【推荐】鞍山市台安县八年级下册期中考试数学试卷及答案

合集下载

辽宁省鞍山市八年级下学期数学期中考试试卷

辽宁省鞍山市八年级下学期数学期中考试试卷

辽宁省鞍山市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2016八上·蕲春期中) 三角形的内角和为()A . 540oB . 360oC . 180oD . 60o2. (2分)(2020·南宁模拟) 汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝,如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边分别是2和3.现随机向该图形内掷一枚飞镖,则飞镖落在小正方形内(非阴影区域)的概率为()A .B .C .D .3. (2分) (2018八上·路南期中) 如图,Rt△ABC中,∠B=90°,∠A=30°,D是AC的中点,P是AB上一动点,要使CP+PD的值最小,则点P不在()A . ∠ACB的平分线上B . 边AC的垂直平分线上C . 边AB的中点D . 线段BD的中垂线上4. (2分)(2019·山西) 如图,在△ABC中,AB=AC,∠A=30°,直线a∥b,顶点C在直线b上,直线a交AB于点D,交AC于点E,若∠1=145°,则∠2的度数是()A . 30°B . 35°C . 40°D . 45°5. (2分)如图,⊙O是△ABC的外接圆,∠B=60o ,0P⊥AC于点P,OP=2,则⊙O的半径为()A . 4B . 6C . 8D . 126. (2分) (2019八上·东源期中) 以下列各组数为边长,不能构成直角三角形的是()A . 3,4,5B . 1,1,C . 8,12,13D . ,,7. (2分) (2019八下·顺德期末) 一个多边形的内角和是,这个多边形是()A . 五边形B . 六边形C . 七边形D . 八边形8. (2分) (2017八上·江津期中) 一个多边形内角和是1080°,则这个多边形的对角线条数为()A . 27D . 209. (2分) (2019八下·余杭期中) 若多边形的边数由3增加到n(n为大于3的正整数),则其外角和的度数()A . 增加B . 减少C . 不变D . 不能确定10. (2分) (2015八下·召陵期中) 下列命题中正确的是()A . 对角线相等的四边形是矩形B . 对角线互相垂直的四边形是菱形C . 对角线互相垂直平分且相等的四边形是正方形D . 一组对边相等,另一组对边平行的四边形是平行四边形11. (2分)(2020·柳州) 下列四个图案中,是中心对称图形的是()A .B .C .D .12. (2分)在菱形ABCD中,对角线AC=4,∠BAD=120°,则菱形ABCD的周长为()A . 20B . 18二、填空题 (共6题;共6分)13. (1分) (2017八上·上城期中) 如图,中,为中点,在上,且.若,,则 ________.14. (1分)已知四边形各内角的度数的比为1∶2∶3∶4,则各内角的度数分别为________15. (1分) (2020九上·嵩县期末) 如图,在平行四边形ABCD中,AE:BE=2:1,F是AD的中点,射线EF 与AC交于点G,与CD的延长线交于点P,则的值为________.16. (1分) (2016八下·和平期中) 在矩形ABCD中,对角线AC,BD相交于点O,若∠AOB=80°,则∠OAB 的大小为________(度).17. (1分) (2017八下·荣昌期中) 如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED等于________度.18. (1分)如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.当点E、F在BC、CD上滑动时,则△CEF的面积最大值是________.三、解答题 (共8题;共63分)19. (5分) (2019八上·嘉荫期末) 如图CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.20. (10分) (2017八下·宜兴期中) 如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC且DE=OC, 连接 CE、OE,连接AE交OD于点F.(1)求证:OE=CD(2)若菱形ABCD的边长为4,∠ABC=60°,求AE的长.21. (10分)(2017·响水模拟) 如图,PA、PB分别与⊙O相切于点A、B,点M在PB上,且OM∥AP,MN⊥AP,垂足为N.(1)求证:OM=AN;(2)若⊙O的半径R=3,PA=9,求OM的长.22. (10分) (2019九下·东台期中) 如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE =90°,点P为射线BD、CE的交点.(1)判断线段BD与CE的关系,并证明你的结论;(2)若AB=8,AD=4,把△ADE绕点A旋转,①当∠EAC=90°时,求PB的长;②求旋转过程中线段PB长的最大值.23. (2分) (2017·洛阳模拟) 如图,在△ABD中,AB=AD,以AB为直径的⊙F交BD于点C,交AD于点E,CG⊥AD于点G,连接FE,FC.(1)求证:GC是⊙F的切线;(2)填空:①若∠BAD=45°,AB=2 ,则△CDG的面积为________.②当∠GCD的度数为________时,四边形EFCD是菱形.24. (10分)长方形OABC绕顶点C(0,5)逆时针方向旋转,当旋转到CO′A′B′位置时,边O′A′交边AB于D,且A′D=2,AD=4.(1)求BC长;(2)求阴影部分的面积.25. (6分) (2020七下·无锡期中) 如图, AE、 DE、 BF、 CF 分别是四边形 ABCD(四边不相等)的内角角平分线,AE、 BF 交于点 G, DE、 CF 交于点 H.(1)探索∠FGE 与∠FHE 有怎样的数量关系,并说明理由.(2)∠FGE 与∠FHE 有没有可能相等?若相等,则四边形 ABCD 的边有何结论?请说明理由.26. (10分)(2020·永州模拟) 定义:数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称这个三角形为“智慧三角形”.理解:(1)如图,已知A、B是上两点,请在圆上找出满足条件的点C,使为“智慧三角形”(画出点C的位置,保留作图痕迹);(2)如图,在正方形中,E是的中点,F是上一点,且,试判断是否为“智慧三角形”,并说明理由;运用:(3)如图,在平面直角坐标系中,的半径为1,点Q是直线上的一点,若在上存在一点P,使得为“智慧三角形”,当其面积取得最小值时,直接写出此时点P的坐标.参考答案一、单选题 (共12题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题 (共6题;共6分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:三、解答题 (共8题;共63分)答案:19-1、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、。

辽宁省鞍山市台安县2023-2024学年八年级下学期期中数学试题

辽宁省鞍山市台安县2023-2024学年八年级下学期期中数学试题

辽宁省鞍山市台安县2023-2024学年八年级下学期期中数学试题一、单选题1.下列二次根式为最简二次根式的是( )A B C D2x 的取值范围是( )A .3x ≥B .3x ≤C .3x >D .3x <3.若4a b +=-,1ab = ) A .4 B .4- C .16 D .4或4-4.如图,从一个大正方形中裁去面积为216cm 和224cm 的两个小正方形,则余下部分的面积为( )A .2B .240cmC .2D .()24cm 5.我国是最早了解勾股定理的国家之一.据《周髀算经》记载,勾股定理的公式与证明是在商代由商高发现的,故又称之为“商高定理”;三国时代的蒋铭祖对《蒋铭祖算经》内的勾股定理作出了详细注释,并给出了另外一个证明.下面四幅图中,不能证明勾股定理的是( )A .B .C .D .6.我国是最早了解勾股定理的国家之一,它被记载于我国古代著名的数学著作《周髀算经》中.下列各组数中,是“勾股数”的是()A.2,3,4B.4,5,6C.7,8,9D.6,8,107.一个三角形三边长之比为4:5:6,三边中点连线组成的三角形的周长为30cm,则原三角形最大边长为()A.44厘米B.40厘米C.36厘米D.24厘米8.小军不慎将一块平行四边形玻璃打碎成如图所示的四块,他带了两块碎玻璃到商店配成一块与原来相同的平行四边形玻璃,他带的碎玻璃编号是()A.①②B.①④C.②③D.②④9.如图,在▱ABCD中,AB=BC=5.对角线BD=8,则▱ABCD的面积为()A.20 B.24 C.40 D.4810.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是()A.①②B.②③C.①③D.②④二、填空题11n的最小值为.a.12.当=13.如图,所有阴影部分四边形都是正方形,所有三角形都是直角三角形,若正方形A、C、D 的面积依次为4、6、18,则正方形B 的面积为.14.如图,菱形OABC 的边OA 在x 轴上,点B 的坐标为()9,3.分别以点B 、C 为圆心,大于12的长为半径画弧,两弧相交于点D 、E .连接DE ,交AB 于点F .则点F 的坐标为.15.如图,在ABC V 中,345AB AC BC ===,,,P 为边BC 上一动点,PE AB ⊥于E ,PF AC ⊥于F ,M 为EF 中点,则AM 的最小值为.三、解答题16.计算:(1)(44;(2)17.已知1x =,1y =,求下列各式的值:(1)22x xy y -+; (2)x y y x+18.在一棵树的10米高的B 处有两只猴子.一只猴子爬下树走到离树20米的池塘的A 处.另一只爬到树顶D 后直接跃到A 处.距离以直线计算.如果两只猴子所经过的距离相等.则这棵树高多少米?19.如图,BN ,CM 分别是△ABC 的两条高,点D ,E 分别是BC ,MN 的中点.求证:DE ⊥MN .20.如图,在平行四边形ABCD 中,AD BD ⊥,E 、F 分别为边AB CD 、的中点,连接、DE BF .(1)求证:四边形BFDE 是菱形;(2)若60A ∠=︒,3AD =,求四边形BFDE 的面积.21.如图,在44⨯的正方形网格中,每个小正方形的边长都为1.(1)求ABC V 的周长;(2)若点P 为直线AC 上任意一点,则线段BP 的最小值为________.22.在数学课外学习活动中,小明和他的同学遇到一道题: 已知a =,求2281a a -+的值.他是这样解答的:2a =Q2a ∴-=22(2)3443a a a ∴-=-+=,.241a a ∴-=-.()222812412(1)11a a a a ∴-+=-+=⨯-+=-. 请你根据小明的解题过程,解决如下问题:=______________; (2)L L (3)若a =43443a a a --+的值. 23.四边形ABCD 为正方形,点E 为线段AC 上一点,连接DE ,过点E 作EF DE ⊥,交射线BC 于点F ,以DE 、EF 为邻边作矩形DEFG ,连接CG .(1)如图1,求证:矩形DEFG 是正方形;(2)若2AB =,CE CG 的长度;(3)当线段DE 与正方形ABCD 的某条边的夹角是30︒时,直接写出EFC ∠的度数.。

鞍山市台安县八年级下册期中数学试卷及答案【精选】.doc

鞍山市台安县八年级下册期中数学试卷及答案【精选】.doc

2019-2020学年辽宁省鞍山市台安县八年级(下)期中数学试卷一、选择题(共8小题,每小题2分,满分16分)1.函数中自变量x的取值范围是()A.x≥﹣2 B.x≥﹣2且x≠1C.x≠1D.x≥﹣2或x≠12.下列二次根式是最简二次根式的是()A.B.C.D.3.以下各式中计算正确的是()A.﹣=﹣6 B.(﹣)2=﹣3 C.=±16D.=a4.如图,直角三角形ABC的周长为24,且AB:BC=5:3,则AC=()A. 6 B. 8 C. 10 D. 125.下列命题中正确的是()A.对角线相等的四边形是矩形B.对角线互相平分且相等的四边形是正方形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是菱形6.如图,△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=10,AE=16,则BE的长度为何?()A. 10 B. 11 C. 12 D. 137.如图,在▱ABCD中,AB=10,AD=8,AC⊥BC,下列计算错误的是()A. BC=8 B. BD=15C. AC=6 D.▱ABCD的面积是488.平行四边形ABCD的对角线交于点O,有五个条件:①AC=BD,②∠ABC=90°,③AB=AC,④AB=BC,⑤AC⊥BD,则下列哪个组合可判别这个四边形是正方形()A.①②B.①③C.①④D.④⑤二、填空题(共8小题,每小题2分,满分16分)9.= .10.计算:= .11.若是整数,则正整数n的最小值是.12.如图,以△ABC的三边为边向外作正方形,其面积分别为S1,S2,S3,且S1=9,S3=25,当S2= 时∠ACB=90°.13.矩形的两条对角线的夹角是60°,一条对角线与短边的和为15,其对角线长为.14.三角形的三边长为6cm、8cm、10cm,则它的中位线构成的三角形面积是.15.已知,如图,四边形ABCD是正方形,BE=AC,则∠BED=度.16.如图,一张纸片的形状为直角三角形,其中∠C=90°,AC=12cm,BC=16cm,沿直线AD折叠该纸片,使直角边AC与斜边上的AE重合,则CD的长为cm.三、解答题(共2小题,每小题6分,满分12分)17.计算:2﹣+|1﹣|18.计算:﹣÷+(3﹣)(3).四、解答题(共2小题,每小题8分,满分16分)19.已知,a=+1,b=﹣1,求分式的值.20.某天早晨,王老师从家出发,骑摩托车前往学校,途中在路旁一家饭店吃早餐,如图所示的是王老师从家到学校这一过程中行驶路程s(千米)与时间t(分)之间的关系.(1)学校离他家多远?从出发到学校,用了多少时间?(2)王老师吃早餐用了多少时间?(3)王老师吃早餐以前的速度快还是吃完早餐以后的速度快?最快时速达到多少?五、解答题(共4小题,满分40分)21.如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形;(2)求证:∠DHF=∠DEF.22.小红同学要测量A、C两地的距离,但A、C之间有一水池,不能直接测量,于是她在A、C同一水平面上选取了一点B,点B可直接到达A、C两地.她测量得到AB=80米,BC=20米,∠ABC=120°.请你帮助小红同学求出A、C两点之间的距离.(参考数据≈4.6)23.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.24.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.2019-2020学年辽宁省鞍山市台安县八年级(下)期中数学试卷参考答案与试题解析一、选择题(共8小题,每小题2分,满分16分)1.函数中自变量x的取值范围是()A.x≥﹣2 B.x≥﹣2且x≠1C.x≠1D.x≥﹣2或x≠1考点:函数自变量的取值范围.专题:函数思想.分析:根据二次根式的性质和分式的意义,被开方数≥0,分母不等于0,就可以求解.解答:解:根据题意得:被开方数x+2≥0,解得x≥﹣2,根据分式有意义的条件,x﹣1≠0,解得x≠1,故x≥﹣2且x≠1.故选:B.点评:考查了函数自变量的取值范围,注意函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.2.下列二次根式是最简二次根式的是()A.B.C.D.考点:最简二次根式.分析:检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.解答:解:A、,被开方数含分母,不是最简二次根式;B、,被开方数含分母,不是最简二次根式;C是最简二次根式;D、=2,被开方数含能开得尽方的因数,不是最简二次根式;故选:C.点评:本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.3.以下各式中计算正确的是()A.﹣=﹣6 B.(﹣)2=﹣3 C.=±16D.=a考点:二次根式的性质与化简.分析:分别利用二次根式的性质化简求出即可.解答:解:A、﹣=﹣=﹣6,故此选项正确;B、(﹣)2=3,故此选项错误;C、=16,故此选项错误;D、=|a|,故此选项错误;故选:A.点评:此题主要考查了二次根式的化简,正确利用二次根式的性质得出是解题关键.4.如图,直角三角形ABC的周长为24,且AB:BC=5:3,则AC=()A. 6 B. 8 C. 10 D. 12考点:勾股定理.分析:可先设AB=5x,BC=3x,在该三角形中,由勾股定理可求出AC关于x的代数式,由于直角三角形ABC的周长=AC+AB+BC=24,据此列出方程求出x的值,代入AC的关于x的代数式中,即可求出AC的值.解答:解:设AB=5x,BC=3x,在Rt△ACB中,由勾股定理得:AC2=AB2﹣BC2,AC===4x,直角三角形ABC的周长为:5x+4x+3x=24,x=2,所以,AC=2×4=8,故选B.点评:本题主要考查了勾股定理的运用,关键在于用含有x的式子分别表示出三边的值,代入周长公式求解,属于常考的考点.5.下列命题中正确的是()A.对角线相等的四边形是矩形B.对角线互相平分且相等的四边形是正方形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是菱形考点:命题与定理.分析:根据矩形的判定方法对A进行判断;根据正方形的判定方法对B进行判断;根据菱形的判定方法对C、D进行判断.解答:解:A、对角线相等的平行四边形是矩形,所以A选项错误;B、对角线互相垂直平分且相等的四边形是正方形,所以B选项错误;C、对角线互相垂直平分的四边形是菱形,所以C选项错误;D、对角线互相垂直平分的四边形是菱形,所以D选项正确.故选D.点评:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.6.如图,△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=10,AE=16,则BE的长度为何?()A. 10 B. 11 C. 12 D. 13考点:勾股定理;直角三角形斜边上的中线.分析:根据在直角三角形中,斜边上的中线等于斜边的一半这一性质可求出AB的长,再根据勾股定理即可求出BE的长.解答:解:∵BE⊥AC,∴△AEB是直角三角形,∵D为AB中点,DE=10,∴AB=20,∵AE=16,∴BE==12,故选C.点评:本题考查了勾股定理的运用、直角三角形的性质:直角三角形中,斜边上的中线等于斜边的一半,题目的综合性很好,难度不大.7.如图,在▱ABCD中,AB=10,AD=8,AC⊥BC,下列计算错误的是()A. BC=8 B. BD=15C. AC=6 D.▱ABCD的面积是48考点:平行四边形的性质.分析:利用平行四边形的性质结合勾股定理和平行四边形的面积求法分别分析得出即可.解答:解:∵四边形ABCD是平行四边形,∴AD=BC=8,∴选项A正确,不合题意;∵AB=10,BC=8,AC⊥BC,∴AC=6,故选项C正确,不合题意,故▱ABCD的面积是:6×8=48,AC与BD相交于点O,∴AO=CO=3,∴BO==,∴BD=2,故选项B错误,符合题意;故选:B.点评:此题主要考查了平行四边形的性质以及勾股定理等知识,利用勾股定理得出AC的长是解题关键.8.平行四边形ABCD的对角线交于点O,有五个条件:①AC=BD,②∠ABC=90°,③AB=AC,④AB=BC,⑤AC⊥BD,则下列哪个组合可判别这个四边形是正方形()A.①②B.①③C.①④D.④⑤考点:正方形的判定;平行四边形的性质.分析:要判定是正方形,则需能判定它既是菱形又是矩形.解答:解:由①得对角线相等的平行四边形是矩形,加上④得,有一组邻边相等的矩形是正方形,故选C.点评:本题考查了正方形的判定方法,是基础知识较简单.二、填空题(共8小题,每小题2分,满分16分)9.= 2.考点:二次根式的乘除法.专题:计算题.分析:根据二次根式的除法法则进行运算,然后将二次根式化为最简即可.解答:解:原式===2.故答案为:2.点评:本题考查了二次根式的除法运算,属于基础题,掌握二次根式的除法法则及二次根式的化简是关键.10.计算:= .考点:分母有理化.专题:计算题.分析:根据﹣1的有理化因式为+1,进行计算即可.解答:解:原式=,=+1,故答案为+1.点评:主要考查二次根式的有理化.根据二次根式的乘除法法则进行二次根式有理化.二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.即一项符号和绝对值相同,另一项符号相反绝对值相同.11.若是整数,则正整数n的最小值是 3 .考点:二次根式的定义.分析:首先化简二次根式,进而得出n的最小值.解答:解:原式=5,则正整数n的最小值是3时,原式是整数.故答案为:3.点评:此题主要考查了二次根式的定义,正确化简二次根式得出是解题关键.12.如图,以△ABC的三边为边向外作正方形,其面积分别为S1,S2,S3,且S1=9,S3=25,当S2= 16 时∠ACB=90°.考点:勾股定理的逆定理.分析:先设Rt△ABC的三边分别为a、b、c,再分别用a、b、c表示S1、S2、S3的值,由勾股定理即可得出S2的值.解答:解:设Rt△ABC的三边分别为a、b、c,∴S1=a2=9,S2=b2,S3=c2=25,∵△ABC是直角三角形,∴a2+b2=c2,即S1+S2=S3,∴S2=S3﹣S1=16.故答案为:16.点评:本题考查的是勾股定理的应用及正方形的面积公式,熟知勾股定理是解答此题的关键.13.矩形的两条对角线的夹角是60°,一条对角线与短边的和为15,其对角线长为10 .考点:矩形的性质.分析:根据四边形ABCD是矩形,得到OA=OC,OB=OD,AC=BD,推出OA=OB,再由两条对角线的夹角是60°,得出△OAB是等边三角形,即可求对角线长.解答:解:∵四边形ABCD是矩形,∴OA=OC,OB=OD,AC=BD,∴OA=OB,∵∠AOB=60°,∴△OAB是等边三角形,∴AB=OB=OA=×15=5,∴AC=BD=2×5=10.故答案为:10.点评:本题主要考查对矩形的性质,等边三角形的性质和判定等知识点的理解和掌握,能根据性质得到等边三角形OAB是解此题的关键,题型较好,难度适中.14.三角形的三边长为6cm、8cm、10cm,则它的中位线构成的三角形面积是6cm2.考点:三角形中位线定理;勾股定理的逆定理.分析:可先依据题意作出简单的图形,进而结合图形,由题中数据可得三角形是一直角三角形,进而再由中位线的性质即可求解.解答:解:由题中数据可得三角形是一直角三角形,如图,设BC=6cm,AB=8cm,AC=10cm,∵DE、EF、DF分别是三角形的中位线,∴DE=3cm,EF=4cm,DF=5cm,∵DE2+EF2=DF2,故△DEF是直角三角形,S△DEF=DE×EF=6cm2.故答案为:6cm2.点评:本题主要考查了中位线的性质以及勾股定理的运用,要求同学们熟练掌握中位线的性质及勾股定理的逆定理.15.已知,如图,四边形ABCD是正方形,BE=AC,则∠BED=22.5 度.考点:正方形的性质;等腰三角形的性质.分析:连接BD,根据正方形的对角线平分一组对角可得∠ABD=45°,再根据正方形的对角线相等可得AC=BD,然后求出BD=BE,再根据等边对等角可得∠BDE=∠BE D,然后利用三角形的一个外角等于与它不相邻的两个内角的和列式进行计算即可得解.解答:解:如图,连接BD,∵四边形ABCD是正方形,∴∠ABD=45°,AC=BD,∵BE=AC,∴BD=BE,∴∠BDE=∠BED,根据三角形的外角性质,∠ABD=∠BDE+∠BED,∴∠BED=∠ABD=×45°=22.5°.故答案为:22.5.点评:本题考查了正方形的性质,主要利用了正方形的对角线平分一组对角,正方形的对角线相等的性质,等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并作辅助线构造出等腰三角形是解题的关键.16.如图,一张纸片的形状为直角三角形,其中∠C=90°,AC=12cm,BC=16cm,沿直线AD折叠该纸片,使直角边AC与斜边上的AE重合,则CD的长为 6 cm.考点:翻折变换(折叠问题).专题:计算题.分析:在Rt△ABC中根据勾股定理得AB=20,再根据折叠的性质得AE=AC=12,DE=DC,∠AED=∠C=90°,所以BE=AB﹣AE=8,设CD=x,则BD=16﹣x,然后在Rt△BDE中利用勾股定理得到82+x2=(16﹣x)2,再解方程求出x即可.解答:解:在Rt△ABC中,∵AC=12,BC=16,∴AB==20,∵△ACB沿直线AD折叠该纸片,使直角边AC与斜边上的AE重合,∴AE=AC=12,DE=DC,∠AED=∠C=90°,∴BE=AB﹣AE=20﹣12=8,设CD=x,则BD=16﹣x,在Rt△BDE中,∵BE2+DE2=BD2,∴82+x2=(16﹣x)2,解得x=6,即CD的长为6cm.故答案为6.点评:本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.三、解答题(共2小题,每小题6分,满分12分)17.计算:2﹣+|1﹣|考点:二次根式的加减法.分析:先把各根式化为最减二次根式,再合并同类项即可.解答:解:原式=﹣2+﹣1=﹣1.点评:本题考查的是二次根式的加减,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.18.计算:﹣÷+(3﹣)(3).考点:二次根式的混合运算.专题:计算题.分析:先进行二次根式的除法运算,再利用平方差公式进行乘法运算,然后把各二次根式化为最简二次根式后合并即可.解答:解:原式=4﹣+9﹣3=4﹣3+6=+6.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.四、解答题(共2小题,每小题8分,满分16分)19.已知,a=+1,b=﹣1,求分式的值.考点:分式的化简求值.专题:计算题.分析:由a与b的值,求出a+b与ab的值,原式变形后代入计算即可求出值.解答:解:∵a=+1,b=﹣1,∴a+b=2,ab=1,则原式==.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20.某天早晨,王老师从家出发,骑摩托车前往学校,途中在路旁一家饭店吃早餐,如图所示的是王老师从家到学校这一过程中行驶路程s(千米)与时间t(分)之间的关系.(1)学校离他家多远?从出发到学校,用了多少时间?(2)王老师吃早餐用了多少时间?(3)王老师吃早餐以前的速度快还是吃完早餐以后的速度快?最快时速达到多少?考点:函数的图象.分析:(1)由于骑摩托车前往学校,途中在路旁一家饭店吃早餐,那么行驶路程s(千米)与时间t(分)之间的关系图象中有一段平行x轴的线段,然后学校,根据图象可以直接得到结论;(2)根据图象中平行x轴的线段即可确定王老师吃早餐用了多少时间;(3)根据图象可以分别求出吃早餐以前的速度和吃完早餐以后的速度,然后比较即可得到结果.解答:解:(1)依题意得:学校离王老师家有10千米,从出发到学校王老师用了25分钟;(2)依题意得:王老师吃早餐用了10分钟;(3)吃早餐以前的速度为:5÷10=0.5km/分钟,吃完早餐以后的速度为:(10﹣5)÷(25﹣20)=1km/分钟=60km/小时,∴王老师吃完早餐以后速度快,最快时速达到60km/小时.点评:此题是一个信息题目,根据函数图象中的信息找出所需要的数量关系,然后利用数量关系即可解决问题.五、解答题(共4小题,满分40分)21.如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形;(2)求证:∠DHF=∠DEF.考点:三角形中位线定理;直角三角形斜边上的中线;平行四边形的判定.专题:证明题;几何综合题.分析:(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得EF∥AB,DE∥AC,再根据平行四边形的定义证明即可;(2)根据平行四边形的对角相等可得∠DEF=∠BAC,根据直角三角形斜边上的中线等于斜边的一半可得DH=AD,FH=AF,再根据等边对等角可得∠DAH=∠DHA,∠FAH=∠FHA,然后求出∠DHF=∠BAC,等量代换即可得到∠DHF=∠DEF.解答:证明:(1)∵点D,E,F分别是AB,BC,CA的中点,∴DE、EF都是△ABC的中位线,∴EF∥AB,DE∥AC,∴四边形ADEF是平行四边形;(2)∵四边形ADEF是平行四边形,∴∠DEF=∠BAC,∵D,F分别是AB,CA的中点,AH是边BC上的高,∴DH=AD,FH=AF,∴∠DAH=∠DHA,∠FAH=∠FHA,∵∠DAH+∠FAH=∠BAC,∠DHA+∠FHA=∠DHF,∴∠DHF=∠BAC,∴∠DHF=∠DEF.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,等腰三角形的性质,直角三角形斜边上的中线等于斜边的一半的性质,平行四边形的判定与性质,熟记各性质并准确识图是解题的关键.22.小红同学要测量A、C两地的距离,但A、C之间有一水池,不能直接测量,于是她在A、C同一水平面上选取了一点B,点B可直接到达A、C两地.她测量得到AB=80米,BC=20米,∠ABC=120°.请你帮助小红同学求出A、C两点之间的距离.(参考数据≈4.6)考点:勾股定理的应用.分析:首先过C作CD⊥AB交AB延长线于点D,然后可得∠BCD=30°,再根据直角三角形的性质可得BD=10米,然后利用勾股定理计算出CD长,再次利用勾股定理计算出AC长即可.解答:解:过C作CD⊥AB交AB延长线于点D,∵∠ABC=120°,∴∠CBD=60°,在Rt△BCD中,∠BCD=90°﹣∠CBD=30°,∴BD=BC=×20=10(米),∴CD==10(米),∴AD=AB+BD=80+10=90米,在Rt△ACD中,AC==≈92(米),答:A、C两点之间的距离约为92米.点评:此题主要考查了勾股定理的应用,关键是正确掌握直角三角形中,两直角边的平方和等于斜边的平方.23.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.考点:全等三角形的判定与性质;勾股定理;菱形的判定与性质.专题:几何综合题;开放型.分析:(1)首先利用SSS定理证明△ABC≌△ADC可得∠BCA=∠DCA即可证明△CBF≌△C DF.(2)由△ABC≌△ADC可知,△ABC与△ADC是轴对称图形,得出OB=OD,∠COB=∠COD=90°,因为OC=OA,所以AC与BD互相垂直平分,即可证得四边形ABCD是菱形,然后根据勾股定理全等AB长,进而求得四边形的面积.(3)首先证明△BCF≌△DCF可得∠CBF=∠CDF,再根据BE⊥CD可得∠BEC=∠DEF=90°,进而得到∠EFD=∠BCD=∠BAD.解答:(1)证明:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠BCA=∠DCA,在△CBF和△C DF中,,∴△CBF≌△CDF(SAS),(2)解:∵△ABC≌△ADC,∴△ABC和△ADC是轴对称图形,∴OB=OD,BD⊥AC,∵OA=OC,∴四边形ABCD是菱形,∴AB=BC=CD=DA,∵AC=2,BD=2,∴OA=,OB=1,∴AB===2,∴四边形ABCD的周长=4AB=4×2=8.(3)当EB⊥CD时,即E为过B且和CD垂直时垂线的垂足,∠EFD=∠BCD,理由:∵四边形ABCD为菱形,∴BC=CD,∠BCF=∠DCF,∠BCD=∠BAD,∵△BCF≌△DCF,∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠BCD+∠CBF=90°,∠EFD+∠CDF=90°,∴∠EFD=∠BAD.点评:此题主要考查了全等三角形的判定与性质,以及菱形的判定与性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.24.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.考点:正方形的判定;平行四边形的判定与性质;菱形的判定.专题:几何综合题.分析:(1)先求出四边形ADEC是平行四边形,根据平行四边形的性质推出即可;(2)求出四边形BECD是平行四边形,求出CD=BD,根据菱形的判定推出即可;(3)求出∠CDB=90°,再根据正方形的判定推出即可.解答:(1)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)解:四边形BECD是菱形,理由是:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=BD,∴▱四边形BECD是菱形;(3)当∠A=45°时,四边形BECD是正方形,理由是:解:∵∠ACB=90°,∠A=45°,∴∠ABC=∠A=45°,∴A C=BC,∵D为BA中点,∴CD⊥AB,∴∠CDB=90°,∵四边形BECD是菱形,∴菱形BECD是正方形,即当∠A=45°时,四边形BECD是正方形.点评:本题考查了正方形的判定、平行四边形的性质和判定,菱形的判定,直角三角形的性质的应用,主要考查学生运用定理进行推理的能力.。

辽宁省鞍山市八年级下学期数学期中考试试卷

辽宁省鞍山市八年级下学期数学期中考试试卷

辽宁省鞍山市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分)(2018·葫芦岛) 如图,直线y=kx+b(k≠0)经过点A(﹣2,4),则不等式kx+b>4的解集为()A . x>﹣2B . x<﹣2C . x>4D . x<42. (2分)把二次根式a 根号外的因式移入根号内为()A .B . ﹣C . ﹣D .3. (2分)下列方程是二元一次方程的是()A . 2x+y=z﹣3B . xy=5C . +5=3yD . x=y4. (2分)(2017·衡阳模拟) 内角为108°的正多边形是()A . 3B . 4C . 5D . 65. (2分)已知x=1是方程x2+bx+b-3=0的一个根,那么此方程的另一个根为()A . -2B . -1C . 1D . 26. (2分) (2019九下·镇原期中) 平面直角坐标系中点A、B的坐标分别为(0,4)和(3,2),在x轴上确定一点C,使点C到点A、B的距离之和最小,则点C的坐标为()A . (﹣2,0)B . (2,0)C . (﹣6,0)D . (6,0)二、填空题 (共12题;共12分)7. (1分) (2015八上·南山期末) 如图,已知直线y=2x+4与x轴交于点A,与y轴交于点B,以点A为圆心,AB为半径画弧,交x轴正半轴于点C,则点C坐标为________.8. (1分)给出下列函数,(1)y=﹣8x;(2)y=-;(3)y=8x2;(4)y=8x+1.其中,是一次函数的有________ 个.9. (1分) (2019七上·阜宁期末) 当m=________时,方程2x+m=x+10的解为x=-4.10. (1分)若关于x方程 = +1无解,则a的值为________.11. (1分) (2019九下·沈阳月考) 如图,一个正三角形经过变换依次成为正六边形、正十二边形、正二十四边形、….当这些正多边形的周长都相等时,正六边形的面积________正十二边形的面积(填不等的符号).12. (1分)(2017·赤壁模拟) 一辆汽车开往距离出发地180km的目的地,出发后第一小时按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,结果比原计划提前40min到达目的地.原计划的行驶速度是________ km/h.13. (1分)轮船先顺水航行 46 千米再逆水航行 34 千米所用的时间,恰好与它在静水中航行 80 千米所用的时间相等,水流速度是 3 千米/小时,则轮船在静水中的速度是________千米/小时.14. (1分)﹣2倒数是________ ,﹣2绝对值是________15. (1分)(2014·成都) 在平面直角坐标系中,已知一次函数y=2x+1的图象经过P1(x1 , y1)、P2(x2 ,y2)两点,若x1<x2 ,则y1________y2 .(填“>”“<”或“=”)16. (1分) (2017八下·徐汇期末) 如果一次函数y=(m﹣2)x+m的函数值y随x的值增大而增大,那么m 的取值范围是________.17. (1分) (2017七下·简阳期中) 一辆汽车出发时邮箱内有油48升,出发后每行驶1 km耗油0.6升,如果设剩油量为y(升),行驶路程为x(km).则y与x的关系式为________;这辆汽车行驶35 km时,汽车剩油________升;当汽车剩油12升时,行驶了________千米.18. (1分)把直线y=﹣x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是________.三、解答题 (共8题;共70分)19. (5分)解方程: =1.20. (5分) (2017七下·柳州期末) 解方程组:.21. (10分)(2017·广州) 已知抛物线y1=﹣x2+mx+n,直线y2=kx+b,y1的对称轴与y2交于点A(﹣1,5),点A与y1的顶点B的距离是4.(1)求y1的解析式;(2)若y2随着x的增大而增大,且y1与y2都经过x轴上的同一点,求y2的解析式.22. (5分)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元。

辽宁省鞍山市八年级下学期数学期中考试试卷

辽宁省鞍山市八年级下学期数学期中考试试卷

辽宁省鞍山市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2016九上·江夏期中) 若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A . k<5B . k<5,且k≠1C . k≤5,且k≠1D . k>52. (2分) (2018九上·浙江期中) 由二次函数,可知()A . 其图象的开口向下B . 其图象的对称轴为直线C . 当x<3时,y随x的增大而增大D . 其最小值为13. (2分)用配方法解方程,下列配方正确的是()A .B .C .D .4. (2分) (2020九上·沈河期末) 如果将抛物线y=(x﹣1)2+2向下平移1个单位,那么所得的抛物线解析式是()A . y=(x﹣1)2+3B . y=(x﹣1)2+1C . y=(x﹣2)2+2D . y=x2+25. (2分)(2017·裕华模拟) 关于x的一元二次方程ax2﹣x+1=0有实数根,则a的取值范围是()A . a≤ 且a≠0B . a≤C . a≥ 且a≠0D . a≥6. (2分)二次函数y=﹣(x﹣3)2+1的最大值为()A . x=3B . x=1C . y=3D . y=17. (2分)(2017·河西模拟) 已知二次函数y=﹣(x﹣h)2+1(为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最大值为﹣5,则h的值为()A . 3﹣或1+B . 3﹣或3+C . 3+ 或1﹣D . 1﹣或1+8. (2分)如图为抛物线y=ax2+bx+c的图象,A、B、C为抛物线与坐标轴的交点,且OA=OC=1,AB>AO,下列几个结论:(1)abc<0;(2)b>2a;(3)a-b=-1;(4)4a-2b+1<0.其中正确的个数是()A . 5个B . 4个C . 3个D . 2个9. (2分)抛物线y=ax2+bx+c(a>0)的顶点在x轴上方的条件是()A . b2-4ac<0B . b2-4ac>0C . b2-4ac≥0D . c>010. (2分)(2017·房山模拟) 二次函数的部分图象如图所示,图象过点(-1,0),对称轴为直线x=2,则下列结论中正确的个数有()①4+b=0;② ;③若点A(-3, ),点B(-, ),点C(5, )在该函数图象上,则<<;④若方程的两根为和,且<,则<-1<5< .A . 1个B . 2个C . 3个D . 4个11. (2分)如图,三个大小相同的正方形拼成如右下图的多边形ABCDEF,一动点P从点A出发沿着A⇒B⇒C⇒D⇒E方向匀速运动,最后到达点E.运动过程中△PEF的面积(S)随时间(t)变化的图象大致是()A .B .C .D .12. (2分) (2019九上·韶关期中) 若关于x的方程(a-1)x2+2x-1=0是一元二次方程,则a的取值范围是()A . a≠1B . a>1C . a<1D . a≠0二、填空题 (共6题;共6分)13. (1分)用配方法解方程x2﹣6x=1时,方程两边应同时加上________就能使方程左边配成一个完全平方式.14. (1分) (2019九上·武汉月考) 抛物线y=﹣x2+4x﹣1的顶点坐标为________.15. (1分)已知x1 , x2为一元二次方程2x2+3x﹣1=0的两个实数根,那么x12+x22=________.16. (1分) (2018八上·四平期末) 如图,,已知中, ,的顶点A,B分别在边OM,ON上,当点B在边ON上运动时,点A随之在边OM上运动,的形状保持不变,在运动过程中,点C到点O的最大距离为________.17. (1分) (2017九上·建湖期末) 抛物线y=2x2﹣bx+3的对称轴是直线x=﹣2,则b的值为________.18. (1分)(2017·浦东模拟) 如果抛物线y=mx2+(m﹣3)x﹣m+2经过原点,那么m=________.三、解答题 (共8题;共59分)19. (10分)解下列方程(1) x2+4x+3=0;(2) 3x2+10x+5=0.20. (5分) (2019八下·南华期中) 已知直线y=-2x+b经过点(1,1),求关于x的不等式-2x+b≥0的解集.21. (5分)如图,等边三角形ABC的边长为6cm,点P自点B出发,以1cm/s的速度向终点C运动;点Q自点C出发,以1cm/s的速度向终点A运动.若P,Q两点分别同时从B,C两点出发,问经过多少时间△PCQ的面积是2 cm2?22. (10分) (2019九下·十堰月考) 已知关于x的一元二次方程有两个实根.(1)求实数的取值范围;(2)若,求的值.23. (10分)某景区商店以2元的批发价进了一批纪念品.经调查发现,每个定价3元,每天可以卖出500件,而且定价每上涨0.1元,其销售量将减少10件.根据规定:纪念品售价不能超过批发价的2.5倍.(1)当每个纪念品定价为3.5元时,商店每天能卖出________件;(2)如果商店要实现每天800元的销售利润,那该如何定价?24. (2分)某公司草坪的护栏是由50段形状相同的抛物线组成的,为牢固起见,每段护栏需按间距0.4m 加设不锈钢管(如图)做成立柱,为了计算所需不锈钢管立柱的总长度,设计人员测得如图所示的数据.(1)求此抛物线的解析式;(2)计算所需不锈钢管的总长度.25. (15分)数y=ax2+bx+c(a<0)图象与x轴的交点A.B的横坐标分别为﹣3,1,与y轴交于点C,下面四个结论:①16a﹣4b+c<0;②若P(﹣5,y1),Q(,y2)是函数图象上的两点,则y1>y2;③a=﹣ c;④若△ABC是等腰三角形,则b=﹣.其中正确的有________(请将结论正确的序号全部填上)26. (2分)(2020·乌鲁木齐模拟) 如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A()和B(4,6),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.(1)求抛物线的解析式;(2)当C为抛物线顶点的时候,求的面积.(3)是否存在质疑的点P,使的面积有最大值,若存在,求出这个最大值,若不存在,请说明理由.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共59分)19-1、19-2、20-1、21-1、22-1、22-2、23-1、23-2、24-1、24-2、25-1、26-1、26-2、26-3、。

2015-2016学年辽宁省鞍山市台安县八年级(下)期中数学试卷

2015-2016学年辽宁省鞍山市台安县八年级(下)期中数学试卷

2015-2016学年辽宁省鞍山市台安县八年级(下)期中数学试卷一、选择题:每小题2分,共16分1.(2分)计算的结果是()A.﹣3 B.3 C.﹣9 D.92.(2分)下列根式中属于最简二次根式的是()A.B.C. D.3.(2分)下列各组数能成为直角三角形三边的是()A.32、42、52B.、、C.、2、D.、、14.(2分)A、B两地相距20千米,甲、乙两人都从A地去B地,图中l1和l2分别表示甲、乙两人所走路程s(千米)与时间t(小时)之间的关系,下列说法:①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时;④乙先到达B地.其中正确的个数是()A.1 B.2 C.3 D.45.(2分)在△ABC中,AB=12,AC=13,∠B=45°,则BC边长为()A.7 B.8 C.8或17 D.7或176.(2分)如图,在菱形ABCD中,对角线AC、BD相交于点O,E为BC的中点,则下列式子中一定成立的是()A.AC=2OE B.BC=2OE C.AD=OE D.OB=OE7.(2分)如图,在▱ABCD中,BM是∠ABC的平分线交CD于点M,且MC=2,▱ABCD的周长是14,则DM等于()A.1 B.2 C.3 D.48.(2分)四边形ABCD的对角线AC和BD相交于点O,设有下列条件:①AB=AD;②∠DAB=90°;③AO=CO,BO=DO;④矩形ABCD;⑤菱形ABCD,⑥正方形ABCD,则下列推理不成立的是()A.①④⇒⑥B.①③⇒⑤C.①②⇒⑥D.②③⇒④二、填空题:每小题2分,共16分9.(2分)计算:﹣×=.10.(2分)若=3﹣x,则x的取值范围是.11.(2分)函数y=中,自变量x的取值范围是.12.(2分)计算:(+)2﹣=.13.(2分)已知命题“直角三角形斜边上的中线等于斜边的一半”,写出它的逆命题:.14.(2分)已知a、b、c是△ABC的三边长,且满足关系式+|a﹣b|=0,则△ABC的形状为.15.(2分)如图,四边形ABCD中,对角线AC,BD相交于点O,AD∥BC,OA=OC,AC平分∠BAD.欲使四边形ABCD是正方形,则还需添加添加(写出一个合适的条件即可)16.(2分)如图,在Rt△ABC中,∠ACB=90°,点D是斜边AB的中点,DE⊥AC,垂足为E,若DE=2,CD=,则BE的长为.三、解答下列各题:每小题6分,共18分17.(6分)(+)﹣2﹣.18.(6分)(3+2)(3﹣2)19.(6分)计算:(3+).四、解答下列各题:每小题7分,共14分20.(7分)已知x=,y=,求x2﹣xy+y2和+的值.21.(7分)一水库的水位在最近6天内持续上涨,如表记录了这6天的水位高的:(1)由记录表推出这6天中水位高度h(m)随时间n(天)变化的函数解析式,并画出函数的图象;(2)据估计这种上涨的势头还会持续2天,预测再过2天水位高度将达到多少米.五、8分22.(8分)如图,在Rt△ABC中,∠C=90°,AC=,点D为BC边上一点,且BD=2AD,∠ADC=60°,求AB的长.六、8分23.(8分)如图,根据道路管理规定,在某笔直的大道AB上行驶的车辆,限速60千米/时,已知测速站点M距大道AB的距离MN为30米,现有一辆汽车从A 向B方向匀速行驶,测得此车从A点行驶到B点所用时间危机6秒,∠AMN=60°,∠BMN=45°.(1)计算AB的长度(结果保留整数).(2)通过计算判断此车是否超速.(温馨提示:≈1.732,≈1.414)七、10分24.(10分)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A 作AF∥BC交BE的延长线于点F,连接CF.(1)求证:四边形ADCF是平行四边形;(2)当AB=AC时,求证四边形ADCF是矩形;(3)当△ABC满足什么条件时,四边形ADCF是菱形?并证明你的结论.八、10分25.(10分)如图①,四边形ABCD是正方形,M是BC边上的点,E是CD边的中点,AE平分∠DAM.(1)求证:AM=AD+MC;(2)求证:AM=DE+BM;(3)若四边形ABCD是矩形,AB=6,AD=9,其他条件不变,如图②.①探究(1)、(2)中的结论是否成立?请分别作出判断,不需要证明;②求AM的长.2015-2016学年辽宁省鞍山市台安县八年级(下)期中数学试卷参考答案与试题解析一、选择题:每小题2分,共16分1.(2分)计算的结果是()A.﹣3 B.3 C.﹣9 D.9【解答】解:原式=|﹣3|=3.故选:B.2.(2分)下列根式中属于最简二次根式的是()A.B.C. D.【解答】解:A、是最简二次根式,正确;B、,故错误;C、,故错误;D、,故错误;故选:A.3.(2分)下列各组数能成为直角三角形三边的是()A.32、42、52B.、、C.、2、D.、、1【解答】解:A、因为(32)2+(42)2≠(52)2,所以不能构成直角三角形,此选项错误;B、因为()2+()2≠()2,所以不能构成直角三角形,此选项错误;C、因为()2+22≠()2,所以不能构成直角三角形,此选项错误;D、因为()2+()2=12,能构成直角三角形,此选项正确.故选:D.4.(2分)A、B两地相距20千米,甲、乙两人都从A地去B地,图中l1和l2分别表示甲、乙两人所走路程s(千米)与时间t(小时)之间的关系,下列说法:①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时;④乙先到达B地.其中正确的个数是()A.1 B.2 C.3 D.4【解答】解:由函数图象可知,乙比甲晚出发1小时,故①正确;乙出发3﹣1=2小时后追上甲,故②错误;甲的速度为:12÷3=4(千米/小时),故③正确;乙的速度为:12÷(3﹣1)=6(千米/小时),则甲到达B地用的时间为:20÷4=5(小时),乙到达B地用的时间为:20÷6=(小时),1+3,∴乙先到达B地,故④正确;正确的有3个.故选:C.5.(2分)在△ABC中,AB=12,AC=13,∠B=45°,则BC边长为()A.7 B.8 C.8或17 D.7或17【解答】解:当△ABC为钝角三角形时,如图1,∵AB=12,∠B=45°,∴AD=BD=12,∵AC=13,∴由勾股定理得CD=5,∴BC=BD﹣CD=12﹣5=7;当△ABC为锐角三角形时,如图2,BC=BD+CD=12+5=17,故选:D.6.(2分)如图,在菱形ABCD中,对角线AC、BD相交于点O,E为BC的中点,则下列式子中一定成立的是()A.AC=2OE B.BC=2OE C.AD=OE D.OB=OE【解答】解:A不正确:∵E为BC的中点,∴OE为△ABC的中位线,OE=AB,∴只有当AC=AB时成立;B正确:∵四边形是菱形,∴AB=BC,OE为△ABC的中位线OE=AB,故BC=2OE;C不正确:∵四边形是菱形,∴AB=AD,OE为△ABC的中位线OE=AB,故AD ≠OE;D不正确:只有当DB=AB时原式成立.故选:B.7.(2分)如图,在▱ABCD中,BM是∠ABC的平分线交CD于点M,且MC=2,▱ABCD的周长是14,则DM等于()A.1 B.2 C.3 D.4【解答】解:∵BM是∠ABC的平分线,∴∠ABM=∠CBM,∵AB∥CD,∴∠ABM=∠BMC,∴∠BMC=∠CBM,∴BC=MC=2,∵▱ABCD的周长是14,∴BC+CD=7,∴CD=5,则DM=CD﹣MC=3,故选:C.8.(2分)四边形ABCD的对角线AC和BD相交于点O,设有下列条件:①AB=AD;②∠DAB=90°;③AO=CO,BO=DO;④矩形ABCD;⑤菱形ABCD,⑥正方形ABCD,则下列推理不成立的是()A.①④⇒⑥B.①③⇒⑤C.①②⇒⑥D.②③⇒④【解答】解:A、符合邻边相等的矩形是正方形;B、可先由对角线互相平分,判断为平行四边形,再由邻边相等,得出是菱形;D、可先由对角线互相平分,判断为平行四边形,再由一个角为直角得出是矩形;故选:C.二、填空题:每小题2分,共16分9.(2分)计算:﹣×=.【解答】解:原式=2﹣=2﹣=,故答案为:.10.(2分)若=3﹣x,则x的取值范围是x≤3.【解答】解:∵=3﹣x,∴3﹣x≥0,解得:x≤3,故答案为:x≤3.11.(2分)函数y=中,自变量x的取值范围是x≥﹣3且x≠5.【解答】解:由题意得,x+3≥0且x﹣5≠0,解得x≥﹣3且x≠5.故答案为:x≥﹣3且x≠5.12.(2分)计算:(+)2﹣=5.【解答】解:原式=2+2+3﹣2=5.故答案为:5.13.(2分)已知命题“直角三角形斜边上的中线等于斜边的一半”,写出它的逆命题:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.【解答】解:命题“直角三角形斜边上的中线等于斜边的一半”的逆命题为:“如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形”.故答案为如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.14.(2分)已知a、b、c是△ABC的三边长,且满足关系式+|a﹣b|=0,则△ABC的形状为等腰直角三角形.【解答】解:∵+|a﹣b|=0,∴c2﹣a2﹣b2=0,且a﹣b=0,∴c2=a2+b2,且a=b,则△ABC为等腰直角三角形.故答案为:等腰直角三角形15.(2分)如图,四边形ABCD中,对角线AC,BD相交于点O,AD∥BC,OA=OC,AC平分∠BAD.欲使四边形ABCD是正方形,则还需添加添加AC=BD或∠BAD=90°(写出一个合适的条件即可)【解答】解:∵AD∥BC,∴∠DAO=∠BCO,在△AOD和△COB中,,∴△AOD≌△COB,∴OB=OD,∵OA=OC,∴四边形ABCD为平行四边形,∵AC平分∠BAD∴∠DAC=∠BAC,∵AD∥BC,∴∠DAC=∠BCA,∴∠BAC=∠BCA,∴BA=BC,∴四边形ABCD为菱形,∴当AC=BD或∠BAD=90°,四边形ABCD为正方形,故答案为:AC=BD或∠BAD=90°.16.(2分)如图,在Rt△ABC中,∠ACB=90°,点D是斜边AB的中点,DE⊥AC,垂足为E,若DE=2,CD=,则BE的长为4.【解答】解:∵在Rt△ABC中,∠ACB=90°,DE⊥AC,∴DE∥BC,∵点D为AB的中点,DE=2,∴BC=4,∵DE⊥AC,垂足为E,若DE=2,CD=,在Rt△CDE中,由勾股定理得CE=4,∵在Rt△BCE中,∠ACB=90°,BE==4.故答案为:4.三、解答下列各题:每小题6分,共18分17.(6分)(+)﹣2﹣.【解答】解:原式=2+﹣﹣=.18.(6分)(3+2)(3﹣2)【解答】解:原式=(3)2﹣(2)2=27﹣8=19.19.(6分)计算:(3+).【解答】解:原式=(9﹣2)=8=2.四、解答下列各题:每小题7分,共14分20.(7分)已知x=,y=,求x2﹣xy+y2和+的值.【解答】解:∵x=,y=,∴x+y=,xy==,∴x2﹣xy+y2=(x+y)2﹣3xy=()2﹣3×=;+===2.21.(7分)一水库的水位在最近6天内持续上涨,如表记录了这6天的水位高的:(1)由记录表推出这6天中水位高度h(m)随时间n(天)变化的函数解析式,并画出函数的图象;(2)据估计这种上涨的势头还会持续2天,预测再过2天水位高度将达到多少米.【解答】解:(1)由表中观察到开始水位高12m,以后每隔1天,水位升高0.5m,这样的变化规律可以表示为h=12+0.5n,它的函数图象如图所示;(2)再过2天,即n=6+2=8时,h=12+0.5×8=16(m),答:再过2天水位高度将达到16米.五、8分22.(8分)如图,在Rt△ABC中,∠C=90°,AC=,点D为BC边上一点,且BD=2AD,∠ADC=60°,求AB的长.【解答】解:在Rt△ADC中,∵∠ADC=60°,∴∠DAC=30°,设DC=x,则AD=2x,(2x)2﹣x2=()2,解得:x=1,∴AD=2,∵BD=2AD,∴BD=4,∴BC=5,在Rt△ABC中,AB==2.六、8分23.(8分)如图,根据道路管理规定,在某笔直的大道AB上行驶的车辆,限速60千米/时,已知测速站点M距大道AB的距离MN为30米,现有一辆汽车从A 向B方向匀速行驶,测得此车从A点行驶到B点所用时间危机6秒,∠AMN=60°,∠BMN=45°.(1)计算AB的长度(结果保留整数).(2)通过计算判断此车是否超速.(温馨提示:≈1.732,≈1.414)【解答】解:(1)在Rt△AMN中,MN=30,∠AMN=60°,∴AN=MN•tan∠AMN=30.在Rt△BMN中,∵∠BMN=45°,∴BN=MN=30.∴AB=AN+BN=(30+30)米;(2)∵此车从A点行驶到B点所用时间为6秒,∴此车的速度为:(30+30)÷6=5+5≈13.66,∵60千米/时≈16.66米/秒,∴13.66<16.66∴不会超速.七、10分24.(10分)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A 作AF∥BC交BE的延长线于点F,连接CF.(1)求证:四边形ADCF是平行四边形;(2)当AB=AC时,求证四边形ADCF是矩形;(3)当△ABC满足什么条件时,四边形ADCF是菱形?并证明你的结论.【解答】证明:(1)∵AF∥BC,∴∠AFE=∠EBD.在△AEF和△DEB中,∴△AEF≌△DEB(AAS).∴AF=BD.∴AF=DC.又∵AF∥BC,∴四边形ADCF为平行四边形;(2)∵AB=AC,AD是中线,∴AD⊥BC,∵四边形ADCF是平行四边形,∴四边形ADCF是矩形;(3)当∠BAC=90°时,四边形ADCF是菱形.证明:∵∠BAC=90°,AD是BC边上的中线,∴AD=BC=DC,∵四边形ADCF是平行四边形,∴平行四边形ADCF是菱形.八、10分25.(10分)如图①,四边形ABCD是正方形,M是BC边上的点,E是CD边的中点,AE平分∠DAM.(1)求证:AM=AD+MC;(2)求证:AM=DE+BM;(3)若四边形ABCD是矩形,AB=6,AD=9,其他条件不变,如图②.①探究(1)、(2)中的结论是否成立?请分别作出判断,不需要证明;②求AM的长.【解答】(1)证明:延长AE、BC交于点N,如图①,∵四边形ABCD是正方形,∴AD∥BC.∴∠DAE=∠ENC.∵AE平分∠DAM,∴∠DAE=∠MAE.∴∠ENC=∠MAE.∴MA=MN.在△ADE和△NCE中,∴△ADE≌△NCE(AAS).∴AD=NC.∴MA=MN=NC+MC=AD+MC.(2)AM=DE+BM成立.证明:过点A作AF⊥AE,交CB的延长线于点F,如图2所示.∵四边形ABCD是正方形,∴∠BAD=∠D=∠ABC=90°,AB=AD,AB∥DC.∵AF⊥AE,∴∠FAE=90°.∴∠FAB=90°﹣∠BAE=∠DAE.在△ABF和△ADE中,∴△ABF≌△ADE(ASA).∴BF=DE,∠F=∠AED.∵AB∥DC,∴∠AED=∠BAE.∵∠FAB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠FAB=∠FAM.∴∠F=∠FAM.∴AM=FM.∴AM=FB+BM=DE+BM.(3)①结论AM=AD+MC仍然成立.证明:延长AE、BC交于点P,如图3,∵四边形ABCD是矩形,∴AD∥BC.∴∠DAE=∠EPC.∵AE平分∠DAM,∴∠DAE=∠MAE.∴∠EPC=∠MAE.∴MA=MP.在△ADE和△PCE中,∴△ADE≌△PCE(AAS).∴AD=PC.∴MA=MP=PC+MC=AD+MC.②结论AM=DE+BM不成立.证明:假设AM=DE+BM成立.过点A作AQ⊥AE,交CB的延长线于点Q,如图4所示.∵四边形ABCD是矩形,∴∠BAD=∠D=∠ABC=90°,AB∥DC.∵AQ⊥AE,∴∠QAE=90°.∴∠QAB=90°﹣∠BAE=∠DAE.∴∠Q=90°﹣∠QAB=90°﹣∠DAE=∠AED.∵AB∥DC,∴∠AED=∠BAE.∵∠QAB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠QAB=∠QAM.∴∠Q=∠QAM.∴AM=QM.∴AM=QB+BM.∵AM=DE+BM,∴QB=DE.在△ABQ和△ADE中,∴△ABQ≌△ADE(AAS).∴AB=AD.与条件“AB≠AD“矛盾,故假设不成立.∴AM=DE+BM不成立.②设MC=x,则BM=BC﹣MC=9﹣x,由(1)有,AM=AD+MC=9+x,根据勾股定理得,AM2﹣BM2=AB2,∴(9+x)2﹣(9﹣x)2=36,∴x=1,∴AM=9+x=10.。

辽宁省鞍山市台安县2019-2020学年八年级下学期期中数学试卷(含解析)

辽宁省鞍山市台安县2019-2020学年八年级下学期期中数学试卷(含解析)

辽宁省鞍山市台安县2019-2020学年八年级下学期期中数学试卷一、选择题(本大题共8小题,共16.0分)1.下列运算结果正确的是()A. √(−9)2=−9B. (−√2)2=2C. √6÷√2=3D. √25=±52.在▱ABCD中,∠B+∠D=216°,则∠A的度数为()A. 36°B. 72°C. 80°D. 108°3.下列计算正确的是()A. √2×√5=√10B. √6÷√2=3C. √12+√3=√15D. 2−√4=14.如图,点A、B、C、D均在边长为1的正方形网格的格点上,则sin∠BAC的值为()A. √22B. 1C. √32D. √625.如果平行四边形的周长为120cm,相邻两边长度之比为5:7,那么较长的边长为()A. 35cmB. 28cmC. 42cmD. 25cm6.如图,圆柱的底面周长为6cm,AC是底面圆的直径,高BC=6cm,点P是母BC.一只蚂蚁从A点出发沿着圆柱体的表面爬行到点P 线BC上一点,且PC=23的最短距离是())cmA. (46πB. 5cmC. 3√5cmD. 7cm7.如图所示,一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(ℎ),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.下列说法中正确的是()A. B点表示此时快车到达乙地B. B−C−D段表示慢车先加速后减速最后到达甲地km/ℎC. 快车的速度为16623D. 慢车的速度为125km/ℎ8.如图,将矩形ABCD绕点C顺时针旋转90°得到矩形FGCE,点M、N分别是BD、GE的中点,若BC=14,CE=2,则MN的长()A. 7B. 8C. 9D. 10二、填空题(本大题共8小题,共16.0分)9.化简√2÷(1−√2)的结果______ .10.如果若有理数a和b在数轴上所表示的点分别在原点的右边和左边,则√b2−|a−b|=______.11.“等腰三角形的两个底角相等”的逆命题是12.如图,△ABC中,∠ABC与∠ACB的平分线相交于点O,EF经过点O,分别交AB,AC于点E,F,BE=OE,OF=3cm,点O到BC的距离为4cm,则△OFC的面积为______cm2.(k>0)的图象经13.如图,在平面直角坐标系中,反比例函数y=kx过平行四边形ABCD的顶点C、D,若点A、B的坐标分别为(3,0).(0,4),点C的横坐标和纵坐标之和为15,则k的值为______.214.如图是我区某一天内的气温变化图,结合该图给出的信息写出一个正确的结论:15.在▱ABCD中,∠A=106°,则∠C=______°.16.如图,等腰△ABC的底边BC=20,面积为120,点D在BC边上,且CD=5,直线EF是腰AC的垂直平分线,若点M在EF上运动,则△CDM周长的最小值为______ .三、计算题(本大题共2小题,共15.0分)17.已知a=√2+1,求代数式a2−2a+3的值.18.先化简,再求值:(1x+1+x2−2x+1x2−1)÷x−1x+1,其中x=12.四、解答题(本大题共7小题,共53.0分)19. 计算: (1)√18−√92+(1−√2)2 (2)a 2√8a +3a√18a 3.20. 计算: (1)(2√3+√8)(√12−2√2) (2)3√18+15√50−4√1221. 计算:(1)√25×√16−2;(2)√2×(√18−5);(3)√8+√32−√2;(4)√27+2√12;√3+√10;(5)√40−5√110(6)(2+√3)2−√48.22.如图,已知,AC为△ABD的高,DF交AC于E,交AB于F,连接BE,且有BE=AD,CE=CD.求证:(1)△BCE≌△ACD;(2)BE⊥AD.23.如图,在四边形ABCD中,∠BCD=90°,BC=CD=4,AB=2,AD=6,求∠ABC的度数.24.如图,要建造一个直角梯形的花圃,要求AD边靠墙,CD⊥AD,AB:CD=5:4,另外三边的和为20米,设AB的长为5x米(1)求出AD的长;(用含字母x的式子表示)(2)若该花圃的面积为50平方米,且周长不大于30米,求AB的长.25.在数学学习和研究中经常需要总结运用数学思想方法.如类比、转化、从特殊到一般等思想方法,如下是一个案例,请补充完整.题目:如图1,在平行四边形ABCD中,点E是BC的中点,点F在线段AE上,BF的延长线交射线CD于点G,若AFEF =3,求CDCG的值.(1)尝试探究在图1中,过点E作EH//AB交BG于点H,则易求ABEH 的值是,CGEH的值是,从而确定CDCG的值是.(2)类比延伸如图2,在原题的条件下,若AFEF =m(m>0),则CDCG的值是.(用含m的代数式表示),写出解答过程.(3)拓展迁移如图3,在梯形ABCD中,DC//AB,点E是BC延长线上的一点,AE和BD相交于F,若ABCD=a,BC BE =b(a>0,b>0),则AFEF的值是.(用含a、b的代数式表示)写出解答过程.【答案与解析】1.答案:B解析:解:A、√(−9)2=9,故此选项错误;B、(−√2)2=2,正确;C、√6÷√2=√3,故此选项错误;D、√25=5,故此选项错误;故选:B.直接利用二次根式的性质以及二次根式除法运算法则计算得出答案.此题主要考查了二次根式的性质以及二次根式除法运算,正确掌握运算法则是解题关键.2.答案:B解析:解:∵四边形ABCD是平行四边形,∴∠B=∠D,∠A+∠B=180°.∵∠B+∠D=216°,∴∠B=108°.∴∠A=180°−108°=72°.故选:B.依据平行四边形的性质可得∠B=∠D,通过已知∠B+∠D=216°,求出∠B=108°,再借助∠A= 180°−∠B即可.本题主要考查了平行四边形的性质,解决此类问题要熟知平行四边形的对角相等,邻角互补.3.答案:A解析:解:∵√2×√5=√10,故选项A正确;∵√6÷√2=√3,故选项B错误;∵√12+√3=2√3+√3=3√3,故选项C错误;∵2−√4=2−2=0,故选项D错误;故选:A.根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.4.答案:A解析:解:连接BC,如图3所示;由勾股定理得:AC2=BC2=12+22=5,AB2=12+32=10,∴AC=BC,AC2+BC2=AB2,∴△ABC是等腰直角三角形,∴∠BAC=45°,∴sin∠BAC=√2,2故选:A.连接BC,由勾股定理得AC2=BC2=12+22=5,AB2=12+32=10,则AC=BC,AC2+BC2= AB2,得出△ABC是等腰直角三角形,则∠BAC=45°,即可得出结果.本题考查了勾股定理、勾股定理的逆定理、等腰直角三角形的判定与性质等知识;熟练掌握勾股定理和勾股定理的逆定理是解题的关键.5.答案:A解析:解:∵平行四边形的周长为120cm,∴相邻两边和为60cm,∵相邻两边长度之比为5:7,=35(cm).∴较长的边长为:60×75+7故选A.由平行四边形的周长为120cm,可求得邻边的和,又由相邻两边长度之比为5:7,即可求得答案.此题考查了平行四边形的性质.此题比较简单,注意平行四边形的周长是其邻边和的2倍.6.答案:B解析:首先画出圆柱的侧面展开图,根据高BC′=6cm,PC=BC,求出PC′=×6=4cm,在Rt△AC′P中,根据勾股定理求出AP的长.7.答案:C解析:本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.A、根据B点的纵坐标的意义回答问题;B、B−C−D段表示两车的车距与时间的关系;C、快车的速度=两车车距4−两车车距12;D、慢车的速度=两车车距12.解:A、B点表示快车与慢车出发4小时两车相遇;故本选项错误;B、B−C−D段表示快、慢车相遇后行驶一段时间快车到达乙地,慢车继续行驶,慢车共用了12小时到达甲地故本选项错误;C、快车的速度=10004−100012=16623(km/ℎ);故本选项正确;D、慢车的速度=100012=2503(km/ℎ);故本选项错误;故选C.8.答案:D解析:解:连接AC、CF、AF,如图所示:∵矩形ABCD绕点C顺时针旋转90°得到矩形FFCE,∴∠ABC=90°,∴AC=√AB2+BC2=√22+142=10√2,AC=BD=GE=CF,AC与BD互相平分,GE与CF互相平分,∵点M、N分别是BD、GE的中点,∴M是AC的中点,N是CF的中点,∴MN是△ACF的中位线,∴MN=12AF,∵∠ACF=90°,∴△ACF是等腰直角三角形,∴AF=√2AC=10√2×√2=20,∴MN=10.故选:D.连接AC、CF、AF,由矩形的性质和勾股定理求出AC,由矩形的性质得出M是AC的中点,N是CF的中点,证出MN是△ACF的中位线,由三角形中位线定理得出MN=12AF,由等腰直角三角形的性质得出AF=√2AC=20,即可得出结果.本题考查了矩形的性质、旋转的性质、勾股定理、等腰直角三角形的判定与性质、三角形中位线定理;熟练掌握矩形的性质,由三角形中位线定理求出MN是解决问题的关键.9.答案:−2−√2解析:解:原式=√21−√2=−√2√2−1=−√2(√2+1)=−2−√2.故答案为−2−√2.先用分数线表示除法,然后分母有理化即可.本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.10.答案:−a解析:解:根据题意得:a>0,b<0,即a−b>0,则原式=|b|−|a−b|=−b−a+b=−a.故答案为:−a.根据题意判断出a与b的正负,以及a−b的正负,利用绝对值及二次根式的性质化简,计算即可得到结果.此题考查了二次根式的性质与化简,以及实数与数轴,熟练掌握绝对值的代数意义是解本题的关键.11.答案:有两个角相等的三角形是等腰三角形解析:对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.解:因为原命题的题设是:“一个三角形是等腰三角形”,结论是“这个三角形两底角相等”,所以命题“等腰三角形的两个底角相等”的逆命题是“有两个角相等三角形是等腰三角形”.故答案为有两个角相等三角形是等腰三角形.12.答案:6解析:解:∵BE=OE,∴∠EBO=∠EOB,∵BO平分∠ABC,∴∠EBO=∠CBO,∴∠EOB=∠CBO,∴EF//BC,∵点O到BC的距离为4cm,∴△COF中OF边上的高为4cm,又∵OF=3cm,∴△OFC的面积为12×3×4=6cm2.故答案为:6.依据条件可得∠EOB=∠CBO,进而可得出EF//BC,进而得到△COF中OF边上的高为4cm,再根据三角形面积计算公式,即可得到△OFC的面积.本题主要考查了角平分线的定义以及三角形的面积,判定EF//BC是解决问题的关键.13.答案:9解析:解:∵点C的横坐标和纵坐标之和为152,∴设C(a,152−a),设D的坐标为(m,n),∵四边形ABCD是平行四边形,∴BA//CD,BA=CD,∵A(3,0),B(0,4),∴m−a=3−0,n−(152−a)=0−4,∴m=a+3,n=72−a,∴D(a+3,72−a),∵C、D两点都在反比例函数y=kx(k>0)的图象上,∴k=a(152−a)=(a+3)(72−a),解得,a=32,∴k=32×(152−32)=9,故答案为:9.设C(a,152−a),根据平行四边形求得D点的坐标,再根据C、D两点都在反比例函数y=kx(k>0)的图象上,列出a的方程,求得a,再求k便可.本题主要考查了平行四边形的性质,反比例函数的图象与性质,关键是正确表示用一个字母表示C、D点的坐标.14.答案:这一天中最高气温是26℃解析:本题考查的是折线统计图.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.折线统计图表示的是事物的变化情况.解决本题需要从统计图获取信息,因此关键是明确图表中数据的来源及所表示的意义,依据所示的实际意义获取正确的信息.解:从折线图中可以看出:这一天中最高气温是26℃.故答案为这一天中最高气温是26℃.15.答案:106解析:解:∵四边形ABCD是平行四边形,∴∠A=∠C,∵∠A=106°,∴∠C=106°,故答案为106°根据平行四边形的对角相等即可解决问题.本题考查平行四边形的性质,记住平行四边形的性质是解决问题的关键.16.答案:18解析:解:如图,作AH⊥BC于H,连接AM,∵EF垂直平分线段AC,∴MA=MC,∴DM+MC=AM+MD,∴当A、D、M共线时,DM+MC的值最小,∵等腰△ABC的底边BC=20,面积为120,AH⊥BC,∴BH=CH=10,AH=120×220=12,∴DH=CH−CD=5,∴AD=√AH2+HD2=√144+25=13,∴DM+MC的最小值为13,∴△CDM周长的最小值=13+5=18,故答案为18.如图作AH⊥BC于H,连接AM,由EF垂直平分线段AC,推出MA=MC,推出DM+MC=AM+MD,可得当A、D、M共线时,DM+MC的值最小,最小值就是线段AD的长,利用勾股定理可求AD的长,即可求解.本题考查轴对称−最短问题、线段的垂直平分线的性质、等腰三角形的性质等知识,解题的关键是学会利用轴对称,解决最短问题,属于中考常考题型.17.答案:解:∵a=√2+1,∴a2−2a+3=(a−1)2+2=(√2+1−1)2+2=2+2=4.解析:根据a=√2+1,可以求得题目中所求式子的值,本题得以解决.本题考查二次根式的化简求值,解答本题的关键是明确二次根式化简求值的方法.18.答案:解:原式=[1x+1+(x−1)2(x+1)(x−1)]⋅x+1x−1=(1x+1+x−1x+1)⋅x+1x−1=xx+1⋅x+1x−1=xx−1,当x=12时,原式=1212−1=−1.解析:本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.19.答案:解:(1)√18−√92+(1−√2)2=3√2−3√22+1−2√2+2=−√22+3;(2)a2√8a+3a√18a3=2a2√2a+9a2√2a=11a2√2a.解析:(1)根据二次根式的加减法和完全平方公式可以解答本题;(2)根据二次根式的加法可以解答本题.本题考查二次根式的加减法,解答本题的关键是明确二次根式加减法的计算方法.20.答案:解:(1)原式=(2√3+2√2)(2√3−2√2)=(2√3)2−(2√2)2=12−8=4;(2)原式=9√2+√2−2√2=8√2.解析:(1)先把二次根式化为最简二次根式,再套用平方差公式;(2)先化简二次根式,再合并同类二次根式.本题考查了二次根式的混合运算.掌握二次根式的运算法则是解决本题的关键.注意运算的结果需化成最简二次根式或整式.21.答案:解:(1)√25×√16−2=5×4−2=20−2=18;(2)√2×(√18−5)=√36−5√2=6−5√2;(3)√8+√32−√2=2√2+4√2−√2 =5√2;√27√12√3=√3√3√3=√3√3=7;(5)√40−5√110+√10=2√10−12√10+√10=52√10;(6)(2+√3)2−√48=4+4√3+3−4√3 =7.解析:(1)直接利用二次根式的混合运算法则计算得出答案;(2)直接利用二次根式的混合运算法则计算得出答案;(3)直接化简二次根式进而合并得出答案;(4)直接化简二次根式进而合并得出答案;(5)直接化简二次根式进而合并得出答案;(6)直接利用二次根式的混合运算法则计算得出答案.此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.22.答案:(1)证明:如图,∵AC为△ABD的高,∴AC⊥BD,∴∠BCE=∠ACD=90°,在Rt△BCE与Rt△ACD中,{BE=ADCE=CD,∴Rt△BCE≌Rt△ACD(HL).(2)延长BE交AD于点M,∵△BCE≌△ACD(已证),∴∠BEC=∠ADC=∠MDB,又∵AC⊥BC,∴∠MBD+∠MDB=∠EBC+∠BEC=90°,∴∠BMD=180°−(∠MBC+∠MDB)=180°−90°=90°,∴BM⊥AD,又∵B,E,M三点共线,∴BE⊥AD.解析:(1)根据HL可证明△BCE≌△ACD;(2)延长BE交AD于点M,证得∠BEC=∠ADC=∠MDB,得出BM⊥AD,则结论得证.本题考查了全等三角形的判定与性质,直角三角形的性质,熟练掌握全等三角形的判定方法是解题的关键.23.答案:解:连接BD,∵∠BCD=90°,CD=BC=4,∴BD2=42+42=32,而AB2=4,AD2=62=36,∴AD2=AB2+BD2,∴△ABD为直角三角形,∠ABD=90°;∵△BCD为等腰直角三角形,∴∠DCB=45°,∴∠ABC=90°+45°=135°.解析:连接BD,根据勾股定理的逆定理证明△ABD为直角三角形,求出∠ABD=90°,再求出∠CBD= 45°问题即可解决.此题考查勾股定理的逆定理,关键是根据勾股定理的逆定理证明△ABD为直角三角形.24.答案:解:(1)作BE⊥AD于E,∴∠AEB=∠DEB=90°.∵CD⊥AD,∴∠ADC=90°.∵BC//AD,∴∠EBC=90°,∴四边形BCDE是矩形,∴BE=CD,BC=DE.∵AB:CD=5:4,AB的长为5x米,∴CD=4x米,∴BE=4x,在Rt△ABE中,由勾股定理,得AE=3x.∵BC=20−5x−4x=20−9x,∴DE=20−9x,∴AD =20−9x +3x =20−6x ;(2)∵AB +BC +CD +DA ≤30,∴5x +20−9x +4x +20−6x ≤30,∴x ≥53, 又∵12(AD +BC) CD =50,即12(20−9x +20−6x)⋅4x =50,即3x 2−8x +5=0,解之得:x 1=1,x 2=53,∵x ≥53,故只取x =53, ∵AB =5x ,∴AB =253,∴AB 的长为253米.解析:(1)作BE ⊥AD 于E ,就可以得出BE =CD ,在Rt △ABE 中由勾股定理就可以求出AE ,由BC =DE 就可以表示出AD 而得出结论;(2)由(1)的结论根据梯形的面积公式求出x 的值,建立不等式求出x 的取值范围就可以得出结论. 本题考查了勾股定理的运用,梯形的面积公式的运用,梯形的周长公式的运用,一元二次方程的解法的运用,一元一次不等式的运用,解答时根据条件建立方程及不等式是关键.25.答案:解:(1) 过点E 作EH//AB 交BG 于点H ,则有△ABF∽△HEF ,∴ AB EH = AF EF ,∴AB =3EH .∵平行四边形ABCD 中,EH//AB ,∴EH//CD ,又∵E为BC中点,∴EH为△BCG的中位线,∴CG=2EH,∴CD CG =ABCG=3EH2EH=32.故答案为:3,2,32.(2)作EH//AB交BG于点H,则△EFH∽△AFB,∴AB EH =AFEF=m,∴AB=mEH.∵AB=CD,∴CD=mEH.∵EH//AB//CD,∴△BEH∽△BCG.∴CG EH =BCBE=2,∴CG=2EH.∴CD CG =mEH2EH=m2.故答案为:m2.(3)过点E作EH//AB交BD的延长线于点H,则有EH//AB//CD,∵EH//CD,∴△BCD∽△BEH,∴CD EH =BCBE=b,∴CD=bEH.又ABCD=a,∴AB=aCD=abEH.∵EH//AB,∴△ABF∽△EHF,∴AF EF =ABEH=abEHEH=ab;故答案为:ab.解析:(1)过E点作平行线,构造相似三角形,利用相似三角形和中位线的性质,分别将各相关线段均统一用EH来表示,最后求得比值;(2)先作EH//AB交BG于点H,得出△EFH∽△AFB,即可得出ABEH =AFEF=m,再根据AB=CD,表示出CD,根据平行线的性质得出△BEH∽△BCG,即可表示出CGEH =BCBE,从而得出CDCG的值;(3)先过点E作EH//AB交BD的延长线于点H,得出EH//AB//CD,根据EH//CD,得出△BCD∽△BEH,即可求出CD=bEH,再根据ABCD=a,得出AB=aCD=abEH,再进一步证出△ABF∽△EHF,从而得出AFEF的值.。

鞍山市台安县八年级下期中数学试卷及答案-精

鞍山市台安县八年级下期中数学试卷及答案-精

2014-2015学年辽宁省鞍山市台安县八年级(下)期中数学试卷一、选择题(共8小题,每小题2分,满分16分)1.函数中自变量x的取值范围是()A.x≥﹣2 B.x≥﹣2且x≠1C.x≠1D.x≥﹣2或x≠12.下列二次根式是最简二次根式的是()A.B.C.D.3.以下各式中计算正确的是()A.﹣=﹣6 B.(﹣)2=﹣3 C.=±16D.=a4.如图,直角三角形ABC的周长为24,且AB:BC=5:3,则AC=()A. 6 B. 8 C. 10 D. 125.下列命题中正确的是()A.对角线相等的四边形是矩形B.对角线互相平分且相等的四边形是正方形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是菱形6.如图,△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=10,AE=16,则BE的长度为何?()A. 10 B. 11 C. 12 D. 137.如图,在▱ABCD中,AB=10,AD=8,A C⊥BC,下列计算错误的是()A. BC=8 B. BD=15C. AC=6 D.▱ABCD的面积是488.平行四边形ABCD的对角线交于点O,有五个条件:①AC=BD,②∠ABC=90°,③AB=AC,④AB=BC,⑤AC⊥BD,则下列哪个组合可判别这个四边形是正方形()A.①②B.①③C.①④D.④⑤二、填空题(共8小题,每小题2分,满分16分)9.= .10.计算:= .11.若是整数,则正整数n的最小值是.12.如图,以△ABC的三边为边向外作正方形,其面积分别为S1,S2,S3,且S1=9,S3=25,当S2= 时∠ACB=90°.13.矩形的两条对角线的夹角是60°,一条对角线与短边的和为15,其对角线长为.14.三角形的三边长为6cm、8cm、10cm,则它的中位线构成的三角形面积是.15.已知,如图,四边形ABCD是正方形,BE=AC,则∠BED=度.16.如图,一张纸片的形状为直角三角形,其中∠C=90°,AC=12cm,BC=16cm,沿直线AD折叠该纸片,使直角边AC与斜边上的AE重合,则CD的长为cm.三、解答题(共2小题,每小题6分,满分12分)17.计算:2﹣+|1﹣|18.计算:﹣÷+(3﹣)(3).四、解答题(共2小题,每小题8分,满分16分)19.已知,a=+1,b=﹣1,求分式的值.20.某天早晨,王老师从家出发,骑摩托车前往学校,途中在路旁一家饭店吃早餐,如图所示的是王老师从家到学校这一过程中行驶路程s(千米)与时间t(分)之间的关系.(1)学校离他家多远?从出发到学校,用了多少时间?(2)王老师吃早餐用了多少时间?(3)王老师吃早餐以前的速度快还是吃完早餐以后的速度快?最快时速达到多少?五、解答题(共4小题,满分40分)21.如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形;(2)求证:∠DHF=∠DEF.22.小红同学要测量A、C两地的距离,但A、C之间有一水池,不能直接测量,于是她在A、C同一水平面上选取了一点B,点B可直接到达A、C两地.她测量得到AB=80米,BC=20米,∠ABC=120°.请你帮助小红同学求出A、C两点之间的距离.(参考数据≈4.6)23.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.24.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.2014-2015学年辽宁省鞍山市台安县八年级(下)期中数学试卷参考答案与试题解析一、选择题(共8小题,每小题2分,满分16分)1.函数中自变量x的取值范围是()A.x≥﹣2 B.x≥﹣2且x≠1C.x≠1D.x≥﹣2或x≠1考点:函数自变量的取值范围.专题:函数思想.分析:根据二次根式的性质和分式的意义,被开方数≥0,分母不等于0,就可以求解.解答:解:根据题意得:被开方数x+2≥0,解得x≥﹣2,根据分式有意义的条件,x﹣1≠0,解得x≠1,故x≥﹣2且x≠1.故选:B.点评:考查了函数自变量的取值范围,注意函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.2.下列二次根式是最简二次根式的是()A.B.C.D.考点:最简二次根式.分析:检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.解答:解:A、,被开方数含分母,不是最简二次根式;B、,被开方数含分母,不是最简二次根式;C是最简二次根式;D、=2,被开方数含能开得尽方的因数,不是最简二次根式;故选:C.点评:本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.3.以下各式中计算正确的是()A.﹣=﹣6 B.(﹣)2=﹣3 C.=±16D.=a考点:二次根式的性质与化简.分析:分别利用二次根式的性质化简求出即可.解答:解:A、﹣=﹣=﹣6,故此选项正确;B、(﹣)2=3,故此选项错误;C、=16,故此选项错误;D、=|a|,故此选项错误;故选:A.点评:此题主要考查了二次根式的化简,正确利用二次根式的性质得出是解题关键.4.如图,直角三角形ABC的周长为24,且AB:BC=5:3,则AC=()A. 6 B. 8 C. 10 D. 12考点:勾股定理.分析:可先设AB=5x,BC=3x,在该三角形中,由勾股定理可求出AC关于x的代数式,由于直角三角形ABC的周长=AC+AB+BC=24,据此列出方程求出x的值,代入AC的关于x的代数式中,即可求出AC的值.解答:解:设AB=5x,BC=3x,在Rt△ACB中,由勾股定理得:AC2=AB2﹣BC2,AC===4x,直角三角形ABC的周长为:5x+4x+3x=24,x=2,所以,AC=2×4=8,故选B.点评:本题主要考查了勾股定理的运用,关键在于用含有x的式子分别表示出三边的值,代入周长公式求解,属于常考的考点.5.下列命题中正确的是()A.对角线相等的四边形是矩形B.对角线互相平分且相等的四边形是正方形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是菱形考点:命题与定理.分析:根据矩形的判定方法对A进行判断;根据正方形的判定方法对B进行判断;根据菱形的判定方法对C、D进行判断.解答:解:A、对角线相等的平行四边形是矩形,所以A选项错误;B、对角线互相垂直平分且相等的四边形是正方形,所以B选项错误;C、对角线互相垂直平分的四边形是菱形,所以C选项错误;D、对角线互相垂直平分的四边形是菱形,所以D选项正确.故选D.点评:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.6.如图,△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=10,AE=16,则BE的长度为何?()A. 10 B. 11 C. 12 D. 13考点:勾股定理;直角三角形斜边上的中线.分析:根据在直角三角形中,斜边上的中线等于斜边的一半这一性质可求出AB的长,再根据勾股定理即可求出BE的长.解答:解:∵BE⊥AC,∴△AEB是直角三角形,∵D为AB中点,DE=10,∴AB=20,∵AE=16,∴BE==12,故选C.点评:本题考查了勾股定理的运用、直角三角形的性质:直角三角形中,斜边上的中线等于斜边的一半,题目的综合性很好,难度不大.7.如图,在▱ABCD中,AB=10,AD=8,AC⊥BC,下列计算错误的是()A. BC=8 B. BD=15C. AC=6 D.▱ABCD的面积是48考点:平行四边形的性质.分析:利用平行四边形的性质结合勾股定理和平行四边形的面积求法分别分析得出即可.解答:解:∵四边形ABCD是平行四边形,∴AD=BC=8,∴选项A正确,不合题意;∵AB=10,BC=8,AC⊥BC,∴AC=6,故选项C正确,不合题意,故▱ABCD的面积是:6×8=48,AC与BD相交于点O,∴AO=CO=3,∴BO==,∴BD=2,故选项B错误,符合题意;故选:B.点评:此题主要考查了平行四边形的性质以及勾股定理等知识,利用勾股定理得出AC的长是解题关键.8.平行四边形ABCD的对角线交于点O,有五个条件:①AC=BD,②∠ABC=90°,③AB=AC,④AB=BC,⑤AC⊥BD,则下列哪个组合可判别这个四边形是正方形()A.①②B.①③C.①④D.④⑤考点:正方形的判定;平行四边形的性质.分析:要判定是正方形,则需能判定它既是菱形又是矩形.解答:解:由①得对角线相等的平行四边形是矩形,加上④得,有一组邻边相等的矩形是正方形,故选C.点评:本题考查了正方形的判定方法,是基础知识较简单.二、填空题(共8小题,每小题2分,满分16分)9.= 2.考点:二次根式的乘除法.专题:计算题.分析:根据二次根式的除法法则进行运算,然后将二次根式化为最简即可.解答:解:原式===2.故答案为:2.点评:本题考查了二次根式的除法运算,属于基础题,掌握二次根式的除法法则及二次根式的化简是关键.10.计算:= .考点:分母有理化.专题:计算题.分析:根据﹣1的有理化因式为+1,进行计算即可.解答:解:原式=,=+1,故答案为+1.点评:主要考查二次根式的有理化.根据二次根式的乘除法法则进行二次根式有理化.二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.即一项符号和绝对值相同,另一项符号相反绝对值相同.11.若是整数,则正整数n的最小值是 3 .考点:二次根式的定义.分析:首先化简二次根式,进而得出n的最小值.解答:解:原式=5,则正整数n的最小值是3时,原式是整数.故答案为:3.点评:此题主要考查了二次根式的定义,正确化简二次根式得出是解题关键.12.如图,以△ABC的三边为边向外作正方形,其面积分别为S1,S2,S3,且S1=9,S3=25,当S2= 16 时∠ACB=90°.考点:勾股定理的逆定理.分析:先设R t△ABC的三边分别为a、b、c,再分别用a、b、c表示S1、S2、S3的值,由勾股定理即可得出S2的值.解答:解:设Rt△ABC的三边分别为a、b、c,∴S1=a2=9,S2=b2,S3=c2=25,∵△ABC是直角三角形,∴a2+b2=c2,即S1+S2=S3,∴S2=S3﹣S1=16.故答案为:16.点评:本题考查的是勾股定理的应用及正方形的面积公式,熟知勾股定理是解答此题的关键.13.矩形的两条对角线的夹角是60°,一条对角线与短边的和为15,其对角线长为10 .考点:矩形的性质.分析:根据四边形ABCD是矩形,得到OA=OC,OB=OD,AC=BD,推出OA=OB,再由两条对角线的夹角是60°,得出△OAB是等边三角形,即可求对角线长.解答:解:∵四边形ABCD是矩形,∴OA=OC,OB=OD,AC=BD,∴OA=OB,∵∠AOB=60°,∴△OAB是等边三角形,∴AB=OB=OA=×15=5,∴AC=BD=2×5=10.故答案为:10.点评:本题主要考查对矩形的性质,等边三角形的性质和判定等知识点的理解和掌握,能根据性质得到等边三角形OAB是解此题的关键,题型较好,难度适中.14.三角形的三边长为6cm、8cm、10cm,则它的中位线构成的三角形面积是6cm2.考点:三角形中位线定理;勾股定理的逆定理.分析:可先依据题意作出简单的图形,进而结合图形,由题中数据可得三角形是一直角三角形,进而再由中位线的性质即可求解.解答:解:由题中数据可得三角形是一直角三角形,如图,设BC=6cm,AB=8cm,AC=10cm,∵DE、EF、DF分别是三角形的中位线,∴DE=3cm,EF=4cm,DF=5cm,∵DE2+EF2=DF2,故△DEF是直角三角形,S△DEF=DE×EF=6cm2.故答案为:6cm2.点评:本题主要考查了中位线的性质以及勾股定理的运用,要求同学们熟练掌握中位线的性质及勾股定理的逆定理.15.已知,如图,四边形ABCD是正方形,BE=AC,则∠BED=22.5 度.考点:正方形的性质;等腰三角形的性质.分析:连接BD,根据正方形的对角线平分一组对角可得∠ABD=45°,再根据正方形的对角线相等可得AC=BD,然后求出BD=BE,再根据等边对等角可得∠BDE=∠BED,然后利用三角形的一个外角等于与它不相邻的两个内角的和列式进行计算即可得解.解答:解:如图,连接BD,∵四边形ABCD是正方形,∴∠ABD=45°,AC=BD,∵BE=AC,∴BD=BE,∴∠BDE=∠BED,根据三角形的外角性质,∠ABD=∠BDE+∠BED,∴∠BED=∠ABD=×45°=22.5°.故答案为:22.5.点评:本题考查了正方形的性质,主要利用了正方形的对角线平分一组对角,正方形的对角线相等的性质,等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并作辅助线构造出等腰三角形是解题的关键.16.如图,一张纸片的形状为直角三角形,其中∠C=90°,AC=12cm,BC=16cm,沿直线AD折叠该纸片,使直角边AC与斜边上的AE重合,则CD的长为 6 cm.考点:翻折变换(折叠问题).专题:计算题.分析:在Rt△ABC中根据勾股定理得AB=20,再根据折叠的性质得AE=AC=12,DE=DC,∠AED=∠C=90°,所以BE=AB﹣AE=8,设CD=x,则BD=16﹣x,然后在Rt△BDE中利用勾股定理得到82+x2=(16﹣x)2,再解方程求出x即可.解答:解:在Rt△ABC中,∵AC=12,BC=16,∴AB==20,∵△ACB沿直线AD折叠该纸片,使直角边AC与斜边上的AE重合,∴AE=AC=12,DE=DC,∠AED=∠C=90°,∴BE=AB﹣AE=20﹣12=8,设CD=x,则BD=16﹣x,在Rt△BDE中,∵BE2+DE2=BD2,∴82+x2=(16﹣x)2,解得x=6,即CD的长为6cm.故答案为6.点评:本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.三、解答题(共2小题,每小题6分,满分12分)17.计算:2﹣+|1﹣|考点:二次根式的加减法.分析:先把各根式化为最减二次根式,再合并同类项即可.解答:解:原式=﹣2+﹣1=﹣1.点评:本题考查的是二次根式的加减,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.18.计算:﹣÷+(3﹣)(3).考点:二次根式的混合运算.专题:计算题.分析:先进行二次根式的除法运算,再利用平方差公式进行乘法运算,然后把各二次根式化为最简二次根式后合并即可.解答:解:原式=4﹣+9﹣3=4﹣3+6=+6.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.四、解答题(共2小题,每小题8分,满分16分)19.已知,a=+1,b=﹣1,求分式的值.考点:分式的化简求值.专题:计算题.分析:由a与b的值,求出a+b与ab的值,原式变形后代入计算即可求出值.解答:解:∵a=+1,b=﹣1,∴a+b=2,ab=1,则原式==.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20.某天早晨,王老师从家出发,骑摩托车前往学校,途中在路旁一家饭店吃早餐,如图所示的是王老师从家到学校这一过程中行驶路程s(千米)与时间t(分)之间的关系.(1)学校离他家多远?从出发到学校,用了多少时间?(2)王老师吃早餐用了多少时间?(3)王老师吃早餐以前的速度快还是吃完早餐以后的速度快?最快时速达到多少?考点:函数的图象.分析:(1)由于骑摩托车前往学校,途中在路旁一家饭店吃早餐,那么行驶路程s(千米)与时间t(分)之间的关系图象中有一段平行x轴的线段,然后学校,根据图象可以直接得到结论;(2)根据图象中平行x轴的线段即可确定王老师吃早餐用了多少时间;(3)根据图象可以分别求出吃早餐以前的速度和吃完早餐以后的速度,然后比较即可得到结果.解答:解:(1)依题意得:学校离王老师家有10千米,从出发到学校王老师用了25分钟;(2)依题意得:王老师吃早餐用了10分钟;(3)吃早餐以前的速度为:5÷10=0.5km/分钟,吃完早餐以后的速度为:(10﹣5)÷(25﹣20)=1km/分钟=60km/小时,∴王老师吃完早餐以后速度快,最快时速达到60km/小时.点评:此题是一个信息题目,根据函数图象中的信息找出所需要的数量关系,然后利用数量关系即可解决问题.五、解答题(共4小题,满分40分)21.如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形;(2)求证:∠DHF=∠DEF.考点:三角形中位线定理;直角三角形斜边上的中线;平行四边形的判定.专题:证明题;几何综合题.分析:(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得EF∥AB,DE∥AC,再根据平行四边形的定义证明即可;(2)根据平行四边形的对角相等可得∠DEF=∠BAC,根据直角三角形斜边上的中线等于斜边的一半可得DH=AD,FH=AF,再根据等边对等角可得∠DAH=∠DHA,∠FAH=∠FHA,然后求出∠DHF=∠BAC,等量代换即可得到∠DHF=∠DEF.解答:证明:(1)∵点D,E,F分别是AB,BC,CA的中点,∴DE、EF都是△ABC的中位线,∴EF∥AB,DE∥AC,∴四边形ADEF是平行四边形;(2)∵四边形ADEF是平行四边形,∴∠DEF=∠BAC,∵D,F分别是AB,CA的中点,AH是边BC上的高,∴DH=AD,FH=AF,∴∠DAH=∠DHA,∠FAH=∠FHA,∵∠DAH+∠FAH=∠BAC,∠DHA+∠FHA=∠DHF,∴∠DHF=∠BAC,∴∠DHF=∠DEF.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,等腰三角形的性质,直角三角形斜边上的中线等于斜边的一半的性质,平行四边形的判定与性质,熟记各性质并准确识图是解题的关键.22.小红同学要测量A、C两地的距离,但A、C之间有一水池,不能直接测量,于是她在A、C同一水平面上选取了一点B,点B可直接到达A、C两地.她测量得到AB=80米,BC=20米,∠ABC=120°.请你帮助小红同学求出A、C两点之间的距离.(参考数据≈4.6)考点:勾股定理的应用.分析:首先过C作CD⊥AB交AB延长线于点D,然后可得∠BCD=30°,再根据直角三角形的性质可得BD=10米,然后利用勾股定理计算出CD长,再次利用勾股定理计算出AC长即可.解答:解:过C作CD⊥AB交AB延长线于点D,∵∠ABC=120°,∴∠CBD=60°,在Rt△BCD中,∠BCD=90°﹣∠CBD=30°,∴BD=BC=×20=10(米),∴CD==10(米),∴AD=AB+BD=80+10=90米,在Rt△ACD中,AC==≈92(米),答:A、C两点之间的距离约为92米.点评:此题主要考查了勾股定理的应用,关键是正确掌握直角三角形中,两直角边的平方和等于斜边的平方.23.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.考点:全等三角形的判定与性质;勾股定理;菱形的判定与性质.专题:几何综合题;开放型.分析:(1)首先利用SSS定理证明△ABC≌△ADC可得∠BCA=∠DCA即可证明△CBF≌△CDF.(2)由△ABC≌△ADC可知,△ABC与△ADC是轴对称图形,得出OB=OD,∠COB=∠COD=90°,因为OC=OA,所以AC与BD互相垂直平分,即可证得四边形ABCD是菱形,然后根据勾股定理全等AB长,进而求得四边形的面积.(3)首先证明△BCF≌△DCF可得∠CBF=∠CDF,再根据BE⊥CD可得∠BEC=∠DEF=90°,进而得到∠EFD=∠BCD=∠BAD.解答:(1)证明:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠BCA=∠DCA,在△CBF和△CDF中,,∴△CBF≌△CDF(SAS),(2)解:∵△ABC≌△ADC,∴△ABC和△ADC是轴对称图形,∴OB=OD,BD⊥AC,∵OA=OC,∴四边形ABCD是菱形,∴AB=BC=CD=DA,∵AC=2,BD=2,∴OA=,OB=1,∴AB===2,∴四边形ABCD的周长=4AB=4×2=8.(3)当EB⊥CD时,即E为过B且和CD垂直时垂线的垂足,∠EFD=∠BCD,理由:∵四边形ABCD为菱形,∴BC=CD,∠BCF=∠DCF,∠BCD=∠BAD,∵△BCF≌△DCF,∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠BCD+∠CBF=90°,∠EFD+∠CDF=90°,∴∠EFD=∠BAD.点评:此题主要考查了全等三角形的判定与性质,以及菱形的判定与性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.24.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.考点:正方形的判定;平行四边形的判定与性质;菱形的判定.专题:几何综合题.分析:(1)先求出四边形ADEC是平行四边形,根据平行四边形的性质推出即可;(2)求出四边形BECD是平行四边形,求出CD=BD,根据菱形的判定推出即可;(3)求出∠CDB=90°,再根据正方形的判定推出即可.解答:(1)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)解:四边形BECD是菱形,理由是:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=BD,∴▱四边形BECD是菱形;(3)当∠A=45°时,四边形BECD是正方形,理由是:解:∵∠ACB=90°,∠A=45°,∴∠ABC=∠A=45°,∴AC=BC,∵D为BA中点,∴CD⊥AB,∴∠CDB=90°,∵四边形BECD是菱形,∴菱形BECD是正方形,即当∠A=45°时,四边形BECD是正方形.点评:本题考查了正方形的判定、平行四边形的性质和判定,菱形的判定,直角三角形的性质的应用,主要考查学生运用定理进行推理的能力.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年辽宁省鞍山市台安县八年级(下)期中数学试卷一、选择题(共8小题,每小题2分,满分16分)1.函数中自变量x的取值范围是()A.x≥﹣2 B.x≥﹣2且x≠1C.x≠1D.x≥﹣2或x≠12.下列二次根式是最简二次根式的是()A.B.C.D.3.以下各式中计算正确的是()A.﹣=﹣6 B.(﹣)2=﹣3 C.=±16D.=a4.如图,直角三角形ABC的周长为24,且AB:BC=5:3,则AC=()A. 6 B. 8 C. 10 D. 125.下列命题中正确的是()A.对角线相等的四边形是矩形B.对角线互相平分且相等的四边形是正方形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是菱形6.如图,△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=10,AE=16,则BE的长度为何?()A. 10 B. 11 C. 12 D. 137.如图,在▱ABCD中,AB=10,AD=8,AC⊥BC,下列计算错误的是()A. BC=8 B. BD=15C. AC=6 D.▱ABCD的面积是488.平行四边形ABCD的对角线交于点O,有五个条件:①AC=BD,②∠ABC=90°,③AB=AC,④AB=BC,⑤AC⊥BD,则下列哪个组合可判别这个四边形是正方形()A.①②B.①③C.①④D.④⑤二、填空题(共8小题,每小题2分,满分16分)9.= .10.计算:= .11.若是整数,则正整数n的最小值是.12.如图,以△ABC的三边为边向外作正方形,其面积分别为S1,S2,S3,且S1=9,S3=25,当S2= 时∠ACB=90°.13.矩形的两条对角线的夹角是60°,一条对角线与短边的和为15,其对角线长为.14.三角形的三边长为6cm、8cm、10cm,则它的中位线构成的三角形面积是.15.已知,如图,四边形ABCD是正方形,BE=AC,则∠BED=度.16.如图,一张纸片的形状为直角三角形,其中∠C=90°,AC=12cm,BC=16cm,沿直线AD折叠该纸片,使直角边AC与斜边上的AE重合,则CD的长为cm.三、解答题(共2小题,每小题6分,满分12分)17.计算:2﹣+|1﹣|18.计算:﹣÷+(3﹣)(3).四、解答题(共2小题,每小题8分,满分16分)19.已知,a=+1,b=﹣1,求分式的值.20.某天早晨,王老师从家出发,骑摩托车前往学校,途中在路旁一家饭店吃早餐,如图所示的是王老师从家到学校这一过程中行驶路程s(千米)与时间t(分)之间的关系.(1)学校离他家多远?从出发到学校,用了多少时间?(2)王老师吃早餐用了多少时间?(3)王老师吃早餐以前的速度快还是吃完早餐以后的速度快?最快时速达到多少?五、解答题(共4小题,满分40分)21.如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形;(2)求证:∠DHF=∠DEF.22.小红同学要测量A、C两地的距离,但A、C之间有一水池,不能直接测量,于是她在A、C同一水平面上选取了一点B,点B可直接到达A、C两地.她测量得到AB=80米,BC=20米,∠ABC=120°.请你帮助小红同学求出A、C两点之间的距离.(参考数据≈4.6)23.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.24.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.2014-2015学年辽宁省鞍山市台安县八年级(下)期中数学试卷参考答案与试题解析一、选择题(共8小题,每小题2分,满分16分)1.函数中自变量x的取值范围是()A.x≥﹣2 B.x≥﹣2且x≠1C.x≠1D.x≥﹣2或x≠1考点:函数自变量的取值范围.专题:函数思想.分析:根据二次根式的性质和分式的意义,被开方数≥0,分母不等于0,就可以求解.解答:解:根据题意得:被开方数x+2≥0,解得x≥﹣2,根据分式有意义的条件,x﹣1≠0,解得x≠1,故x≥﹣2且x≠1.故选:B.点评:考查了函数自变量的取值范围,注意函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.2.下列二次根式是最简二次根式的是()A.B.C.D.考点:最简二次根式.分析:检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.解答:解:A、,被开方数含分母,不是最简二次根式;B、,被开方数含分母,不是最简二次根式;C是最简二次根式;D、=2,被开方数含能开得尽方的因数,不是最简二次根式;故选:C.点评:本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.3.以下各式中计算正确的是()A.﹣=﹣6 B.(﹣)2=﹣3 C.=±16D.=a考点:二次根式的性质与化简.分析:分别利用二次根式的性质化简求出即可.解答:解:A、﹣=﹣=﹣6,故此选项正确;B、(﹣)2=3,故此选项错误;C、=16,故此选项错误;D、=|a|,故此选项错误;故选:A.点评:此题主要考查了二次根式的化简,正确利用二次根式的性质得出是解题关键.4.如图,直角三角形ABC的周长为24,且AB:BC=5:3,则AC=()A. 6 B. 8 C. 10 D. 12考点:勾股定理.分析:可先设AB=5x,BC=3x,在该三角形中,由勾股定理可求出AC关于x的代数式,由于直角三角形ABC的周长=AC+AB+BC=24,据此列出方程求出x的值,代入AC的关于x的代数式中,即可求出AC的值.解答:解:设AB=5x,BC=3x,在Rt△ACB中,由勾股定理得:AC2=AB2﹣BC2,AC===4x,直角三角形ABC的周长为:5x+4x+3x=24,x=2,所以,AC=2×4=8,故选B.点评:本题主要考查了勾股定理的运用,关键在于用含有x的式子分别表示出三边的值,代入周长公式求解,属于常考的考点.5.下列命题中正确的是()A.对角线相等的四边形是矩形B.对角线互相平分且相等的四边形是正方形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是菱形考点:命题与定理.分析:根据矩形的判定方法对A进行判断;根据正方形的判定方法对B进行判断;根据菱形的判定方法对C、D进行判断.解答:解:A、对角线相等的平行四边形是矩形,所以A选项错误;B、对角线互相垂直平分且相等的四边形是正方形,所以B选项错误;C、对角线互相垂直平分的四边形是菱形,所以C选项错误;D、对角线互相垂直平分的四边形是菱形,所以D选项正确.故选D.点评:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.6.如图,△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=10,AE=16,则BE的长度为何?()A. 10 B. 11 C. 12 D. 13考点:勾股定理;直角三角形斜边上的中线.分析:根据在直角三角形中,斜边上的中线等于斜边的一半这一性质可求出AB的长,再根据勾股定理即可求出BE的长.解答:解:∵BE⊥AC,∴△AEB是直角三角形,∵D为AB中点,DE=10,∴AB=20,∵AE=16,∴BE==12,故选C.点评:本题考查了勾股定理的运用、直角三角形的性质:直角三角形中,斜边上的中线等于斜边的一半,题目的综合性很好,难度不大.7.如图,在▱ABCD中,AB=10,AD=8,AC⊥BC,下列计算错误的是()A. BC=8 B. BD=15C. AC=6 D.▱ABCD的面积是48考点:平行四边形的性质.分析:利用平行四边形的性质结合勾股定理和平行四边形的面积求法分别分析得出即可.解答:解:∵四边形ABCD是平行四边形,∴AD=BC=8,∴选项A正确,不合题意;∵AB=10,BC=8,AC⊥BC,∴AC=6,故选项C正确,不合题意,故▱ABCD的面积是:6×8=48,AC与BD相交于点O,∴AO=CO=3,∴BO==,∴BD=2,故选项B错误,符合题意;故选:B.点评:此题主要考查了平行四边形的性质以及勾股定理等知识,利用勾股定理得出AC的长是解题关键.8.平行四边形ABCD的对角线交于点O,有五个条件:①AC=BD,②∠ABC=90°,③AB=AC,④AB=BC,⑤AC⊥BD,则下列哪个组合可判别这个四边形是正方形()A.①②B.①③C.①④D.④⑤考点:正方形的判定;平行四边形的性质.分析:要判定是正方形,则需能判定它既是菱形又是矩形.解答:解:由①得对角线相等的平行四边形是矩形,加上④得,有一组邻边相等的矩形是正方形,故选C.点评:本题考查了正方形的判定方法,是基础知识较简单.二、填空题(共8小题,每小题2分,满分16分)9.= 2.考点:二次根式的乘除法.专题:计算题.分析:根据二次根式的除法法则进行运算,然后将二次根式化为最简即可.解答:解:原式===2.故答案为:2.点评:本题考查了二次根式的除法运算,属于基础题,掌握二次根式的除法法则及二次根式的化简是关键.10.计算:= .考点:分母有理化.专题:计算题.分析:根据﹣1的有理化因式为+1,进行计算即可.解答:解:原式=,=+1,故答案为+1.点评:主要考查二次根式的有理化.根据二次根式的乘除法法则进行二次根式有理化.二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.即一项符号和绝对值相同,另一项符号相反绝对值相同.11.若是整数,则正整数n的最小值是 3 .考点:二次根式的定义.分析:首先化简二次根式,进而得出n的最小值.解答:解:原式=5,则正整数n的最小值是3时,原式是整数.故答案为:3.点评:此题主要考查了二次根式的定义,正确化简二次根式得出是解题关键.12.如图,以△ABC的三边为边向外作正方形,其面积分别为S1,S2,S3,且S1=9,S3=25,当S2= 16 时∠ACB=90°.考点:勾股定理的逆定理.分析:先设Rt△ABC的三边分别为a、b、c,再分别用a、b、c表示S1、S2、S3的值,由勾股定理即可得出S2的值.解答:解:设Rt△ABC的三边分别为a、b、c,∴S1=a2=9,S2=b2,S3=c2=25,∵△ABC是直角三角形,∴a2+b2=c2,即S1+S2=S3,∴S2=S3﹣S1=16.故答案为:16.点评:本题考查的是勾股定理的应用及正方形的面积公式,熟知勾股定理是解答此题的关键.13.矩形的两条对角线的夹角是60°,一条对角线与短边的和为15,其对角线长为10 .考点:矩形的性质.分析:根据四边形ABCD是矩形,得到OA=OC,OB=OD,AC=BD,推出OA=OB,再由两条对角线的夹角是60°,得出△OAB是等边三角形,即可求对角线长.解答:解:∵四边形ABCD是矩形,∴OA=OC,OB=OD,AC=BD,∴OA=OB,∵∠AOB=60°,∴△OAB是等边三角形,∴AB=OB=OA=×15=5,∴AC=BD=2×5=10.故答案为:10.点评:本题主要考查对矩形的性质,等边三角形的性质和判定等知识点的理解和掌握,能根据性质得到等边三角形OAB是解此题的关键,题型较好,难度适中.14.三角形的三边长为6cm、8cm、10cm,则它的中位线构成的三角形面积是6cm2.考点:三角形中位线定理;勾股定理的逆定理.分析:可先依据题意作出简单的图形,进而结合图形,由题中数据可得三角形是一直角三角形,进而再由中位线的性质即可求解.解答:解:由题中数据可得三角形是一直角三角形,如图,设BC=6cm,AB=8cm,AC=10cm,∵DE、EF、DF分别是三角形的中位线,∴DE=3cm,EF=4cm,DF=5cm,∵DE2+EF2=DF2,故△DEF是直角三角形,S△DEF=DE×EF=6cm2.故答案为:6cm2.点评:本题主要考查了中位线的性质以及勾股定理的运用,要求同学们熟练掌握中位线的性质及勾股定理的逆定理.15.已知,如图,四边形ABCD是正方形,BE=AC,则∠BED=22.5 度.考点:正方形的性质;等腰三角形的性质.分析:连接BD,根据正方形的对角线平分一组对角可得∠ABD=45°,再根据正方形的对角线相等可得AC=BD,然后求出BD=BE,再根据等边对等角可得∠BDE=∠BE D,然后利用三角形的一个外角等于与它不相邻的两个内角的和列式进行计算即可得解.解答:解:如图,连接BD,∵四边形ABCD是正方形,∴∠ABD=45°,AC=BD,∵BE=AC,∴BD=BE,∴∠BDE=∠BED,根据三角形的外角性质,∠ABD=∠BDE+∠BED,∴∠BED=∠ABD=×45°=22.5°.故答案为:22.5.点评:本题考查了正方形的性质,主要利用了正方形的对角线平分一组对角,正方形的对角线相等的性质,等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并作辅助线构造出等腰三角形是解题的关键.16.如图,一张纸片的形状为直角三角形,其中∠C=90°,AC=12cm,BC=16cm,沿直线AD折叠该纸片,使直角边AC与斜边上的AE重合,则CD的长为 6 cm.考点:翻折变换(折叠问题).专题:计算题.分析:在Rt△ABC中根据勾股定理得AB=20,再根据折叠的性质得AE=AC=12,DE=DC,∠AED=∠C=90°,所以BE=AB﹣AE=8,设CD=x,则BD=16﹣x,然后在Rt△BDE中利用勾股定理得到82+x2=(16﹣x)2,再解方程求出x即可.解答:解:在Rt△ABC中,∵AC=12,BC=16,∴AB==20,∵△ACB沿直线AD折叠该纸片,使直角边AC与斜边上的AE重合,∴AE=AC=12,DE=DC,∠AED=∠C=90°,∴BE=AB﹣AE=20﹣12=8,设CD=x,则BD=16﹣x,在Rt△BDE中,∵BE2+DE2=BD2,∴82+x2=(16﹣x)2,解得x=6,即CD的长为6cm.故答案为6.点评:本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.三、解答题(共2小题,每小题6分,满分12分)17.计算:2﹣+|1﹣|考点:二次根式的加减法.分析:先把各根式化为最减二次根式,再合并同类项即可.解答:解:原式=﹣2+﹣1=﹣1.点评:本题考查的是二次根式的加减,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.18.计算:﹣÷+(3﹣)(3).考点:二次根式的混合运算.专题:计算题.分析:先进行二次根式的除法运算,再利用平方差公式进行乘法运算,然后把各二次根式化为最简二次根式后合并即可.解答:解:原式=4﹣+9﹣3=4﹣3+6=+6.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.四、解答题(共2小题,每小题8分,满分16分)19.已知,a=+1,b=﹣1,求分式的值.考点:分式的化简求值.专题:计算题.分析:由a与b的值,求出a+b与ab的值,原式变形后代入计算即可求出值.解答:解:∵a=+1,b=﹣1,∴a+b=2,ab=1,则原式==.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20.某天早晨,王老师从家出发,骑摩托车前往学校,途中在路旁一家饭店吃早餐,如图所示的是王老师从家到学校这一过程中行驶路程s(千米)与时间t(分)之间的关系.(1)学校离他家多远?从出发到学校,用了多少时间?(2)王老师吃早餐用了多少时间?(3)王老师吃早餐以前的速度快还是吃完早餐以后的速度快?最快时速达到多少?考点:函数的图象.分析:(1)由于骑摩托车前往学校,途中在路旁一家饭店吃早餐,那么行驶路程s(千米)与时间t(分)之间的关系图象中有一段平行x轴的线段,然后学校,根据图象可以直接得到结论;(2)根据图象中平行x轴的线段即可确定王老师吃早餐用了多少时间;(3)根据图象可以分别求出吃早餐以前的速度和吃完早餐以后的速度,然后比较即可得到结果.解答:解:(1)依题意得:学校离王老师家有10千米,从出发到学校王老师用了25分钟;(2)依题意得:王老师吃早餐用了10分钟;(3)吃早餐以前的速度为:5÷10=0.5km/分钟,吃完早餐以后的速度为:(10﹣5)÷(25﹣20)=1km/分钟=60km/小时,∴王老师吃完早餐以后速度快,最快时速达到60km/小时.点评:此题是一个信息题目,根据函数图象中的信息找出所需要的数量关系,然后利用数量关系即可解决问题.五、解答题(共4小题,满分40分)21.如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形;(2)求证:∠DHF=∠DEF.考点:三角形中位线定理;直角三角形斜边上的中线;平行四边形的判定.专题:证明题;几何综合题.分析:(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得EF∥AB,DE∥AC,再根据平行四边形的定义证明即可;(2)根据平行四边形的对角相等可得∠DEF=∠BAC,根据直角三角形斜边上的中线等于斜边的一半可得DH=AD,FH=AF,再根据等边对等角可得∠DAH=∠DHA,∠FAH=∠FHA,然后求出∠DHF=∠BAC,等量代换即可得到∠DHF=∠DEF.解答:证明:(1)∵点D,E,F分别是AB,BC,CA的中点,∴DE、EF都是△ABC的中位线,∴EF∥AB,DE∥AC,∴四边形ADEF是平行四边形;(2)∵四边形ADEF是平行四边形,∴∠DEF=∠BAC,∵D,F分别是AB,CA的中点,AH是边BC上的高,∴DH=AD,FH=AF,∴∠DAH=∠DHA,∠FAH=∠FHA,∵∠DAH+∠FAH=∠BAC,∠DHA+∠FHA=∠DHF,∴∠DHF=∠BAC,∴∠DHF=∠DEF.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,等腰三角形的性质,直角三角形斜边上的中线等于斜边的一半的性质,平行四边形的判定与性质,熟记各性质并准确识图是解题的关键.22.小红同学要测量A、C两地的距离,但A、C之间有一水池,不能直接测量,于是她在A、C同一水平面上选取了一点B,点B可直接到达A、C两地.她测量得到AB=80米,BC=20米,∠ABC=120°.请你帮助小红同学求出A、C两点之间的距离.(参考数据≈4.6)考点:勾股定理的应用.分析:首先过C作CD⊥AB交AB延长线于点D,然后可得∠BCD=30°,再根据直角三角形的性质可得BD=10米,然后利用勾股定理计算出CD长,再次利用勾股定理计算出AC长即可.解答:解:过C作CD⊥AB交AB延长线于点D,∵∠ABC=120°,∴∠CBD=60°,在Rt△BCD中,∠BCD=90°﹣∠CBD=30°,∴BD=BC=×20=10(米),∴CD==10(米),∴AD=AB+BD=80+10=90米,在Rt△ACD中,AC==≈92(米),答:A、C两点之间的距离约为92米.点评:此题主要考查了勾股定理的应用,关键是正确掌握直角三角形中,两直角边的平方和等于斜边的平方.23.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.考点:全等三角形的判定与性质;勾股定理;菱形的判定与性质.专题:几何综合题;开放型.分析:(1)首先利用SSS定理证明△ABC≌△ADC可得∠BCA=∠DCA即可证明△CBF≌△C DF.(2)由△ABC≌△ADC可知,△ABC与△ADC是轴对称图形,得出OB=OD,∠COB=∠COD=90°,因为OC=OA,所以AC与BD互相垂直平分,即可证得四边形ABCD是菱形,然后根据勾股定理全等AB长,进而求得四边形的面积.(3)首先证明△BCF≌△DCF可得∠CBF=∠CDF,再根据BE⊥CD可得∠BEC=∠DEF=90°,进而得到∠EFD=∠BCD=∠BAD.解答:(1)证明:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠BCA=∠DCA,在△CBF和△C DF中,,∴△CBF≌△CDF(SAS),(2)解:∵△ABC≌△ADC,∴△ABC和△ADC是轴对称图形,∴OB=OD,BD⊥AC,∴四边形ABCD是菱形,∴AB=BC=CD=DA,∵AC=2,BD=2,∴OA=,OB=1,∴AB===2,∴四边形ABCD的周长=4AB=4×2=8.(3)当EB⊥CD时,即E为过B且和CD垂直时垂线的垂足,∠EFD=∠BCD,理由:∵四边形ABCD为菱形,∴BC=CD,∠BCF=∠DCF,∠BCD=∠BAD,∵△BCF≌△DCF,∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠BCD+∠CBF=90°,∠EFD+∠CDF=90°,∴∠EFD=∠BAD.点评:此题主要考查了全等三角形的判定与性质,以及菱形的判定与性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.24.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.考点:正方形的判定;平行四边形的判定与性质;菱形的判定.专题:几何综合题.分析:(1)先求出四边形ADEC是平行四边形,根据平行四边形的性质推出即可;(2)求出四边形BECD是平行四边形,求出CD=BD,根据菱形的判定推出即可;(3)求出∠CDB=90°,再根据正方形的判定推出即可.解答:(1)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)解:四边形BECD是菱形,理由是:∵D为AB中点,∴AD=BD,∵CE=AD,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=BD,∴▱四边形BECD是菱形;(3)当∠A=45°时,四边形BECD是正方形,理由是:解:∵∠ACB=90°,∠A=45°,∴∠ABC=∠A=45°,∴A C=BC,∵D为BA中点,∴CD⊥AB,∴∠CDB=90°,∵四边形BECD是菱形,∴菱形BECD是正方形,即当∠A=45°时,四边形BECD是正方形.点评:本题考查了正方形的判定、平行四边形的性质和判定,菱形的判定,直角三角形的性质的应用,主要考查学生运用定理进行推理的能力.。

相关文档
最新文档