verilog编写的三角波程序
Verilog期末实验报告―波形发生器

Verilog期末实验报告―波形发生器深圳大学实验报告课程名称: Verilog使用及其应用实验名称: 频率可变的任意波形发生器学院: 电子科学与技术学院专业:电子科学与技术班级: 2组号: 指导教师: 刘春平报告人: 陈昊学号: 2007160162 实验地点科技楼B115一、实验目的应用Verilog进行编写四种波形发生的程序,并结合DE2板与DVCC实验板上的D/A转换器在示波器显示出波形。
初步了解Verilog的编程及DE2板的应用,加强对其的实际应用操作能力。
二、实验原理实验程序分为三部分:第一、通过计数器实现内置信号分频,并通过外置开关调节频率来控制输出波形的频率。
第二、设定ROM中的数值,将波形数据存储到ROM中。
第三、设定波形选择开关。
总体设计方案及其原理说明:FPGA图 1-1 系统总体设计方案DDS是一种把数字信号通过数/模转换器转换成模拟信号的合成技术。
它由相位累加器、相幅转换函数表、D/A转换器以及内部时序控制产生器等电路组成。
参考频率f_clk为整个合成器的工作频率,输入的频率字保存在频率寄存器中,经,位相位累加器,累加一次,相位步进增加,经过内部ROM波形表得到相应的幅度值,经过D/A转换和低通滤波器得到合成的波形。
p为频率字,即相位增量;参考频率为,_clk;相位累加器的长度为,位,输出频率,_out为:f_out——输出信号的频率; N————相位累加器的位数;p———频率控制字(步长); f_clk——基准时钟频率。
图1-2 四种波形单周期的取样示意图段地址基地址 D7 D6 D5 D4 D3 D2 D1 D000 000 1000 001 1700 010 1500 011 1700 100 1000 101 300 110 500 111 301 000 301 001 301 010 301 011 301 100 101 101 101 110 101 111 110 000 010 001 510 010 1010 011 1510 100 2010 101 2510 110 3010 111 3511 000 3511 001 3011 010 2511 011 2011 100 1511 101 1011 110 511 111 0图1-3 函数查找表的设计三、实验内容程序编码:module dds(f_clk,p,choose,data);//端口设定 input [5:0] p; //频率控制字 input[1:0] choose; //波形选择 input f_clk; //内置晶振 output [7:0] data; wire [7:0]data;reg [5:0] addr,address; reg [5:0] i;reg f_out;initialbegini<=0;addr<=0;f_out<=0;endalways @(posedge f_clk) //利用计数器实现任意分频beginif(i==p) //设定频率控制字pbegini=0;f_out=~f_out;endelsei=i+1;endfunction [7:0] romout; //ROM的设定input[5:0] address; case(address) //各波形初值的预装入0 : romout = 10; //正弦波初值 1 : romout = 17;2 : romout = 15;3 : romout = 17;4 : romout = 10;5 : romout = 3;6 : romout = 5;7 : romout = 3;8 : romout = 3; //方波初值 9 : romout = 3;10: romout = 3;11: romout = 3;12: romout = 1;13: romout = 1;14: romout = 1;15: romout = 1;16 : romout = 0; //正三角波初值 17 : romout = 5;18 : romout = 10;19 : romout = 15;20 : romout = 20;21 : romout = 25;22 : romout = 30;23 : romout = 35;24 : romout = 35; //反三角波初值 25 : romout = 30;26 : romout = 25;27 : romout = 20;28 : romout = 15;29 : romout = 10;30 : romout = 5;31 : romout = 0; default : romout = 10'hxx; endcase endfunctionalways@(posedge f_out)beginif(addr==8) //波形数据切换addr=0;elseaddr=addr+1;case(choose) //波形选择开关设定0: address=addr;1: address=addr+8;2: address=addr+16;3: address=addr+24;endcaseendassign data = romout(address);//将ROM中对应数据传递输出端口data输出endmodule四、实验截图1.正弦波示意图:(choose=0时的波形数值)2.方波示意图:(choose=1时的波形数值)3.正三角波示意图:(choose=2时的波形数值)4.反三角波示意图:(choose=3时的波形数值)五、实验总结通过这次期末实验,更进一步认识了Verilog语言的使用,详细了解了整个设计制作和仿真流程,独立思考并通过一步步的调试,逐步摸索和进一步优化程序最终完成实验,锻炼了逻辑思维能力。
FPGA 用Verilog HDL实现三角波,三相方波程序

FPGA——用Verilog HDL进行三角波和三相方波的编写三角波module triangle(inputsys_clk,output [2:0]sda);reg[3:0]a=0;regai=0;always@(posedgesys_clk)beginif(ai==0)begina=a+1;if(a==7)ai<=1;endelsebegina=a-1;if(a==0)ai<=0;endendassignsda[0]=a[0];assignsda[1]=a[1];assignsda[2]=a[2];endmodule三相方波第一种方法:modulepwmabc(inputsys_clk,output [2:0]abc);regtriga=0;regtrigb=1;regtrigc=0;reg[15:0] cnt1=0;reg[15:0] cnt2=20;reg[15:0] cnt3=40;always@(negedgesys_clk)beginif(cnt1>59)begintriga=~triga;cnt1<=1;endelsecnt1<=cnt1+1;if(cnt2>59)begintrigb=~trigb;cnt2<=1;endelsecnt2<=cnt2+1;if(cnt3>59)begintrigc=~trigc;cnt3<=1;endelsecnt3<=cnt3+1;endassignabc[0]=triga;assignabc[1]=trigb;assignabc[2]=trigc;endmodule第二种方法module fangbo0(inputsys_clk,output [2:0]sda);reg [31:0]halftemple_counter0=0;reg [31:0]halftemple_counter1=0;reg [31:0]halftemple_counter2=0;reg [1:0]temple_clk0=1;//第一相的初始值是高电平(初始的高低电平是根据我给你看的相位图来的)reg [1:0]temple_clk1=1;//第二相的初始值是高电平reg [1:0]temple_clk2=0;//第三相的初始值是底电平//我在设计三相方波的时候用的比较笨的方法,就是三相方波一项一项的来设置。
用Verilog语言实现奇数倍分频电路3分频5分频7分频

用Verilog语言实现奇数倍分频电路3分频5分频7分频Verilog是一种硬件描述语言(HDL),用于描述数字电路的行为和结构。
使用Verilog语言实现奇数倍分频电路可以分为以下几个步骤:1.定义输入和输出端口通过module关键字定义一个模块,并指定输入和输出端口的信号。
```verilogmodule OddDividerinput clk,output reg out_3x,output reg out_5x,output reg out_7x```2.定义局部变量和计数器定义一个局部变量和一个计数器,用于跟踪时钟周期并确定何时输出。
```verilogreg [2:0] count;```3.实现分频逻辑使用always块,根据计数器的值判断何时输出,并在输出端口上更新信号。
```verilogif (count == 3'b000) beginout_3x <= !out_3x;endif (count == 3'b001) beginout_5x <= !out_5x;endif (count == 3'b010) beginout_7x <= !out_7x;endcount <= count + 1;end```4.结束模块使用endmodule关键字结束模块定义。
```verilogendmodule完整的Verilog代码如下:```verilogmodule OddDividerinput clk,output reg out_3x,output reg out_5x,output reg out_7xreg [2:0] count;if (count == 3'b000) begin out_3x <= !out_3x;endif (count == 3'b001) begin out_5x <= !out_5x;endif (count == 3'b010) begin out_7x <= !out_7x;endcount <= count + 1;endmodule```以上代码实现了一个奇数倍分频电路,其中输入时钟信号为`clk`,输出分别是3倍分频的信号`out_3x`,5倍分频的信号`out_5x`和7倍分频的信号`out_7x`。
verilog trireg用法

Verilog Trireg 用法Verilog 是一种硬件描述语言(HDL),用于描述数字电路。
在Verilog 中,Trireg 是一种数据类型,用于描述三态缓冲器的行为。
它在硬件电路设计中起着非常重要的作用。
在本文中,我将深入探讨Verilog Trireg 的用法,并共享我对它的理解和观点。
1. Trireg 的定义和作用Trireg 是 Verilog 中的一种数据类型,用于描述三态缓冲器的行为。
它可以取三个状态中的一个:0、1 或 Z(高阻态)。
Trireg 主要用于描述总线上的驱动器或接收器。
在硬件电路设计中,有时需要在总线上连接多个驱动器或接收器,这时就需要使用三态缓冲器来实现。
Trireg 在这种场景下发挥着重要的作用,可以有效地实现多驱动器或多接收器之间的连接。
2. Trireg 的使用方式在 Verilog 中,可以使用 Trireg 来声明信号的类型。
例如:```verilogtrireg data_bus;```这样就声明了一个名为 data_bus 的 Trireg 信号。
在实际使用中,可以通过赋值语句来控制 Trireg 信号的取值。
例如:```verilogdata_bus = 1'b0; // 将 data_bus 的值设为 0```还可以使用 Trireg 信号来描述总线上的驱动器和接收器。
可以将Trireg 信号连接到总线上,实现多个驱动器和接收器之间的连接。
这种方式可以有效地解决总线冲突和多驱动问题,保证总线的稳定和可靠性。
3. Trireg 的优缺点Trireg 在硬件电路设计中有着重要的作用,但也存在一些优缺点。
其优点主要体现在:- 可以实现多驱动器和多接收器之间的连接,解决了总线冲突和多驱动问题;- 有效地提高了总线的利用率,节约了硬件资源。
然而,Trireg 也存在一些缺点,例如:- 由于 Trireg 信号需要在多个驱动器和接收器之间切换,因此在高速总线上可能会引起信号的不稳定和时序问题;- 对 Trireg 信号的使用需要特别小心,否则可能会引起意外的错误和故障。
用verilog-a写的一些电路模块的例子

用verilog-a写的一些电路模块的例子以下是几个用Verilog-A 语言编写的电路模块的例子:1. 增益电路模块````include "disciplines.vams"module gain_circuit(va, vb, vout, g);input va, vb;output vout;parameter real g=10.0;analog beginvout = g * (va - vb);endendmodule```这个例子展示了一个简单的增益电路模块,其中输入是两个电压va、vb,输出是vout,增益系数为g。
在模块中使用了Verilog-A 的`analog begin` 语句来定义电路的行为。
2. RC 低通滤波器模块````include "disciplines.vams"module rc_lowpass_filter(vin, vout, r, c);input vin;output vout;parameter real r=1.0, c=1e-6;real v1;analog begini(vin, v1) <+ (vin - v1)/(r*c);vout <+ v1;endendmodule```这个例子展示了一个基于RC 电路的低通滤波器模块,其中输入为vin,输出为vout,RC 电路的参数由r 和c 决定。
在模块中使用了Verilog-A 的`i()` 语句来定义电路的行为。
3. 三角波发生器模块````include "disciplines.vams"module triangle_wave_generator(vout, freq, amp, dc);output vout;parameter real freq=1e3, amp=1.0, dc=0.0;real t;analog begint = $abstime;vout <+ amp * (2 * (t * freq - floor(t * freq + 0.5)) - 1) + dc;endendmodule```这个例子展示了一个简单的三角波发生器模块,其中输出为vout,频率由freq 决定,幅值由amp 决定,直流分量由dc 决定。
Verilog实现三分频的多种方法(附有代码)

Verilog实现三分频的多种方法(附有代码)用Verilog语言实现奇数倍分频电路 3分频 5分频 7分频分频器是FPGA设计中使用频率非常高的基本设计之一,尽管在目前大部分设计中,广泛使用芯片厂家集成的锁相环资源,如altera 的PLL,Xilinx的DLL.来进行时钟的分频,倍频以及相移。
但是对于时钟要求不高的基本设计,通过语言进行时钟的分频相移仍然非常流行,首先这种方法可以节省芯片内部的锁相环资源,再者,消耗不多的逻辑单元就可以达到对时钟操作的目的。
另一方面,通过语言设计进行时钟分频,可以看出设计者对设计语言的理解程度。
下面讲讲对各种分频系数进行分频的方法:第一,偶数倍分频:偶数倍分频应该是大家都比较熟悉的分频,通过计数器计数是完全可以实现的。
如进行N倍偶数分频,那么可以通过由待分频的时钟触发计数器计数,当计数器从0计数到N/2-1时,输出时钟进行翻转,并给计数器一个复位信号,使得下一个时钟从零开始计数。
以此循环下去,这种方法可以实现任意的偶数分频。
第二,奇数倍分频:奇数倍分频常常在论坛上有人问起,实际上,奇数倍分频有两种实现方法:首先,占空比不限定时,完全可以通过计数器来实现,如进行三分频,通过待分频时钟上升沿触发计数器进行模三计数,当计数器计数到邻近值进行两次翻转,比如可以在计数器计数到1时,输出时钟进行翻转,计数到2时再次进行翻转。
即是在计数值在邻近的1和2进行了两次翻转。
这样实现的三分频占空比为1/3或者2/3。
如果要实现占空比为50%的三分频时钟,可以通过待分频时钟下降沿触发计数,和上升沿同样的方法计数进行三分频,然后下降沿产生的三分频时钟和上升沿产生的时钟进行相或运算,即可得到占空比为50%的三分频时钟。
这种方法可以实现任意的奇数分频。
归类为一般的方法为:对于实现占空比为50%的N倍奇数分频,首先进行上升沿触发进行模N计数,计数选定到某一个值进行输出时钟翻转,然后经过(N-1)/2再次进行翻转得到一个占空比非50%奇数n分频时钟。
产生三角波c语言程序

产生三角波c语言程序三角波是一种周期性的波形,其波形特点是在一个周期内,波形从低到高再到低的过程中,波峰和波谷的变化是平滑的,呈现出类似于三角形的形状。
在C语言中,我们可以通过编写程序来产生三角波。
首先,我们需要了解三角波的数学表达式。
三角波的数学表达式可以表示为:y(t) = A * asin(2πft + φ)其中,A表示振幅,f表示频率,t表示时间,φ表示相位差。
在C语言中,我们可以使用math.h头文件中的asin函数来计算正弦值。
下面是一个简单的C语言程序,用于产生三角波:```c#include <stdio.h>#include <math.h>#define PI 3.14159265int main() {double amplitude = 1.0; // 振幅double frequency = 1.0; // 频率double phase = 0.0; // 相位差double time = 0.0; // 时间double value = 0.0; // 三角波值while (1) {value = amplitude * asin(2 * PI * frequency * time + phase);printf("%f\n", value);time += 0.01; // 时间步长,可以根据需要调整if (time >= 1.0 / frequency) {time = 0.0;}}return 0;}```在上面的程序中,我们首先定义了振幅、频率、相位差、时间和三角波值等变量。
然后,使用一个无限循环来计算三角波的值,并将其打印出来。
在每次循环中,我们使用asin函数来计算三角波的值,然后将其打印出来。
接着,我们通过增加时间的值来模拟时间的流逝。
当时间超过一个周期时,我们将时间重置为0,以便继续产生三角波。
需要注意的是,程序中的时间步长可以根据需要进行调整。
基于Verilog实现的DDS任意波形发生器

河海大学计算机与信息学院(常州)课程设计报告题目简易直接数字频率合成器前端设计专业、学号电科**********授课班号275901学生姓名毛石磊指导教师单鸣雷完成时间2013-6-28课程设计(报告)任务书(理工科类)Ⅰ、课程设计(报告)题目:简易直接数字频率合成器(DDS)前端设计Ⅱ、课程设计(论文)工作内容一、课程设计目标1、培养综合运用知识和独立开展实践创新的能力以及同组之间合作的能力;2、学习直接数字频率合成器(DDS)相关知识,进行系统构架设计、模块划分和算法分析,并使用Verilog HDL设计一简易直接数字频率合成器,要求具有根据输入的控制字的不同输出不同频率的正弦信号的功能;3、能够对分析、测试、解决实际的数字电路问题加深理解,学以致用,增强动手能力,为今后能够独立进行设计工作打下一定的基础;二、研究方法及手段应用1、学习直接数字频率合成器(DDS)相关知识,确定电路需要实现的功能,分别编写各个功能模块,主要有相位累加器模块、正弦查询表模块和主模块;2、利用仿真软件测试各个模块功能的正确性;3、将各模块综合起来,实现整体功能并采用软件验证;三、课程设计预期效果1、完成实验环境搭建;2、完成DDS的功能设计与综合;3、完成modelsim软件仿真,确定程序代码正确性;4、在理论学习和具体实践中达到对DDS的正确理解。
学生姓名:毛石磊专业年级:电子科学与技术2010级摘要直接数字频率合成技术(Direct Digital Synthesize,DDS)是继直接频率合成技术和锁相式频率合成技术之后的第三代频率合成技术。
它采用全数字技术,并从相位角度出发进行频率合成。
目前,DDS的设计大多是应用HDL(Hardware Description Language)对其进行逻辑描述,整个设计可以很容易地实现参数改变和设计移植,给设计者带来很大的方便。
Verilog HDL就是其中一种标准化的硬件描述语言,它不仅可以进行功能描述,还可以对仿真测试矢量进行设计。