选:D.【点评】本题考查了绝对值,通过转化得到|m﹣1|=1﹣m是解题的关键.11.如图,表中给出的是2021年1月份的月历,任意选取“工”型框中的7个数(如阴影部分所示).请你运用所学的数学知识来研究,则这7个数的和不可能是()A.161B.91C.78D.49【分析】设最中间的数为x,根据题意列出方程即可求出判断.【解答】解:设最中间的数为x,∴这7个数分别为x﹣8、x﹣7、x﹣6、x、x+8、x+7、x+6,∴这7个数的和为:x﹣8+x﹣7+x﹣6+x+x+8+x+7+x+6=7x,当7x=161时,此时x=23,当7x=91时,此时x=13,当7x=78时,此时x=11不是整数,当7x=49时,此时x=7,故选:C.【点评】本题考查了一元一次方程的应用,解题的关键是正确找出题中的等量关系,本题属于基础题型.12.三张大小不一的正方形纸片按如图1和图2方式分别放置于相同的长方形中,它们既不重叠也无空隙,记图1阴影部分周长之和为m,图2阴影部分周长为n,要求m与n的差,只需知道一个图形的周长,这个图形是()A.整个长方形B.图①正方形C.图②正方形D.图③正方形【分析】设正方形①的边长为a、正方形②的边长为b、正方形③的边长为c,分别表示出m、n的值,就可计算出m﹣n的值为4c,从而可得只需知道正方形③的周长即可.【解答】解:设正方形①的边长为a、正方形②的边长为b、正方形③的边长为c,可得m=2[c+(a﹣c)]+2[b+(a+c﹣b)]=2a+2(a+c)=2a+2a+2c=4a+2c,n=2[(a+b﹣c)+(a+c﹣b)]=2(a+b﹣c+a+c﹣b)=2×2a=4a,∴m﹣n=4a+2c﹣4a=2c,故选:D.【点评】该题考查了数形结合解决问题的能力,关键是能根据图形正确列出算式并计算.二、填空题(每小题3分,共8小题,共24分)13.(3分)经历百年风雨,中国共产党从小到大、由弱到强,从建党时50多名党员,发展成为今天已经拥有超过95000000党员的世界第一大政党,将数字95000000用科学记数法表示为9.5×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:将95000000用科学记数法可以表示为9.5×107.故答案为:9.5×107.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要确定a的值以及n的值.14.(3分)计算:25+(﹣12)﹣(﹣7)的结果为20.【分析】利用有理数的加减法法则,统一成加法,然后运算即可.【解答】解:25+(﹣12)﹣(﹣7)=25﹣12+7=20.故答案为20.【点评】本题考查有理数的加减混合运算,关键是熟练掌握相应的运算法则.15.(3分)若方程3x k﹣2=7是一元一次方程,那么k=3.【分析】利用一元一次方程的定义得到:k﹣2=1.【解答】解:根据题意,得k﹣2=1.解得k=3.故答案是:3.【点评】此题考查了一元一次方程的定义,只含有一个未知数(元),且未知数的次数是1,这样的整式方程叫一元一次方程.16.(3分)点A在数轴上表示数3,一只蚂蚁从点A出发向正方向爬了2个单位长度到了点B,则点B所表示的数是5.【分析】利用数轴,从点A向右数2个单位,即得点B表示的数为5.【解答】解:3+2=5,故答案为:5.【点评】本题考查数轴上的有理数,关键分清正负方向,右加左减.17.(3分)按下图的程序计算,若输入n=32,则输出结果是806.【分析】根据程序框图的要求计算即可.【解答】解:输入n=32,5n+1=5×32+1=161<500,把n=161再输入得:5n+1=5×161+1=806>500,故输出结果为806.故答案为:806.【点评】本题考查代数式求值,解题关键是读懂题意,根据程序框图的要求准确计算.18.(3分)若多项式ax2+3x﹣1与2x2﹣bx﹣4的差不含x2项和x项,则ab=﹣6.【分析】直接利用整式的加减运算法则化简,进而合并同类项,得出x2项和x项的系数为零,进而得出答案.【解答】解:∵多项式ax2+3x﹣1与2x2﹣bx﹣4的差不含x2项和x项,∴ax2+3x﹣1﹣(2x2﹣bx﹣4)=ax2+3x﹣1﹣2x2+bx+4=(a﹣2)x2+(b+3)x+3,∴a﹣2=0,b+3=0,∴a=2,b=﹣3,故ab=﹣6.故答案为:﹣6.【点评】此题主要考查了整式的加减,正确合并同类项是解题关键.19.(3分)已知|a|=5,|b|=3,若|a+b|=a+b,则a+b=8或2.【分析】若|a+b|=a+b,则a+b≥0,结合a|=5,|b|=3,求出a,b的值即可求解.【解答】解:∵a|=5,|b|=3,∴a=±5,b=±3,∵|a+b|=a+b,∴a=5,b=±3,∴a+b=8或2,故答案为:8或2.【点评】此题主要考查了绝对值的性质和有理数的减法,解决问题的关键是判断出a+b≥0.20.(3分)学校组织劳动实践活动,组织一组同学把两片草地的草割完.已知两片草地一大一小,大的比小的大一倍,大家先都在大片草地上割了半天,午后分成两组,一半人继续在大片草地上割,到下午收工时恰好割完,另一半人到小片草地割,到收工时还剩一小块,且这一小块草地恰好是一个人一天的工作量,由此可知,此次参加社会实践活动的人数为8人.【分析】由题意可知每人每天除草量是一定的,设此次参加社会实践活动的人数为x人,每人每天除草量为y,则上午在大片草地除草量为0.5xy,下午在大片草地除草量为0.5×0.5xy,下午在小片草地除草量为0.5×0.5xy,一个人刚好把剩下一块的小片地除完则为y,又因为大片草地的面积是小片草地的2倍,列出方程解答即可.【解答】解:由题可知每人每天除草量是一定的,设此次参加社会实践活动的人数为x人,每人每天除草量为y,则上午在大片草地除草量为0.5xy,下午在大片草地除草量为0.5×0.5xy,下午在小片草地除草量为0.5×0.5xy,一个人刚好把剩下一块的小片地除完则为y,又因为大片地的面积是小片地的2倍,列出方程,0.5xy+0.5×0.5xy=2×(0.5×0.5xy+y),0.5xy+0.25xy=0.5xy+2y,0.75xy﹣0.5xy=2y,0.25xy=2y,0.25x=2,x=8.答:此次参加社会实践活动的人数为8人.故答案为:8.【点评】此题考查了一元一次方程的应用,主要是先明白每人每天除草量是一定的,设次参加社会实践活动的人数为x人,每人每天除草量为y,根据题意找到关系即可解答.三.解答题(共8小题,共78分)21.(8分)画出数轴标出表示下列各数的点,并用“<”把下列各数连接起来.3,﹣3,|﹣2|,0,﹣22【分析】先准确地画出数轴,并在数轴上找到各数对应的点,即可解答.【解答】解:在数轴上表示各数如图所示:∴﹣22<﹣3<0<|﹣2|<3.【点评】本题考查了实数大小比较,数轴,绝对值,有理数的乘方,准确在数轴上找到各数对应的点是解题的关键.22.(8分)计算:(1)(﹣5)×(﹣7)×2;(2)﹣14+(﹣2)÷(﹣)﹣|﹣9|.【分析】(1)由有理数乘法法则计算即可;(2)先算乘方,再算乘除,最后算加减.【解答】解:(1)原式=+5×7×2=70;(2)原式=﹣1+(﹣2)×(﹣3)﹣9=﹣1+6﹣9=﹣4.【点评】本题考查有理数运算,解题的关键是掌握有理数运算的顺序及相关运算的法则.23.(10分)解方程:(1)5x﹣4=x+4;(2)﹣=1+.【分析】(1)移项、合并同类项、系数化为1,据此求出方程的解即可.(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解即可.【解答】解:(1)移项,可得:5x﹣x=4+4,合并同类项,可得:4x=8,系数化为1,可得:x=2.(2)去分母,可得:3x﹣(5x+11)=6+2(2x﹣4),去括号,可得:3x﹣5x﹣11=6+4x﹣8,移项,可得:3x﹣5x﹣4x=6﹣8+11,合并同类项,可得:﹣6x=9,系数化为1,可得:x=﹣1.5.【点评】此题主要考查了解一元一次方程的方法,要熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.24.(10分)(1)化简:ab+3b2﹣(2b2+ab);(2)先化简,再求代数式3x2y﹣[2xy﹣(2xy﹣x2y)]﹣xy的值,其中x=﹣2,y=﹣1.【分析】(1)把整式去括号、合并同类项,即可得出答案;(2)把整式去括号、合并同类项化简后,代入计算,即可得出答案.【解答】解:(1)ab+3b2﹣(2b2+ab)=ab+3b2﹣2b2﹣ab=b2;(2)3x2y﹣[2xy﹣(2xy﹣x2y)]﹣xy=3x2y﹣2xy+(2xy﹣x2y)﹣xy=3x2y﹣2xy+2xy﹣x2y﹣xy=2x2y﹣xy,当x=﹣2,y=﹣1时,原式=2×(﹣2)2×(﹣1)﹣(﹣2)×(﹣1)=﹣8﹣2=﹣10.【点评】本题考查了整式的加减—化简求值,把整式去括号、合并同类项正确化简是解决问题的关键.25.(10分)“抗击新冠疫情,人人有责”,学校作为人员密集的场所,要求老师和同学们进入校门后按照要求佩戴好口罩.巴川量子中学初一的鑫鑫从学校了解到,上周五这一天,七年级各班共使用口罩500只,喜欢统计的鑫鑫本周统计了七年级各班每天的口罩使用情况,制作了如下的一个统计表,以500只为标准,其中每天超过500只的记为“+”,每天不足500只的记为“﹣”,统计表格如下:周一周二周三周四周五﹣14+11﹣20+48﹣5(1)本周哪一天七年级同学使用口罩最多,数量是多少只?(2)若同学们佩戴的口罩分为两种,一种是普通医用口罩,价格为1元一只,另外一种为N95型口罩,价格为3元一只,其中本周所用的普通医用口罩的数量比N95型口罩多520只,求本周七年级所有同学们购买口罩的总金额?【分析】(1)对本周每天使用口罩数量进行比较、计算即可;(2)先求出两种口罩各用的只数,再进行求解此题结果.【解答】解:(1)由题意得﹣20<﹣14<﹣5<+11<+48,48+500=548(只),答:本周周四这天七年级同学使用口罩最多,数量是548只;(2)本周共使用口罩数量为:500×5+(﹣14+11﹣20+48﹣5)=2500+20=2520(只),设本周使用N95型口罩x只,得x+x+520=2520,解得x=1000,∴x+520=1000+520=1520(只),∴1×1520+3×1000=1520+3000=4520(元),答:本周七年级所有同学们购买口罩的总金额为4520元.【点评】此题考查了运用正负数解决实际问题的能力,关键是能准确理解该知识和题目间的数量关系,进行列式计算.26.(10分)为奖励同学们在班级文化展中的精彩演出,老师让洪洪到文体超市购买若干个文具作为奖品,其中文具袋标价每个10元,笔记本标价每本8元,签字笔标价每支6元.请认真审题,解决下面两个问题:(1)洪洪在买文具袋时与老板进行了如图的对话,请认真阅读图片,求出洪洪原计划购买文具袋的个数.(2)除了文具袋,洪洪还需要购买笔记本和签字笔,经和老板协商,笔记本和签字笔也可享受八五折优惠,最后购买笔记本和签字笔一共支付了612元,且购得的笔记本和签字笔数量恰好能让每位同学得到1个笔记本和两只签字笔,问洪洪班里共有多少名同学?【分析】(1)根据题意和题目中的数据,可知原计划购买的文具袋个数×10﹣17=(原计划购买文具袋数+1)×10×0.85,然后列出相应的方程,再求解即可;(2)根据题意和(1)中的结果,可以列出相应的方程,然后求解即可.【解答】解:(1)设洪洪原计划购买文具袋x个,由题意可得:10x﹣17=10(x+1)×0.85,解得x=17,答:洪洪原计划购买文具袋17个;(2)设洪洪班里共有a名同学,由题意可得:10×(17+1)×0.85+(8a+6a×2)×0.85=612,解得a=27,答:洪洪班里共有27名同学.【点评】本题考查一元一次方程的应用,解答本题的关键是明确题意,找出等量关系,列出相应的方程.27.(10分)定义.对于一个四位自然数n,若其百位数字等于其个位数字与十位数字之和,其千位数字等于其十位数字与百位数字之和,则称这个四位自然数n为“加油数”,并将该“加油数”的各个数位数字之和记为F(n).例如:5413是“加油数”,因为5413的个位数字是3,十位数字是1,百位数字是4,千位数字是5,且3+1=4,1+4=5,所以543是“加油数”,则F(5413)=5+4+1+3=13;19734不是“加油数”,因为9734的个位数字是4,十位数字是3,百位数字是7,千位数字是9,而4+3=7,但3+7=10≠9,所以9734不是“加油数”.(1)判断.8624和3752是不是“加油数”并说明理由;(2)若x,y均为“加油数”,其中x的个位数字为1,y的十位数字为2,且F(x)+F(y)=30,求所有满足条件的“加油数”x.【分析】(1)根据加油数的定义即可判断;(2)设x的十位数为a,y的个位数为b,则x的百位数为a+1,千位数为2a+1,y的百位数为b+2,千位数为4+b,根据F(x)+F(y)=30列出等式即可解答.【解答】解:(1)8624是“加油数”,理由如下:∵8=6+2,6=2+4,∴8624是“加油数”;3752不是“加油数”,理由如下:∵3≠7+5,7=5+2,∴3752是“加油数”;(2)设x的十位数为a,y的个位数为b,∴x的百位数为a+1,千位数为2a+1,y的百位数为b+2,千位数为4+b,∴F(x)=2a+1+a+1+a+1=4a+3,F(y)=4+b+b+2+b+2=3b+8,∴F(x)+F(y)=4a+3+3b+8=30,∴4a+3b=19,∵0≤a≤9,0≤b≤9,且a,b为整数,∴a=1,b=5或a=4,b=1,∴有满足条件的“加油数”x为3211或9541.【点评】本题以新定义考查了列代数式,整式的加减,解题的关键是根据新定义列出代数式.28.(12分)数轴是一种特定的几何图形,利用数轴能形象地表示数,在数轴的问题中,我们常常用到数形结合的思想,并借助方程解决问题.如图1,在数轴上,点A表示数﹣8,点C表示的数为2,点B表示的数为6.(1)点P从点A出发,以2个单位/秒的速度向右运动,同时,点Q从点B出发,以1个单位/秒的速度向左运动,经过多久两点相遇?(2)如图2,我们将图1的数轴沿点O和点C各折一次后会得到一个新的图形,与原来相比,线段AO和CB 仍然水平,线段OC处产生了一个坡度,我们称这样的数轴为“坡数轴”,其中O为“坡数轴”原点,在“坡数轴”上,每个点对应的数就是把“坡数轴”拉直后对应的数.记“坡数轴”上A到B的距离为A和B拉直后距离:即=AO+OC+CB,其中AO、OC、CB代表线段长度.在“坡数轴”上,上坡时点的移动速度变为水平路线上移动速度的一半,下坡时移动速度变为水平路线上移动速度的2倍.①点P从点A出发,以2个单位/秒的速度沿着“坡数轴”向右运动,同时点Q从点B出发,以1个单位l秒的速度沿着“坡数轴”向左运动,经过多久,=2?②点P从A处沿“坡数轴”以每秒2个单位长度的速度向右移动,当移到点C时,立即掉头返回(掉头时间不计),在P出发的同时,点Q从B处沿“坡数轴”以每秒1个单位长度的速度向左移动,当P重新回到A点所有运动结束,设P点运动时间为t秒,在移动过程中,何时?直接写出t的值.【分析】(1)设运动时间为t,利用路程=速度×时间,再根据点P与点Q相遇,列关于t的一元一次方程,解方程即可;(2)①分点P在AO上,点Q在BC上和点P在OC上,点Q在AO上两种情况,结合题意列出方程即可求解;②分别求出点Q的运动时间,结合点P,点Q的不同位置,根据=2列出方程求解即可.【解答】解:(1)设运动时间为t秒,点P与点Q相遇,∵点P从点A出发,以2个单位/秒的速度向右运动,点Q从点B出发,以1个单位/秒的速度向左运动,∴2t+t=14,解得:t=,∴点P与点Q经过秒相遇;(2)①(Ⅰ)当点P在AO上,点Q在BC上时,设点P与点Q运动的时间为t秒时,=2,∵=AO﹣AP+BC﹣BQ,8﹣2t+6﹣t=2,解得:t=4,此时,点P运动至点O,点Q运动至点C;(Ⅱ)∵点P在OC上运动速度为1个单位/秒,点Q在OC上运动速度为2个单位/秒,结合(1),当点P运动到OC中点时,点Q运动到点O,此时,=1,∵=8,=2,点P在AO上运动速度为2个单位/秒,在OC上运动速度为1个单位/秒,∴点P运动到OC中点所需时间为:+1=5秒,。

人教版七年级上册数学《期中检测卷》附答案

人教版七年级上册数学《期中检测卷》附答案

人教版数学七年级上学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题(每小题3分,共36分)1.下列立体图形属于棱柱..的有( )A. 2个B. 3个C. 4个D. 5个2.小陆制作了一个如图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的表面展开图可能是( )A. B. C. D.3.如图,用一个平面从不同的角度去截一个正方体,则截面大小、形状相同的是( )A. ①②相同‘③④相同B. ①③相同;②④相同C. ①④相同;②③相同D. 都不相同4.下列四个数中,比﹣3小的数是( )A. 0B. 1C. ﹣1D. ﹣55.如图所示几何体是由以下四个图形中的哪一个图形绕着虚线旋转一周得到的( )A. B. C. D.6.某粮店出售三种品牌的面粉袋上分别标有质量为(25±0.1)㎏、(25±0.2)㎏、(25±0.3)㎏的字样,从中任意购买两袋,它们的质量最多相差( ). A. 0.8㎏B. 0.6㎏C. 0.5㎏D. 0.4㎏7.下列计算正确是( ) A. ﹣5+2=﹣7B. (﹣1)2017=1C. ﹣22=4D. 6÷(﹣2)=﹣38. 5月14-15日“一带一路”论坛峰会在北京隆重如开,促进了我国与世界各国的互联互通互惠,“一带一路”地区覆盖总人口约为44亿人,44亿这个数用科学记数法表示为( ) A.B.C.D.9.下列说法中,正确的是( )A. 24m n不是整式B. ﹣32abc的系数是﹣3,次数是3 C. 3是单项式D. 多项式2x 2y ﹣xy 是五次二项式10.若232n x y 与2m -5xy 是同类项,则m n -的值是( ) A. 0B. 1C. 7D. -111.下列运算中,正确的是( ). A. 325a b ab +=B. 325235a a a +=C. 22330a b ba -=D. 22541a a -=12. 小明做这样一道题“计算:|(-3)+■|”,其中“■”是被墨水污染看不清的一个数,他翻开后面的答案知该题计算的结果是等于6,那么“■”表示的数是( ) A. 3B. -3C. 9D. -3或9二、填空题(每小题4分,共24分)13.笔尖在纸上快速滑动写出英文字母C ,这说明了_____.14.如图是由大小相同的小正方体组成的简单几何体的左视图和俯视图,那么组成这个几何体的小正方体的个数最少为 个.15.计算(111678++)﹣2×(11112678---)﹣3×(11116789++-)的结果是_____.16.有一种“24点”游戏,其游戏规则是这样,将4个1~13之间的数,进行加减乘除四则运算(每个数且只能用一次),使运算结果为24,例如,1,2,3,4可作如下运算:(1+2+3)×4=24,1×2×3×4=24.现有四个有理数3,4,﹣6,10,你能运用上述规则,写出一种运算式,使其结果等于24.你写出算式是:_____.17.若“△”是新规定的某种运算符号,设a△b=2a–3b,则(x+y)△(x–y)运算后的结果为__________.18.如图,用火柴棒搭“小鱼”,则搭10条“小鱼”需用_____根火柴棒,搭n条“小鱼”所需火柴棒的根数为_____(填写化简后的结果).三、解答题(本题6个小题,满分60分)19.你来算一算!千万别出错!(1)计算:251(5)()0.813-÷-⨯-+-;(2)计算:﹣36×111()4912--÷(﹣2).20.学习有理数得乘法后,老师给同学们这样一道题目:计算:492425×(﹣5),看谁算的又快又对,有两位同学的解法如下:聪聪:原式=﹣124925×5=﹣12495=﹣24945;明明:原式=(49+2425)×(﹣5)=49×(﹣5)+2425×(﹣5)=﹣24945;(1)对于以上两种解法,你认为谁的解法较好?(2)上面的解法对你有何启发,你认为还有更好的方法吗?如果有,请把它写出来;(3)用你认为最合适的方法计算:291516×(﹣8)21.将6个棱长为2cm的小正方体在地面上堆叠成如图所示的几何体,然后将需露出的表面部分染成红色.(1)画出分别从正面、左面、上面观察所看到这个几何体的形状图.(2)求该几何体被染成红色部分的面积.22.解下列各题:(1)化简:(5a2b﹣3ab2)﹣2(a2b﹣7ab2).(2)先化简,再求值:3x2y﹣[2xy﹣2(xy﹣32x2y)+xy],其中x=3,y=﹣13.23.老师在黑板上书写了一个正确的演算过程,随后用一张纸挡住了一个二次三项式,形式如下:+3(x﹣1)=x2﹣5x+1(1)求所挡的二次三项式;(2)若x=﹣1,求所挡的二次三项式的值.24.邮递员骑摩托车从邮局出发,先向东骑行2km到达A村,继续向东骑行3km到达B村,然后向西骑行9km 到C村,最后回到邮局.(1)以邮局为原点,以向东方向为正方向,用1个单位长度表示1km,请你在数轴上表示出A、B、C三个村庄的位置;(2)C村离A村有多远?(3)若摩托车每1km耗油0.03升,这趟路共耗油多少升?25.按下列程序计算,把答案填写在表格里,然后看看有什么规律,想想为什么会有这个规律?(1)填写表内空格:输入 3 2 -2 13…输出答案0 …(2)你发现规律是____________.(3)用简要过程说明你发现的规律的正确性.答案与解析一、选择题(每小题3分,共36分)1.下列立体图形属于棱柱..的有( )A. 2个B. 3个C. 4个D. 5个【答案】B【解析】根据棱柱的意义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱.由此分析判定即可.解:第一、二、四个几何体属于棱柱.故选B.2.小陆制作了一个如图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的表面展开图可能是( )A. B. C. D.【答案】A【解析】【分析】对面图案均相同的正方体礼品盒,则两个相同的图案一定不能相邻,据此即可判断.【详解】解:根据分析,图A折叠成正方体礼盒后,心与心相对,笑脸与笑脸相对,太阳与太阳相对,即对面图案相同;图B、图C和图D中对面图案不相同;故选A.【点睛】本题考查了正方体的展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.3.如图,用一个平面从不同的角度去截一个正方体,则截面大小、形状相同的是( )A. ①②相同‘③④相同B. ①③相同;②④相同C. ①④相同;②③相同D. 都不相同【答案】A【解析】①②都是棱长为边的正方形,故相同;③④为对角面,故相同.所以选A.4.下列四个数中,比﹣3小的数是( )A. 0B. 1C. ﹣1D. ﹣5【答案】D【解析】试题分析:﹣5<﹣3<﹣1<0<1,所以比﹣3小的数是﹣5,故选D.考点:有理数大小比较.5.如图所示的几何体是由以下四个图形中的哪一个图形绕着虚线旋转一周得到的( )A. B. C. D.【答案】A【解析】A选项通过旋转得到两个圆柱;B选项通过旋转得到一个圆柱,一个圆桶,本选项错误;C选项通过旋转得到一个圆柱,两个圆桶,本选项错误;D选项通过旋转得到三个圆柱,本选项错误.故选A.点睛:圆柱体可以由矩形绕着一边旋转得到.6.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)㎏、(25±0.2)㎏、(25±0.3)㎏的字样,从中任意购买两袋,它们的质量最多相差().A. 0.8㎏B. 0.6㎏C. 0.5㎏D. 0.4㎏【答案】B【解析】【分析】根据题意给出三袋面粉的质量波动范围,从而求出任意两袋质量相差的最大数.【详解】解:根据题意从中找出两袋质量波动最大的(25±0.3)kg,则相差0.3-(-0.3)=0.6kg.故选:B.【点睛】此题主要考查了正数和负数表示的意义,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.7.下列计算正确的是( )A. ﹣5+2=﹣7B. (﹣1)2017=1C. ﹣22=4D. 6÷(﹣2)=﹣3【答案】D【解析】A选项错误,-5+2=-3;B选项错误,(﹣1)2017=-1;C选项错误,-22=-4;D选项正确.故选D.8.5月14-15日“一带一路”论坛峰会在北京隆重如开,促进了我国与世界各国的互联互通互惠,“一带一路”地区覆盖总人口约为44亿人,44亿这个数用科学记数法表示为( )A. B. C. D.【答案】B【解析】试题分析:44亿==4.4×109,故选B.考点:科学记数法—表示较大的数.9.下列说法中,正确的是( )A.24m n不是整式 B. ﹣32abc的系数是﹣3,次数是3C. 3是单项式D. 多项式2x2y﹣xy是五次二项式【答案】C 【解析】 【分析】由数或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式;系数就是一个单项式中的常数项;次数是指所有字母的指数之和;多项式的项数是指这个多项式中单项式的个数;多项式中各单项式的最高次数作为这个多项式的次数.【详解】根据定义可知:24m n是整式;﹣32abc 的系数是﹣32,次数是3;多项式2x 2y ﹣xy 是三次二项式;故选择C .10.若232n x y 与2m -5xy 是同类项,则m n -的值是( ) A. 0 B. 1 C. 7 D. -1【答案】B 【解析】 【分析】直接利用同类项的概念得出n ,m 的值,再利用绝对值的性质求出答案. 【详解】∵232nx y 与2m-5xy 是同类项,∴2n =1,2m =3,解得:m =32,n =12, ∴|m−n|=|32−12|=1.故选:B .【点睛】此题主要考查了同类项,正确把握同类项的定义是解题关键. 11.下列运算中,正确的是( ). A. 325a b ab += B. 325235a a a +=C. 22330a b ba -=D. 22541a a -=【答案】C 【解析】试题分析:3a 和2b 不是同类项,不能合并,A 错误;32a 和23a 不是同类项,不能合并,B 错误;22330a b ba -=,C 正确;22254a a a -=,D 错误,故选C . 考点:合并同类项.12. 小明做这样一道题“计算:|(-3)+■|”,其中“■”是被墨水污染看不清的一个数,他翻开后面的答案知该题计算的结果是等于6,那么“■”表示的数是( )A. 3B. -3C. 9D. -3或9【答案】D【解析】本题考查的是绝对值的定义和有理数的加减法法则先根据计算的结果是等于6得到绝对值里面的数,再根据有理数的加减法法则即可求得结果.,,当时,,当时,,故选D.二、填空题(每小题4分,共24分)13.笔尖纸上快速滑动写出英文字母C,这说明了_____.【答案】点动成线【解析】笔尖在纸上快速滑动写出英文字母C,这说明了点动成线.故答案为点动成线.14.如图是由大小相同的小正方体组成的简单几何体的左视图和俯视图,那么组成这个几何体的小正方体的个数最少为个.【答案】5【解析】【详解】由俯视图可以看出组成这个几何体的底面小正方体有4个,由左视图可知第二层最少有1个,故组成这个几何体的小正方体的个数最少为:4+1=5(个),故答案为5.15.计算(111678++)﹣2×(11112678---)﹣3×(11116789++-)的结果是_____.【答案】2 3【解析】【分析】将16+17+18看成一个整体,利用分配律进行计算即可.【详解】原式=(16+17+18)-2×12+2×(16+17+18)-3×(16+17+18)+3×19=-1+1 3=-23.故答案为-23.16.有一种“24点”游戏,其游戏规则是这样的,将4个1~13之间的数,进行加减乘除四则运算(每个数且只能用一次),使运算结果为24,例如,1,2,3,4可作如下运算:(1+2+3)×4=24,1×2×3×4=24.现有四个有理数3,4,﹣6,10,你能运用上述规则,写出一种运算式,使其结果等于24.你写出算式是:_____.【答案】3×[4+10+(﹣6)]=24【解析】3×[4+10+(-6)]=24或3×(10-4)-(-6)=24等.故答案为3×[4+10+(-6)]=24.17.若“△”是新规定的某种运算符号,设a△b=2a–3b,则(x+y)△(x–y)运算后的结果为__________.【答案】–x+5y【解析】【详解】(x+y)△(x-y)=2(x+y)-3(x-y)=2x+2y-3x+3y=-x+5y.故答案为-x+5y.18.如图,用火柴棒搭“小鱼”,则搭10条“小鱼”需用_____根火柴棒,搭n条“小鱼”所需火柴棒的根数为_____(填写化简后的结果).【答案】(1). 62(2). 6n+2【解析】搭第1条小鱼需要的火柴棒个数为:2+6=8;搭第2条小鱼需要的火柴棒个数为:2+6×2=14;搭第3条小鱼需要的火柴棒个数为:2+6×3=20;…搭第n条小鱼需要的火柴棒个数为:2+6n.搭第10条小鱼需要的火柴棒个数为:2+6×10=62. 故答案为(1)62 ;(2) 6n+2.三、解答题(本题6个小题,满分60分)19.你来算一算!千万别出错!(1)计算:251(5)()0.813-÷-⨯-+-;(2)计算:﹣36×111()4912--÷(﹣2).【答案】(1)415;(2)1.【解析】试题分析:(1)先对乘方和绝对值进行运算,然后进行乘除运算,最后进行加法运算;(2)利用乘法分配律将式子展开,计算出括号里面的数值再进行除法运算.试题解析:解:(1)原式=-1×125×(-53)+0.2=415;(2)原式=(-9+4+3)÷(-2)=-2÷(-2)=1.点睛:有理数混合运算时,有时运用乘法分配律会简化运算.20.学习有理数得乘法后,老师给同学们这样一道题目:计算:492425×(﹣5),看谁算的又快又对,有两位同学的解法如下:聪聪:原式=﹣124925×5=﹣12495=﹣24945;明明:原式=(49+2425)×(﹣5)=49×(﹣5)+2425×(﹣5)=﹣24945;(1)对于以上两种解法,你认为谁的解法较好?(2)上面的解法对你有何启发,你认为还有更好的方法吗?如果有,请把它写出来;(3)用你认为最合适的方法计算:291516×(﹣8)【答案】(1)明明解法较好;(2)还有更好的解法;解法见解析;(3)1 2392 -.【解析】【分析】(1)根据计算过程的步骤长短判断出明明的解法好;(2)把492425写成(50-125),然后利用乘法分配律进行计算即可得解; (3)把191516写成(20-116),然后利用乘法分配律进行计算即可得解. 【详解】解:(1)因为明明计算步骤比较少,所以明明的解法较好(2)还有更好的解法24149(5)(50)(5)2525150(5)()(5)251250542495⨯-=-⨯-=⨯-+-⨯-=-+=- (3)1529(8)161(30)(8)16130(8)()(8)161240212392⨯-=-⨯-=⨯-+-⨯-=-+=- 【点睛】本题考查有理数的乘法分配律,解题的关键是掌握乘法分配律.21.将6个棱长为2cm 的小正方体在地面上堆叠成如图所示的几何体,然后将需露出的表面部分染成红色.(1)画出分别从正面、左面、上面观察所看到这个几何体的形状图.(2)求该几何体被染成红色部分的面积.【答案】(1)见解析;(2)84cm 2.【解析】试题分析:(1)分别作出主视图、主视图、俯视图;(2)数出露出表面正方形的个数,再用计算出的个数乘以每个正方形的面积即可.试题解析:解:(1)作图如下:(2)(4+4+4+4+5)×(2×2)=21×4=84(cm 2)答:该几何体被染成红色部分的面积为84cm 2.点睛:计算露出表面的正方形个数时,要考虑前面,后面,左面,右面,上面,不能遗漏.22.解下列各题:(1)化简:(5a 2b ﹣3ab 2)﹣2(a 2b ﹣7ab 2).(2)先化简,再求值:3x 2y ﹣[2xy ﹣2(xy ﹣32x 2y)+xy],其中x=3,y=﹣ 13. 【答案】(1)3a 2b+11ab 2;(2) 1.【解析】试题分析:(1)先去括号,再合并同类项;(2)先去小括号,再去中括号,最后合并同类项得到最简形式,接着将x 、y 的值分别代入化简后的式子求出结果.试题解析:解:(1)原式=5a 2b -3ab 2-2a 2b +14ab 2=3a 2b +11ab 2;(2) 原式=3x 2y -2xy +2xy -3x 2y -xy =-xy ,当x =3,y =-13时,原式=-3×(-13)=1. 点睛:去括号的时候注意符号问题.23.老师在黑板上书写了一个正确的演算过程,随后用一张纸挡住了一个二次三项式,形式如下:+3(x ﹣1)=x 2﹣5x+1(1)求所挡的二次三项式;(2)若x=﹣1,求所挡的二次三项式的值.【答案】(1)x 2﹣8x+4;(2)13.【解析】试题分析:(1)根据题意确定出所挡的二次三项式即可;(2)把的值代入计算即可求出值.试题解析:(1)所挡的二次三项式为:()222513151338 4.x x x x x x x x -+--=-+-+=-+ (2)当1x =-时,原式=1+8+4=13.24.邮递员骑摩托车从邮局出发,先向东骑行2km到达A村,继续向东骑行3km到达B村,然后向西骑行9km 到C村,最后回到邮局.(1)以邮局为原点,以向东方向为正方向,用1个单位长度表示1km,请你在数轴上表示出A、B、C三个村庄的位置;(2)C村离A村有多远?(3)若摩托车每1km耗油0.03升,这趟路共耗油多少升?【答案】(1)见解析;(2)点C与点A的距离为6 km;(3)这趟路共耗油0.54升.【解析】试题分析:(1)再数轴上分别表示出A、B、C三个村庄位置;(2)用A点表示的数减去C点表示的数;(3)计算出邮递员行驶的总路程,再用总路程乘以每千米的耗油量.试题解析:解:(1)依题意得,数轴为:;(2)依题意得:C点与A点的距离为:2-(-4)=6km;(3)依题意得邮递员骑了:2+3+9+4=18km,∴共耗油量为:18×0.03=0.54升.点睛:数轴上两个点所表示的数之差的绝对值即为这两个点之间的距离.25.按下列程序计算,把答案填写在表格里,然后看看有什么规律,想想为什么会有这个规律?(1)填写表内空格:输入 3 2 -2 13…输出答案0 …(2)你发现规律是____________.(3)用简要过程说明你发现的规律的正确性.【答案】(1)0,0,0;(2)输入任何数的结果都为0;(3)理由见解析【解析】(1)利用计算程序:x→平方→+x→÷2→-12x 2→-12x→答案,即可求出结果. (2)由前几项都为0可得出规律:输入任何数的结果都为0.(3)根据程序可写出关于x 的方程式,此方程式的值为0,所以无论x 取任何值,结果都为0. 解:(1)0,0,0;(2)输入任何数的结果都为0;(3)因为222211111102222222x x x x x x x x +--=+--=222211111102222222x x x x x x x x +--=+--=, 所以无论x 取任何值,结果都为0,即结果与字母x 的取值无关“点睛”本题是找规律题,计算程序实际是整式的运算.。

人教版七年级数学上册期中测试卷-有参考答案

人教版七年级数学上册期中测试卷-有参考答案

人教版七年级数学上册期中测试卷-有参考答案一、选择题(本题共12小题 每小题4分 共48分 在每小题给出的四个选项中 只有一项是符合题目要求的 请用2B 铅笔把答题卡上对应题目答案标号涂黑)1.(4分)古人都讲“四十不惑” 如果以40岁为基准 张明50岁 记为+10岁 那么王横25岁记为( )A .25岁B .﹣25岁C .﹣15岁D .+15岁【分析】以40岁为基准 张明50岁 记为+10岁 25减去40即可解答.【解答】解:以40岁为基准 张明50岁 记为+10岁那么王横25岁记为25﹣40=﹣15(岁).故选:C .2.(4分)中国信息通信研究院测算.2020﹣2025年 中国5G 商用带动的息消费规模将超过8万亿元 直接带动经济总产出达10.6万亿元 其中数据10.6万亿用科学记数法表示为( )A .10.6×104B .1.06×1013C .10.6×1013D .1.06×108【分析】科学记数法的表示形式为a ×10n 的形式 其中1≤|a |<10 n 为整数.确定n 的值时 要看把原数变成a 时 小数点移动了多少位 n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时 n 是正整数;当原数的绝对值<1时 n 是负整数.【解答】解:10.6万亿=10600000000000=1.06×1013.故选:B .3.(4分)下列说法正确的是( )A .52xy 的系数是﹣5 B .单项式a 的系数为1 次数是0C .﹣5232b a 的次数是6D .x y +x ﹣1是二次三项式 【分析】直接利用单项式的次数与系数确定方法、多项式的次数与项数确定方法分别判断得出答案.【解答】解:A .﹣的系数是﹣ 故此选项不合题意;B .单项式a 的系数为1 次数是1 故此选项不合题意;C.﹣的次数是﹣故此选项不合题意;D.xy+x﹣1是二次三项式故此选项符合题意;故选:D.4.(4分)下列各组整式中不是同类项的是()A.3a2b与﹣2a2b B.2xy与5yxC.2x3y2与﹣x2y3D.5和0【分析】根据同类项的定义:所含字母相同相同字母的指数也相同判断即可.【解答】解:A、3a2b与﹣2a2b所含字母相同相同字母的指数也相同是同类项故本选项不符合题意;B、2xy与5yx所含字母相同相同字母的指数也相同是同类项故本选项不符合题意;C、2x3y2与﹣x2y3所含字母相同但相同字母的指数不相同不是同类项故本选项符合题意;D、5和0都是常数项所有常数项都是同类项故本选项不符合题意;故选:C.5.(4分)如图A B C D E为某未标出原点的数轴上的五个点且AB=BC=CD=DE则点C所表示的数是()A.2B.7C.11D.12【分析】先根据点A、E表示的数求出线段AE的长度再根据长度相等的线段表示相同的单位长度求出AB、BC、CD、DE的长即可解答【解答】解:∵AE=17﹣(﹣3)=20又∵AB=BC=CD=DE AB+BC+CD+DE=AE∴DE=AE=5∴D表示的数是17﹣5=12 C表示的数是17﹣5×2=7故选:B.6.(4分)下列各组数中数值相等的是()A.32与23B.﹣23与(﹣2)3C.﹣32与(﹣3)2D.3×22与(3×2)2【分析】先根据有理数的乘方和有理数的乘法进行计算再根据求出的结果进行判断即可.【解答】解:A .∵32=9 23=8∴32≠23 故本选项不符合题意;B .∵﹣23=﹣8 (﹣2)3=﹣8∴﹣23=(﹣2)3 故本选项符合题意;C .∵﹣32=﹣9 (﹣3)2=9∴﹣32≠(﹣3)2 故本选项不符合题意;D .∵3×22=3×4=12 (3×2)2=62=36∴3×22≠(3×2)2 故本选项不符合题意;故选:B .7.(4分)如果a b 互为相反数 c d 互为倒数 m 的绝对值是2 那么cd m m b a 2212-++⨯的值( ) A .2 B .3 C .4 D .不确定【分析】根据a b 互为相反数 c d 互为倒数 m 的绝对值是2 可以得到a +b =0 cd =1 m 2=4 然后代入所求式子计算即可.【解答】解:∵a b 互为相反数 c d 互为倒数 m 的绝对值是2∴a +b =0 cd =1 m 2=4∴=×+4﹣2×1=0+4﹣2=2故选:A .8.(4分)某快递公司受新一次疫情影响 4月份业务量比3月份下降了30% 由于采取了科学的防控措施 5月份疫情明显好转 该快递公司5月份业务量比4月份增长了40% 若设该快递公司3月份业务量为a 则5月份的业务量为( )A .(1﹣30%+40%)aB .(30%+40%)aC .(40%﹣30%)aD .(1﹣30%)(1+40%)a 【分析】先表示出4月份业务量是(1﹣30%)a 再根据5月份业务量比4月份增长了40% 即可列出代数式.【解答】解:∵该快递公司3月份业务量为a 4月份业务量比3月份下降了30%∴4月份业务量是(1﹣30%)a∵5月份业务量比4月份增长了40%∴5月份业务量是(1+40%)(1﹣30%)a故选:D .9.(4分)已知m n 满足6m ﹣8n +4=2 则代数式12n ﹣9m +4的值为( )A .0B .1C .7D .10【分析】将6m ﹣8n +4=2移项变形后 可以与12n ﹣9m +4建立联系 进而计算即可.【解答】解:∵6m ﹣8n +4=2∴8n ﹣6m ﹣2=0∴4n ﹣3m ﹣1=0∴12n ﹣9m ﹣3=0∴12n ﹣9m +4=7 故选:C .10.(4分)下列说法正确的个数有( )(1)若a 2=b 2 则|a |=|b |;(2)若a 、b 互为相反数 则1-=ba ;(3)绝对值相等的两数相等;(4)单项式7×102a 4的次数是6;(5)﹣a 一定是一个负数;(6)平方是本身的数是1 A .1 B .2 C .3D .4 【分析】根据去绝对值法则 相反数的定义 绝对值的性质 单项式的定义 有理数的分类以及性质作答.【解答】解:(1)若a 2=b 2 则|a |=|b | 原说法正确;(2)若a 、b 互为相反数且ab ≠0时 原说法错误;(3)绝对值相等的两数相等或互为相反数 原说法错误;(4)单项式7×102a 4的次数是4 原说法错误;(5)当a =0时 说法“﹣a 一定是一个负数”错误;(6)平方是本身的数是1或0 原说法错误.故选:A .11.(4分)已知|a |=2 b 2=25 3c =27 且ab >0 则a ﹣b +c 的值为( )A .10B .6C .3D .6或者0【分析】先根据绝对值的性质 乘方的性质求得a 、b 、c 再根据ab >0 分情况代值计算便可.【解答】解:∵|a |=2 b 2=25 3c =27∴a =±2 b =±5 c =3∴a、b同号∴当a=2 b=5 c=3时a﹣b+c=2﹣5+3=0;当a=﹣2 b=﹣5 c=3时a﹣b+c=﹣2+5+3=6;故选:D.12.(4分)如图在矩形ABCD中放入正方形AEFG正方形MNRH正方形CPQN点E在AB上点M、N在BC上若AE=4 MN=3 CN=2 则图中右上角阴影部分的周长与左下角阴影部分的周长的差为()A.5B.6C.7D.8【分析】设AB=DC=a AD=BC=b用含a、b的代数式分别表示BE BM DG PD.再表示出图中右上角阴影部分的周长及左下角阴影部分的周长然后相减即可.【解答】解:矩形ABCD中AB=DC AD=BC.正方形AEFG中AE=EF=FG=AG=4.正方形MNRH中MN=NR=RH=HM=3.正方形CPQN中CP=PQ=QN=CN=2.设AB=DC=a AD=BC=b则BE=AB﹣AE=a﹣4 BM=BC﹣MN﹣CN=b﹣3﹣2=b﹣5 DG=AD﹣AG=b﹣4 PD=CD﹣CP=a﹣2.∴图中右上角阴影部分的周长为2(DG+DP)=2(b﹣4+a﹣2)=2a+2b﹣12.左下角阴影部分的周长为2(BM+BE)=2(b﹣5+a﹣4)=2a+2b﹣18∴图中右上角阴影部分的周长与左下角阴影部分的周长的差为(2a+2b﹣12)﹣(2a+2b﹣18)=6.故选:B.二、填空题(本题共4个小题每小题4分共16分答题请用黑色墨水笔或签字笔直接答在答题卡相应13.(4分)已知x y满足|x﹣5|+(x﹣y﹣1)2=0 则(x﹣y)2021的值是.【分析】根据绝对值和偶次方的非负数的性质求出x、y的值再代入计算即可.【解答】解:∵|x﹣5|+(x﹣y﹣1)2=0 而|x﹣5|≥0 (x﹣y﹣1)2≥0∴x﹣5=0 x﹣y﹣1=0解得x=5 y=4∴(x﹣y)2021=12021=1.故答案为:1.14.(4分)如图a b c d e f均有有理数图中各行各列及两条对角线上三个数的和都相等则a﹣b+c﹣d+e﹣f的值为.a4﹣1b3cd e f【分析】先找出具有已知量最多且含有公共未知量的行或列即4﹣1+a=d+3+a得到d=0 再以4+b+0=b+3+c解得c=2 以此类推求出各个字母的值即可得出结论.【解答】解:由题意得:4﹣1+a=d+3+a解得:d=0.∵4+b+0=b+3+c∴c=1.∵4﹣1+a=a+1+f∴f=2.∴a﹣1+4=4+3+2∴a=6 b=5 e=7.∴a﹣b+c﹣d+e﹣f=6﹣5+1﹣0+7﹣2=7.故答案为:7.15.(4分)若多项式2x3﹣8x2+x﹣1与多项式x3+(3m+1)x2﹣5x+7的差不含二次项则m的值为.【分析】先列式化简代数式 再根据条件得出x 的二次项系数为0 列出m 的方程进行解答便可.【解答】解:(2x 3﹣8x 2+x ﹣1)﹣[x 3+(3m +1)x 2﹣5x +7]=2x 3﹣8x 2+x ﹣1﹣x 3﹣(3m +1)x 2+5x ﹣7=x 3﹣(3m +9)x 2+6x ﹣8∵多项式2x 3﹣8x 2+x ﹣1与多项式x 3+(3m +1)x 2﹣5x +7的差不含二次项∴3m +9=0∴m =﹣3.故答案为:﹣3.16.(4分)如M ={1 2 x } 我们叫集合M 其中1 2 x 叫做集合M 的元素.集合中的元素具有确定性(如x 必然存在) 互异性(如x ≠1 x ≠2) 无序性(即改变元素的顺序 集合不变).若集合N ={x 1 2} 我们说M =N .已知集合A ={1 0 a } 集合B ={a 1 |a | ab } 若A =B 则b ﹣a 的值是 .【分析】根据集合的定义和集合相等的条件即可得到答案.【解答】解:∵A =B a ≠0≠0 ∴=0 =1 |a |=a 或=0=a |a |=1 ∴b =0 a =1(舍去)或b =0 a =﹣1∴b ﹣a =0﹣(﹣1)=1故答案为:1.三、解答题(本题共8个小题 共86分 答题请用黑色墨水笔或签字笔直接答在答题卡相应的位置上 解答时应写出必要的文字说明、证明步骤或演算步骤.)17.(8分)计算:(1)2+(﹣3)﹣(﹣5);(2)(﹣143)﹣(+631)﹣2.25+310; (3)(﹣81)÷49×94÷(﹣16); (4)(﹣21+43﹣31)÷(﹣241). 【分析】(1)先化简符号 再计算;(2)把减化为加 再将相加得整数的先相加;(3)把除化为乘 再约分即可;(4)把除化为乘 再用乘法分配律计算.【解答】解:(1)原式=2﹣3+5=4;(2)原式=(﹣1.75﹣2.25)+(﹣6+3)=﹣4﹣3=﹣7;(3)原式=﹣81×××(﹣)=1;(4)原式=(﹣+﹣)×(﹣24)=24×﹣24×+24×=12﹣18+8=2.18.(8分)已知A=8x2y﹣6xy2﹣3xy B=7xy2﹣2xy+5x2y若A+B﹣C=0 求C+A.【分析】直接利用已知得出C进而利用整式的加减运算法则计算得出答案.【解答】解:∵A=8x2y﹣6xy2﹣3xy B=7xy2﹣2xy+5x2y A+B﹣C=0∴C=8x2y﹣6xy2﹣3xy+7xy2﹣2xy+5x2y=13x2y+xy2﹣5xy∴C+A=13x2y+xy2﹣5xy+8x2y﹣6xy2﹣3xy=21x2y﹣5xy2﹣8xy.19.(10分)东江湖蜜桔是我们湖南郴州的特产口感香甜入口即化.科技改变生活当前网络销售日益盛行.湖南某网红主播为了帮助农民脱贫致富在某直播间直播销售东江湖蜜桔计划每天销售20000千克但实际每天的销售量与计划量相比有增减超过计划量记为正不足计划量记为负.下表是该主播在直播带货期间第一周销售蜜桔的情况:星期一二三四五六日蜜桔销售情况(单位:千克)+300﹣400﹣200+100﹣600+1200+500(1)该主播在直播带货期间第一周销售蜜桔最多的一天比最少的一天多销售多少千克?(2)若该主播在直播期间按6元/千克进行蜜桔销售平均快递运费及其它费用为2元/千克则该主播第一周直播带货销售蜜桔为当地农民一共创收多少元?【分析】(1)7天销量求和即可;(2)由7天的总销量即可求解;【解答】解:(1)+1200﹣(﹣600)=1800(千克)答:第一周销售蜜桔最多的一天比最少的一天多销售1800千克.(2)∵20000×7+300﹣400﹣200+100﹣600+1200+500=140900(千克)∴(6﹣2)×140900=563600(元).答:该主播第一周直播带货销售蜜桔为当地农民一共创收563600元.20.(10分)(1)化简:﹣5a ﹣(4a +3b )+(9a +2b );(2)先化简 再求值:2(x 3﹣2y 2)﹣(x 3﹣4y 2+2x 3) 其中x =3 y =﹣2.【分析】(1)把整式去括号、合并同类项即可;(2)把整式去括号、合并同类项化简后 代入计算即可得出答案.【解答】解:(1)﹣5a ﹣(4a +3b )+(9a +2b )=﹣5a ﹣4a ﹣3b +9a +2b=﹣b ;(2)2(x 3﹣2y 2)﹣(x 3﹣4y 2+2x 3)=2x 3﹣4y 2﹣x 3+4y 2﹣2x 3=﹣x 3当x =3时原式=﹣33=﹣27.21.(12分)(1)如图 数轴上的点A B C 分别表示有理数a b c .化简:|a |﹣|b +2|﹣|a +c |﹣|b +1|+|1﹣c |;(2)已知关于x 、y 的多项式(3y ﹣ax 2﹣3x ﹣1)﹣(﹣y +bx ﹣2x 2)中不含x 项和x 2项 且22x a ﹣x +b =0 求代数式:2332x x a ﹣x ﹣b 的值.【分析】(1)由数轴可知 a <﹣2<b <﹣1 0<c <1 据此可得b +2>0 a +c <0 b +1<0 1﹣c >0 再根据绝对值性质去绝对值符号化简可得;(2)多项式合并后 根据结果中不含x 3项和xy 2项 求出a 与b 的值 代入原式计算即可得到结果.【解答】解:(1)∵a <﹣2<b <﹣1 0<c <1∴b +2>0 a +c <0 b +1<0 1﹣c >0∴|a |﹣|b +2|﹣|a +c |﹣|b +1|+|1﹣c |=﹣a ﹣(b +2)﹣(﹣a ﹣c )﹣(﹣b ﹣1)+1﹣c=﹣a ﹣b ﹣2+a +c +b +1+1﹣c=0.(2)原式=3y ﹣ax 2﹣3x ﹣1+y ﹣bx +2x 2=(2﹣a )x 2﹣(b +3)x +4y ﹣1由题意得2﹣a =0 b +3=0解得a =2 b =﹣3∵x 2﹣x ﹣3=0∴x 2﹣x =3∴原式=x 3﹣3x 2﹣x +3=x 3﹣x 2﹣2x 2﹣x +3=x (x 2﹣x )﹣2x 2﹣x +3=3x ﹣2x 2﹣x +3=2x ﹣2x 2+3=﹣2(x 2﹣x )+3=﹣6+3=﹣3.∴﹣x ﹣b 的值为﹣3.22.(12分)对于含绝对值的算式 在有些情况下 可以不需要计算出结果也能将绝对值符号去掉 例如:|7﹣6|=7﹣6;|6﹣7|=7﹣6;|3121-|=3121-;|2131-|=2131-. 观察上述式子的特征 解答下列问题:(1)把下列各式写成去掉绝对值符号的形式(不用写出计算结果):①|23﹣47|= ;②|5232-|= ; (2)当a >b 时 |a ﹣b |= a ﹣b ;当a <b 时 |a ﹣b |= b ﹣a ;(3)计算:2021120221...31412131121-++-+-+-. 【分析】(1)结合有理数加法减法运算法则以及绝对值的意义进行化简;(2)根据绝对值的意义进行化简;(3)根据有理数减法运算法则结合绝对值的意义先化简绝对值 然后根据数字的变化规律进行分析计算.【解答】解:(1)①|23﹣47|=47﹣23;②=﹣;故答案为:47﹣23 ﹣;(2)当a>b时|a﹣b|=a﹣b;当a<b时|a﹣b|=b﹣a;故答案为:a﹣b b﹣a;(3)原式=1﹣+﹣+﹣+•+﹣=1﹣=.23.(12分)【知识回顾】七年级学习代数式求值时遇到这样一类题“代数式ax﹣y+6+3x﹣5y﹣1的值与x的取值无关求a的值”通常的解题方法是:把x、y看作字母a看作系数合并同类项因为代数式的值与x的取值无关所以含x项的系数为0 即原式=(a+3)x﹣6y+5 所以a+3=0 则a=﹣3.(1)若关于x的多项式(2x﹣3)m+m2﹣3x的值与x无关求m的值【能力提升】(2)7张如图1的小长方形长为a宽为b按照图2方式不重叠地放在大长方形ABCD内大长方形中未被覆盖的两个部分(图中阴影部分)设右上角的面积为S1左下角的面积为S2当AB的长变化时S1﹣S2的值始终保持不变求a与b的等量关系.【分析】(1)根据含x项的系数为0建立方程解方程即可得;(2)设AB=x先求出S1、S2从而可得S1﹣S2再根据“当AB的长变化时S1﹣S2的值始终保持不变”可知S1﹣S2的值与x的值无关由此即可得.【解答】解:(1)(2x﹣3)m+m2﹣3x=2mx﹣3m+m2﹣3x=(2m﹣3)x+3m+m2∵关于x的多项式(2x﹣3)m+m2﹣3x的值与x的取值无关∴2m﹣3=0解得m=.(2)设AB=x由图可知S1=a(x﹣3b)=ax﹣3ab S2=2b(x﹣2a)=2bx﹣4ab则S1﹣S2=ax﹣3ab﹣(2bx﹣4ab)=ax﹣3ab﹣2bx+4ab=(a﹣2b)x+ab.∵当AB的长变化时S1﹣S2的值始终保持不变∴S1﹣S2的值与x的值无关∴a﹣2b=0∴a=2b.24.(14分)定义:数轴上有A B两点若点A到原点的距离为点B到原点的距离的两倍则称点A为点B的2倍原距点.已知点A M N在数轴上表示的数分别为4 m n.(1)若点A是点M的2倍原距点①当点M在数轴正半轴上时则m=;②当点M在数轴负半轴上且为线段AN的中点时判断点N是否是点A的2倍原距点并说明理由;(2)若点M N分别从数轴上表示数10 6的点出发向数轴负半轴运动点M每秒运动速度为2个单位长度点N每秒运动速度为a个单位长度.若点M为点A的2倍原距点时点A恰好也是点N的2倍原距点请直接写出a所有可能的值.【分析】(1)①点A到原点的距离为4 根据定义可知点M到原点距离为2 点M在数轴正半轴进而可求出m.②m<0 则m=﹣2 4﹣(﹣2)=﹣2﹣n得出n的值再根据定义来判断.(2)设t秒时点M为点A的2倍原距点点A恰好也是点N的2倍原距点;由|10﹣2t|=2×4求出t 的值将t代入4=2×|6﹣at| 求出a的所有可能值即可.【解答】解:(1)①∴m=±2.∵m>0∴m=2.故答案为:2.②∵m<0∴m=﹣2.∵点M为线段AN的中点∴4﹣(﹣2)=﹣2﹣n解得n=﹣8.∴ON=8 ON=2OA故N点是点A的2倍原距点.(2)设t秒时点M为点A的2倍原距点点A恰好也是点N的2倍原距点.∴解①得:t1=9 t2=1.将t1=9代入②得:4=2×|6﹣9t|解得:;将t2=1代入②得:4=2×|6﹣a|解得:a3=4 a4=8.故a所有的可能值为:4 8 .。

人教版七年级上册数学《期中考试卷》(带答案)

人教版七年级上册数学《期中考试卷》(带答案)

人教版数学七年级上学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.我国古代《九章算术)中注有“今两算得失相反,要令正负以名之”.意思是今有两数若其意义相反,则分别叫做正数与负数如果向北走5步记作+5步,那么向南走7步记作( )A. +7步B. ﹣7步C. +12步D. ﹣2步2.单项式-3x2y系数和次数分别是( )A. -3和2B. 3和-3C. -3和3D. 3和23.下列不是同类项的是( )A. 3x2y与﹣6xy2B. ﹣ab3与b3aC. 12和0D. 2xyz与-12zyx4.一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为( )A. 2.18×106B. 2.18×105C. 21.8×106D. 21.8×1055.用四舍五入法按要求对0.050 19分别取近似值,其中错误..的是()A. 0.1(精确到0.1)B. 0.05(精确到百分位)C. 0.05(精确到千分位)D. 0.050 2(精确到0.000 1)6.下列各数|﹣2|,﹣(﹣2)2,﹣(﹣2),(﹣2)3中,负数的个数有( )A. 1个B. 2个C. 3个D. 4个7.下列去括号正确的是( )A. a-(b-c)=a-b-cB. x2-[-(-x+y)]=x2-x+yC. m-2(p-q)=m-2p+qD. a+(b-c-2d)=a+b-c+2d8.如图,数轴上的A、B两点所表示的数分别是a、b,且|a|>|b|,那么下列结论中不正确的是( )A. ab<0B. a+b<0C. a-b<0D. a2b<09.下列说法:①若|a|=a ,则a=0;②若a ,b 互为相反数,且ab≠0,则b a =﹣1; ③若a 2=b 2,则a=b ;④若a <0,b <0,则|ab ﹣a|=ab ﹣a .其中正确的个数有( )A. 1个B. 2个C. 3个D. 4个 10.把2张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m ,宽为n )的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.阴影部分刚好能分割成两张形状大小不同的小长方形卡片(如图③),则分割后的两个阴影长方形的周长和是( )A. 4mB. 2(m +n )C. 4nD. 4(m ﹣n )二、填空题(本大题共8小题,每题3分,满分24分,将答案填在答题纸上)11.鄂州位于中纬度地区,冬冷夏热,四季分明.冬季的某天最高气温是6 ℃,最低气温是-4 ℃,则当天的温差为___________℃.12.已知13(3)m m x y +- 是关于x ,y 的七次单项式,则222m m -+的值为________13.一个多项式减去-5x 等于3x 2-5x +9,这个多项式是___________.14.规定图形表示运算a b c -+,图形表示运算x z y w +--,则__________(直接写出答案).15.若2210m m +-=,则2425m m ++的值为__________16.一组按规律排列的数:95、1612、2521、3632、……,请推断第7个数是_______. 17.一条数轴由点A 处对折,表示﹣30数的点恰好与表示4的数的点重合,则点A 表示的数是_____. 18.如图所示,用同样大小的黑、白两种颜色的棋子摆成正方形图案,则第5个图形中有白子___________个,有黑子___________个.三、解答题:本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤. 19.计算下列各题(1)10﹣(﹣19)+(﹣5)﹣167(2)411(1)6232⎛⎫--⨯-⨯÷ ⎪⎝⎭ (3)3111838318382427⎛⎫⨯-÷⨯ ⎪⎝⎭ (4)(﹣36)×99717220.先化简,再求值:22225(3)2(3)a b ab ab a b --+,其中a =-2,b =-1.21.已知代数式43232235762x ax x x x bx x +++--+-合并同类项后不含,2x 项,求23a b +值. 22.有理数a ,b 在数轴上所对应的点的位置如图所示:(1)用“<”连接 : 0,-a ,-b ,-1,1,a ,b ;(2)化简: 11a a b b a -+----.23.邮递员骑车从邮局出发,先向西骑行 2 km 到达 A 村,继续向西骑行 3 km 到达 B 村, 然后向东骑行 9 km 到达 C 村,最后回到邮局.(1)以邮局为原点,以向东方向为正方向,用 1 cm 表示 1 km 画数轴,并在该数轴上表示 A ,B ,C 三个村庄的位置;(2)C 村离 A 村有多远?(3)邮递员一共骑行了多少千米?24.某厂一周计划生产700个玩具,平均每天生产100个,由于各种原因实际每天生产量与计划量相比有出入,如表是某周每天的生产情况(增产为正,减产为负,单位:个)星 一 二 三 四 五 六 日增 +6 ﹣3 ﹣5 +11 ﹣8 +14 ﹣9(1)根据记录可知前三天共生产 个;(2)产量最多的一天比产量最少的一天多生产 个;(3)该厂实行计件工资制,每生产一个玩具50元,若按周计算,超额完成任务,超出部分每个65元;若未完成任务,生产出的玩具每个只能按45元发工资.那么该厂工人这一周的工资总额是多少?25.如图,四边形ABCD 与四边形CEFG 是两个正方形,边长分别为a ,b ,其中B ,C ,E 在一条直线上,G 在线段CD 上,三角形AGE 的面积为S .(1)①当a=5,b=3时,求S 值;②当a=7,b=3时,求S 的值;(2)从以上结果中,请你猜想S 与a ,b 中的哪个量有关?用字母a ,b 表示S ,并对你的猜想进行证明.26.已知2|4|(2)0a b ++-=,数轴上A B 、两点所对应数分别是和.(1)填空:a = ,b = ;(2)数轴上是否存在点,点在点的右侧,且点到点的距离是点到点的距离的2倍?若存在,请求出点表示的数;若不存在,请说明理由;(3)点以每秒2个单位的速度从点出发向左运动,同时点Q 以每秒3个单位的速度从点出发向右运动,点M 以每秒4个单位的速度从原点点出发向左运动.若为PQ 的中点,当16PQ =时,求M N 、两点之间的距离.答案与解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.我国古代《九章算术)中注有“今两算得失相反,要令正负以名之”.意思是今有两数若其意义相反,则分别叫做正数与负数如果向北走5步记作+5步,那么向南走7步记作( )A. +7步B. ﹣7步C. +12步D. ﹣2步【答案】B【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【详解】∵向北走5步记作+5步,∴向南走7步记作﹣7步.故选B.【点睛】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.2.单项式-3x2y系数和次数分别是( )A. -3和2B. 3和-3C. -3和3D. 3和2【答案】C【解析】试题解析:∵单项式-3x2y的数字因数是-3,所有字母指数的和=1+2=3,∴此单项式的系数是-3,次数是3.故选C.3.下列不是同类项的是( )A. 3x2y与﹣6xy2B. ﹣ab3与b3aC. 12和0D. 2xyz与-12zyx【答案】A【解析】【分析】根据同类项的定义,所含字母相同并且相同字母的指数也相同的项是同类项,逐一判断即可.【详解】A. 相同字母指数不同,不是同类项;B. C.D都是同类项,故选:A.【点睛】考查同类项的概念: 所含字母相同并且相同字母的指数也相同的项是同类项,与字母的位置无关.4.一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为( )A. 2.18×106B. 2.18×105C. 21.8×106D. 21.8×105【答案】A【解析】【分析】科学记数法表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】2180000的小数点向左移动6位得到2.18,所以2180000用科学记数法表示为2.18×106,故选A【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.5.用四舍五入法按要求对0.050 19分别取近似值,其中错误..的是()A. 0.1(精确到0.1)B. 0.05(精确到百分位)C. 0.05(精确到千分位)D. 0.050 2(精确到0.000 1)【答案】C【解析】【分析】一个近似数的有效数字是从左边第一个不为0的数字起,后面所有的数字都是这个数的有效数字,精确到哪位,就是对它后边一位进行四舍五入.【详解】A:0.05019精确到0.1是0.1,正确;B:0.05019精确到百分位是0.05,正确;C:0.05019精确到千分位是0.050,错误;D:0.05019精确到0.0001是0.0502,正确本题要选择错误的,故答案选择C.【点睛】本题考查的是近似数,近似数和精确数的接近程度可以用精确度表示.一个近似数四舍五入到哪一位,就称这个数精确到哪一位,精确度就是精确程度.6.下列各数|﹣2|,﹣(﹣2)2,﹣(﹣2),(﹣2)3中,负数的个数有( )A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】先对每个数进行化简,然后再确定负数的个数.【详解】解:|﹣2|=2,﹣(﹣2)2=﹣4,﹣(﹣2)=2,(﹣2)3=﹣8,﹣4,﹣8是负数,∴负数有2个.故选B.【点睛】本题考查绝对值,有理数的乘方、正数和负数的意义,正确化简各数是解题的关键.7.下列去括号正确的是( )A. a-(b-c)=a-b-cB. x2-[-(-x+y)]=x2-x+yC. m-2(p-q)=m-2p+qD. a+(b-c-2d)=a+b-c+2d【答案】B【解析】【分析】根据去括号法则即可求解.【详解】A. a-(b-c)=a-b+c,故错误;B. x2-[-(-x+y)]= x2-[x-y]=x2-x+y,正确;C. m-2(p-q)=m-2p+2q,故错误;D. a+(b-c-2d)=a+b-c-2d,故错误;故选B.【点睛】此题主要考查整式的加减,解题的关键是熟知去括号法则.8.如图,数轴上的A、B两点所表示的数分别是a、b,且|a|>|b|,那么下列结论中不正确的是( )A. ab<0B. a+b<0C. a-b<0D. a2b<0【答案】D【解析】试题解析:A、由ab异号得,ab<0,故A正确,不符合题意;B、b>0,a<0,|a|>|b|,a+b<0,故B正确,不符合题意;C、由b>0,a<0,|得a-b<0,故C正确,不符合题意;D、由ab异号得,a<0,b>0,a2b>0,故D错误;故选D.点睛:根据数轴上的点表示的数:原点左边的数小于零,原点右边的数大于零,可得a、b的大小,根据有理数的运算,可得答案.9.下列说法:①若|a|=a,则a=0;②若a,b互为相反数,且ab≠0,则ba=﹣1;③若a2=b2,则a=b;④若a<0,b<0,则|ab﹣a|=ab﹣a.其中正确的个数有( )A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】根据有理数的运算法则及绝对值的性质逐一判断可得.【详解】①若|a|=a,则a=0或a为正数,错误;②若a,b互为相反数,且ab≠0,则ba=−1,正确;③若a2=b2,则a=b或a=−b,错误;④若a<0,b<0,所以ab−a>0,则|ab−a|=ab−a,正确;故选B.【点睛】此题考查相反数,绝对值,有理数的乘法,有理数的除法,解题关键在于掌握运算法则.10.把2张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m,宽为n)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.阴影部分刚好能分割成两张形状大小不同的小长方形卡片(如图③),则分割后的两个阴影长方形的周长和是( )A. 4mB. 2(m+n)C. 4nD. 4(m﹣n)【答案】A【解析】【分析】设2张形状大小完全相同的小长方形卡片的长和宽分别为x、y,然后分别求出阴影部分的2个长方形的长宽即可.【详解】解:设2张形状大小完全相同的小长方形卡片的长和宽分别为x、y.∴GF=DH=y,AG=CD=x,∵HE+CD=n,∴x+y=n,∵长方形ABCD的长为:AD=m﹣DH=m﹣y=m﹣(n﹣x)=m﹣n+x,宽为:CD=x,∴长方形ABCD的周长为:2(AD+CD)=2(m﹣n+2x)=2m﹣2n+4x∵长方形GHEF的长为:GH=m﹣AG=m﹣x,宽为:HE=y,∴长方形GHEF的周长为:2(GH+HE)=2(m﹣x+y)=2m﹣2x+2y,∴分割后的两个阴影长方形的周长和为:2m﹣2n+4x+2m﹣2x+2y=4m﹣2n+2(x+y)=4m,故选A.【点睛】本题考查整式的运算,解题的关键是设2张形状大小完全相同的小长方形卡片的长和宽分别为x 、y ,然后根据图中的结构求出分割后的两个阴影长方形的周长和.本题属于中等题型.二、填空题(本大题共8小题,每题3分,满分24分,将答案填在答题纸上)11.鄂州位于中纬度地区,冬冷夏热,四季分明.冬季的某天最高气温是6 ℃,最低气温是-4 ℃,则当天的温差为___________℃.【答案】10【解析】【分析】根据“某天的温差=当天的最高温度-当天的最低温度”计算即可得出答案.【详解】根据题意可得,温差=6℃-(-4℃)=10℃,故答案为10.【点睛】本题考查的是有理数的运算,熟练掌握有理数的运算法则是解决本题的关键.12.已知13(3)m m x y+- 是关于x ,y 的七次单项式,则222m m -+的值为________ 【答案】17【解析】分析】根据单项式次数的定义即可求出m 的值,再将m 代入后面的式子即可得出答案. 【详解】∵13(3)m m x y +- 是关于x ,y 的七次单项式 ∴3014m m -≠⎧⎨+=⎩解得33m m ≠⎧⎨=±⎩ 综上所述:m=-3将m=-3代入2222=(-3)-2(-3)+2=17m m -+⨯故答案为17.【点睛】本题主要考查的是单项式次数的定义,单项式的次数指单项式中所有字母的指数和.13.一个多项式减去-5x 等于3x 2-5x +9,这个多项式是___________.【答案】3x 2-10x +9【解析】【分析】将3x 2-5x +9加上-5x 即可得出答案.【详解】由题意可得:3x 2-5x +9+(-5x )=3x 2-10x +9故答案为3x 2-10x +9.【点睛】本题考查的是整式的加减,熟练掌握整式加减的运算法则是解决本题的关键,14.规定图形表示运算a b c -+,图形表示运算x z y w +--,则__________(直接写出答案).【答案】0【解析】【分析】 根据“规定图形表示运算a b c -+,图形表示运算x z y w +--.”得出新的运算方法,再根据新的运算方法,解答即可.【详解】原式=1-2+3+(4+6-7-5)=2-2=0,故答案为:0.【点睛】解答此题的关键是,根据所给的式子,找出新的计算方法,再运用新的计算方法,解答即可. 15.若2210m m +-=,则2425m m ++的值为__________【答案】7【解析】【分析】根据2210m m +-=得出22=1-m m ,将22=1-m m 代入2425m m ++中即可得出答案.【详解】∵2210m m +-=∴22=1-m m将22=1-m m 代入2425m m ++中得原式=2(1-m )+2m+5=7故答案为7.【点睛】本题考查的是求代数式的值,整体代入法是解决本题的关键.16.一组按规律排列的数:95、1612、2521、3632、……,请推断第7个数是_______.【答案】81 77【解析】【分析】由题中数据可知第n个数的分子为(n+2)2,分母为(n+2)2-4=n2+4n.故可求得第7个数.【详解】第一个数的分子为(1+2)2=9,分母为1×1+4×1=5;第二个数的分子为(2+2)2=16,分母为2×2+4×2=12;第三个数的分子为(3+2)2=25,分母为3×3+4×3=21;第四个数的分子为(4+2)2=36,分母为4×4+4×4=32;第n个数的分子为(n+2)2,分母为n2+4n.第7个数是=()22727487771=++⨯.故答案为:81 77.【点睛】考查了规律型:数字的变化,解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.17.一条数轴由点A处对折,表示﹣30的数的点恰好与表示4的数的点重合,则点A表示的数是_____.【答案】-13【解析】【分析】根据对称的知识,若﹣30表示的点与4表示的点重合,则对称点是两个点的表示的数的和的平均数,由此求得点A表示的数.【详解】解:点A表示的数是(-30+4)÷2=﹣13.故答案为﹣13.【点睛】此题考查数轴,掌握点和数之间的对应关系以及中心对称的性质是解决问题的关键.18.如图所示,用同样大小的黑、白两种颜色的棋子摆成正方形图案,则第5个图形中有白子___________个,有黑子___________个.【答案】 (1). 白子24个 (2). 黑子25个【解析】【分析】本题以正方形的周长计算公式为基础,分析图形规律,即可得出答案.【详解】第一个图形:棋子共有23个,其中黑子有1个,白子有231-个;第二个图形:棋子共有个,其中黑子有个,白子有2242-个;第三个图形:棋子共有25个,其中黑子有23个,白子有2253-个;……由此可以推出,第n 个图形:棋子共有()22n +个,其中黑子有2n 个,白子有()222n n +-个;故第五个图形:棋子共有2749=个,其中黑子有2525=个,白子有2275492524-=-=个; 故答案为24,25.【点睛】本题是图形类找规律类题型,解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论. 三、解答题:本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤. 19.计算下列各题(1)10﹣(﹣19)+(﹣5)﹣167(2)411(1)6232⎛⎫--⨯-⨯÷ ⎪⎝⎭(3)3111838318382427⎛⎫⨯-÷⨯ ⎪⎝⎭ (4)(﹣36)×997172【答案】(1)-143;(2)12;(3)5;(4)﹣359912. 【解析】根据有理数的混合运算的法则计算即可.【详解】解:(1)原式=10+19﹣5﹣167=29﹣172=﹣143;(2)原式=﹣1×(13 ﹣12 )×6÷2 =﹣6×(13﹣12)÷2 =(﹣6×13+6×12 )÷2 =(﹣2+3)÷2 =12; (3)原式=278 ×(253 ﹣258)÷2524 ×827 =278 ×(253 ﹣258)×2425 ×827 =(253 ﹣258 )×2425 =253 ×2425 ﹣258×2425 =8﹣3=5;(4)(﹣36)×997172=﹣36×(100﹣172) =﹣3600+12=﹣359912 . 故答案为(1)-143;(2)12 ;(3)5;(4)﹣359912. 【点睛】本题考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则及其运算律. 20.先化简,再求值:22225(3)2(3)a b ab ab a b --+,其中a =-2,b =-1.【答案】化简结果为:229-7a b ab ,值为:-22.【分析】根据整式的加减法则先化简22225(3)2(3)a b ab ab a b --+,再将a =-2,b =-1代入化简后的式子即可得出答案.【详解】解:222222225(3)2(3)=15-5-2-6a b ab ab a b a b ab ab a b --+22=9-7a b ab将a =-2,b =-1代入得原式22=9(2)(1)-7(2)(1)22⨯-⨯-⨯-⨯-=-【点睛】本题考查的是整式的化简求值,注意先化简再求值.21.已知代数式43232235762x ax x x x bx x +++--+-合并同类项后不含,2x 项,求23a b +的值.【答案】-22【解析】【分析】根据多项式不含有的项的系数为零,求出a,b 的值代入2a+3b 即可.【详解】解:原式4332223(5)(37)62x ax x x x bx x =+++--+-=432(5)(4)62x a x b x x +++--+-由题意,得50a +=,40b --=,解得5a =-,4b =-,所以232(5)3(4)22a b +=⨯-+⨯-=-.【点睛】本题考查了合并同类项,利用多项式不含有的项的系数为零得出a ,b 是解题关键.22.有理数a ,b 在数轴上所对应的点的位置如图所示:(1)用“<”连接 : 0,-a ,-b ,-1,1,a ,b ;(2)化简: 11a a b b a -+----.【答案】(1)a <-1<-b <0<b <1<-a ;(2)a【解析】【分析】(1)根据数轴得出a<-1<0<b<1,再比较,即可得出答案;(2)先根据第(1)问的结果判断出每个绝对值的正负并去掉绝对值,再进行计算即可得出答案.【详解】解:(1)根据题意可得:a<-1<-b<0<b<1<-a(2)∵a<0,a+b-1<0,b-a-1>0∴原式=-a-[-(a+b-1)]-(b-a-1)=-a+(a+b-1)-(b-a-1)=-a+a+b-1-b+a+1=a【点睛】本题考查了数轴、绝对值、合并同类项以及有理数的大小比较等知识点,能正确去掉绝对值符号是解决本题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.23.邮递员骑车从邮局出发,先向西骑行2 km 到达A村,继续向西骑行3 km到达B 村,然后向东骑行9 km到达C 村,最后回到邮局.(1)以邮局为原点,以向东方向为正方向,用1 cm 表示1 km 画数轴,并在该数轴上表示A,B,C三个村庄的位置;(2)C村离A 村有多远?(3)邮递员一共骑行了多少千米?【答案】(1)答案见解析;(2)6km;(3)18km【解析】【分析】(1)根据已知条件在数轴上表示出来即可;(2)根据数轴列出算式即可得出答案;(3)根据题意可求出从邮局到C处所走的路程为:2+3+9=14km,再由数轴可得C到邮局的距离为4km,相加即可得出答案.【详解】解:(1)根据题意可得:(2)C村离A村的距离为9-3=6(km)(3)邮递员一共行驶了2+3+9+4=18(千米)【点睛】本题考查的是正负数的应用,解题的关键是理解题目中“正”和“负”的相对概念.24.某厂一周计划生产700个玩具,平均每天生产100个,由于各种原因实际每天生产量与计划量相比有出入,如表是某周每天的生产情况(增产为正,减产为负,单位:个)星一二三四五六日增+6 ﹣3 ﹣5 +11 ﹣8 +14 ﹣9(1)根据记录可知前三天共生产个;(2)产量最多的一天比产量最少的一天多生产个;(3)该厂实行计件工资制,每生产一个玩具50元,若按周计算,超额完成任务,超出部分每个65元;若未完成任务,生产出的玩具每个只能按45元发工资.那么该厂工人这一周的工资总额是多少?【答案】(1)298;(2)23;(3)该厂工人这一周的工资是35390元.【解析】【分析】(1)三天的计划总数加上三天多生产的辆数的和即可;(2)求出超产的最多数与最少数的差即可;(3)求得这一周生产的总辆数,然后按照工资标准求解.【详解】解:(1)前三天生产的辆数是100×3+(6﹣3﹣5)=298(个).答案是:298;(2)14﹣(﹣9)=23(个),故答案是23;(3)这一周多生产的总辆数是6﹣3﹣5+11﹣8+14﹣9=6(个).50×700+65×6=35390(元).答:该厂工人这一周的工资是35390元.【点睛】本题考查有理数的运算,理解正负数的意义,求得这一周生产的总数是关键.25.如图,四边形ABCD与四边形CEFG是两个正方形,边长分别为a,b,其中B,C,E在一条直线上,G在线段CD上,三角形AGE的面积为S.(1)①当a=5,b=3时,求S值;②当a=7,b=3时,求S的值;(2)从以上结果中,请你猜想S 与a ,b 中的哪个量有关?用字母a ,b 表示S ,并对你的猜想进行证明.【答案】(1)①4.5;②4.5;(2)S =12b 2,证明见解析 【解析】【分析】(1)①根据S △AEG =S 正方形ABCD +S 正方形ECGF -S △ABE -S △ADG -S △EFG ,即可得出答案;②方法同①;(2)结论S =12b 2,根据S △AEG =S 正方形ABCD +S 正方形ECGF -S △ABE -S △ADG -S △EFG 即可证明. 【详解】(1)①∵四边形ABCD 与四边形CEFG 是两个正方形,AB =5,EC =3,∴DG =CD -CG =5-3=2.∴S △AEG =S 正方形ABCD +S 正方形ECGF -S △ABE -S △ADG -S △EFG=25+9-12×8×5-12×5×2-12×3×3=4.5. ②∵四边形ABCD 与四边形CEFG 是两个正方形,AB =7,EC =3,∴DG =CD -CG =7-3=4.∴S △AEG =S 正方形ABCD +S 正方形ECGF -S △ABE -S △ADG -S △EFG=49+9-12×10×7-12×7×4-12×3×3=4.5 (2)结论S =12b 2. 证明:∵S △AEG =S 正方形ABCD +S 正方形ECGF -S △ABE -S △ADG -S △EFG=a 2+b 2-12(a +b )•a -12•a (a -b )-12b 2 =a 2+b 2-12a 2-12ab -12a 2+12ab -12b 2 =12b 2, ∴S =12b 2. 【点睛】本题主要考查的是整式的加减,需要熟练掌握整式的加减规律.26.已知2|4|(2)0a b ++-=,数轴上A B 、两点所对应的数分别是和.(1)填空:a = ,b = ;(2)数轴上是否存在点,点在点的右侧,且点到点的距离是点到点的距离的2倍?若存在,请求出点表示的数;若不存在,请说明理由;(3)点以每秒2个单位的速度从点出发向左运动,同时点Q 以每秒3个单位的速度从点出发向右运动,点M 以每秒4个单位的速度从原点点出发向左运动.若为PQ 的中点,当16PQ =时,求M N 、两点之间的距离.【答案】(1)-4,2;(2)0或8;(3)MN=8.【解析】【分析】(1)由“几个非负数和为0,则这几个数都为0”列出方程解答;(2)分两种情况:点C 在A 、B 之间;点C 在B 的右侧.列出方程进行解答;(3)设运动时间为t 秒,根据PQ=16,列出t 的方程求得t ,再求得运动后的M 、N 点表示的数即可.【详解】:(1)由题意得,a+4=0,b-2=0,解得,a=-4,b=2,故答案为:-4,2;(2)设C 点表示的数为x ,根据题意得,①当点C 在A 、B 之间时,有x+4=2(2-x ),解得,x=0;②当点C 在B 的右侧时,有x+4=2(x-2),解得,x=8.故点C 表示的数为0或8;(3)设运动的时间为t 秒,根据题意得, 2t+3t+AB=16,即2t+3t+6=16,解得,t=2,∴运动2秒后,各点表示的数分别为:P :-4-2×2=-8,Q :2+3×2=8,M :0-4×2=-8,N :2808-+=, ∴MN=0-(-8)=8.【点睛】本题主要考查了一元一次方程的应用,用数轴上的点表示数,数轴上的动点问题,两点间的距离,非负数的性质,解题的关键是正确列出一元一次方程.。

人教版数学七年级上册《期中考试卷》(含答案)

人教版数学七年级上册《期中考试卷》(含答案)

人 教 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题:(每题3分,共24分,每题只有一个正确答案)1. 若规定收入为“+”,那么﹣50元表示( )A. 收入了50元B. 支出了50元C. 没有收入也没有支出D. 收入了100元2.2017-的倒数是( ) A. 12017 B. 2017 C. 2017- D. 12017-3.下列式子中,正确的是( )A. 68--<B. 101000->C. 1157--< D. 10.33< 4.下列各式中,等号不成立的是( )A. |﹣4|=4B. ﹣|4|=|﹣4|C. |﹣4|=|4|D. ﹣|﹣4|=﹣4 5. 下列说法正确的是( ) A.23xyz 与23xy 是同类项 B. 1x和2x 是同类项 C. 320.5x y -和232x y 是同类项D. 25m n 和22nm -是同类项6.下列各式计算中,正确的是( )A. 2a +2=4aB. ﹣2x 2+4x 2=2x 2C. x +x=x 2D. 2a +3b=5ab 7.用四舍五入法按要求对0.050 19分别取近似值,其中错误..是( ) A. 0.1(精确到0.1)B. 0.05(精确到百分位)C. 0.05(精确到千分位)D. 0.050 2(精确到0.000 1)8.某种品牌的彩电降价30%以后,每台售价为元,则该品牌彩电每台原价应为( )A. 0.7a 元B. 0.3a 元C. 0.3a 元D. 0.7a 元二、填空题:(每题3分,共24分)9.“早穿皮袄午穿纱”这句民谣形象地描绘了我们新疆奇妙的气温变化现象.乌鲁木齐市五月的某一天,最低气温是t ℃,温差是15 ℃,则当天的最高气温是________℃.10.单项式 35ab -8的系数是__,次数是__. 11.若315k y x 与3873x y -是同类项,则k=_____. 12.我国2006年参加高考报名总人数约为950万人,则该人数可用科学记数法表示为_____人. 13.某种零件的直径规格是20±0.02mm ,经检查,一个零件的直径是19.9mm ,该零件____________(填“合格”或“不合格”).14.已知单项式3a m b 2与423n a b -和是单项式,那么m=_____,n=_____. 15.数轴上到点﹣3的距离是3个单位长度的点表示的数是_____.16.若|a |=3,|b |=2,且a >b ,则a +b 的值可能是:_____.三、计算题:(每题5分,共30分)17.计算题(1)﹣8﹣6+22﹣9.(2)(﹣16+34﹣112)×48. (3)|﹣0.75|+(﹣3)﹣(﹣0.25)+|﹣18|+78. (4)﹣22+3×(﹣1)4﹣(﹣4)×5.(5)(7m 2n ﹣5mn)﹣(4m 2n ﹣5mn) (6)13(9a ﹣3)+2(a +1). 四、解答题:(第1、2、3题每题10分,第4题12分,共42分)(说明:答题时要写出必要的步聚和过程)18.如果规定符号“*”的意义是:a*b=ab a b+,试求2*(﹣4)的值. 19.化简求值:(2x 2y ﹣4xy 2)﹣(﹣3xy 2+x 2y ),其中x=﹣1,y=2.20.某巡警骑摩托车在一条南北大道上巡逻,某天他从岗亭出发,晚上停留在A 处,规定向北方向为正,当天行驶情况记录如下(单位:千米):+10,﹣8,+7,﹣15,+6,﹣16,+4,﹣2(1)A 处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1千米耗油05升,这一天共耗油多少升?21.已知:m,x,y满足:(1)23(x-5)2+5|m|=0;(2)-2a2b y+1与7b3a2同类项.求:代数式2x2-6y2+m(xy-9y2)-(3x2-3xy+7y2)的值.答案与解析一、选择题:(每题3分,共24分,每题只有一个正确答案)1. 若规定收入为“+”,那么﹣50元表示( )A. 收入了50元B. 支出了50元C. 没有收入也没有支出D. 收入了100元【答案】B【解析】试题分析:若规定收入为“+”,则“﹣”表示与之相反的意义,即支出.解:∵收入用“+”表示,∴﹣50元表示支出50元,故选B .考点:正数和负数.2.2017-的倒数是( ) A. 12017 B. 2017 C. 2017- D. 12017- 【答案】D【解析】分析】根据乘积为1的两个数互为倒数,可得答案.【详解】解:-2017的倒数是12017-.故选D.【点睛】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.3.下列式子中,正确的是( )A. 68--<B. 101000->C. 1157--< D. 10.33<【答案】C【解析】【分析】(1)根据两个负数,绝对值大的其值反而小作答;(2)根据负数都小于0作答;(3)根据两个负数,绝对值大的其值反而小作答;(4)根据两个正数,绝对值大的数较大作答.【详解】A.∵|−6|<|−8|,∴−6>−8,错误;B.∵11000-−11000是负数,∴11000-<0,错误; C.∵11,57->- ∴1157--<,正确; D.1 3>0.3,错误.故选C.【点睛】考查有理数的大小比较,掌握正数都大于0,负数都小于0,正数大于负数,两个负数,绝对值大的反而小是解题的关键.4.下列各式中,等号不成立是( )A. |﹣4|=4B. ﹣|4|=|﹣4|C. |﹣4|=|4|D. ﹣|﹣4|=﹣4 【答案】B【解析】试题分析:正数绝对值等于它本身,负数的绝对值等于它的相反数,零的绝对值为零.444-==,则本题不成立的是B .5. 下列说法正确的是( ) A.23xyz 与23xy 是同类项 B. 1x和2x 是同类项 C. 320.5x y -和232x y 是同类项D. 25m n 和22nm -是同类项【答案】D【解析】试题分析:由同类项的定义可知,D 选项中的两个单项式所含字母m 、n 相同,并且相同字母的指数也相等,因此本题选D.考点:同类项6.下列各式计算中,正确的是( )A. 2a +2=4aB. ﹣2x 2+4x 2=2x 2C. x +x=x 2D. 2a +3b=5ab【答案】B【解析】【详解】解:A 选项不是同类项,无法进行加减法计算;B 选项计算正确;C 、原式=2x ;D 选项不是同类项,无法进行加减法计算.故选B .【点睛】本题主要考查的就是合并同类项的计算,属于简单题目.对于同类项的加减法,我们只需要将同类项的系数进行相加减,字母和字母的指数不变即可得出答案,很多同学会将字母的指数也进行相加减,这样就会出错.如果两个单项式不是同类项,我们无法进行加减法计算,这一点很多同学会出错.7.用四舍五入法按要求对0.050 19分别取近似值,其中错误..的是( ) A. 0.1(精确到0.1)B. 0.05(精确到百分位)C. 0.05(精确到千分位)D. 0.050 2(精确到0.000 1) 【答案】C【解析】【分析】一个近似数的有效数字是从左边第一个不为0的数字起,后面所有的数字都是这个数的有效数字,精确到哪位,就是对它后边一位进行四舍五入.【详解】A :0.05019精确到0.1是0.1,正确;B :0.05019精确到百分位是0.05,正确;C :0.05019精确到千分位是0.050,错误;D :0.05019精确到0.0001是0.0502,正确本题要选择错误的,故答案选择C.【点睛】本题考查的是近似数,近似数和精确数的接近程度可以用精确度表示.一个近似数四舍五入到哪一位,就称这个数精确到哪一位,精确度就是精确程度.8.某种品牌的彩电降价30%以后,每台售价为元,则该品牌彩电每台原价应为( )A. 0.7a 元B. 0.3a 元C. 0.3a 元D. 0.7a 元 【答案】D【解析】 由题意得0.7a 元,所以选D. 点睛:涨价,降价与折扣一个物品价格为a ,涨价b %,现价 为a (1+b %),一个物品价格为a ,降价b %,现价 为a (1-b %),一个物品价格为a ,9折出售,现价为90%a.二、填空题:(每题3分,共24分)9.“早穿皮袄午穿纱”这句民谣形象地描绘了我们新疆奇妙的气温变化现象.乌鲁木齐市五月的某一天,最低气温是t ℃,温差是15 ℃,则当天的最高气温是________℃.【答案】(t +15)【解析】(t +15).10.单项式 35ab -8的系数是__,次数是__. 【答案】 (1). 58- (2). 4【解析】 因为单项式的系数是指字母前数字因数,所以358ab -的系数是58-,单项式的次数是指所含字母指数之和,所以358ab -的次数是4,故答案为5 8-,4. 11.若315k y x 与3873x y -是同类项,则k=_____. 【答案】8【解析】试题分析:如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.根据定义可知:k=8.12.我国2006年参加高考报名的总人数约为950万人,则该人数可用科学记数法表示为_____人.【答案】9.5×106【解析】试题分析:科学计数法是指将一个数字表示成a 10n ⨯的形式,其中1≤a <10,n 为原数的整数位数减一,则950万人=9500000人=69.510⨯人.13.某种零件的直径规格是20±0.02mm ,经检查,一个零件的直径是19.9mm ,该零件____________(填“合格”或“不合格”).【答案】不合格【解析】【分析】根据正负数的意义,求得合格零件的直径的范围,再进一步分析.【详解】解:根据题意,得该零件直径最小是20-0.02=19.98(mm ),最大是20+0.02=20.02(mm ),因为19.9<19.98,所以该零件不合格.故答案为不合格.【点睛】此题考查了正、负数在实际生活中的意义,±0.02表示和标准相比,超过或不足0.02. 14.已知单项式3a m b 2与423n a b -的和是单项式,那么m=_____,n=_____. 【答案】 (1). 4 (2). 2【解析】试题分析:如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.根据定义可知:m=4,n=2.15.数轴上到点﹣3的距离是3个单位长度的点表示的数是_____.【答案】0或﹣6.【解析】试题分析:在数轴上两点所表示的数的差的绝对值为这两个点之间的距离.设这个点表示的数为x ,则()33x --=,则x 33+=±,解得:x=0或-6,即这个点表示的数为0或-6.16.若|a |=3,|b |=2,且a >b ,则a +b 的值可能是:_____.【答案】5或1.【解析】试题分析:根据绝对值的计算方法可得:a 3=±,b 2=±,根据a b >可得:a=3,b 2=±,则a+b=3+2=5或a+b=3+(-2)=1.点睛:正数的绝对值等于它本身,负数的绝对值等于它的相反数,零的相反数为零;互为相反数的两个数的绝对值相等.本题首先根据绝对值的性质求出a 和b 的值,然后根据有理数的大小比较方法确认a 和b 的值,然后进行计算得出答案.这种题目有的时候还是会出现平方根,根据平方根的性质得出答案.三、计算题:(每题5分,共30分)17.计算题(1)﹣8﹣6+22﹣9.(2)(﹣16+34﹣112)×48.(3)|﹣0.75|+(﹣3)﹣(﹣0.25)+|﹣18|+78.(4)﹣22+3×(﹣1)4﹣(﹣4)×5.(5)(7m2n﹣5mn)﹣(4m2n﹣5mn)(6)13(9a﹣3)+2(a+1).【答案】(1)﹣1;(2)24;(3)﹣1;(4)19;(5)3m2n;(6)5a+1【解析】试题分析:(1)、首先将同号的进行相加,然后再进行异号的加法计算;(2)、利用乘法分配律进行简便计算;(3)、首先进行绝对值和去括号计算,然后将同分母的放在一起进行计算,最后进行整数之间的计算;(4)、先进行幂的计算,然后进行加减法计算;(5)、首先根据去括号的法则进行去括号,然后进行合并同类项计算得出答案;(6)、首先根据去括号的法则进行去括号,然后进行合并同类项计算得出答案.试题解析:解:(1)、原式=﹣23+22=﹣1;(2)、原式=﹣8+36﹣4=24;(3)、原式=0.75﹣3+0.25+18+78=1﹣3+1=﹣1;(4)、原式=﹣4+3×1+20=﹣4+3+20=19;(5)、原式=7m2n﹣5mn﹣4m2n+5mn=3m2n;(6)、原式=3a﹣1+2a+2=5a+1四、解答题:(第1、2、3题每题10分,第4题12分,共42分)(说明:答题时要写出必要的步聚和过程)18.如果规定符号“*”的意义是:a*b=aba b+,试求2*(﹣4)的值.【答案】4【解析】【分析】根据给出的新定义的计算法则将数字分别代入公式计算即可得出答案.【详解】2*(﹣4)=()()248 244⨯--=+--=4.【点睛】考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.19.化简求值:(2x 2y ﹣4xy 2)﹣(﹣3xy 2+x 2y ),其中x=﹣1,y=2.【答案】6.【解析】试题分析:首先根据去括号的法则将括号去掉,然后再进行合并同类项计算,最后将x 和y 的值代入化简后的式子进行计算即可得出答案.试题解析:解:(2x 2y ﹣4xy 2)﹣(﹣3xy 2+x 2y)=2x 2y ﹣4xy 2+3xy 2﹣x 2y=x 2y ﹣xy 2,当x=﹣1,y=2时,原式=(﹣1)2×2﹣(﹣1)×22=1×2+1×4=2+4=6.20.某巡警骑摩托车在一条南北大道上巡逻,某天他从岗亭出发,晚上停留在A 处,规定向北方向为正,当天行驶情况记录如下(单位:千米):+10,﹣8,+7,﹣15,+6,﹣16,+4,﹣2(1)A 处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1千米耗油05升,这一天共耗油多少升?【答案】(1)A 处在岗亭南方,距离岗亭14千米;(2)34L【解析】【分析】(1)由已知,把所有数据相加,如果得数是正数,则A 处在岗亭北方,否则在北方.所得数的绝对值就是离岗亭的距离.(2)把所有数据的绝对值相加就是行驶的路程,已知摩托车每行驶1千米耗油0.5升,那么乘以0.5就是一天共耗油的量.【详解】解:(1)(+10)+(-8)+( +7)+(-15)+(+6)+(-16)+(+4)+(-2) 1分=-14答:停留时,A 处在岗亭的南方,距离14千米(2)()108715616420.5+++++++++++⨯---- ()108715616420.5=+++++++⨯680.5=⨯34=答:这一天共耗油34升考点:正数和负数.21.已知:m,x,y 满足:(1)23(x -5)2+5|m|=0;(2)-2a 2b y +1与7b 3a 2是同类项. 求:代数式2x 2-6y 2+m(xy -9y 2)-(3x 2-3xy +7y 2)的值.【答案】-47.【解析】【分析】根据几个非负数的和为零,则每一个非负数都是零的性质求出x 和m 的值;根据同类项的定义求出y 的值,然后将x 、y 和m 的值代入所求的代数式得出答案. 【详解】解:∵()225503x m -+=,(x ﹣5)2≥0,|m |≥0, ∴(x ﹣5)2=0,|m |=0, ∴x ﹣5=0,m=0,∴x=5∵﹣2a 2b y +1与7b 3a 2是同类项∴y +1=3,∴y=2∴2x 2﹣6y 2+m(xy ﹣9y 2)﹣(3x 2﹣3xy +7y 2)=2x 2﹣6y 2+mxy ﹣9my 2﹣3x 2+3xy ﹣7y 2=﹣x 2﹣13y 2﹣9my 2+mxy +3xy=﹣52﹣13×22﹣9×0×22+0×5×2+3×5×2=﹣47.【点睛】本题主要考查的就是非负数的性质、同类项的定义以及代数式的化简求值问题.计算结果为非负数的我们在初中阶段学过三种:平方、绝对值、算术平方根.这种题目经常会在考试当中出现,我们一定要引起重视.对于同类项,我们一定要明确同类项的定义,根据定义可以得出未知数的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上学期七年级数学期中测试卷
一、选一选(每题3分,共24分)
1、下列各式中正确的是( )
A 、33-=-
B 、)1(1--=-
C 、12-<-
D 、22-+=+-
2、在下列选项中,具有相反意义的量是( )
A 、向东行30米和向北行30米
B 、6个老师和7个学生
C 、走了100米的跑了100米
D 、收入20元与支出30元
3、实数a, b, c 在数轴上大致位置如图, 则a 的大小关系是( )
A 、a<b<c B. a<c<b C. b<c<a D. 无法确定
4、一只海豚从水面先潜入水下40米,然后又上升了23米,此时海豚离水面( )
A 、63米
B 、23米
C 、17米
D 、40米 5、上海市99年人口出生率为5℅,死亡率为7.3%,那么99年上海市人口增长率为( )
A.-2.3℅
B. 2.3℅
C. 12.3℅
D. -12.3℅
6、下列各式:2251b a -,121-x ,–25,x 1,2
y x -,222b ab a +-中单项式的个数有( ) A 、4个 B 、3个 C 、2个 D 、1个
7、在下列各组单项式中,是同类项的是( )
A 、b 3与a 3 B. a 2b 与-ba 2 C.x 2y 与x 2yz D. 2m 2n 与2mn 2
8、校、家、书店依次坐落在一条南北走向的大街上,学校在家的南边20米,书店在家北边100米,张明同学从家里出发,向北走了50米,接着又向北走了-70米,此时张明的位置在( )
A. 在家
B. 在书店
C. 在学校
D. 不在上述地方
二、填一填(每题3分,共24分)
9、3211--=_____________
10、–2012的倒数是_______,8
1-的相反数是________,–2的绝对值是________ 11、绝对值等于3的数是_______
12、如果01=-+b a ,则a+b=_____________
13、已知代数式a-2b 的值为5,则2a -4b 的值是_____________
14、如果 32y x a -与b y x 34
1是同类项,则a b =__________ 15、用科学记数法表示6850000=____________
16、现定义某种运算“*”,对给定的两个有理数a 、b (a≠0),有a*b=ab , c b a
则(-3)*2=
三、解答题
17、(4分)把下列各数填在相应的表示集合的大括号内
-2,π,31-,3--,7
22,-0.3,1.7, 0, 1.1010010001…… 整 数{ ……}
负数 { ……}
正数 { ……}
负分数{ ……}
18、(5分)在数轴上表示下列各数,π,4-,0,32
-,并把这些数按从小到大 的顺序进行排列。

19、计算(16分)
(1) 12-(-18 )+(-7 )-15 (2)200622)1(]2)3
2(3[43-÷--⨯-⨯-
(3)2225
3mn n m n m -+- (4)2(x-1)-3(2-3x)
20、先化简再求值(6分)
)](3[)(2222y x xy y x ---++-,其中x= -1,y= 2.
21、(6分)某市出租车的收费标准是:3千米内(含3千米)起步价为12.5元,3千米外每千米收费为2.4元。

某乘客坐出租车x(x>3)千米,
(1) 试用关于x的代数式表示该乘客的付费。

(2) 如果该乘客坐了10千米,应付费多少元?
22、(6分)出租车司机小李某天下午运营全是在东西走向的人民大道上进行的,
如果规定向东为正,向西为负,他这天下午行驶里程如下:(单位:千米)
+15, -3, +14,-11,+10,-12,+4,-15,+16,-18
(1)他将最后一名乘客送到目的地时,距下午出车地点是多少千米?
(2)若汽车耗油量为a升∕千米,这天下午共耗油多少升?
23、(9分)某种水果第一天以2元的价格卖出a斤,第二天以1.5元的价格卖出b斤,
第三天以1.2元的价格卖出c斤,求:
(1)这三天共卖出水果多少斤?
(2)这三天共卖得多少元?
(3)这三天平均售价是多少?并计算当a=30,b=40,c=45时,平均售价是多少?
参考答案
一、1、B 2、D 3、A 4、C 5、A 6、C 7、B 8、C 二、9、-2 10、1
2012- ,1
8-,2 11、±3 12、1 13、10
14、27 15、6.85×106 16、-6
三、17、整数{ -2,3--,0……}
负数{ -2,31
-,3--,-0.3,……}
正数{π,722
,1.7, 0.1010010001……}
负分数{31
-,-0.3 ……}
18、
∴3
042π-<<<-
19、(1)8 (2)29 (3) 2252
mn n m - (4) 11x-8
20、-2x 2-3xy ,4
21、(1)12.5+(x-3)⨯2.4=2.4x+5.3 (2)29.3
22、(1)0 (2)118a
23、(1)a+b+c (2)2a+1.5b+1.2c (3)
-2。

相关文档
最新文档