高考数学一轮复习 第六章 等差数列及其前n项和学案29 文(含解析)
2021高考数学一轮复习统考第6章数列第2讲等差数列及其前n项和课时作业含解析北师大版

等差数列及其前n 项和课时作业1.在等差数列{a n }中,已知a 2=2,前7项和S 7=56,则公差d =( ) A .2 B .3 C .-2 D .-3答案 B解析 由题意可得⎩⎪⎨⎪⎧a 1+d =2,7a 1+7×62d =56,即⎩⎪⎨⎪⎧a 1+d =2,a 1+3d =8,解得⎩⎪⎨⎪⎧a 1=-1,d =3,选B.2.(2019·衡阳模拟)在等差数列{a n }中,a 1+3a 8+a 15=120,则a 2+a 14的值为( ) A .6 B .12 C .24 D .48答案 D解析 ∵在等差数列{a n }中,a 1+3a 8+a 15=120,∴由等差数列的性质可得a 1+3a 8+a 15=5a 8=120,∴a 8=24,∴a 2+a 14=2a 8=48.故选D. 3.(2020·荆州模拟)在等差数列{a n }中,若a 3+a 4+a 5=3,a 8=8,则a 12的值是( ) A .15 B .30 C .31 D .64 答案 A解析 设等差数列{a n }的公差为d ,∵a 3+a 4+a 5=3,∴3a 4=3,即a 1+3d =1,又由a 8=8得a 1+7d =8,联立解得a 1=-174,d =74,则a 12=-174+74×11=15.故选A.4.(2019·山东济南调研)已知数列{a n }为等差数列,且满足a 2+a 8=8,a 6=5,则其前10项和S 10的值为( )A .50B .45C .55D .40 答案 B解析 因为数列{a n }为等差数列,且a 2+a 8=8,所以根据等差数列的性质得2a 5=8,所以a 5=4,又因为a 6=5,所以S 10=10(a 1+a 10)2=10(a 5+a 6)2=45.5.(2019·陕西咸阳模拟)设等差数列{a n }的前n 项和为S n ,若S 9=54,则a 2+a 4+a 9=( )A .9B .15C .18D .36答案 C解析 由等差数列的通项公式及性质,可得S 9=9(a 1+a 9)2=9a 5=54,a 5=6,则a 2+a 4+a 9=a 1+a 5+a 9=3a 5=18.故选C. 6.设等差数列{a n }的前n 项和为S n ,若2a 8=6+a 11,则S 9=( ) A .27 B .36 C .45 D .54答案 D解析 ∵在等差数列{a n }中,2a 8=a 5+a 11=6+a 11, ∴a 5=6,故S 9=9(a 1+a 9)2=9a 5=54.故选D.7.(2019·东北三省三校联考)已知数列{a n }是等差数列,满足a 1+2a 2=S 5,下列结论中错误的是( )A .S 9=0B .S 5最小C .S 3=S 6D .a 5=0 答案 B解析 由题意知a 1+2(a 1+d )=5a 1+5×42d ,则a 5=0,∴a 4+a 6=0,∴S 3=S 6,且S 9=9a 5=0,故选B.8.等差数列{a n }和{b n }的前n 项和分别为S n ,T n ,且S n T n =5n +2n +3,则a 2+a 20b 7+b 15=( )A.10724 B.724C.14912D.1493答案 A 解析 由题知,a 2+a 20b 7+b 15=S 21T 21=10724. 9.(2019·洛阳统考)设等差数列{a n }的前n 项和为S n ,且a 1>0,a 3+a 10>0,a 6a 7<0,则满足S n >0的最大自然数n 的值为( )A .6B .7C .12D .13答案 C解析 ∵a 1>0,a 6a 7<0,∴a 6>0,a 7<0,等差数列的公差小于零,又a 3+a 10=a 1+a 12>0,a 1+a 13=2a 7<0,∴S 12>0,S 13<0,∴满足S n >0的最大自然数n 的值为12.故选C.10.设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 12=( )A.310B.13C.18D.19答案 A解析 令S 3=1,则S 6=3,∴S 9=1+2+3=6.S 12=S 9+4=10,∴S 6S 12=310.故选A. 11.已知数列{a n }(n ∈N *)是等差数列,S n 是其前n 项和,且S 5<S 6,S 6=S 7>S 8,则下列结论错误的是( )A .d <0B .a 7=0C .S 9>S 6D .S 6,S 7均为S n 的最大值答案 C解析 因为S 5<S 6,所以S 5<S 5+a 6,所以a 6>0,因为S 6=S 7,所以S 6=S 6+a 7,所以a 7=0,因为S 7>S 8,所以S 7>S 7+a 8,所以a 8<0,所以d <0且S 6,S 7均为S n 的最大值,所以S 9<S 6.故选C.12.设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,m ≥2,m ∈N *,则m =( )A .3B .4C .5D .6答案 C解析 ∵{a n }是等差数列,S m -1=-2,S m =0, ∴a m =S m -S m -1=2.又S m +1=3,∴a m +1=S m +1-S m =3, ∴d =a m +1-a m =1. 又S m =m (a 1+a m )2=m (a 1+2)2=0,∴a 1=-2,∴a m =-2+(m -1)·1=2,∴m =5.13.正项数列{a n }满足a 1=1,a 2=2,2a 2n =a 2n +1+a 2n -1(n ∈N *,n ≥2),则a 7=________. 答案19解析 由2a 2n =a 2n +1+a 2n -1(n ∈N *,n ≥2),得数列{a 2n }是等差数列,公差d =a 22-a 21=3,首项a 21=1,所以a 2n =1+3(n -1)=3n -2,∴a n =3n -2,∴a 7=19.14.在数列{a n }中,a 1=1,a 2=2,且a n +2-a n =1+(-1)n(n ∈N *),则a 1+a 2+…+a 51=________.答案 676解析 ∵a n +2-a n =⎩⎪⎨⎪⎧0,n 为奇数,2,n 为偶数,∴数列{a n }的奇数项为常数1,偶数项构成以2为首项,2为公差的等差数列,∴a 1+a 2+…+a 51 =(a 1+a 3+…+a 51)+(a 2+a 4+…+a 50)=26+⎝ ⎛⎭⎪⎫25×2+25×242×2=676. 15.(2019·广雅中学模拟)已知等差数列{a n }中,a 2=2,a 4=8,若abn =3n -1,则b 2019=________.答案 2020解析 由a 2=2,a 4=8,得公差d =8-22=3,所以a n =2+(n -2)×3=3n -4,所以a n +1=3n -1.又由数列{a n }的公差大于0,知数列{a n }为递增数列,所以结合abn =3n -1,可得b n =n +1,故b 2019=2020.16.(2020·武汉模拟)在数列{a n }中,a 1=-2,a n a n -1=2a n -1-1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1,则数列{a n }的通项公式为a n =________,数列{b n }的前n 项和S n 的最小值为________.答案3n -13n -4 -13解析 由题意知,a n =2-1a n -1(n ≥2,n ∈N *),∴b n =1a n -1=1⎝ ⎛⎭⎪⎫2-1a n -1-1=a n -1a n -1-1=1+1a n -1-1=1+b n -1,即b n -b n -1=1(n ≥2,n ∈N *).又b 1=1a 1-1=-13,∴数列{b n }是以-13为首项,1为公差的等差数列,∴b n =n -43,即1a n -1=n -43,∴a n =3n -13n -4.又b 1=-13<0,b 2=23>0,∴S n 的最小值为S 1=b 1=-13.17.(2018·全国卷Ⅱ)记S n 为等差数列{a n }的前n 项和,已知a 1=-7,S 3=-15. (1)求{a n }的通项公式; (2)求S n ,并求S n 的最小值.解 (1)设{a n }的公差为d ,由题意,得3a 1+3d =-15. 由a 1=-7,得d =2.所以{a n }的通项公式为a n =2n -9. (2)由(1),得S n =n 2-8n =(n -4)2-16.所以当n =4时,S n 取得最小值,最小值为-16.18.(2019·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.已知S 9=-a 5. (1)若a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围. 解 (1)设{a n }的公差为d . 由S 9=-a 5得a 1+4d =0. 由a 3=4得a 1+2d =4. 于是a 1=8,d =-2.因此{a n }的通项公式为a n =10-2n . (2)由(1)得a 1=-4d ,故a n =(n -5)d ,S n =n (n -9)d2.由a 1>0知d <0,故S n ≥a n 等价于n 2-11n +10≤0,解得1≤n ≤10,所以n 的取值范围是{n |1≤n ≤10,n ∈N }.19.已知数列{a n }的前n 项和S n =2a n -2n +1.(1)证明:数列⎩⎨⎧⎭⎬⎫a n 2n 是等差数列;(2)若不等式2n 2-n -3<(5-λ)a n 对任意的n ∈N *恒成立,求λ的取值范围. 解 (1)证明:当n =1时,S 1=2a 1-22,得a 1=4.S n =2a n -2n +1,当n ≥2时,S n -1=2a n -1-2n,两式相减得a n =2a n -2a n -1-2n ,即a n =2a n -1+2n ,所以a n 2n -a n -12n -1=1,又a 121=2,所以数列⎩⎨⎧⎭⎬⎫a n 2n 是以2为首项,1为公差的等差数列.(2)由(1)知a n2n =n +1,即a n =n ·2n +2n.因为a n >0,所以不等式2n 2-n -3<(5-λ)a n 等价于5-λ>2n -32n .即λ<5-⎝ ⎛⎭⎪⎫2n -32n .记b n =2n -32n ,b 1=-12,b 2=14,当n ≥2时,b n +1b n =2n -12n +12n -32n =2n -14n -6,则b 3b 2=32,即b 3>b 2,又显然当n ≥3时,b n +1b n <1,所以(b n )max =b 3=38,所以λ<378. 20.(2019·唐山模拟)已知{a n }是公差为正数的等差数列,且a 3a 6=55,a 2+a 7=16. (1)求数列{a n }的通项公式;(2)若a n =b 1+b 23+b 35+…+b n2n -1,求数列{b n }的前n 项和S n .解 (1)∵{a n }是公差d >0的等差数列, ∴由a 3a 6=55,a 2+a 7=16=a 3+a 6, 解得a 3=5,a 6=11,∴⎩⎪⎨⎪⎧a 1+2d =5,a 1+5d =11,解得⎩⎪⎨⎪⎧a 1=1,d =2,∴a n =2n -1.(2)∵a n =b 1+b 23+b 35+…+b n2n -1,∴a n -1=b 1+b 23+b 35+…+b n -12n -3(n ≥2,n ∈N *), 两式相减,得b n2n -1=2(n ≥2,n ∈N *), 则b n =4n -2(n ≥2,n ∈N *), 当n =1时,b 1=1,∴b n =⎩⎪⎨⎪⎧1,n =1,4n -2,n ≥2,∴当n ≥2时,S n =1+(n -1)(6+4n -2)2=2n 2-1.又n =1时,S 1=1,适合上式, ∴S n =2n 2-1.附:什么样的考试心态最好大部分学生都不敢掉以轻心,因此会出现很多过度焦虑。
高考数学一轮复习 第29讲 等差数列及前n项和课件 文

1 2
+
6×2 5×3=48.
返回目录
第29讲 等差数列及前n项和
双
向
固
基 础
4.[教材改编]
已知等差数列{an}的前三项为5,4
2 7
,
347,则使数列{an}的前n项和Sn取得最大值的n值是_____.
[答案] 7或8
[解析]
因为a1=5,d=4
2 7
-5=-
5 7
,所以an=5+(n
-1)·(-
第29讲 等差数列及前N项和
双
向
固 基
(2)等差数列前n项和公式可变形为关于n的常数项为零
础 的二次函数,其表达式为Sn=_d2_n_2_+__(__a_1_-__2d_)__n,当d≠0
时,它的图像是抛物线y=
d 2
x2+
a1-d2
x上横坐标为正整数
的一群_孤__立__的___点______.
返回目录
第29讲 等差数列及前N项和
双
向
4.等差数列与函数的关系
固 基
(1)等差数列与一次函数的区别与联系:
础
等差数列
一次函数
解
析
an=kn+b(n∈N*)
式
f(x)=kx+b(k≠0)
不
同
定义域为N*,图像是一系列
点 孤__立__的__点__(在直线上),k为公差
定义域为R,图像是
一__条__直__线____,k为斜率
(2)等差数列的前n项和公式
Sn=n__(__a_1_2+__a_n_)___=n__a_1_+__n_(__n__-2__1_)__d___.
返回目录
第29讲 等差数列及前N项和
数学(文)一轮教学案:第六章第2讲 等差数列及前n项和 Word版含解析

第2讲 等差数列及前n 项和考纲展示 命题探究1 等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示,定义的表达式为a n +1-a n =d ,d 为常数.2 等差中项如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项,且A =a +b 2.3 等差数列的通项公式及其变形通项公式:a n =a 1+(n -1)d ,其中a 1是首项,d 是公差.通项公式的变形:a n =a m +(n -m )d ,m ,n ∈N *.4 等差数列的前n 项和等差数列的前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d . 5 等差数列的单调性当d >0时,数列{a n }为递增数列;当d <0时,数列{a n }为递减数列;当d =0时,数列{a n }为常数列.注意点 定义法证明等差数列时的注意事项(1)证明等差数列时,切忌只通过计算数列的a 2-a 1,a 3-a 2,a 4-a 3等有限的几个项的差后,发现它们都等于同一个常数,就断言数列{a n }为等差数列.(2)用定义法证明等差数列时,常采用a n +1-a n =d ,若采用a n -a n -1=d ,则n ≥2,否则n =1时无意义.1.思维辨析(1)若一个数列从第2项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( )(2)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( )(3)等差数列{a n }的单调性是由公差d 决定的.( )(4)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( )(5)等差数列的前n 项和公式是常数项为0的二次函数.( ) 答案 (1)× (2)√ (3)√ (4)× (5)×2.等差数列{a n }的前n 项和为S n ,且S 3=6,a 3=4,则公差d 等于( )A .1 B.53 C .2D .3答案 C解析 因为S 3=(a 1+a 3)×32=6,而a 3=4.所以a 1=0,所以d =a 3-a 12=2.3.等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( )A .8B .10C .12D .14 答案 C解析 ∵S 3=3(a 1+a 3)2=3a 2=12,∴a 2=4. ∵a 1=2,∴d =a 2-a 1=4-2=2.∴a 6=a 1+5d =12.故选C.[考法综述] 等差数列的定义,通项公式及前n 项和公式是高考中常考内容,用定义判断或证明等差数列,由n ,a n ,S n ,a 1,d 五个量之间的关系考查基本运算能力.命题法1 等差数列的基本运算典例1 等差数列{a n }的前n 项和记为S n .已知a 10=30,a 20=50.(1)求通项a n ;(2)若S n =242,求n .[解] (1)由a n =a 1+(n -1)d ,a 10=30,a 20=50,得方程组⎩⎪⎨⎪⎧a 1+9d =30,a 1+19d =50. 解得a 1=12,d =2.所以a n =2n +10;(2)由S n =na 1+n (n -1)2d ,S n =242,得方程12n +n (n -1)2×2=242,解得n =11或n =-22(舍去).【解题法】 等差数列计算中的两个技巧(1)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.(2)数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.命题法2 等差数列的判定与证明典例2 数列{a n }满足a 1=1,a 2=2,a n +2=2a n +1-a n +2.(1)设b n =a n +1-a n ,证明{b n }是等差数列;(2)求{a n }的通项公式.[解] (1)证明:∵a n +2=2a n +1-a n +2,∴b n +1-b n =a n +2-a n +1-(a n +1-a n )=2a n +1-a n +2-2a n +1+a n =2.∴{b n }是以1为首项,2为公差的等差数列.(2)由(1)得b n =1+2(n -1),即a n +1-a n =2n -1,∴a 2-a 1=1,a 3-a 2=3,a 4-a 3=5,…,a n -a n -1=2n -3,累加法可得a n -a 1=1+3+5+…+(2n -3)=(n -1)2,∴a n =n 2-2n +2.【解题法】 等差数列的判定方法(1)定义法:对于n ≥2的任意自然数,验证a n -a n -1为同一常数.(2)等差中项法:验证2a n -1=a n +a n -2(n ≥3,n ∈N *)成立.(3)通项公式法:验证a n =pn +q .(4)前n 项和公式法:验证S n =An 2+Bn .1.在等差数列{a n }中,若a 2=4,a 4=2,则a 6=( )A .-1B .0C .1D .6答案 B解析 设数列{a n }的公差为d ,由a 4=a 2+2d ,a 2=4,a 4=2,得2=4+2d ,d =-1,∴a 6=a 4+2d =0.故选B.2.已知{a n }是等差数列,公差d 不为零,前n 项和是S n .若a 3,a 4,a 8成等比数列,则( )扫一扫·听名师解题A .a 1d >0,dS 4>0B .a 1d <0,dS 4<0C .a 1d >0,dS 4<0D .a 1d <0,dS 4>0答案 B解析 由a 24=a 3a 8,得(a 1+2d )(a 1+7d )=(a 1+3d )2,整理得d (5d +3a 1)=0,又d ≠0,∴a 1=-53d ,则a 1d =-53d 2<0,又∵S 4=4a 1+6d =-23d ,∴dS 4=-23d 2<0,故选B.3.设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1的值为________.答案 -12解析由已知得S1=a1,S2=a1+a2=2a1-1,S4=4a1+4×32×(-1)=4a1-6,而S1,S2,S4成等比数列,所以(2a1-1)2=a1(4a1-6),整理得2a1+1=0,解得a1=-1 2.4.已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n-1,其中λ为常数.(1)证明:a n+2-a n=λ;(2)是否存在λ,使得{a n}为等差数列?并说明理由.解(1)证明:由题设,a n a n+1=λS n-1,a n+1a n+2=λS n+1-1.两式相减得a n+1(a n+2-a n)=λa n+1.由于a n+1≠0,所以a n+2-a n=λ.(2)由题设,a1=1,a1a2=λS1-1,可得a2=λ-1.由(1)知,a3=λ+1.令2a2=a1+a3,解得λ=4.故a n+2-a n=4,由此可得{a2n-1}是首项为1,公差为4的等差数列,a2n-1=4n-3;{a2n}是首项为3,公差为4的等差数列,a2n=4n-1.所以a n=2n-1,a n+1-a n=2.因此存在λ=4,使得数列{a n}为等差数列.等差数列及其前n项和的性质已知{a n}为等差数列,d为公差,S n为该数列的前n项和.(1)有穷等差数列中与首末两项等距离的两项的和相等,即a1+a n=a2+a n-1=a3+a n-2=…=a k+a n-k+1=….(2)等差数列{a n}中,当m+n=p+q时,a m+a n=a p+a q(m,n,p,q∈N*).特别地,若m+n=2p,则2a p=a m+a n(m,n,p∈N*).(3)相隔等距离的项组成的数列是等差数列,即a k,a k+m,a k+2m,…仍是等差数列,公差为md(k,m∈N*).(4)S n,S2n-S n,S3n-S2n,…也成等差数列,公差为n2d.(5)⎩⎨⎧⎭⎬⎫S n n 也成等差数列,其首项与{a n }首项相同,公差是{a n }的公差的12.(6)在等差数列{a n }中,①若项数为偶数2n ,则S 2n =n (a 1+a 2n )=n (a n +a n +1);S 偶-S 奇=nd ;S 奇S 偶=a n a n +1. ②若项数为奇数2n -1,则S 2n -1=(2n -1)a n ;S 奇-S 偶=a n ;S 奇S 偶=n n -1. (7)若数列{a n }与{b n }均为等差数列,且前n 项和分别是S n 和T n ,则S 2m -1T 2m -1=a m b m. (8)若数列{a n },{b n }是公差分别为d 1,d 2的等差数列,则数列{pa n },{a n +p },{pa n +qb n }都是等差数列(p ,q 都是常数),且公差分别为pd 1,d 1,pd 1+qd 2.注意点 前n 项和性质的理解等差数列{a n }中,设前n 项和为S n ,则S n ,S 2n ,S 3n 的关系为2(S 2n -S n )=S n +(S 3n -S 2n )不要理解为2S 2n =S n +S 3n .1.思维辨析(1)等差数列{a n }中,有a 1+a 7=a 2+a 6.( )(2)若已知四个数成等差数列,则这四个数可设为a -2d ,a -d ,a +d ,a +2d .( )(3)若三个数成等差数列,则这三个数可设为:a -d ,a ,a +d .( )(4)求等差数列的前n 项和的最值时,只需将它的前n 项和进行配方,即得顶点为其最值处.( )答案 (1)√ (2)× (3)√ (4)×2.若S n 是等差数列{a n }的前n 项和,a 2+a 10=4,则S 11的值为( )A .12B .18C .22D .44答案 C 解析 由题可知S 11=11(a 1+a 11)2=11(a 2+a 10)2=11×42=22,故选C.3.在等差数列{a n }中,若a 4+a 6+a 8+a 10+a 12=90,则a 10-13a 14的值为( )A .12B .14C .16D .18答案 A解析 由题意知5a 8=90,a 8=18,a 10-13a 14=a 1+9d -13(a 1+13d )=23a 8=12,选A 项.[考法综述] 等差数列的性质是高考中的常考内容,灵活应用由概念推导出的重要性质,在解题过程中可以达到避繁就简的目的.命题法1 等差数列性质的应用典例1 等差数列{a n }中,如果a 1+a 4+a 7=39,a 3+a 6+a 9=27,则数列{a n }前9项的和为( )A .297B .144C .99D .66[解析] 由a 1+a 4+a 7=39,得3a 4=39,a 4=13.由a 3+a 6+a 9=27,得3a 6=27,a 6=9.所以S 9=9(a 1+a 9)2=9(a 4+a 6)2=9×(13+9)2=9×11=99,故选C.[答案] C【解题法】 应用等差数列性质应注意(1)要注意等差数列通项公式及前n 项和公式的灵活应用,如a n=a m +(n -m )d ,d =a n -a m n -m,S 2n -1=(2n -1)a n ,S n =n (a 1+a n )2=n (a 2+a n -1)2(n ,m ∈N *)等. (2)如果{a n }为等差数列,m +n =p +q ,则a m +a n =a p +a q ( m ,n ,p ,q ∈N *).一般地,a m +a n ≠a m +n ,必须是两项相加,当然也可以是a m -n +a m +n =2a m .因此,若出现a m -n ,a m ,a m +n 等项时,可以利用此性质将已知条件转化为与a m (或其他项)有关的条件.命题法2 与等差数列前n 项和有关的最值问题典例2 等差数列{a n }中,设S n 为其前n 项和,且a 1>0,S 3=S 11,则当n 为多少时,S n 最大?[解] 解法一:由S 3=S 11得3a 1+3×22d =11a 1+11×102d ,则d=-213a 1.从而S n =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n =-a 113(n -7)2+4913a 1,又a 1>0,所以-a 113<0.故当n =7时,S n 最大.解法二:由于S n =an 2+bn 是关于n 的二次函数,由S 3=S 11,可知S n =an 2+bn 的图象关于n =3+112=7对称.由解法一可知a =-a 113<0,故当n =7时,S n 最大.解法三:由解法一可知,d =-213a 1.要使S n 最大,则有⎩⎪⎨⎪⎧ a n ≥0,a n +1≤0, 即⎩⎪⎨⎪⎧ a 1+(n -1)⎝ ⎛⎭⎪⎫-213a 1≥0,a 1+n ⎝ ⎛⎭⎪⎫-213a 1≤0,≤n ≤n =7时,S n 最大.解法四:由S 3=S 11,可得2a 1+13d =0,即(a 1+6d )+(a 1+7d )=0,故a 7+a 8=0,又由a 1>0,S 3=S 11可知d <0,所以a 7>0,a 8<0,所以当n =7时,S n 最大.【解题法】 求等差数列前n 项和的最值的方法(1)二次函数法:用求二次函数最值的方法(配方法)求其前n 项和的最值,但要注意n ∈N *.(2)图象法:利用二次函数图象的对称性来确定n 的值,使S n 取得最值.(3)项的符号法:当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a n ≥0a n +1≤0的项数n ,使S n 取最大值;当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a n ≤0,a n +1 ≥0的项数n ,使S n 取最小值,即正项变负项处最大,负项变正项处最小,若有零项,则使S n 取最值的n 有两个.1.设{a n }是等差数列.下列结论中正确的是( )A .若a 1+a 2>0,则a 2+a 3>0B .若a 1+a 3<0,则a 1+a 2<0C .若0<a 1<a 2,则a 2>a 1a 3D .若a 1<0,则(a 2-a 1)(a 2-a 3)>0答案 C解析 若{a n }是递减的等差数列,则选项A 、B 都不一定正确.若{a n }为公差为0的等差数列,则选项D 不正确.对于C 选项,由条件可知{a n }为公差不为0的正项数列,由等差中项的性质得a 2=a 1+a 32,由基本不等式得a 1+a 32>a 1a 3,所以C 正确.2.在等差数列{a n }中,a 1>0,a 2012+a 2013>0,a 2012·a 2013<0,则使S n >0成立的最大自然数n 是( )A .4025B .4024C .4023D .4022答案 B解析 ∵等差数列{a n }的首项a 1>0,a 2012+a 2013>0,a 2012·a 2013<0,假设a 2012<0<a 2013,则d >0,而a 1>0,可得a 2012=a 1+2011d >0,矛盾,故不可能.∴a 2012>0,a 2013<0.再根据S 4024=4024(a 1+a 4024)2=2012(a 2012+a 2013)>0, 而S 4025=4025a 2013<0,因此使前n 项和S n >0成立的最大自然数n 为4024.3.已知等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若S n T n=2n 3n +1,则a n b n=( ) A.23B.2n -13n -1C.2n +13n +1D.2n -13n +4 答案 B解析 a n b n =2a n 2b n=2n -12(a 1+a 2n -1)2n -12(b 1+b 2n -1)=S 2n -1T 2n -1=2(2n -1)3(2n -1)+1=2n -13n -1.故选B.4.在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________.答案 10解析 由a 3+a 4+a 5+a 6+a 7=25,得5a 5=25,所以a 5=5,故a 2+a 8=2a 5=10.5.中位数为1010的一组数构成等差数列,其末项为2015,则该数列的首项为________.答案 5解析 设等差数列的首项为a 1,根据等差数列的性质可得,a 1+2015=2×1010,解得a 1=5.6.在等差数列{a n }中,a 1=7,公差为d ,前n 项和为S n ,当且仅当n =8时S n 取得最大值,则d 的取值范围为________.答案 ⎝ ⎛⎭⎪⎫-1,-78 解析 由题意知d <0且⎩⎪⎨⎪⎧ a 8>0,a 9<0,即⎩⎪⎨⎪⎧7+7d >0,7+8d <0,解得-1<d <-78.7.若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大.答案 8解析 根据题意知a 7+a 8+a 9=3a 8>0,即a 8>0.又a 8+a 9=a 7+a 10<0,∴a 9<0,∴当n =8时,{a n }的前n 项和最大.8.已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足a 3·a 4=117,a 2+a 5=22.(1)求通项a n ; (2)求S n 的最小值;(3)若数列{b n }是等差数列,且b n =S nn +c ,求非零常数c .解 (1)因为数列{a n }为等差数列, 所以a 3+a 4=a 2+a 5=22. 又a 3·a 4=117,所以a 3,a 4是方程x 2-22x +117=0的两实根, 又公差d >0,所以a 3<a 4, 所以a 3=9,a 4=13,所以⎩⎪⎨⎪⎧ a 1+2d =9,a 1+3d =13,所以⎩⎪⎨⎪⎧a 1=1,d =4.所以通项a n =4n -3. (2)由(1)知a 1=1,d =4.所以S n =na 1+n (n -1)2×d =2n 2-n =2⎝ ⎛⎭⎪⎫n -142-18.所以当n =1时,S n 最小,最小值为S 1=a 1=1.(3)由(2)知S n =2n 2-n ,所以b n =S n n +c =2n 2-n n +c,所以b 1=11+c ,b 2=62+c ,b 3=153+c .因为数列{b n }是等差数列, 所以2b 2=b 1+b 3, 即62+c ×2=11+c +153+c , 所以2c 2+c =0,所以c =-12或c =0(舍去), 故c =-12.已知等差数列{a n }的前n 项和为S n ,且a 5=9,S 5=15,则使其前n 项和S n 取得最小值时的n =________.[错解][错因分析] 等差数列的前n 项和最值问题,可以通过找对称轴来确定,本题只关注到n ∈N *,并未关注到n =1与n =2时,S 1=S 2,导致错误.[正解] ∵a 5=9,S 5=15,∴a 1=-3,d =3. ∴a n =3n -6,S n =32n 2-92n .把S n 看作是关于n 的二次函数,其对称轴为n =32. ∴当n =1或n =2时,S 1=S 2且最小. [心得体会]………………………………………………………………………………………………时间:60分钟基础组1.[2016·冀州中学猜题]已知等差数列{a n }中,a 7+a 9=16,S 11=992,则a 12的值是( )A .15B .30C .31D .64答案 A解析 由题意可知2a 8=a 7+a 9=16⇒a 8=8,S 11=11(a 1+a 11)2=11×2a 62=11a 6=992,a 6=92,则d =a 8-a 62=74,所以a 12=a 8+4d =15,故选A.2.[2016·武邑中学仿真]已知S n 表示数列{a n }的前n 项和,若对任意的n ∈N *满足a n +1=a n +a 2,且a 3=2,则S 2014=( )A .1006×2013B .1006×2014C .1007×2013D .1007×2014答案 C解析 在a n +1=a n +a 2中,令n =1,则a 2=a 1+a 2,a 1=0,令n =2,则a 3=2=2a 2,a 2=1,于是a n +1-a n =1,故数列{a n }是首项为0,公差为1的等差数列,S 2014=2014×20132=1007×2013.故选C. 3.[2016·冀州中学期末]在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1a n +2(n ∈N *),则该数列的通项为( ) A .a n =1n B .a n =2n +1C .a n =2n +2D .a n =3n答案 A 解析 由已知式2a n +1=1a n +1a n +2可得1a n +1-1a n =1a n +2-1a n +1,知⎩⎨⎧⎭⎬⎫1a n是首项为1a 1=1,公差为1a 2-1a 1=2-1=1的等差数列,所以1a n =n ,即a n =1n .4.[2016·衡水中学预测]设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9=( )A .63B .45C .36D .27答案 B解析 S 3=9,S 6-S 3=36-9=27,根据S 3,S 6-S 3,S 9-S 6成等差数列,S 9-S 6=45,S 9-S 6=a 7+a 8+a 9=45,故选B.5.[2016·衡水二中期中]已知等差数列{a n }中,前四项和为60,最后四项和为260,且S n =520,则a 7=( )A .20B .40C .60D .80答案 B解析 前四项的和是60,后四项的和是260,若有偶数项,则中间两项的和是(60+260)÷4=80.S n =520,520÷80不能整除,说明没有偶数项,有奇数项,则中间项是(60+260)÷8=40.所以共有520÷40=13项,因此a 7是中间项,所以a 7=40.6.[2016·枣强中学模拟]已知等差数列{a n }的前n 项和为S n ,且S 4S2=4,则S 6S 4=( )A.94B.32C.53 D .4答案 A解析 由S 4S 2=4,可设S 2=x ,S 4=4x .∵S 2,S 4-S 2,S 6-S 4成等差数列,∴2(S 4-S 2)=S 2+(S 6-S 4).则S 6=3S 4-3S 2=12x -3x =9x ,因此,S 6S 4=9x 4x =94.7.[2016·衡水二中热身]设等差数列{a n }的前n 项和为S n ,若a 1=-3,a k +1=32,S k =-12,则正整数k =______.答案 13解析 由S k +1=S k +a k +1=-12+32=-212,又S k +1=(k +1)(a 1+a k +1)2=(k +1)⎝ ⎛⎭⎪⎫-3+322=-212,解得k =13.8.[2016·武邑中学期末]设正项数列{a n }的前n 项和是S n ,若{a n }和{S n }都是等差数列,且公差相等,则a 1=________.答案 14解析 设等差数列{a n }的公差为d , 则S n =d 2n 2+(a 1-d2)n , ∴S n =d 2n 2+⎝⎛⎭⎪⎫a 1-d 2n ,数列{S n }是等差数列,则S n 是关于n 的一次函数(或者是常数),则a 1-d2=0,S n =d2n ,从而数列{S n }的公差是d2,那么有d 2=d ,d =0(舍去)或d =12,故a 1=14.9.[2016·衡水中学周测]已知等差数列{a n }的前n 项和为S n ,若S 2=10,S 5=55,则a 10=________.答案 39解析 设等差数列{a n }的公差为d ,由题意可得⎩⎨⎧a 1+(a 1+d )=10,5a 1+5×42d =55,即⎩⎪⎨⎪⎧2a 1+d =10,a 1+2d =11,解得a 1=3,d =4,a 10=a 1+(10-1)d =39.10.[2016·冀州中学月考]设数列{a n }为等差数列,数列{b n }为等比数列.若a 1<a 2,b 1<b 2,且b i =a 2i (i =1,2,3),则数列{b n }的公比为________.答案 3+2 2解析 设a 1,a 2,a 3分别为a -d ,a ,a +d ,因为a 1<a 2,所以d >0,又b 22=b 1b 3,所以a 4=(a -d )2(a +d )2=(a 2-d 2)2,则a 2=d 2-a 2或a 2=a 2-d 2(舍),则d =±2a .若d =-2a ,则q =b 2b 1=⎝ ⎛⎭⎪⎫a 2a 12=(1-2)2=3-22<1,舍去;若d =2a ,则q =⎝ ⎛⎭⎪⎫a 2a 12=3+2 2.11.[2016·衡水中学模拟]等差数列{a n }的前n 项和为S n .已知a 1=10,a 2为整数,且S n ≤S 4.(1)求{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和T n .解 (1)由a 1=10,a 2为整数知,等差数列{a n }的公差d 为整数,又S n ≤S 4,故a 4≥0,a 5≤0,于是10+3d ≥0,10+4d ≤0.解得-103≤d ≤-52.因此d =-3.数列{a n }的通项公式为a n =13-3n . (2)b n =1(13-3n )(10-3n )=13⎝ ⎛⎭⎪⎫110-3n -113-3n .于是T n =b 1+b 2+…+b n=13⎣⎢⎢⎡⎦⎥⎥⎤⎝ ⎛⎭⎪⎫17-110+⎝ ⎛⎭⎪⎫14-17+…+⎝ ⎛ 110-3n -⎭⎪⎫113-3n =13⎝ ⎛⎭⎪⎫110-3n -110=n 10(10-3n ). 12.[2016·冀州中学期中]已知数列{a n }的前n 项和为S n ,且满足:a n +2S n S n -1=0(n ≥2,n ∈N *),a 1=12,判断{a n }是否为等差数列,并说明你的理由.解 数列{a n }不是等差数列,a n =S n -S n -1(n ≥2),a n +2S n S n -1=0, ∴S n -S n -1+2S n S n -1=0(n ≥2), ∴1S n-1S n -1=2(n ≥2),又S 1=a 1=12,∴⎩⎨⎧⎭⎬⎫1S n 是以2为首项,2为公差的等差数列. ∴1S n=2+(n -1)×2=2n ,故S n =12n .∴当n ≥2时,a n =S n -S n -1=12n -12(n -1)=-12n (n -1),∴a n +1=-12n (n +1),而a n +1-a n =-12n (n +1)--12n (n -1)=-12n⎝ ⎛⎭⎪⎫1n +1-1n -1=1n (n -1)(n +1). ∴当n ≥2时,a n +1-a n 的值不是一个与n 无关的常数,故数列{a n }不是一个等差数列.能力组13.[2016·衡水中学猜题]已知正项数列{a n }中,a 1=1,a 2=2,2a 2n =a 2n +1+a 2n -1(n ≥2),则a 6等于( )A .16B .8C .2 2D .4答案 D解析 由2a 2n =a 2n +1+a 2n -1(n ≥2)可得,数列{a 2n }是首项为a 21=1,公差为a 22-a 21=3的等差数列,由此可得a 2n =1+3(n -1)=3n -2,即得a n =3n -2,∴a 6=3×6-2=4,故应选D.14.[2016·衡水中学一轮检测]已知数列{a n }为等差数列,若a 11a 10<-1,且它们的前n 项和S n 有最大值,则使S n >0的n 的最大值为( )A .11B .19C .20D .21答案 B解析 ∵a 11a 10<-1,且S n 有最大值,∴a 10>0,a 11<0,且a 10+a 11<0, ∴S 19=19(a 1+a 19)2=19·a 10>0, S 20=20(a 1+a 20)2=10(a 10+a 11)<0, 故使得S n >0的n 的最大值为19.15.[2016·武邑中学猜题]已知等差数列{a n }中,a 5=12,a 20=-18. (1)求数列{a n }的通项公式; (2)求数列{|a n |}的前n 项和S n . 解 (1)设数列{a n }的公差为d ,依题意得⎩⎪⎨⎪⎧a 5=a 1+4d =12a 20=a 1+19d =-18,解得⎩⎪⎨⎪⎧a 1=20d =-2,∴a n =20+(n -1)×(-2)=-2n +22.(2)由(1)知|a n |=|-2n +22|=⎩⎪⎨⎪⎧-2n +22,n ≤112n -22,n >11,∴当n ≤11时,S n =20+18+…+(-2n +22)=n (20-2n +22)2=(21-n )n ;当n >11时,S n =S 11+2+4+…+(2n -22)=110+(n -11)(2+2n -22)2=n 2-21n +220. 综上所述,S n =⎩⎪⎨⎪⎧(21-n )n ,n ≤11n 2-21n +220,n >11.16.[2016·冀州中学仿真]已知数列{a n }的各项均为正数,前n 项和为S n ,且满足2S n =a 2n +n -4.(1)求证{a n }为等差数列; (2)求{a n }的通项公式. 解 (1)证明:当n =1时,有2a 1=a 21+1-4,即a 21-2a 1-3=0,解得a 1=3(a 1=-1舍去). 当n ≥2时,有2S n -1=a 2n -1+n -5,又2S n =a 2n +n -4,两式相减得2a n =a 2n -a 2n -1+1, 即a 2n -2a n +1=a 2n -1,也即(a n -1)2=a 2n -1,因此a n -1=a n -1或a n -1=-a n -1. 若a n -1=-a n -1,则a n +a n -1=1, 而a 1=3,所以a 2=-2,这与数列{a n }的各项均为正数相矛盾, 所以a n -1=a n -1,即a n -a n -1=1, 因此{a n }为等差数列.(2)由(1)知a 1=3,d =1,所以数列{a n }的通项公式a n =3+(n -1)=n +2,即a n =n +2.。
高考数学一轮复习 等差数列求和方法学案(含解析)苏教

等差数列求和方法【考点1】等差数列的前n 项和公式 (1)等差数列的前n 项和公式:2)(1n n a a n S +=,或d n n na S n 2)1(1-+=,此式还可变形为n da n d S n )2(212-+=.(2)倒序相加法:将一个数列倒过来排列,当它与原数列相加时,若有规律可循,并且容易求和,则这样的数列求和时可用倒序相加法(等差数列前n 项公式的推导所用方法).例1在等差数列{a n }中,(1)已知S 12=84,S 20=460,求S 28; (2)已知a 6=10,S 5=5,求a 8和S 8.【点拨】利用等差数列前n 项和公式的变形形式n da n d S n )2(212-+=待定系数法求解. 【解析】(1)不妨设S n =An 2+Bn ,∴⎩⎨⎧-==⇒⎪⎩⎪⎨⎧=+=+172460202084121222B A B A B A ∴S n =2n 2-17n∴S 28=2×282-17×28=1092.(2)∵S 6=S 5+a 6=5+10=15,又S 6=2)10(62)(6161+=+a a a ∴15=2)10(61+a 即a 1=-5而d =31616=--a a ∴a 8=a 6+2 d =16S 8=442)(881=+a a .【答案】(1)1092;(2)44.【小结】本题考查等差数列前n 项和公式.例2设等差数列{}n a 的第10项为23,第25项为22-,求:(1)数列{}n a 的通项公式; (2)数列{}n a 前50项的绝对值之和.【点拨】通过通项公式找到数列{}n a 中的正.负分界项,利用等差数列前n 项和公式求解. 【解析】(1)由已知可知22,232510-==a a ,d a a 151025=-d 152322=--∴,解得3-=d .509101=-=d a a 533+-=∴n a n .(2)此数列的前17项均为正数,从第18项开始均为负数.前50项的绝对值之和()()()20591175442225017175017501918173211321=--⨯=-=--=+++-++++=+++++=-S S S S S a a a a a a a a a a a a S n n ΛΛΛ.【答案】(1)353n a n =-+;(2)2059. 【小结】本题考查等差数列前n 项和公式练习1:已知数列{}n a 的通项公式112+-=n a n ,如果)(N n a b n n ∈=,求数列{}n b 的前n 项和. 【解题过程】【解析】112,5211,6n n n n b a n n -≤⎧==⎨-≥⎩,当5n ≤时,2(9112)102n n S n n n =+-=-当6n ≥时,255525(1211)10502n n n S S S n n n --=+=++-=-+ ∴⎪⎩⎪⎨⎧≥+-≤+-=)6(,5010)5(,1022n n n n n n S n .【考点2】等差数列前n 项和的最值 (1)在等差数列{a n }中当a 1>0,d <0时,S n 有最________值,使S n 取到最值的n 可由不等式组__________确定; 当a 1<0,d >0时,S n 有最________值,使S n 取到最值的n 可由不等式组__________确定. (2)因为S n =d2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n ,若d ≠0,则从二次函数的角度看:当d >0时,S n 有最______值;当d <0时,S n 有最______值;且n 取最接近对称轴的自然数时,S n 取到最值. 一个有用的结论:若S n =an 2+bn ,则数列{a n }是等差数列.反之亦然.例3设等差数列{a n }的前n 项和为S n ,已知a 3=12,且S 12>0,S 13<0.(1)求公差d 的范围;(2)问前几项的和最大,并说明理由.【点拨】找到数列{}n a 中的正.负分界项是解题关键.【解析】(1)根据题意,有:⎩⎪⎨⎪⎧12a 1+12×112d >0,13a 1+13×122d <0,a 1+2d =12,整理得:⎩⎪⎨⎪⎧2a 1+11d >0,a 1+6d <0,a 1+2d =12.解之得:-247<d <-3.(2)∵d <0,∴a 1>a 2>a 3>…>a 12>a 13>…,而S 13=13a 1+a 132=13a 7<0,∴a 7<0.又S 12=12a 1+a 122=6(a 1+a 12)=6(a 6+a 7)>0,∴a 6>0.∴数列{a n }的前6项和S 6最大.【答案】(1)-247<d <-3;(2)数列{a n }的前6项和S 6最大.【小结】本题考查等差数列的最值.练习1:设{a n }是等差数列,S n 是其前n 项和,且S 5<S 6,S 6=S 7>S 8,则下列结论正确的是________(只填序号).①d <0;②a 7=0;③S 9>S 5;④S 6与S 7均为S n 的最大值 【解题过程】【解析】由S 5<S 6,得a 6=S 6-S 5>0.又S 6=S 7⇒a 7=0,所以d <0.故①②正确.由S 7>S 8⇒a 8<0,因此,S 9-S 5=a 6+a 7+a 8+a 9=2(a 7+a 8)<0即S 9<S 5故③错误,④正确.【考点3】等差数列前n 项和的性质(1)数列{}{}{}212n n n a a ka b -+,,仍为等差数列,232n n n n n S S S S S --,,……仍为等差数列;(2)若n 为偶数,则2nS S d -=偶 奇;若n 为奇数,则S S a -=偶 奇中(中间项);例4一个等差数列的前10项之和为100,前100项之和为10,则前110项之和是________.【点拨】利用232n n n n n S S S S S --,,……成等差数列求解.【解析】数列S 10,S 20-S 10,S 30-S 20,…,S 100-S 90,S 110-S 100 成等差数列,设其公差为D .前10项的和10S 10+10×92·D =S 100=10,解得D =-22,∴S 110-S 100=S 10+(11-1)D=100+10×(-22)=-120.∴S 110=-120+S 100=-110. 【答案】-110.【小结】本题考查等差数列前n 项和的性质.练习1:等差数列{}n a 的前n 项和为n S ,若363,7,S S ==则9S 等于 . 【解答过程】【解析】由{}n a 是等差数列知36396,,S S S S S --成等差数列,即()92437S ⨯=+-,解得912S =.例5已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为________. 【点拨】根据S 偶-S 奇=n2d 求解.【解析】当项数n 为偶数时,由S 偶-S 奇=n2d 知30-15=5d ,∴d =3.【答案】3【小结】本题考查等差数列的前n 项和公式.当项数n 为偶数时,由S 偶-S 奇=n2d ;含21n +项的等差数列,其奇数项的和与偶数项的和之比为1=S n S n+奇偶,之差为1=n S S a +-奇偶. 练习1:等差数列}{n a 共有21n +项,其中奇数项之和为319,偶数项之和为290,则其中间项为_________. 【解题过程】【解析】设数列公差为d ,首项为1a ,奇数项共1n +项:令其和为1319n S +=;偶数项共n 项:令其和为290n T =.有()()()12121432212131929029n n n n n n S T a a a a a a a a nd ++-+-=--+-++-=-=-=⎡⎤⎣⎦L ,有211129n n a nd a nd a ++-=+==.基础练习1.(2014·福建卷) 等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于___________. 2.已知数列{a n }中,a 1=-60,a n +1=a n +3,则|a 1|+|a 2|+|a 3|+…+|a 30|等于____________.3.在等差数列{}n a 中,10120S =,则29a a +=____________.4.等差数列{}n a 中,39a a =,公差0d <,则使前n 项和n S 取得最大值的自然数n 是____. 5.若数列{}n a 是等差数列,首项10a >,200320040a a +>,200320040a a ⋅<,则使前n 项和0n S >成立的最大自然数n 是________.6.(2014·北京卷) 若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大.7.若{a n }为等差数列,S n 为其前n 项和,若a 1>0,d<0,S 4=S 8,则S n >0成立的最大自然数n 为________.8.设n S 是等差数列{}n a 的前n 项和,若361,3S S =,则612SS 等于____________. 9.已知等差数列}{n a 的前n 项和是n S ,若1>m ,且0211=-++-m m m a a a ,3812=-m S ,则=m ___.10.一个等差数列的前12项和为354,前12项中偶数项与奇数项和之比为32∶27,则这个等差数列的公差是____________.11.已知公差大于零的等差数列{}n a 的前n 项和为n S ,且满足:34117a a ⋅=,2522a a += (1)求数列{}n a 的通项公式n a ; (2)若数列{}n b 是等差数列,且nn S b n c=+,求非零常数c . 12.(2014·全国卷) 等差数列{a n }的前n 项和为S n .已知a 1=10,a 2为整数,且S n ≤S 4. (1)求{a n }的通项公式; (2)设b n =1a n a n +1,求数列{b n }的前n 项和T n .13.设数列{}n a 的前n 项和为n S ,且11a =,2(1)n n S na n n =--. (1)求2a ,3a ,4a ,并求出数列{}n a 的通项公式;(2)设数列11{}n n a a +⋅的前n 项和为n T ,求证:41<n T .参考答案1.【解析】 设等差数列{a n }的公差为d ,由等差数列的前n 项和公式,得S 3=3×2+3×22d=12,解得d =2,则a 6=a 1+(6-1)d =2+5×2=12.2.【解析】∵a n +1=a n +3,∴a n +1-a n =3为常数,故{a n }为等差数列. ∴a n =-60+(n -1)×3,即a n =3n -63 ∴a n =0时,n =21;a n >0时,n>21;a n <0时,n<21 ∴S 30′=|a 1|+|a 2|+…+|a 30|=-a 1-a 2-a 3-…-a 21+a 22+a 23+…+a 30 =-2(a 1+a 2+…+a 21)+S 30 =-2S 21+S 30 =765.3.【解析】本题考查等差数列的前n 项和公式及等差数列的质.()11010102a a S +=.()295120a a =+=2924.a a ∴+=4.【解析】本题考查等差数列的性质.39,a a =-由题意可知即390a a +=所以63920a a a =+=,又因为公差0d <,所以70a <,n S 取得最大值的自然数n 是5或6.【答案】5或65.【解析】本题考查等差数列的性质及前n 项和公式.由200320040a a +>,200320040a a ⋅<得200320040,0a a ><()1400620032004400640064600()=022a a a a S ++=>140072004200440074007()4007()022a a a a S ++==<,所以前n 项和0n S >成立的最大自然数n 是4006. 【答案】40066.【解析】∵a 7+a 8+a 9=3a 8>0,a 7+a 10=a 8+a 9<0,∴a 8>0,a 9<0,∴n=8时,数列{a n }的前n 项和最大.7.【解析】S 4=S 8⇒a 5+a 6+a 7+a 8=0⇒a 6+a 7=0, 又a 1>0,d<0,S 12=a 1+a 12·122=0,故n<12时,S n >0.即S n >0成立的最大自然数n 为11.8.【解析】本题考查等差数列的性质232,,,n n n n n S S S S S --L 成等差数列. 由36396129,,,S S S S S S S ---成等差数列得设36,3S x S x ==,则9636S S x x =+=, 129410S S x x =+=,612310S S =. 9.【解析】10. 10.【解析】 S 偶=a 2+a 4+a 6+a 8+a 10+a 12;S 奇=a 1+a 3+a 5+a 7+a 9+a 11.则⎩⎪⎨⎪⎧ S 奇+S 偶=354S 偶÷S 奇=32∶27,∴S 奇=162,S 偶=192,∴S 偶-S 奇=6d =30,d =5.11.【解析】本题考查等差数列的概念及其性质. 由公差大于零的等差数列{}n a ,m n p q m n p q a a a a +=++=+,解得34,a a 的值,从而求得通项公式;{}n b 是等差数列, 只需计算前三项的的值就可以求得c 的值.【答案】(1)设等差数列{}n a 的公差为d ,且0d >.342522a a a a +=+=Q ,又34117a a ⋅=,34,a a ∴是方程2221170x x -+=的两个根. 又公差0d >,34a a ∴<,349,13a a ∴==.1129313a d a d +=⎧⎨+=⎩,114a d =⎧∴⎨=⎩, 43n a n ∴=-.()2由()1知,()211422n n n S n n n -=⨯+⨯=-, 22n n S n n b n c n c -∴==++ 1231615,,123b b b c c c∴===+++ {}n b Q 是等差数列,2132b b b ∴=+,2120,2c c c ∴+=∴=-(0c =舍去).12.【解析】(1)由a 1=10,a 2为整数知,等差数列{a n }的公差d 为整数. 又S n ≤S 4,故a 4≥0,a 5≤0,于是10+3d ≥0,10+4d ≤0,解得-103≤d ≤-52, 因此d =-3.故数列{a n }的通项公式为a n =13-3n .(2)b n =1(13-3n )(10-3n )=13⎝ ⎛⎭⎪⎫110-3n -113-3n .于是T n =b 1+b 2+…+b n =13⎝ ⎛⎭⎪⎫17-110+⎝ ⎛⎭⎪⎫14-17+…+⎝ ⎛⎭⎪⎫110-3n -113-3n =13⎝ ⎛⎭⎪⎫110-3n -110=n 10(10-3n ). 13.【解析】(Ⅰ)由)1(2--=n n na S n n 得n na a n S S a n n n n n 4)1(111--+=-=+++ .41=-∴+n n a a 所以,数列}{n a 是以1为首项,4为公差的等差数列34-=∴n a n ,13,9,5432===a a a (Ⅱ))14)(34(1139195151111113221+-++⨯+⨯+⨯=+++=+n n a a a a a a T n n n ΛΛΘ 41)1411(41]141341131919151511[41<+-=+-+++-+-+-=n n n Λ。
高考数学一轮复习第六章数列6-2等差数列及其前n项和学案理

【2019最新】精选高考数学一轮复习第六章数列6-2等差数列及其前n项和学案理考纲展示►1.理解等差数列的概念.2.掌握等差数列的通项公式与前n项和公式.3.能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题.4.了解等差数列与一次函数、二次函数的关系.考点1 等差数列的基本运算1.等差数列的有关概念(1)等差数列的定义一般地,如果一个数列从第________项起,每一项与它的前一项的差等于________,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母________表示,定义表达式为an-an-1=d(常数)(n∈N*,n≥2)或an+1-an=d(常数)(n∈N*).(2)等差中项若三个数a,A,b成等差数列,则A叫做a与b的等差中项,且有A=.答案:(1)2 同一个常数d2.等差数列的有关公式(1)等差数列的通项公式如果等差数列{an}的首项为a1,公差为d,那么它的通项公式是________.(2)等差数列的前n项和公式设等差数列{an}的公差为d,其前n项和Sn=na1+d或Sn=.答案:(1)an=a1+(n-1)d(1)[教材习题改编]已知等差数列-5,-2,1,…,则该数列的第20项为________.答案:52(2)[教材习题改编]在100以内的正整数中有________个能被6整除的数.答案:16知三求二.等差数列中,有五个基本量,a1,d ,n,an,Sn,这五个基本量通过________,____________联系起来,如果已知其中三个量,利用这些公式,便可以求出其余两个的值,这其间主要是通过方程思想,列方程组求解.答案:通项公式前n项和公式[典题1] (1)设Sn为等差数列{an}的前n项和,S8=4a3,a7=-2,则a9=( )A.-6B.-4D.2C.-2[答案] A [解析] 解法一(常规解法):设公差为d,则8a1+28d=4a1+8d,即a1=-5d,a7=a1+6d=-5d+6d=d=-2,所以a9=a7+2d=-6.解法二(结合性质求解):根据等差数列的定义和性质,可得S8=4(a3+a6),又S8=4a3,所以a6=0,又a7=-2,所以a8=-4,a9=-6. (2)[2017·河北武邑中学高三期中]等差数列{an}中,Sn是其前n项和,a1=-9,-=2,则S10=( )B.-9A.0D.-10C.10[答案] A [解析] 因为是等差数列,且公差为d=1,故=+1×(10-1)=-9+9=0,故选A.(3)[2017·河北唐山模拟]设等差数列{an}的前n项和为Sn,S3=6,S4=12,则S6=________.[答案] 30 [解析] 解法一:设数列{an}的首项为a1,公差为d,由S3=6,S4=12,可得解得则S6=6a1+15d=30.解法二:∵等差数列{an},故可设Sn=An2+Bn,由S3=6,S4=12,可得解得即Sn=n2-n,则S6=36-6=30.[点石成金] 等差数列运算的解题思路及答题步骤(1)解题思路由等差数列的前n项和公式及通项公式可知,若已知a1,d,n,an,Sn中的三个便可求出其余两个,即“知三求二”,“知三求二”的实质是方程思想,即建立方程组求解.(2)答题步骤步骤一:结合所求结论,寻找已知与未知的关系;步骤二:根据已知条件列方程求出未知量;步骤三:利用前n项和公式求得结果.考点2 等差数列的判断与证明等差数列的概念的两个易误点:同一个常数;常数. (1)在数列{an}中,若a1=1,an+1=an+2,则该数列的通项公式为an=__________.答案:2n-1解析:由an+1=an+2,知{an}为等差数列,其公差为2,故an=1+(n-1)×2=2n-1.(2)若数列{an}满足a1=1,an+1-an=n,则数列{an}的通项公式为an=__________.答案:1+-2解析:由an+1-an=n,得a2-a1=1,a3-a2=2,…,an-an-1=n-1,各式相加,得an-a1=1+2+…+n-1==,故an=1+. [典题2] 若数列{an}的前n项和为Sn,且满足an+2SnSn-1=0(n≥2),a1=.(1)求证:是等差数列;(2)求数列{an}的通项公式.(1)[证明] 当n≥2时,由an+2SnSn-1=0,得Sn-Sn-1=-2SnSn-1,所以-=2.又==2,故是首项为2,公差为2的等差数列.(2)[解] 由(1),可得=2n,∴Sn=.当n≥2时,an=Sn-Sn-1=-=n-1-n-=-.当n=1时,a1=不适合上式.故an=[题点发散1] 若将母题条件变为:数列{an}的前n项和为Sn(n∈N*),2Sn-nan=n.求证:{an}为等差数列.证明:∵2Sn-nan=n,①∴当n≥2时,2Sn-1-(n-1)an-1=n-1,②①-②,得(2-n)an+(n-1)an-1=1,则(1-n)an+1+nan=1,∴2an=an-1+an+1(n≥2),∴数列{an}为等差数列.[题点发散2] 若母题变为:已知数列{an}中,a1=2,an=2-(n≥2,n∈N*),设bn=(n∈N*).求证:数列{bn}是等差数列.证明:∵an=2-,∴an+1=2-.∴bn+1-bn=-1an-1=-==1,∴{bn}是首项为b1==1,公差为1的等差数列.[点石成金] 等差数列的判定与证明方法且满足a3·a4=117,a2+a5=22.(1)求数列{an}的通项公式;(2)若数列{bn}满足bn=,是否存在非零实数c使得{bn}为等差数列?若存在,求出c的值;若不存在,请说明理由.解:(1)设等差数列{an}的公差为d,且d>0,由等差数列的性质,得a2+a5=a3+a4=22,所以a3,a4是关于x 的方程x2-22x+117=0的解,所以a3=9,a4=13,易知a1=1,d=4,故通项为an=1+(n-1)×4=4n-3.(2)由(1)知,Sn==2n2-n,所以bn==.解法一:所以b1=,b2=,b3=(c≠0).由2b2=b1+b3,解得c=-.当c=-时,bn==2n,当n≥2时,bn-bn-1=2.故当c=-时,数列{bn}为等差数列.解法二:由bn==+4n-2n+c=,∵c≠0,∴可令c=-,得到bn=2n.∵bn+1-bn=2(n+1)-2n=2(n∈N*),∴数列{bn}是公差为2的等差数列.即存在一个非零常数c=-,使数列{bn}为等差数列.考点3 等差数列的性质及应用等差数列的常用性质(1)通项公式的推广:an=am+________(n,m∈N*).(2)若{an}为等差数列,且k+l=m+n(k,l,m,n∈N*),则____________.(3)若{an}是等差数列,公差为d,则{a2n}也是等差数列,公差为________.(4)若{an},{bn}是等差数列,公差为d,则{pan+qbn}也是等差数列.(5)若{an}是等差数列,公差为d,则ak,ak+m,ak+2m,…(k,m∈N*)是公差为________的等差数列.(6)数列Sm,S2m-Sm,S3m-S2m,…也是等差数列.(7)S2n-1=(2n-1)an.(8)若n为偶数,则S偶-S奇=;若n为奇数,则S奇-S偶=a中(中间项).答案:(1)(n-m)d (2)ak+al=am+an (3)2d(5)md等差数列的基本公式:通项公式;前n项和公式.(1)等差数列{an}中,a2+a3=1,a5-2a1=27,则a5=________.答案:13解析:设等差数列的公差为d,则有2a1+3d=1,4d-a1=27,解得d=5,a1=-7,所以a5=a1+4d=13.(2)等差数列{an}的首项为1,公差为4,前n项和为120,则n=________.答案:8解析:an=1+(n-1)×4=4n-3,所以Sn==120,解得n=8或n=-(舍去).等差数列运算的两个方法:应用性质;巧妙设元.(1)在等差数列{an}中,已知a4+a10=12,则该数列前13项和S13=__________.答案:78解析:由等差数列的性质与前n项和公式,得S13===78. (2)已知等差数列{an}前三项的和为-3,前三项的积为8,则{an}的通项公式是__________.答案:an=-3n+5或an=3n-7解析:设等差数列{an}的前三项为a2-d,a2,a2+d,由题意得解得或所以an=2-3(n-1)=-3n+5或an=-4+3(n-1)=3n-7.故an=-3n+5或an=3n-7.[典题3] [2017·河南洛阳统考]设等差数列{an}的前n项和为Sn,若S3=9,S6=36,则a7+a8+a9=( )B.45A.63D.27C.36[答案] B[解析] 由{an}是等差数列,得S3,S6-S3,S9-S6为等差数列,即2(S6-S3)=S3+(S9-S6),得到S9-S6=2S6-3S3=45,故选B. [点石成金] 在等差数列{an}中,数列Sm,S2m-Sm,S3m-S2m也成等差数列.等差数列的性质是解题的重要工具.1.[2017·宁夏银川模拟]已知等差数列{an}的公差为d(d≠0),且a3+a6+a10+a13=32.若am=8,则m=( )B.12A.8D.4C.6答案:A解析:由a3+a6+a10+a13=32,得(a3+a13)+(a6+a10)=32,即4a8=32,∴a8=8,∴m=8.故选A. 2.已知等差数列{an}的前n项和为Sn,且S10=10,S20=30,则S30=________.答案:60解析:∵S10,S20-S10,S30-S20成等差数列,∴2(S20-S10)=S10+S30-S20,∴40=10+S30-30,∴S30=60.考点4 等差数列前n项和的最值问题[典题4] 在等差数列{an}中,a1=29,S10=S20,则数列{an}的前n项和Sn的最大值为( )A .S15B .S16C .S15或S16D .S17[答案] A[解析] ∵a1=29,S10=S20,∴10a1+d =20a1+d ,解得d =-2,∴Sn =29n +×(-2)=-n2+30n=-(n -15)2+225.∴当n =15时,Sn 取得最大值.[题点发散1] 若将条件“a1=29,S10=S20”改为“a1>0,S5=S12”,如何求解?解:解法一:设等差数列{an}的公差为d , 由S5=S12,得5a1+10d =12a1+66d ,解得d =-a1<0. 所以Sn =na1+d=na1+·=-a1(n2-17n)=-a12+a1. 因为a1>0,n∈N*,所以当n =8或n =9时,Sn 有最大值. 解法二:设等差数列{an}的公差为d ,同解法一得d =-a1<0. 设此数列的前n 项和最大,则⎩⎪⎨⎪⎧an≥0,an +1≤0,即⎩⎪⎨⎪⎧an =a1+-⎝ ⎛⎭⎪⎫-18a1≥0,an +1=a1+n·⎝ ⎛⎭⎪⎫-18a1≤0,解得即8≤n≤9,又n∈N*,所以当n =8或n =9时,Sn 有最大值.解法三:设等差数列{an}的公差为d ,同解法一得d =-a1<0. 由于Sn =na1+d =n2+n ,设f(x)=x2+x ,则函数y =f(x)的图象为开口向下的抛物线,由S5=S12知,抛物线的对称轴为x =(如图所示),由图可知,当1≤n≤8时,Sn 单调递增;当n≥9时,Sn 单调递减.又n∈N*,所以当n =8或n =9时,Sn 最大.[题点发散2] 若将条件“a1=29,S10=S20”改为“a3=12,S12>0,S13<0”,如何求解?解:因为a3=a1+2d =12,所以a1=12-2d , 所以即⎩⎪⎨⎪⎧144+42d>0,156+52d<0,解得-<d<-3.故公差d 的取值范围为.解法一:由d<0可知,{an}为递减数列,因此,在1≤n≤12中,必存在一个自然数n ,使得an≥0,an +1<0,此时对应的Sn 就是S1,S2,…,S12中的最大值.由于于是a7<0,从而a6>0,因此S6最大.解法二:由d<0可知{an}是递减数列,令可得⎩⎪⎨⎪⎧n≤3-12d,n>2-12d.由-<d<-3,可得⎩⎨⎧n≤3-12d <3+123=7,n>2-12d >2+12247=5.5, 所以5.5<n<7,故n =6,即S6最大. [题点发散3] 若将“a1=29,S10=S20”改为“a5>0,a4+a7<0”,如何求解? 解:∵∴⎩⎪⎨⎪⎧a5>0,a6<0, ∴Sn 的最大值为S5.[点石成金] 求等差数列前n 项和的最值的方法(1)运用配方法转化为二次函数,借助二次函数的单调性以及数形结合的思想,从而使问题得解.(2)通项公式法:求使an≥0(an≤0)成立时最大的n 的值即可.一般地,等差数列{an}中,若a1>0,且Sp =Sq(p≠q),则①若p +q 为偶数,则当n =时,Sn 最大;②若p +q 为奇数,则当n =或n =时,Sn 最大.1.等差数列{an}的前n 项和为Sn ,已知a5+a7=4,a6+a8=-2,则当Sn 取最大值时,n =( )A .5B .6C .7D .8 答案:B解析:依题意,得2a6=4,2a7=-2,a6=2>0,a7=-1<0.又数列{an}是等差数列,因此在该数列中,前6项均为正数,自第7项起以后各项均为负数,于是当Sn 取最大值时,n =6,故选B.2.[2017·安徽望江中学模拟]设数列{an}是公差d <0的等差数列,Sn 为前n项和,若S6=5a1+10d ,则Sn 取最大值时,n =( )B.6A.5D.11C.5或6答案:C解析:由题意,得S6=6a1+15d=5a1+10d,所以a6=0,故当n=5或6时,Sn最大,故选C. [方法技巧] 1.在遇到三个数成等差数列问题时,可设三个数为:(1)a,a+d,a+2d;(2)a-d,a,a+d;(3)a-d,a+d,a+3d等,可视具体情况而定.2.数列{an}为等差数列.(1)若项数为偶数2n,则S2n=n(a1+a2n)=n(an+an+1);S偶-S奇=nd;=.(2)若项数为奇数2n-1,则S2n-1=(2n-1)an;S奇-S偶=an;=.3.若数列{an}与{bn}均为等差数列,且前n项和分别是Sn和Tn,则=.4.若am=n,an=m(m≠0),则am+n=0. [易错防范] 1.公差不为0的等差数列的前n项和公式是n的二次函数,且常数项为0.若某数列的前n项和公式是常数项不为0的二次函数,则该数列不是等差数列,它从第二项起成等差数列.2.求等差数列的前n项和Sn的最值时,需要注意“自变量n为正整数”这一隐含条件.若对称轴取不到,需考虑最接近对称轴的自变量n(n为正整数);若对称轴对应在两个正整数的中间,此时应有两个符合题意的n值.真题演练集训1.[2016·新课标全国卷Ⅰ]已知等差数列{an}前9项的和为27,a10=8,则a100=( )B.99A.100D.97C.98答案:C解析:由等差数列性质知,S9===9a5=27,解得a5=3,而a10=8,因此公差d ==1,∴a100=a10+90d =98,故选C.2.[2015·北京卷]设{an}是等差数列,下列结论中正确的是( )A .若a1+a2>0,则a2+a3>0B .若a1+a3<0,则a1+a2<0C .若0<a1<a2,则a2>a1a3D .若a1<0,则(a2-a1)(a2-a3)>0答案:C解析:A ,B 选项易举反例.C 中若0<a1<a2,∴a3>a2>a1>0,∵a1+a3>2,又2a2=a1+a3,∴2a2>2,即a2>成立.D 中,若a1<0,则(a2-a1)(a2-a3)=d·(-d)=-d2≤0,故D 选项错误.故选C.3.[2016·江苏卷]已知{an}是等差数列,Sn 是其前n 项和.若a1+a =-3,S5=10,则a9的值是________.答案:20解析:设等差数列{an}公差为d ,由题意,得⎩⎪⎨⎪⎧ a1++=-3,5a1+5×42d =10, 解得则a9=a1+8d =-4+8×3=20.4.[2016·新课标全国卷Ⅱ]Sn 为等差数列{an}的前n 项和,且a1=1,S7=28.记bn =[lg an],其中[x]表示不超过x 的最大整数,如[0.9]=0,[lg 99]=1.(1)求b1,b11,b101;(2)求数列{bn}的前1 000项和.解:(1)设{an}的公差为d,据已知有7+21d=28,解得d=1.所以{an}的通项公式为an=n.b1=[lg 1]=0,b11=[lg 11]=1,b101=[lg 101]=2.(2)因为bn=所以数列{bn}的前1 000项和为1×90+2×900+3×1=1 893.课外拓展阅读巧用三点共线解等差数列问题1.等差数列的求解由等差数列与一次函数的关系可知:对于公差为d(d≠0)的等差数列{an},其通项公式为an=dn+(a1-d),则点(n,an)(n∈N*)共线,又d=(n≠m),所以d为过(m,am),(n,an)两点的直线的斜率.由此可用三点共线解决等差数列问题.[典例1] 若数列{an}为等差数列,ap=q,aq=p(p≠q),则ap+q=________.[思路分析] [解析] 解法一:设数列{an}的公差为d,因为ap=aq+(p-q)d,所以q=p+(p-q)d,即q-p=(p-q)d.因为p≠q,所以d=-1.所以ap+q=ap+(p+q-p)d=q+q(-1)=0.解法二:因为数列{an}为等差数列,所以点(n,an)(n∈N*)在一条直线上.不妨设p<q,记点A(p,q),B(q,p),则直线AB的斜率k==-1,如图所示,由图知OC=p+q,即点C的坐标为(p+q,0),故ap+q=0.[答案] 0 [典例2] 已知{an}为等差数列,且a100=304,a300=904,求a1 000.[思路分析] [解] 因为{an}为等差数列,则(100,304),(300,904),(1 000,a1 000)三点共线,所以=,解得a1 000=3 004.2.等差数列前n项和的求解在等差数列前n项和公式的变形Sn=n2+n中,两边同除以n得=n+.该式说明对任意n∈N*,所有的点都在同一条直线上,从而对m,n∈N*(m≠n)有=(常数),即数列是一个等差数列.[典例3] 已知在等差数列{an}中,Sn=33,S2n=44,求这个数列的前3n项的和S3n.[解] 由题意知,,,三点在同一条直线上,从而有=,解得S3n=33.所以该数列的前3n项的和为33.。
高考数学一轮复习 第六章 数列 第2讲 等差数列及其前n项和教案 文

【第2讲 等差数列及其前n 项和】之小船创作一、知识梳理1.等差数列与等差中项 (1)定义:①文字语言:一个数列从第2项起,每一项与它的前一项的差都等于同一个常数;②符号语言:a n +1-a n =d (n ∈N *,d 为常数).(2)等差中项:若三个数a ,A ,b 组成等差数列,则A 叫做a ,b 的等差中项.2.等差数列的通项公式与前n 项和公式 (1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)2d =n (a 1+a n )2.3.等差数列的性质已知数列{a n }是等差数列,S n 是其前n 项和. (1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *). (2)若k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }的公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{b n }是等差数列,则{pa n +qb n }也是等差数列. (5)数列S m ,S 2m -S m ,S 3m -S 2m ,…构成等差数列. 常用结论1.等差数列与函数的关系(1)通项公式:当公差d ≠0时,等差数列的通项公式a n=a 1+(n -1)d =dn +a 1-d 是关于n 的一次函数,且一次项系数为公差d .若公差d >0,则为递增数列,若公差d <0,则为递减数列.(2)前n 项和:当公差d ≠0时,S n =na 1+n (n -1)2d =d2n2+⎝⎛⎭⎪⎪⎫a 1-d 2n 是关于n 的二次函数且常数项为0.2.两个常用结论(1)关于等差数列奇数项和与偶数项和的性质①若项数为2n ,则S 偶-S 奇=nd ,S 奇S 偶=a n a n +1;②若项数为2n -1,则S 偶=(n -1)a n ,S 奇=na n ,S 奇-S偶=a n ,S 奇S 偶=n n -1. (2)两个等差数列{a n },{b n }的前n 项和S n ,T n 之间的关系为S 2n -1T 2n -1=a nb n.二、习题改编1.(必修5P38例1(1)改编)已知等差数列-8,-3,2,7,…,则该数列的第10项为 .答案:372.(必修5P46A 组T2改编)已知等差数列{a n }的前n 项和为S n ,若a 1=12,S 5=90,则等差数列{a n }的公差d = .答案:33.(必修5P39练习T2改编)某剧场有20排座位,后一排比前一排多2个座位,最后一排有60个座位,则剧场总共的座位数为.解析:设第n排的座位数为a n(n∈N*),数列{a n}为等差数列,其公差d=2,则a n=a1+(n-1)d=a1+2(n-1).由已知a20=60,得60=a1+2×(20-1),解得a1=22,则剧场总共的座位数为20(a1+a20)2=20×(22+60)2=820.答案:820一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)若一个数列从第2项起,每一项与它的前一项的差都是常数,则这个数列是等差数列.( )(2)已知数列{a n}的通项公式是a n=pn+q(其中p,q为常数),则数列{a n}一定是等差数列.( )(3)数列{a n}为等差数列的充要条件是其通项公式为n 的一次函数.( )(4)数列{a n}为等差数列的充要条件是对任意n∈N*,都有2a n+1=a n+a n+2.( )(5)等差数列{a n}的单调性是由公差d决定的.( )(6)等差数列的前n项和公式是常数项为0的二次函数.( )答案:(1)× (2)√ (3)× (4)√ (5)√ (6)× 二、易错纠偏常见误区(1)等差数列概念中的两个易误点,即同一个常数与常数;(2)错用公式致误; (3)错用性质致误.1.已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于 .解析:由a 1=1,a n =a n -1+12(n ≥2),可知数列{a n }是首项为1,公差为12的等差数列,故S 9=9a 1+9×(9-1)2×12=9+18=27.答案:272.记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为 .解析:由已知得⎩⎪⎨⎪⎧a 1+3d +a 1+4d =24,6a 1+6×52d =48,解得⎩⎪⎨⎪⎧a 1=-2,d =4,所以数列{a n }的公差为4.答案:43.在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=450,则a 2+a 8= .解析:由等差数列的性质,得a 3+a 4+a 5+a 6+a 7=5a 5=450,所以a 5=90,所以a 2+a 8=2a 5=180.答案:180等差数列的基本运算(师生共研)(1)(2020·福州市质量检测)已知数列{a n }中,a 3=2,a 7=1.若数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 为等差数列,则a 9=( )A.12B.54C.45D .-45(2)(2019·高考全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和,已知S 4=0,a 5=5,则( )A .a n =2n -5B .a n =3n -10C .S n =2n 2-8n D .S n =12n 2-2n【解析】(1)因为数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 为等差数列,a 3=2,a 7=1,所以数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 的公差d =1a 7-1a 37-3=1-127-3=18,所以1a 9=1a 7+(9-7)×18=54,所以a 9=45,故选C.(2)法一:设等差数列{a n }的首项为a 1,公差为d ,因为⎩⎪⎨⎪⎧S 4=0,a 5=5,所以⎩⎪⎨⎪⎧4a 1+4×32d =0,a 1+4d =5,解得⎩⎪⎨⎪⎧a 1=-3,d =2,所以a n =a 1+(n -1)d =-3+2(n -1)=2n -5,S n =na 1+n (n -1)2d =n 2-4n .故选A.法二:设等差数列{a n }的公差为d ,因为⎩⎪⎨⎪⎧S 4=0,a 5=5,所以⎩⎪⎨⎪⎧4a 1+4×32d =0,a 1+4d =5,解得⎩⎪⎨⎪⎧a 1=-3,d =2.选项A ,a 1=2×1-5=-3;选项B ,a 1=3×1-10=-7,排除B ; 选项C ,S 1=2-8=-6,排除C ;选项D ,S 1=12-2=-32,排除D.故选A.【答案】 (1)C (2)A等差数列的基本运算的解题策略(1)等差数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了方程思想.(2)数列的通项公式和前n 项和公式在解题中起到变量代换的作用,而a 1和d 是等差数列的两个基本量,用它们表示已知量和未知量是常用方法.1.(一题多解)(2020·惠州市第二次调研)已知等差数列{a n }的前n 项和为S n ,且a 2+a 3+a 4=15,a 7=13,则S 5=( )A .28B .25C .20D .18解析:选B.法一:设等差数列{a n }的公差为d ,由已知得⎩⎪⎨⎪⎧a 1+d +a 1+2d +a 1+3d =15,a 1+6d =13,解得⎩⎪⎨⎪⎧a 1=1,d =2,所以S 5=5a 1+5×42d =5×1+5×42×2=25,故选B. 法二:由{a n }是等差数列,可得a 2+a 4=2a 3,所以a 3=5,所以S 5=5(a 1+a 5)2=5×2a 32=25,故选B.2.已知等差数列{a n }的前n 项和为S n ,若a 2=4,S 4=22,a n =28,则n =( )A .3B .7C .9D .10解析:选D.因为S 4=a 1+a 2+a 3+a 4=4a 2+2d =22,d =(22-4a 2)2=3,a 1=a 2-d =4-3=1,a n =a 1+(n -1)d =1+3(n -1)=3n -2,由3n -2=28,得n =10.等差数列的判定与证明(典例迁移)已知数列{a n }中,a 1=14,其前n 项和为S n ,且满足a n =2S 2n2S n -1(n ≥2).(1)求证:数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1S n 是等差数列;(2)求数列{a n }的通项公式.【解】 (1)证明:当n ≥2时,S n -S n -1=2S 2n2S n -1.整理,得S n -1-S n =2S n S n -1. 两边同时除以S n S n -1,得1S n -1S n -1=2.又1S 1=1a 1=4,所以⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1S n 是以4为首项,以2为公差的等差数列.(2)由(1)可得数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1S n 的通项公式为1S n =4+(n -1)×2=2n +2,所以S n =12(n +1).当n ≥2时,a n =S n -S n -1=12(n +1)-12n =-12n (n +1).当n =1时,a 1=14,不适合上式.所以a n=⎩⎪⎨⎪⎧14,n =1,-12n (n +1),n ≥2.【迁移探究】 (变条件)本例的条件变为:a 1=14,S n =S n -12S n -1+1(n ≥2),证明⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1S n 是等差数列.证明:因为S n =S n -12S n -1+1,所以2S n -1S n +S n =S n -1,即S n-1-S n =2S n S n -1,故1S n -1S n -1=2(n ≥2),又1S 1=1a 1=4,因此数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1S n 是首项为4,公差为2的等差数列.等差数列的判定与证明的常用方法(1)定义法:a n +1-a n =d (d 是常数,n ∈N *)或a n -a n -1=d (d 是常数,n ∈N *,n ≥2)⇔{a n }为等差数列.(2)等差中项法:2a n +1=a n +a n +2(n ∈N *)⇔{a n }为等差数列.(3)通项公式法:a n =an +b (a ,b 是常数,n ∈N *)⇔{a n }为等差数列.(4)前n 项和公式法:S n =an 2+bn (a ,b 为常数)⇔{a n }为等差数列.[提示] 若要判定一个数列不是等差数列,则只需找出三项a n ,a n +1,a n +2,使得这三项不满足2a n +1=a n +a n +2即可;但如果要证明一个数列是等差数列,则必须用定义法或等差中项法.1.已知数列{a n }满足a 1=1,a n +1=a n a n +1,且b n =1a n,n∈N *.求证:数列{b n }为等差数列.证明:因为b n =1a n ,且a n +1=a na n +1,所以b n +1=1a n +1=a n +1a n=1+1a n =1+b n ,故b n +1-b n =1.又b 1=1a 1=1,所以数列{b n }是以1为首项,1为公差的等差数列. 2.(2020·贵州省适应性考试)已知数列{a n }满足a 1=1,且na n +1-(n +1)a n =2n 2+2n .(1)求a 2,a 3的值;(2)证明数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n n 是等差数列,并求{a n }的通项公式.解:(1)由已知,得a 2-2a 1=4, 则a 2=2a 1+4,又a 1=1,所以a 2=6. 由2a 3-3a 2=12,得2a 3=12+3a 2,所以a 3=15.(2)由已知na n +1-(n +1)a n =2n (n +1),得na n +1-(n +1)a n n (n +1)=2,即a n +1n +1-a nn=2,所以数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n n 是首项a 11=1,公差d =2的等差数列.则a n n=1+2(n -1)=2n -1,所以a n =2n 2-n .等差数列的性质及应用(多维探究) 角度一 等差数列项性质的应用(1)(一题多解)在公差不为0的等差数列{a n }中,4a 3+a 11-3a 5=10,则15a 4=( )A .-1B .0C .1D .2(2)一个等差数列的前12项和为354,前12项中偶数项的和与奇数项的和的比为32∶27,则该数列的公差d = .【解析】 (1)通解:设数列{a n }的公差为d (d ≠0),由4a 3+a 11-3a 5=10,得4(a 1+2d )+(a 1+10d )-3(a 1+4d )=10,即2a 1+6d =10,即a 1+3d =5,故a 4=5,所以15a 4=1,故选C.优解一:设数列{a n }的公差为d (d ≠0),因为a n =a m +(n -m )d ,所以由4a 3+a 11-3a 5=10,得4(a 4-d )+(a 4+7d )-3(a 4+d )=10,整理得a 4=5,所以15a 4=1,故选C.优解二:由等差数列的性质,得2a 7+3a 3-3a 5=10,得4a 5+a 3-3a 5=10,即a 5+a 3=10,则2a 4=10,即a 4=5,所以15a 4=1,故选C.(2)设等差数列的前12项中奇数项的和为S 奇,偶数项的和为S 偶,公差为d .由已知条件,得⎩⎪⎨⎪⎧S 奇+S 偶=354,S 偶∶S 奇=32∶27,解得⎩⎪⎨⎪⎧S 偶=192,S 奇=162.又S 偶-S 奇=6d ,所以d =192-1626=5.【答案】 (1)C (2)5角度二 等差数列前n 项和性质的应用(1)已知等差数列{a n }的前10项和为30,它的前30项和为210,则前20项和为( )A .100B .120C .390D .540(2)在等差数列{a n }中,a 1=-2 018,其前n 项和为S n ,若S 1212-S 1010=2,则S 2 018的值等于( ) A .-2 018 B .-2 016 C .-2 019D .-2 017【解析】 (1)设S n 为等差数列{a n }的前n 项和,则S 10,S 20-S 10,S 30-S 20成等差数列,所以2(S 20-S 10)=S 10+(S 30-S 20),又等差数列{a n }的前10项和为30,前30项和为210, 所以2(S 20-30)=30+(210-S 20),解得S 20=100.(2)由题意知,数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫S n n 为等差数列,其公差为1,所以S 2 0182 018=S 11+(2 018-1)×1=-2 018+2 017=-1.所以S 2 018=-2 018.【答案】 (1)A (2)A角度三 等差数列的前n 项和的最值(一题多解)(2020·广东省七校联考)已知等差数列{a n }的前n 项和为S n ,a 6+a 8=6,S 9-S 6=3,则S n 取得最大值时n 的值为( )A .5B .6C .7D .8【解析】 法一:设数列{a n }的公差为d ,则由题意得,⎩⎪⎨⎪⎧a 1+5d +a 1+7d =6,a 1+6d +a 1+7d +a 1+8d =3,解得⎩⎪⎨⎪⎧a 1=15,d =-2.所以a n =-2n+17,由于a 8>0,a 9<0,所以S n 取得最大值时n 的值是8,故选D.法二:设数列{a n }的公差为d ,则由题意得,⎩⎪⎨⎪⎧a 1+5d +a 1+7d =6,a 1+6d +a 1+7d +a 1+8d =3,解得⎩⎪⎨⎪⎧a 1=15,d =-2,则S n =15n +n (n -1)2×(-2)=-(n -8)2+64,所以当n =8时,S n 取得最大值,故选D.(1)等差数列前n 项和的性质在等差数列{a n }中,S n 为其前n 项和,则 ①S 2n =n (a 1+a 2n )=…=n (a n +a n +1); ②S 2n -1=(2n -1)a n ;③当项数为偶数2n 时,S 偶-S 奇=nd ;项数为奇数2n-1时,S 奇-S 偶=a 中,S 奇∶S 偶=n ∶(n -1).(2)求数列前n 项和的最值的方法①通项法:〈1〉若a 1>0,d <0,则S n 必有最大值,其n可用不等式组⎩⎪⎨⎪⎧a n ≥0,a n +1≤0来确定;〈2〉若a 1<0,d >0,则S n必有最小值,其n 可用不等式组⎩⎪⎨⎪⎧a n ≤0,a n +1≥0来确定.②二次函数法:等差数列{a n }中,由于S n =na 1+n (n -1)2d =d2n2+⎝⎛⎭⎪⎪⎫a 1-d 2n ,故可用二次函数求最值的方法来求前n 项和的最值,这里应由n ∈N *及二次函数图象的对称性来确定n 的值.③不等式组法:借助S n 最大时,有⎩⎪⎨⎪⎧S n ≥S n -1,S n ≥S n +1(n ≥2,n∈N *),解此不等式组确定n 的范围,进而确定n 的值和对应S n 的值(即S n 的最值).1.(一题多解)(2020·福建省质量检查)等差数列{a n }的前n 项和为S n ,且a 8-a 5=9,S 8-S 5=66,则a 33=( )A .82B .97C .100D .115解析:通解:设等差数列{a n }的公差为d ,则由⎩⎪⎨⎪⎧a 8-a 5=9,S 8-S 5=66,得⎩⎪⎨⎪⎧(a 1+7d )-(a 1+4d )=9,(8a 1+28d )-(5a 1+10d )=66,解得⎩⎪⎨⎪⎧d =3,a 1=4,所以a 33=a 1+32d =4+32×3=100,故选C.优解:设等差数列{a n }的公差为d ,由a 8-a 5=9,得3d =9,即d =3.由S 8-S 5=66,得a 6+a 7+a 8=66,结合等差数列的性质知3a 7=66,即a 7=22,所以a 33=a 7+(33-7)×d =22+26×3=100,故选C.2.已知无穷等差数列{a n }的前n 项和为S n ,S 6<S 7,且S 7>S 8,则( )A .在数列{a n }中,a 1最大B .在数列{a n }中,a 3或a 4最大C .S 3=S 10D .当n ≥8时,a n >0解析:选A.由于S 6<S 7,S 7>S 8,所以S 7-S 6=a 7>0,S 8-S 7=a 8<0,所以数列{a n }是递减的等差数列,最大项为a 1,所以A 正确,B 错,D 错;S 10-S 3=a 4+a 5+…+a 10=7a 7>0,故C 错误.3.两等差数列{a n }和{b n }的前n 项和分别为S n ,T n ,且S nT n=7n +2n +3,则a 2+a 20b 7+b 15= .解析:因为数列{a n }和{b n }均为等差数列,所以a 2+a 20b 7+b 15=a 1+a 21b 1+b 21=(a 1+a 21)×212(b 1+b 21)×212=S 21T 21=7×21+221+3=14924.答案:14924思想方法系列10 整体思想在等差数列中的应用 在等差数列{a n }中,其前n 项和为S n .已知S n =m ,S m=n (m ≠n ),则S m +n = .【解析】 设数列{a n }的公差为d , 则由S n =m ,S m =n ,得⎩⎪⎨⎪⎧S n =na 1+n (n -1)2d =m ,①S m=ma 1+m (m -1)2d =n .②②-①得(m -n )a 1+(m -n )(m +n -1)2·d =n -m .因为m ≠n ,所以a 1+m +n -12d =-1.所以S m +n =(m +n )a 1+(m +n )(m +n -1)2d=(m +n )⎝⎛⎭⎪⎪⎫a 1+m +n -12d =-(m +n ). 【答案】 -(m +n )从整体上认识问题、思考问题,常常能化繁为简、变难为易,同时又能培养学生思维的灵活性、敏捷性.整体思想的主要表现形式有:整体代入、整体加减、整体代换、整体联想、整体补形、整体改造等.在等差数列中,当要求的S n 所需要的条件未知或不易求出时,可以考虑整体代入.(2020·石家庄市第一次模拟)已知函数f (x )的图象关于直线x =-1对称,且f (x )在(-1,+∞)上单调,若数列{a n }是公差不为0的等差数列,且f (a 50)=f (a 51),则数列{a n }的前100项的和为( )A .-200B .-100C .-50D .0解析:选B.因为函数f (x )的图象关于直线x =-1对称,又函数f (x )在(-1,+∞)上单调,数列{a n }是公差不为0的等差数列,且f (a 50)=f (a 51),所以a 50+a 51=-2,所以S 100=100(a 1+a 100)2=50(a 50+a 51)=-100,故选B.[基础题组练]1.(2020·长春市质量监测(二))等差数列{a n }中,S n 是它的前n 项和,a 2+a 3=10,S 6=54,则该数列的公差d 为( )A .2B .3C .4D .6解析:选 C.由题意,知⎩⎪⎨⎪⎧a 1+d +a 1+2d =10,6a 1+6×52d =54,解得⎩⎪⎨⎪⎧a 1=-1,d =4,故选C.2.(2020·重庆市七校联合考试)在等差数列{a n }中,若a 3+a 5+a 7+a 9+a 11=55,S 3=3,则a 5等于( )A .5B .6C .7D .9解析:选C.设数列{a n }的公差为d ,因为数列{a n }是等差数列,所以a 3+a 5+a 7+a 9+a 11=5a 7=55,所以a 7=11,又S 3=3,所以⎩⎪⎨⎪⎧a 7=a 1+6d =11,S 3=3a 1+3d =3,解得⎩⎪⎨⎪⎧a 1=-1,d =2,所以a 5=7.故选C.3.已知数列{a n }满足a 1=15,且3a n +1=3a n -2,若a k ·a k+1<0,则正整数k =( )A .21B .22C .23D .24解析:选 C.3a n +1=3a n -2⇒a n +1=a n -23⇒{a n }是等差数列,则a n =473-23n .因为a k ·a k +1<0,所以⎝ ⎛⎭⎪⎪⎫473-23k ⎝ ⎛⎭⎪⎪⎫453-23k <0,所以452<k <472,所以k =23.4.(2020·辽宁丹东质量测试(一))我国明代伟大数学家程大位在《算法统宗》中常以诗歌的形式呈现数学问题,其中有一首“竹筒容米”:“家有九节竹一茎,为因盛米不均平,下头三节三升九,上梢四节贮三升,唯有中间两节竹,要将米数次第盛,若有先生能算法,也教算得到天明.”意思是:九节竹的盛米容积成等差数列,其中的“三升九”指3.9升,则九节竹的中间一节的盛米容积为( )A .0.9升B .1升C .1.1升D .2.1升解析:选B.设竹筒从下到上的盛米量分别为a 1,a 2,…,a 9,依题意得⎩⎪⎨⎪⎧a 1+a 2+a 3=3.9,a 6+a 7+a 8+a 9=3,故⎩⎪⎨⎪⎧a 2=1.3,a 7+a 8=1.5,即a 2+5d+a 2+6d =2a 2+11d =2.6+11d =1.5,解得d =-0.1,故a 5=a 2+3d =1.3-0.3=1升.故选B.5.已知数列{a n }的前n 项和为S n ,a 1=1,a 2=2,且对于任意n >1,n ∈N *,满足S n +1+S n -1=2(S n +1),则( )A .a 9=17B .a 10=18C .S 9=81D .S 10=90解析:选B.因为对于任意n >1,n ∈N *,满足S n +1+S n -1=2(S n +1),所以S n +1-S n =S n -S n -1+2,所以a n +1-a n =2.所以数列{a n }在n ≥2时是等差数列,公差为2.又a 1=1,a 2=2,则a 9=2+7×2=16,a 10=2+8×2=18,S 9=1+8×2+8×72×2=73,S 10=1+9×2+9×82×2=91.故选B.6.(2019·高考全国卷Ⅲ)记S n 为等差数列{a n }的前n 项和.若a 3=5,a 7=13,则S 10= .解析:通解:设等差数列{a n }的公差为d ,则由题意,得⎩⎪⎨⎪⎧a 1+2d =5,a 1+6d =13,解得⎩⎪⎨⎪⎧a 1=1,d =2,所以S 10=10×1+10×92×2=100.优解:由题意,得公差d =14(a 7-a 3)=2,所以a 4=a 3+d =7,所以S 10=10(a 1+a 10)2=5(a 4+a 7)=100.答案:1007.(2020·武昌区调研考试)设{a n }是公差不为零的等差数列,S n 为其前n 项和,已知S 1,S 2,S 4成等比数列,且a 3=5,则数列{a n }的通项公式为 .解析:设数列{a n }的公差为d (d ≠0),因为{a n }是等差数列,S 1,S 2,S 4成等比数列,所以(a 1+a 2)2=a 1(a 1+a 2+a 3+a 4),因为a 3=5,所以(5-2d +5-d )2=(5-2d )(5-2d +15),解得d =2或d =0(舍去),所以5=a 1+(3-1)×2,即a 1=1,所以a n =2n -1.答案:a n =2n -18.(2020·福建龙岩期末改编)已知数列{a n }的前n 项和为S n ,a 1=1,a n +a n +1=2n +1(n ∈N *),则a 20的值为 ,S 21的值为 .解析:将n =1代入a n +a n +1=2n +1中得a 2=3-1=2. 由a n +a n +1=2n +1①,得a n +1+a n +2=2n +3②.②-①,得a n +2-a n =2,所以数列{a n }的奇数项、偶数项都是以2为公差的等差数列,则a 21=1+10×2=21,a 20=2+9×2=20,所以S 21=(a 1+a 3+a 5+…+a 21)+(a 2+a 4+a 6+…+a 20)=(1+21)×112+(2+20)×102=231. 答案:20 2319.(2019·高考全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.已知S 9=-a 5.(1)若a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围.解:(1)设{a n }的公差为d ,由S 9=-a 5得a 1+4d =0,由a 3=4得a 1+2d =4,于是a 1=8,d =-2.因此{a n }的通项公式为a n =10-2n .(2)由(1)得a 1=-4d ,故a n =(n -5)d ,S n =n (n -9)d 2. 由a 1>0知d <0,故S n ≥a n 等价于n 2-11n +10≤0,解得1≤n ≤10.所以n 的取值范围是{n |1≤n ≤10,n ∈N }.10.已知等差数列的前三项依次为a ,4,3a ,前n 项和为S n ,且S k =110.(1)求a 及k 的值;(2)已知数列{b n }满足b n =S n n,证明数列{b n }是等差数列,并求其前n 项和T n .解:(1)设该等差数列为{a n },则a 1=a ,a 2=4,a 3=3a , 由已知有a +3a =8,得a 1=a =2,公差d =4-2=2, 所以S k =ka 1+k (k -1)2·d =2k +k (k -1)2×2=k 2+k .由S k =110,得k 2+k -110=0,解得k =10或k =-11(舍去),故a =2,k =10.(2)由(1)得S n =n (2+2n )2=n (n +1),则b n =S n n=n +1, 故b n +1-b n =(n +2)-(n +1)=1,即数列{b n }是首项为2,公差为1的等差数列, 所以T n =n (2+n +1)2=n (n +3)2.[综合题组练] 1.(2020·广东揭阳期末改编)已知数列{a n }满足a 1=-19,a n +1=a n 8a n +1(n ∈N *),则a n = ,数列{a n }中最大项的值为 .解析:由题意知a n ≠0,由a n +1=a n 8a n +1得1a n +1=8a n +1a n=1a n +8,整理得1a n +1-1a n =8,即数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 是公差为8的等差数列,故1a n =1a 1+(n -1)×8=8n -17,所以a n =18n -17.当n =1,2时,a n <0;当n ≥3时,a n >0,则数列{a n }在n ≥3时是递减数列,故{a n }中最大项的值为a 3=17. 答案:18n -17 172.(创新型)(2020·安徽省淮南模拟)设数列{a n }的前n 项和为S n ,若S n S 2n为常数,则称数列{a n }为“精致数列”.已知等差数列{b n }的首项为1,公差不为0,若数列{b n }为“精致数列”,则数列{b n }的通项公式为 .解析:设等差数列{b n }的公差为d ,由S n S 2n 为常数,设S n S 2n=k 且b 1=1,得n +12n (n -1)d =k ⎣⎢⎢⎡⎦⎥⎥⎤2n +12×2n (2n -1)d ,即2+(n -1)d =4k +2k (2n -1)d ,整理得(4k -1)dn +(2k -1)(2-d )=0.因为对任意正整数n ,上式恒成立,所以⎩⎪⎨⎪⎧d (4k -1)=0,(2k -1)(2-d )=0,解得d =2,k =14,所以数列{b n }的通项公式为b n =2n -1(n ∈N *).答案:b n =2n -1(n ∈N *)3.已知数列{a n }满足:a 3=-13,a n =a n -1+4(n >1,n ∈N *).(1)求a1,a2及通项公式a n;(2)设S n为数列{a n}的前n项和,则数列S1,S2,S3,…中哪一项最小?解:(1)因为数列{a n}满足a3=-13,a n=a n-1+4,所以a n-a n-1=4,即数列{a n}为等差数列且公差d=4,所以a2=a3-d=-13-4=-17,a1=a2-d=-17-4=-21,所以通项公式a n=a1+(n-1)d=-21+4(n-1)=4n-25.(2)令a n=4n-25≥0可解得n≥25 4,所以数列{a n}的前6项为负值,从第7项开始为正数,所以数列S1,S2,S3,…中S6最小.4.(2020·广东广州天河二模)已知S n为数列{a n}的前n 项和,且a1<2,a n>0,6S n=a2n+3a n+2,n∈N*.(1)求数列{a n}的通项公式;(2)若∀n∈N*,b n=(-1)n a2n,求数列{b n}的前2n项的和T2n.解:(1)当n=1时,6a1=a21+3a1+2,且a1<2,解得a1=1.当n≥2时,6a n=6S n-6S n-1=a2n+3a n+2-(a2n-1+3a n-1+2).化简得(a n+a n-1)(a n-a n-1-3)=0,因为a n>0,所以a n-a n-1=3,所以数列{a n}是首项为1,公差为3的等差数列,所以a n=1+3(n-1)=3n-2.(2)b n=(-1)n a2n=(-1)n(3n-2)2.所以b2n-1+b2n=-(6n-5)2+(6n-2)2=36n-21.所以数列{b n}的前2n项的和T2n=36(1+2+…+n)-21n=36×n(n+1)2-21n=18n2-3n.。
高考数学一轮复习 第六章 数列 第四节 数列求和教案 理(含解析)苏教版-苏教版高三全册数学教案

第四节 数列求和1.公式法(1)等差数列{a n }的前n 项和S n =n a 1+a n2=na 1+n n -1d2.推导方法:倒序相加法.(2)等比数列{a n }的前n 项和S n =⎩⎪⎨⎪⎧na 1,q =1,a 11-q n1-q,q ≠1.推导方法:乘公比,错位相减法. (3)一些常见的数列的前n 项和: ①1+2+3+…+n =n n +12;②2+4+6+…+2n =n (n +1); ③1+3+5+…+2n -1=n 2. 2.几种数列求和的常用方法(1)分组求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和而后相加减.(2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和.常用的裂项公式有:①1nn +1=1n -1n +1; ②12n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1;③1n +n +1=n +1-n .(3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n 项和即可用错位相减法求解.(4)倒序相加法:如果一个数列{a n }与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.[小题体验]1.等比数列1,2,4,8,…中从第5项到第10项的和为________. 解析:由a 1=1,a 2=2,得q =2,∴S 10=1×1-2101-2=1 023,S 4=1×1-241-2=15,∴S 10-S 4=1 008. 答案:1 0082.数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n 的值等于________.答案:n 2+1-12n3.已知数列{}a n 的通项公式a n =1n +n +1,则该数列的前________项之和等于9.解析:由题意知,a n =1n +n +1=n +1-n ,所以S n =(2-1)+(3-2)+…+(n +1-n )=n +1-1=9,解得n =99.答案:991.直接应用公式求和时,要注意公式的应用范围,如当等比数列公比为参数(字母)时,应对其公比是否为1进行讨论.2.在应用错位相减法时,注意观察未合并项的正负号;结论中形如a n ,a n +1的式子应进行合并.3.在应用裂项相消法时,要注意消项的规律具有对称性,即前剩多少项则后剩多少项. [小题纠偏]1.设f (n )=2+24+27+210+…+23n +10(n ∈N *),则f (3)=________.答案:27(87-1)2.已知数列{a n }的前n 项和为S n 且a n =n ·2n,则S n =________. 答案:(n -1)2n +1+23.求和:11×2+12×3+…+1n -1n=________.解析:原式=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1-1n =1-1n .答案:1-1n考点一 公式法求和 基础送分型考点——自主练透[题组练透]1.(2019·南师大附中月考)《张丘建算经》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女不善织,日减功迟,初日织五尺,末日织一尺,今共织九十尺,问织几日?”已知“日减功迟”的具体含义是每天比前一天少织同样多的布,则此问题的答案是________日.解析:易知每日织布数量构成一个等差数列,设此数列为{}a n ,则a 1=5,a n =1,S n =90,所以n 5+12=90,解得n =30.答案:302.(2018·无锡期末)设公比不为1的等比数列{a n }满足a 1a 2a 3=-18,且a 2,a 4,a 3成等差数列,则数列{a n }的前4项和为________.解析:设数列{a n }的公比为q (q ≠1).由等比数列的性质可得a 1a 2a 3=a 32=-18,所以a 2=-12.因为a 2,a 4,a 3成等差数列,所以2a 4=a 2+a 3,即2a 2q 2=a 2+a 2q ,化简得2q 2-q -1=0,即(q -1)(2q +1)=0,解得q =-12或q =1(舍去).又因为a 1=a 2q=1,所以S 4=a 11-q 41-q=1×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-1241-⎝ ⎛⎭⎪⎫-12=58.答案:583.已知等差数列{a n }满足a 3=2,前3项和S 3=92.(1)求{a n }的通项公式;(2)设等比数列{b n }满足b 1=a 1,b 4=a 15,求{b n }的前n 项和T n . 解:(1)设{a n }的公差为d ,则由已知条件得⎩⎪⎨⎪⎧ a 1+2d =2,3a 1+3×22d =92,化简得⎩⎪⎨⎪⎧a 1+2d =2,a 1+d =32,解得⎩⎪⎨⎪⎧a 1=1,d =12,故{a n }的通项公式a n =1+n -12,即a n =n +12.(2)由(1)得b 1=1,b 4=a 15=15+12=8. 设{b n }的公比为q ,则q 3=b 4b 1=8,从而q =2,故{b n }的前n 项和T n =b 11-q n 1-q =1×1-2n1-2=2n-1.[谨记通法]几类可以使用公式法求和的数列(1)等差数列、等比数列以及由等差数列、等比数列通过加、减构成的数列,它们可以使用等差数列、等比数列的求和公式求解.(2)奇数项和偶数项分别构成等差数列或等比数列的,可以分项数为奇数和偶数时,分别使用等差数列或等比数列的求和公式.考点二 分组转化法求和重点保分型考点——师生共研[典例引领](2018·天一中学检测)已知数列{a n }的首项a 1=3,通项a n =2n p +nq (n ∈N *,p ,q 为常数),且a 1,a 4,a 5成等差数列.求:(1)p ,q 的值;(2)数列{a n }前n 项和S n .解:(1)由a 1=3,得2p +q =3,①又由a 4=24p +4q ,a 5=25p +5q ,且a 1+a 5=2a 4, 得3+25p +5q =25p +8q ,② 由①②解得p =1,q =1. (2)由(1),知a n =2n+n .所以S n =(2+22+ (2))+(1+2+…+n )=21-2n1-2+n 1+n2=2n +1-2+n 2+n2.[由题悟法]分组转化法求和的常见类型[提醒] 某些数列的求和是将数列转化为若干个可求和的新数列的和或差,从而求得原数列的和,注意在含有字母的数列中对字母的讨论.[即时应用]1.求数列1+1,1a +4,1a 2+7,1a 3+10,…,1an -1+(3n -2)的前n 项和.解:设数列的通项为a n ,前n 项和为S n ,则a n =1a n -1+(3n -2),∴S n =⎝⎛⎭⎪⎫1+1a +1a2+…+1a n -1+[1+4+7+…+(3n -2)].当a =1时,S n =n +n 1+3n -22=3n 2+n 2;当a ≠1时,S n =1-1a n1-1a+n1+3n -22=a n-1a n -a n -1+n3n -12. 2.(2018·南京四校联考)在等差数列{a n }中,a 2+a 7=-23,a 3+a 8=-29. (1)求数列{a n }的通项公式;(2)设数列{a n +b n }是首项为1,公比为q 的等比数列,求{b n }的前n 项和S n . 解:(1)设等差数列{a n }的公差是d . 因为a 3+a 8-(a 2+a 7)=2d =-6, 所以d =-3,所以a 2+a 7=2a 1+7d =-23,解得a 1=-1, 所以数列{a n }的通项公式为a n =-3n +2.(2)因为数列{a n +b n }是首项为1,公比为q 的等比数列, 所以a n +b n =qn -1,即-3n +2+b n =qn -1,所以b n =3n -2+q n -1.所以S n =[1+4+7+…+(3n -2)]+(1+q +q 2+…+q n -1)=n 3n -12+(1+q +q2+…+qn -1),故当q =1时,S n =n 3n -12+n =3n 2+n 2;当q ≠1时,S n =n 3n -12+1-q n1-q. 考点三 错位相减法求和重点保分型考点——师生共研[典例引领](2018·徐州调研)已知数列{a n }的前n 项和为S n ,满足S n =2a n -1,n ∈N *.数列{b n }满足nb n +1-(n +1)b n =n (n +1),n ∈N *,且b 1=1.(1)求数列{a n }和{b n }的通项公式;(2)若c n =a n ·b n ,数列{c n }的前n 项和为T n ,对任意的n ∈N *,都有T n ≤nS n -a ,求实数a 的取值范围.解:(1)当n =1时,S 1=2a 1-1=a 1,所以a 1=1. 当n ≥2时,S n =2a n -1,S n -1=2a n -1-1, 两式相减得a n =2a n -1,所以数列{a n }是首项a 1=1,公比q =2的等比数列, 故数列{a n }的通项公式为a n =2n -1.由nb n +1-(n +1)b n =n (n +1)两边同除以n (n +1), 得b n +1n +1-b nn=1, 所以数列⎩⎨⎧⎭⎬⎫b n n 是首项b 1=1,公差d =1的等差数列,所以b n n=n , 故数列{b n }的通项公式为b n =n 2. (2)由(1)得c n =a n ·b n =n ·2n -1,于是T n =1×20+2×2+3×22+…+n ×2n -1, 所以2T n =1×2+2×22+3×23+…+n ×2n,两式相减得-T n =1+2+22+…+2n -1-n ×2n=1-2n1-2-n ×2n,所以T n =(n -1)·2n+1, 由(1)得S n =2a n -1=2n-1, 因为对∀n ∈N *,都有T n ≤nS n -a , 即(n -1)·2n+1≤n (2n-1)-a 恒成立, 所以a ≤2n-n -1恒成立, 记c n =2n -n -1, 所以a ≤(c n )min , 因为c n +1-c n =[2n +1-(n +1)-1]-(2n -n -1)=2n-1>0,从而数列{c n }为递增数列,所以当n =1时,c n 取最小值c 1=0,于是a ≤0, 所以实数a 的取值范围为(-∞,0].[由题悟法]用错位相减法求和的3个注意事项(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n -qS n ”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.[即时应用](2019·海门中学月考)已知数列{a n }的前n 项和为S n ,S n =n 2+n . (1)求{a n }的通项公式a n ;(2)若a k +1,a 2k ,a 2k +3(k ∈N *)恰好依次为等比数列{b n }的第一、第二、第三项,求数列⎩⎨⎧⎭⎬⎫n b n 的前n 项和T n .解:(1)当n =1时,a 1=S 1=12+1=2.当n ≥2时,a n =S n -S n -1=(n 2+n )-[(n -1)2+(n -1)]=2n . 当n =1时,符合上式, ∴a n =2n (n ∈N *).(2)由题意知a k +1,a 2k ,a 2k +3成等比数列,∴a 22k =a k +1·a 2k +3, 即(2·2k )2=2(k +1)·2(2k +3),解得k =3. ∴b 1=a 4=8,b 2=a 6=12,公比q =128=32,∴b n =8·⎝ ⎛⎭⎪⎫32n -1,∴n b n =18n ·⎝ ⎛⎭⎪⎫23n -1, ∴T n =18×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫230+2×⎝ ⎛⎭⎪⎫231+…+n ×⎝ ⎛⎭⎪⎫23n -1. ① ∴23T n =18×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫231+2×⎝ ⎛⎭⎪⎫232+…+n -1×⎝ ⎛⎭⎪⎫23n -1+n ×⎝ ⎛⎭⎪⎫23n . ② ①-②,得13T n =18×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫230+⎝ ⎛⎭⎪⎫231+…+⎝ ⎛⎭⎪⎫23n -1-18×n ×⎝ ⎛⎭⎪⎫23n =38-3+n 8⎝ ⎛⎭⎪⎫23n ,则T n =98-9+3n 8⎝ ⎛⎭⎪⎫23n.考点四 裂项相消法求和 题点多变型考点——多角探明[锁定考向]裂项相消法求和是历年高考的重点,命题角度凸显灵活多变,在解题中要善于利用裂项相消的基本思想,变换数列a n 的通项公式,达到求解目的.常见的命题角度有: (1)形如a n =1nn +k 型; (2)形如a n =1n +k +n型;(3)形如a n =n +1n 2n +22型.[题点全练]角度一:形如a n =1nn +k型 1.(2019·启东一中检测)在数列{}a n 中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n ⎝⎛⎭⎪⎫S n -12.(1)求S n 的表达式; (2)设b n =S n2n +1,求{}b n 的前n 项和T n . 解:(1)∵S 2n =a n ⎝ ⎛⎭⎪⎫S n -12,a n =S n -S n -1(n ≥2),∴S 2n =(S n -S n -1)⎝ ⎛⎭⎪⎫S n -12,即2S n -1S n =S n -1-S n . 由题意得S n -1·S n ≠0, ∴1S n -1S n -1=2,∴数列⎩⎨⎧⎭⎬⎫1S n 是首项为1S 1=1a 1=1,公差为2的等差数列,∴1S n=1+2(n -1)=2n -1,∴S n =12n -1. (2)∵b n =S n 2n +1=12n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1,∴T n =b 1+b 2+…+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1=12⎝⎛⎭⎪⎫1-12n +1=n 2n +1. 角度二:形如a n =1n +k +n型2.已知函数f (x )=x α的图象过点(4,2),令a n =1f n +1+f n,n ∈N *.记数列{a n }的前n 项和为S n ,则S 2 018=________.解析:由f (4)=2可得4α=2,解得α=12,则f (x )=x 12.所以a n =1fn +1+f n =1n +1+n=n +1-n ,S 2 018=a 1+a 2+a 3+…+a 2 018=(2-1)+(3-2)+(4-3)+…+( 2 018-2 017)+( 2 019- 2 018)= 2 019-1. 答案: 2 019-1 角度三:形如a n =n +1n 2n +22型3.正项数列{a n }的前n 项和S n 满足:S 2n -(n 2+n -1)S n -(n 2+n )=0. (1)求数列{a n }的通项公式a n ; (2)令b n =n +1n +22a 2n ,数列{b n }的前n 项和为T n .证明:对于任意的n ∈N *,都有T n <564. 解:(1)由S 2n -(n 2+n -1)S n -(n 2+n )=0, 得[S n -(n 2+n )](S n +1)=0.由于{a n }是正项数列,所以S n >0,S n =n 2+n . 于是a 1=S 1=2,当n ≥2时,a n =S n -S n -1=n 2+n -(n -1)2-(n -1)=2n .综上,数列{a n }的通项公式为a n =2n . (2)证明:由于a n =2n , 故b n =n +1n +22a 2n =n +14n 2n +22=116⎣⎢⎡⎦⎥⎤1n2-1n +22.T n =116⎣⎢⎡1-132+122-142+132-152+…+1n -12-1n +12+⎦⎥⎤1n2-1n +22=116⎣⎢⎡⎦⎥⎤1+122-1n +12-1n +22<116⎝ ⎛⎭⎪⎫1+122=564. [通法在握]利用裂项相消法求和的注意事项(1)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项; (2)将通项裂项后,有时需要调整前面的系数,使裂开的两项之差和系数之积与原通项相等.如:若{a n }是等差数列,则1a n a n +1=1d ⎝ ⎛⎭⎪⎫1a n -1a n +1,1a n a n +2=12d ⎝ ⎛⎭⎪⎫1a n -1a n +2. [演练冲关](2018·镇江调研)已知等差数列{a n }中,2a 2+a 3+a 5=20,且前10项和S 10=100. (1)求数列{a n }的通项公式; (2)若b n =1a n a n +1,求数列{b n }的前n 项和.解:(1)由已知得⎩⎪⎨⎪⎧2a 2+a 3+a 5=4a 1+8d =20,10a 1+10×92d =10a 1+45d =100,解得⎩⎪⎨⎪⎧a 1=1,d =2.所以{a n }的通项公式为a n =1+2(n -1)=2n -1. (2)b n =12n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1,所以数列{b n }的前n 项和T n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1= 12×⎝ ⎛⎭⎪⎫1-12n +1=n 2n +1. 一抓基础,多练小题做到眼疾手快1.(2019·镇江调研)已知{}a n 是等差数列,S n 为其前n 项和,若a 3+a 7=8,则S 9=_______.解析:在等差数列{}a n 中,由a 3+a 7=8,得a 1+a 9=8, 所以S 9=a 1+a 9×92=8×92=36.答案:36 2.数列{1+2n -1}的前n 项和为________.解析:由题意得a n =1+2n -1,所以S n =n +1-2n1-2=n +2n-1.答案:n +2n-13.数列{a n }的通项公式是a n =(-1)n(2n -1),则该数列的前100项之和为________. 解析:根据题意有S 100=-1+3-5+7-9+11-…-197+199=2×50=100. 答案:1004.(2018·泰州期末)已知数列{}a n 的通项公式为a n =n ·2n -1,前n 项和为S n ,则S n =________.解析:∵a n =n ·2n -1,∴S n =1×1+2×2+3×22+…+n ×2n -1, 2S n =1×2+2×22+3×23+…+n ×2n,两式相减可得-S n =1+2+22+…+2n -1-n ·2n=1-2n1-2-n ·2n,化简可得S n =(n -1)2n+1. 答案:(n -1)2n+15.已知等比数列{}a n 的公比q >1,且a 5-a 1=30,a 4-a 2=12,则数列⎩⎨⎧⎭⎬⎫a na n -1a n +1-1的前n 项和为________. 解析:因为a 5-a 1=30,a 4-a 2=12, 所以a 1(q 4-1)=30,a 1(q 3-q )=12, 两式相除,化简得2q 2-5q +2=0, 解得q =12或2,因为q >1, 所以q =2,a 1=2. 所以a n =2·2n -1=2n.所以a na n -1a n +1-1=2n2n-12n +1-1=12n -1-12n +1-1, 所以T n =1-13+13-17+…+12n -1-12n +1-1=1-12n +1-1.答案:1-12n +1-16.若数列{a n }满足a n -(-1)na n -1=n (n ≥2),S n 是{a n }的前n 项和,则S 40=________. 解析:当n =2k 时,即a 2k -a 2k -1=2k ,① 当n =2k -1时,即a 2k -1+a 2k -2=2k -1,② 当n =2k +1时,即a 2k +1+a 2k =2k +1,③ ①+②得a 2k +a 2k -2=4k -1, ③-①得a 2k +1+a 2k -1=1,S 40=(a 1+a 3+a 5+...+a 39)+(a 2+a 4+a 6+a 8+...+a 40)=1×10+(7+15+23+ (79)=10+107+792=440. 答案:440二保高考,全练题型做到高考达标1.在数列{a n }中,若a 1=2,且对任意正整数m ,k ,总有a m +k =a m +a k ,则{a n }的前n 项和S n =________.解析:依题意得a n +1=a n +a 1,即有a n +1-a n =a 1=2,所以数列{a n }是以2为首项、2为公差的等差数列,a n =2+2(n -1)=2n ,S n =n 2+2n2=n 2+n .答案:n 2+n2.已知数列{a n }中,a n =-4n +5,等比数列{b n }的公比q 满足q =a n -a n -1(n ≥2)且b 1=a 2,则|b 1|+|b 2|+|b 3|+…+|b n |=________.解析:由已知得b 1=a 2=-3,q =-4, 所以b n =(-3)×(-4)n -1,所以|b n |=3×4n -1,即{|b n |}是以3为首项,4为公比的等比数列. 所以|b 1|+|b 2|+…+|b n |=31-4n1-4=4n-1.答案:4n-13.已知数列5,6,1,-5,…,该数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前16项之和S 16=________.解析:根据题意这个数列的前7项分别为5,6,1,-5,-6,-1,5,6,发现从第7项起,数列重复出现,所以此数列为周期数列,且周期为6,前6项和为5+6+1+(-5)+(-6)+(-1)=0.又因为16=2×6+4,所以这个数列的前16项之和S 16=2×0+7=7. 答案:74.对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=2,数列{a n }的“差数列”的通项为2n,则数列{a n }的前n 项和S n =________.解析:因为a n +1-a n =2n,所以a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n -1+2n -2+…+22+2+2=2-2n 1-2+2=2n -2+2=2n ,所以S n =2-2n +11-2=2n +1-2.答案:2n +1-25.(2019·宿迁调研)已知数列{}a n 中,a 1=1,a 2=3,若a n +2+2a n +1+a n =0对任意n ∈N *都成立,则数列{}a n 的前n 项和S n =________.解析:∵a 1=1,a 2=3,a n +2+2a n +1+a n =0, ∴a n +2+a n +1=-(a n +1+a n ),a 2+a 1=4.则数列{}a n +1+a n 是首项为4,公比为-1的等比数列, ∴a n +1+a n =4×(-1)n -1.当n =2k -1时,a 2k +a 2k -1=4×(-1)2k -2=4.∴S n =(a 1+a 2)+(a 3+a 4)+…+(a 2k -1+a 2k )=4k =2n . 当n =2k 时,a 2k +1+a 2k =-4.S n =a 1+(a 2+a 3)+…+(a 2k -2+a 2k -1)=1-4×(k -1)=5-4k =5-4×n +12=3-2n .∴S n =⎩⎪⎨⎪⎧3-2n ,n 为奇数,2n ,n 为偶数.答案:⎩⎪⎨⎪⎧3-2n ,n 为奇数,2n ,n 为偶数6.在等差数列{a n }中,首项a 1=3,公差d =2,若某学生对其中连续10项进行求和,在漏掉一项的前提下,求得余下9项的和为185,则此连续10项的和为________.解析:由已知条件可得数列{a n }的通项公式a n =2n +1,设连续10项为a i +1,a i +2,a i +3,…,a i +10,i ∈N ,设漏掉的一项为a i +k,1≤k ≤10,由a i +1+a i +10×102-a i +k =185,得(2i +3+2i +21)×5-2i -2k -1=185,即18i -2k =66,即9i -k =33,所以34≤9i =k +33≤43,3<349≤i ≤439<5,所以i =4,此时,由36=33+k 得k =3,所以a i +k =a 7=15,故此连续10项的和为200.答案:2007.(2019·邵阳模拟)《九章算术》是我国古代的数学名著,书中《均属章》有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知A ,B ,C ,D ,E 五人分5钱,A ,B 两人所得与C ,D ,E 三人所得相同,且A ,B ,C ,D ,E 每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,E 分得________钱.解析:由题意,设A 所得为a -4d ,B 所得为a -3d ,C 所得为a -2d ,D 所得为a -d ,E 所得为a ,则⎩⎪⎨⎪⎧5a -10d =5,2a -7d =3a -3d ,解得a =23,故E 分得23钱.答案:238.已知数列{a n }中,a 1=2,a 2n =a n +1,a 2n +1=n -a n ,则{a n }的前100项和为________. 解析:由a 1=2,a 2n =a n +1,a 2n +1=n -a n ,得a 2n +a 2n +1=n +1,所以a 1+(a 2+a 3)+(a 4+a 5)+…+(a 98+a 99)=2+2+3+…+50=1 276,因为a 100=1+a 50=1+(1+a 25)=2+(12-a 12)=14-(1+a 6)=13-(1+a 3)=12-(1-a 1)=13,所以a 1+a 2+…+a 100=1 276+13=1 289.答案:1 2899.(2018·苏北四市期末)已知正项数列{a n }的前n 项和为S n ,且a 1=a ,(a n +1)(a n +1+1)=6(S n +n ),n ∈N *.(1)求数列{a n }的通项公式;(2)若对于∀n ∈N *,都有S n ≤n (3n +1)成立,求实数a 的取值范围. 解:(1)当n =1时,(a 1+1)(a 2+1)=6(S 1+1),故a 2=5. 当n ≥2时,(a n -1+1)(a n +1)=6(S n -1+n -1),所以(a n +1)(a n +1+1)-(a n -1+1)(a n +1)=6(S n +n )-6(S n -1+n -1), 即(a n +1)(a n +1-a n -1)=6(a n +1).又a n >0,所以a n +1-a n -1=6,所以a 2k -1=a +6(k -1)=6k +a -6,a 2k =5+6(k -1)=6k -1,故a n =⎩⎪⎨⎪⎧3n +a -3,n 为奇数,3n -1,n 为偶数.(2)当n 为奇数时,S n =12(3n +a -2)(n +1)-n ,由S n ≤n (3n +1),得a ≤3n 2+3n +2n +1恒成立,令f (n )=3n 2+3n +2n +1,则f (n +1)-f (n )=3n 2+9n +4n +2n +1>0,所以a ≤f (1)=4.当n 为偶数时,S n =12n (3n +a +1)-n ,由S n ≤n (3n +1)得,a ≤3(n +1)恒成立, 所以a ≤9.又a 1=a >0,所以实数a 的取值范围是(0,4].10.(2019·宿迁中学调研)已知各项均为正数的数列{a n }的首项a 1=1,S n 是数列{a n }的前n 项和,且满足a n S n +1-a n +1S n +a n -a n +1=λa n a n +1(λ≠0,n ∈N *).(1)若a 1,a 2,a 3成等比数列,求实数λ的值; (2)若λ=12,求S n .解:(1)令n =1,得a 2=21+λ. 令n =2,得a 2S 3-a 3S 2+a 2-a 3=λa 2a 3, 所以a 3=2λ+4λ+12λ+1.由a 22=a 1a 3,得⎝⎛⎭⎪⎫21+λ2=2λ+4λ+12λ+1, 因为λ≠0,所以λ=1.(2)当λ=12时,a n S n +1-a n +1S n +a n -a n +1=12a n a n +1,所以S n +1a n +1-S n a n +1a n +1-1a n =12,即S n +1+1a n +1-S n +1a n =12, 所以数列⎩⎨⎧⎭⎬⎫S n +1a n 是以2为首项,12为公差的等差数列,所以S n +1a n =2+(n -1)·12, 即S n +1=⎝ ⎛⎭⎪⎫n 2+32a n ,①当n ≥2时,S n -1+1=⎝ ⎛⎭⎪⎫n2+1a n -1,② ①-②得,a n =n +32a n -n +22a n -1,即(n +1)a n =(n +2)a n -1,所以a n n +2=a n -1n +1(n ≥2),所以⎩⎨⎧⎭⎬⎫a n n +2是常数列,且为13,所以a n =13(n +2).代入①得S n =⎝ ⎛⎭⎪⎫n 2+32a n -1=n 2+5n 6. 三上台阶,自主选做志在冲刺名校1.(2018·启东检测)《九章算术》中的“两鼠穿墙题”是我国数学的古典名题:“今有垣厚若干尺,两鼠对穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半,问何日相逢,各穿几何?”题意是“有两只老鼠从墙的两边打洞穿墙,大老鼠第一天进一尺,以后每天加倍;小老鼠第一天也进一尺,以后每天减半.”如果墙足够厚,S n 为前n 天两只老鼠打洞长度之和,则S n =________尺.解析:依题意大老鼠每天打洞的距离构成以1为首项,2为公比的等比数列,所以前n 天大老鼠打洞的距离共为1×1-2n1-2=2n-1.同理可得前n 天小老鼠打洞的距离共为1×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=2-12n -1,所以S n =2n -1+2-12n -1=2n-12n -1+1. 答案:2n-12n -1+12.(2018·苏州高三暑假测试)等差数列{a n }的前n 项和为S n ,且a n -S n =n 2-16n +15(n ∈N *),若对任意n ∈N *,总有S n ≤S k ,则k 的值为________.解析:设等差数列{a n }的公差为d ,则a n -S n =a 1+(n -1)d -⎣⎢⎡⎦⎥⎤na 1+n n -12d =-d 2n 2+⎝ ⎛⎭⎪⎫32d -a 1n +a 1-d =n 2-16n +15,所以⎩⎪⎨⎪⎧-d2=1,32d -a 1=-16,a 1-d =15,解得⎩⎪⎨⎪⎧a 1=13,d =-2,所以S n =13n +n n -12×(-2)=-n 2+14n =-(n -7)2+49,所以(S n )max =S 7,所以S n ≤S 7对任意n ∈N *恒成立,所以k 的值为7.答案:73.(2019·南京一模)平面内的“向量列”{a n },如果对于任意的正整数n ,均有a n +1-a n =d ,则称此“向量列”为“等差向量列”,d 称为“公差向量”;平面内的“向量列”{b n },如果对于任意的正整数n ,均有b n +1=q ·b n (q ≠0),则称此“向量列”为“等比向量列”,常数q 称为“公比”.(1)如果“向量列”{a n }是“等差向量列”,用a 1和“公差向量”d 表示a 1+a 2+…+a n ; (2)已知{a n }是“等差向量列”,“公差向量”d =(3,0),a 1=(1,1),a n =(x n ,y n ),{b n }是“等比向量列”,“公比”q =2,b 1=(1,3),b n =(m n ,k n ),求a 1·b 1+a 2·b 2+…+a n ·b n .解:(1)∵“向量列”{a n }是“等差向量列”, ∴a 1+a 2…+a n =n a 1+(1+2+…+n -1)d =n a 1+n n -12d.(2)∵a 1=(1,1),d =(3,0),∴a n =(3n -2,1). ∵b 1=(1,3),q =2,∴b n =(2n -1,3·2n -1).∴a n ·b n =(3n -2,1)·(2n -1,3·2n -1)=(3n -2)·2n -1+3·2n -1=(3n +1)·2n -1,设S n =a 1·b 1+a 2·b 2+…+a n ·b n , 则S n ==4·20+7·21+…+(3n +1)·2n -1,2S n =4·2+7·22+…+(3n +1)·2n, 两式相减可得,-S n =4+3(2+22+…+2n -1)-(3n +1)·2n=4+3·21-2n -11-2-(3n +1)·2n =(2-3n )·2n-2,∴a 1·b 1+a 2·b 2+…+a n ·b n =(3n -2)·2n+2.。
2021届高考数学一轮复习第六章数列第2节等差数列及其前n项和教学案含解析新人教A版

第2节 等差数列及其前n 项和考试要求 1.理解等差数列的概念;2.掌握等差数列的通项公式与前n 项和公式;3.能在具体的问题情境中识别数列的等差关系,并能利用等差数列的有关知识解决相应的问题;4.了解等差数列与一次函数的关系.知 识 梳 理1.等差数列的概念(1)如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列.数学语言表达式:a n +1-a n =d (n ∈N *,d 为常数).(2)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且A =a +b2.2.等差数列的通项公式与前n 项和公式(1)若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)d 2=n (a 1+a n )2.3.等差数列的性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n .(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. (4)若S n 为等差数列{a n }的前n 项和,则数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列. (5)若S n 为等差数列{a n }的前n 项和,则数列⎩⎨⎧⎭⎬⎫S n n 也为等差数列.[常用结论与微点提醒]1.已知数列{a n }的通项公式是a n =pn +q (其中p ,q 为常数),则数列{a n }一定是等差数列,且公差为p .2.在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值.3.等差数列{a n }的单调性:当d >0时,{a n }是递增数列;当d <0时,{a n }是递减数列;当d =0时,{a n }是常数列.4.数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数).5.用等差数列的定义判断数列是否为等差数列,要注意定义中的三个关键词:“从第2项起”“每一项与它的前一项的差”“同一个常数”.诊 断 自 测1.判断下列结论正误(在括号内打“√”或“×”)(1)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( ) (2)等差数列{a n }的单调性是由公差d 决定的.( )(3)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( ) (4)等差数列的前n 项和公式是常数项为0的二次函数.( ) 解析 (3)若公差d =0,则通项公式不是n 的一次函数. (4)若公差d =0,则前n 项和不是二次函数. 答案 (1)√ (2)√ (3)× (4)×2.(老教材必修5P46AT2改编)设数列{a n }是等差数列,其前n 项和为S n ,若a 6=2且S 5=30,则S 8等于( ) A.31B.32C.33D.34解析 由已知可得⎩⎪⎨⎪⎧a 1+5d =2,5a 1+10d =30,解得⎩⎪⎨⎪⎧a 1=263,d =-43,∴S 8=8a 1+8×72d =32.答案 B3.(老教材必修5P68T8改编)在等差数列{a n }中a 3+a 4+a 5=6,则S 7=( ) A.8B.12C.14D.18解析 a 3+a 4+a 5=3a 4=6,∴a 4=2,S 7=12×7×(a 1+a 7)=7a 4=14.答案 C4.(2018·全国Ⅰ卷)记S n 为等差数列{a n }的前n 项和.若3S 3=S 2+S 4,a 1=2,则a 5=( ) A.-12B.-10C.10D.12解析 设等差数列{a n }的公差为d ,则3(3a 1+3d )=2a 1+d +4a 1+6d ,即d =-32a 1.又a 1=2,∴d =-3,∴a 5=a 1+4d =2+4×(-3)=-10. 答案 B5.(2020·上饶模拟)已知等差数列{a n },a 10=10,其前10项和S 10=70,则公差d =( ) A.-29B.29C.-23D.23解析 因为S 10=12×10×(a 1+a 10)=12×10×(a 1+10)=70,所以a 1=4,因为a 10=a 1+9d =10,所以d =23.答案 D6.(2019·全国Ⅲ卷)记S n 为等差数列{a n }的前n 项和.若a 1≠0,a 2=3a 1,则S 10S 5=________. 解析 由a 1≠0,a 2=3a 1,可得d =2a 1, 所以S 10=10a 1+10×92d =100a 1,S 5=5a 1+5×42d =25a 1,所以S 10S 5=4. 答案 4考点一 等差数列基本量的运算【例1】 (1)(一题多解)(2019·江苏卷)已知数列{a n }(n ∈N *)是等差数列,S n 是其前n 项和.若a 2a 5+a 8=0,S 9=27,则S 8的值是________.(2)(2019·全国Ⅰ卷)记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( ) A.a n =2n -5 B.a n =3n -10 C.S n =2n 2-8nD.S n =12n 2-2n解析 (1)法一 由S 9=27⇒9(a 1+a 9)2=27⇒a 1+a 9=6⇒2a 5=6⇒a 5=3,即a 1+4d =3. 又a 2a 5+a 8=0⇒2a 1+5d =0, 解得a 1=-5,d =2.故S 8=8a 1+8×(8-1)2d =16.法二 同法一得a 5=3.又a 2a 5+a 8=0⇒3a 2+a 8=0⇒2a 2+2a 5=0⇒a 2=-3. ∴d =a 5-a 23=2,a 1=a 2-d =-5.故S 8=8a 1+8×(8-1)2d =16.(2)设首项为a 1,公差为d .由S 4=0,a 5=5可得⎩⎪⎨⎪⎧a 1+4d =5,4a 1+6d =0,解得⎩⎪⎨⎪⎧a 1=-3,d =2.所以a n =-3+2(n -1)=2n -5,S n =n ×(-3)+n (n -1)2×2=n 2-4n .答案 (1)16 (2)A规律方法 1.等差数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想来解决问题.2.数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.【训练1】 (2019·全国Ⅰ卷)记S n 为等差数列{a n }的前n 项和.已知S 9=-a 5. (1)若 a 3=4,求{a n }的通项公式; (2)若a 1>0,求使得S n ≥a n 的n 的取值范围. 解 (1)设{a n }的公差为d .由S 9=-a 5得9a 1+9×82d =-(a 1+4d ),即a 1+4d =0.由a 3=4得a 1+2d =4. 于是a 1=8,d =-2.因此{a n }的通项公式为a n =10-2n . (2)由(1)得a 1=-4d , 故a n =(n -5)d ,S n =n (n -9)d2.由a 1>0知d <0,故S n ≥a n 等价于n (n -9)2≤n -5,即n 2-11n +10≤0,解得1≤n ≤10, 所以n 的取值范围是{n |1≤n ≤10,n ∈N }. 考点二 等差数列的判定与证明典例迁移【例2】 (经典母题)若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 成等差数列;(2)求数列{a n }的通项公式.(1)证明 当n ≥2时,由a n +2S n S n -1=0, 得S n -S n -1=-2S n S n -1,所以1S n -1S n -1=2,又1S 1=1a 1=2,故⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列. (2)解 由(1)可得1S n =2n ,∴S n =12n .当n ≥2时,a n =S n -S n -1=12n -12(n -1)=n -1-n 2n (n -1)=-12n (n -1).当n =1时,a 1=12不适合上式.故数列{a n}的通项公式为a n=⎩⎪⎨⎪⎧12,n =1,-12n (n -1),n ≥2.【迁移1】 本例条件不变,判断数列{a n }是否为等差数列,并说明理由. 解 因为a n =S n -S n -1(n ≥2),a n +2S n S n -1=0, 所以S n -S n -1+2S n S n -1=0(n ≥2). 所以1S n -1S n -1=2(n ≥2).又1S 1=1a 1=2,所以⎩⎨⎧⎭⎬⎫1S n 是以2为首项,2为公差的等差数列.所以1S n =2+(n -1)×2=2n ,故S n =12n.所以当n ≥2时,a n =S n -S n -1=12n -12(n -1)=-12n (n -1),所以a n +1=-12n (n +1),又a n +1-a n =-12n (n +1)--12n (n -1)=-12n ⎝ ⎛⎭⎪⎫1n +1-1n -1=1n (n -1)(n +1).所以当n ≥2时,a n +1-a n 的值不是一个与n 无关的常数,故数列{a n }不是等差数列.【迁移2】 本例中,若将条件变为a 1=35,na n +1=(n +1)a n +n (n +1),试求数列{a n }的通项公式.解 由已知可得a n +1n +1=a n n +1,即a n +1n +1-a nn=1, 又a 1=35,∴⎩⎨⎧⎭⎬⎫a n n 是以a 11=35为首项,1为公差的等差数列,∴a n n =35+(n -1)·1=n -25, ∴数列{a n }的通项公式为a n =n 2-25n .规律方法 1.证明数列是等差数列的主要方法:(1)定义法:对于n ≥2的任意自然数,验证a n -a n -1为同一常数. (2)等差中项法:验证2a n -1=a n +a n -2(n ≥3,n ∈N *)都成立. 2.判定一个数列是等差数列还常用到的结论:(1)通项公式:a n =pn +q (p ,q 为常数)⇔{a n }是等差数列.(2)前n 项和公式:S n =An 2+Bn (A ,B 为常数)⇔{a n }是等差数列.问题的最终判定还是利用定义.【训练2】 记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6. (1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列. 解 (1)设{a n }的公比为q ,由题设可得⎩⎪⎨⎪⎧a 1(1+q )=2,a 1(1+q +q 2)=-6,解得⎩⎪⎨⎪⎧q =-2,a 1=-2.故{a n }的通项公式为a n =(-2)n.(2)由(1)可得S n =a 1(1-q n )1-q =-23+(-1)n 2n +13.由于S n +2+S n +1=-43+(-1)n 2n +3-2n +23=2⎣⎢⎡⎦⎥⎤-23+(-1)n ·2n +13=2S n , 故S n +1,S n ,S n +2成等差数列. 考点三 等差数列的性质及应用【例3】 (1)(2019·安阳联考)在等差数列{a n }中,若a 2+a 8=8,则(a 3+a 7)2-a 5=( )A.60B.56C.12D.4(2)设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( ) A.63B.45C.36D.27解析 (1)∵在等差数列{a n }中,a 2+a 8=8, ∴a 2+a 8=a 3+a 7=2a 5=8,解得a 5=4, 所以(a 3+a 7)2-a 5=82-4=60.(2)由{a n }是等差数列,得S 3,S 6-S 3,S 9-S 6为等差数列, 即2(S 6-S 3)=S 3+(S 9-S 6), 得到S 9-S 6=2S 6-3S 3=45, 所以a 7+a 8+a 9=45. 答案 (1)A (2)B规律方法 1.项的性质:在等差数列{a n }中,若m +n =p +q (m ,n ,p ,q ∈N *),则a m +a n =a p +a q .2.和的性质:在等差数列{a n }中,S n 为其前n 项和,则 (1)S 2n =n (a 1+a 2n )=…=n (a n +a n +1); (2)S 2n -1=(2n -1)a n .【训练3】 (1)(2020·广东六校联考)等差数列{a n }中,若a 4+a 6+a 8+a 10+a 12=120,则a 9-13a 11的值是( ) A.14B.15C.16D.17(2)等差数列{a n }与{b n }的前n 项和分别为S n 和T n ,若S n T n =3n -22n +1,则a 7b 7等于( )A.3727B.1914C.3929D.43解析 (1)依题意,由a 4+a 6+a 8+a 10+a 12=120,得5a 8=120,即a 8=24,所以a 9-13a 11=13(3a 9-a 11)=13(a 9+a 7+a 11-a 11)=13(a 9+a 7)=23a 8=23×24=16.(2)a 7b 7=2a 72b 7=a 1+a 13b 1+b 13=a 1+a 132×13b 1+b 132×13=S 13T 13=3×13-22×13+1=3727.答案 (1)C (2)A考点四 等差数列的最值问题 多维探究角度1 等差数列前n 项和的最值【例4-1】 (2019·北京卷)设{a n }是等差数列,a 1=-10,且a 2+10,a 3+8,a 4+6成等比数列.(1)求{a n }的通项公式;(2)记{a n }的前n 项和为S n ,求S n 的最小值. 解 (1)设{a n }的公差为d . 因为a 1=-10,所以a 2=-10+d ,a 3=-10+2d ,a 4=-10+3d . 因为a 2+10,a 3+8,a 4+6成等比数列, 所以(a 3+8)2=(a 2+10)(a 4+6). 所以(-2+2d )2=d (-4+3d ). 解得d =2.所以{a n }的通项公式为a n =a 1+(n -1)d =2n -12. (2)由(1)知,a n =2n -12.则当n ≥7时,a n >0;当n =6时,a n =0,当n <6时,a n <0; 所以S n 的最小值为S 5=S 6=-30.规律方法 求等差数列前n 项和的最值,常用的方法:(1)利用等差数列的单调性,求出其正负转折项,或者利用性质求其正负转折项,便可求得和的最值;(2)利用公差不为零的等差数列的前n 项和S n =An 2+Bn (A ,B 为常数,A ≠0)为二次函数,通过二次函数的性质求最值. 角度2 等差数列项的最值【例4-2】 (2020·淮北模拟)S n 是等差数列{a n }的前n 项和,S 2 020<S 2 018,S 2 019<S 2 020,则S n <0时n 的最大值是( ) A.2 019B.2 020C.4 037D.4 038解析 因为S 2 020<S 2 018,S 2 019<S 2 020,所以a 2 020+a 2 019<0,a 2 020>0.所以S 4 038=4 038(a 1+a 4 038)2=2 019(a 2 020+a 2 019)<0,S 4 039=4 039(a 1+a 4 039)2=4 039a 2 020>0,可知S n <0时n 的最大值是4 038. 答案 D规律方法 本题借助等差数列的性质求出S n <0中n 的取值范围,从而求出n 的最大值,这种题型要与S n 的最值区别开来.【训练4】 (1)(角度1)等差数列{a n }中,已知|a 6|=|a 11|,且公差d >0,则其前n 项和取最小值时n 的值为( ) A.6B.7C.8D.9(2)(角度2)设等差数列{a n }满足a 3+a 7=36,a 4a 6=275,且a n a n +1有最小值,则这个最小值为________.解析 (1)由d >0可得等差数列{a n }是递增数列,又|a 6|=|a 11|,所以-a 6=a 11,即-a 1-5d =a 1+10d ,所以a 1=-15d 2,则a 8=-d 2<0,a 9=d2>0,所以前8项和为前n 项和的最小值.故选C.(2)设等差数列{a n }的公差为d ,因为a 3+a 7=36,所以a 4+a 6=36,又a 4a 6=275,联立,解得⎩⎪⎨⎪⎧a 4=11,a 6=25或⎩⎪⎨⎪⎧a 4=25,a 6=11,当⎩⎪⎨⎪⎧a 4=11,a 6=25时,可得⎩⎪⎨⎪⎧a 1=-10,d =7,此时a n =7n -17,a 2=-3,a 3=4,易知当n ≤2时,a n <0,当n ≥3时,a n >0,所以a 2a 3=-12为a n a n +1的最小值;当⎩⎪⎨⎪⎧a 4=25,a 6=11时,可得⎩⎪⎨⎪⎧a 1=46,d =-7,此时a n =-7n +53,a 7=4,a 8=-3,易知当n ≤7时,a n >0,当n ≥8时,a n <0,所以a 7a 8=-12为a n a n +1的最小值.综上,a n a n +1的最小值为-12. 答案 (1)C (2)-12A 级 基础巩固一、选择题1.(2019·衡阳一模)在等差数列{a n }中,a 1+3a 8+a 15=120,则a 2+a 14的值为( ) A.6B.12C.24D.48解析 ∵在等差数列{a n }中,a 1+3a 8+a 15=120, 由等差数列的性质,a 1+3a 8+a 15=5a 8=120, ∴a 8=24,∴a 2+a 14=2a 8=48. 答案 D2.(2020·河南名校联盟联合调研)设等差数列{a n }的前n 项和为S n ,若a 2+a 7+a 8+a 13=2π21,则tan S 14=( ) A.-33B.33C.- 3D. 3解析 ∵{a n }是等差数列,且a 2+a 7+a 8+a 13=2π21,∴a 7+a 8=π21,∴S 14=14(a 1+a 14)2=7(a 7+a 8)=π3,∴tan S 14=tan π3= 3.答案 D3.(2020·武汉调研)已知数列{a n }的前n 项和为S n ,a 1=1,a 2=2,且对任意n >1,n ∈N *,满足S n +1+S n -1=2(S n +1),则S 10的值为( ) A.90B.91C.96D.100解析 ∵对任意n >1,n ∈N *,满足S n +1+S n -1=2(S n +1), ∴S n +1-S n =S n -S n -1+2, ∴a n +1-a n =2.∴数列{a n }在n ≥2时是等差数列,公差为2. 又a 1=1,a 2=2,∴S 10=1+9×2+9×82×2=91.故选B. 答案 B4.(2019·合肥质检)中国古诗词中,有一道“八子分绵”的数学名题:“九百九十六斤绵,赠分八子作盘缠,次第每人多十七,要将第八数来言”.题意是:把996斤绵分给8个儿子作盘缠,按照年龄从大到小的顺序依次分绵,年龄小的比年龄大的多17斤绵,那么第8个儿子分到的绵是( ) A.174斤B.184斤C.191斤D.201斤解析 用a 1,a 2,…,a 8表示8个儿子按照年龄从大到小得到的绵数, 由题意得数列a 1,a 2,…,a 8是公差为17的等差数列,且这8项的和为996, ∴8a 1+8×72×17=996,解之得a 1=65.∴a 8=65+7×17=184,即第8个儿子分到的绵是184斤. 答案 B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学案29 等差数列及其前n 项和导学目标: 1.理解等差数列的概念.2.掌握等差数列的通项公式与前n 项和公式.3.了解等差数列与一次函数的关系.4.能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题.自主梳理1.等差数列的有关定义 (1)一般地,如果一个数列从第____项起,每一项与它的前一项的____等于同一个常数,那么这个数列就叫做等差数列.符号表示为____________ (n ∈N *,d 为常数).(2)数列a ,A ,b 成等差数列的充要条件是__________,其中A 叫做a ,b 的__________. 2.等差数列的有关公式(1)通项公式:a n =________,a n =a m +________ (m ,n ∈N *). (2)前n 项和公式:S n =__________=____________. 3.等差数列的前n 项和公式与函数的关系S n =d 2n 2+⎝⎛⎭⎪⎫a 1-d 2n .数列{a n }是等差数列的充要条件是其前n 项和公式S n =__________. 4.等差数列的性质(1)若m +n =p +q (m ,n ,p ,q ∈N *),则有__________,特别地,当m +n =2p 时,______________.(2)等差数列中,S m ,S 2m -S m ,S 3m -S 2m 成等差数列.(3)等差数列的单调性:若公差d >0,则数列为____________;若d <0,则数列为__________;若d =0,则数列为________.自我检测1.(2010·北京海淀区模拟)已知等差数列{a n }中,a 5+a 9-a 7=10,记S n =a 1+a 2+…+a n ,则S 13的值为 ( )A .130B .260C .156D .168 2.等差数列{a n }的前n 项和为S n ,且S 3=6,a 3=4,则公差d 等于 ( )A .1 B.53C .2D .33.(2010·泰安一模)设S n 是等差数列{a n }的前n 项和,若a 5a 3=59,则S 9S 5等于( )A .1B .-1C .2 D.124.(2010·湖南师大附中)若等差数列{a n }的前5项之和S 5=25,且a 2=3,则a 7等于 ( )A .12B .13C .14D .15 5.设等差数列{a n }的前n 项和为S n .若S 9=72,则a 2+a 4+a 9=________.探究点一 等差数列的基本量运算例1 等差数列{a n }的前n 项和记为S n .已知a 10=30,a 20=50, (1)求通项a n ;(2)若S n =242,求n .变式迁移1 设等差数列{a n }的公差为d (d ≠0),它的前10项和S 10=110,且a 1,a 2,a 4成等比数列,求公差d 和通项公式a n .探究点二 等差数列的判定例2 已知数列{a n }中,a 1=35,a n =2-1a n -1 (n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n∈N *).(1)求证:数列{b n }是等差数列;(2)求数列{a n }中的最大值和最小值,并说明理由.变式迁移2 已知数列{a n }中,a 1=5且a n =2a n -1+2n -1(n ≥2且n ∈N *). (1)求a 2,a 3的值.(2)是否存在实数λ,使得数列{a n +λ2n }为等差数列?若存在,求出λ的值;若不存在,说明理由.探究点三 等差数列性质的应用例3 若一个等差数列的前5项之和为34,最后5项之和为146,且所有项的和为360,求这个数列的项数.变式迁移3 已知数列{a n }是等差数列.(1)前四项和为21,末四项和为67,且前n 项和为286,求n ; (2)若S n =20,S 2n =38,求S 3n ;(3)若项数为奇数,且奇数项和为44,偶数项和为33,求数列的中间项和项数.探究点四 等差数列的综合应用例4 (2011·厦门月考)已知数列{a n }满足2a n +1=a n +a n +2 (n ∈N *),它的前n 项和为S n ,且a 3=10,S 6=72.若b n =12a n -30,求数列{b n }的前n 项和的最小值.变式迁移4 在等差数列{a n }中,a 16+a 17+a 18=a 9=-36,其前n 项和为S n . (1)求S n 的最小值,并求出S n 取最小值时n 的值. (2)求T n =|a 1|+|a 2|+…+|a n |.1.等差数列的判断方法有:(1)定义法:a n +1-a n =d (d 是常数)⇔{a n }是等差数列.(2)中项公式:2a n +1=a n +a n +2 (n ∈N *)⇔{a n }是等差数列. (3)通项公式:a n =pn +q (p ,q 为常数)⇔{a n }是等差数列.(4)前n 项和公式:S n =An 2+Bn (A 、B 为常数)⇔{a n }是等差数列.2.对于等差数列有关计算问题主要围绕着通项公式和前n 项和公式,在两个公式中共五个量a 1、d 、n 、a n 、S n ,已知其中三个量可求出剩余的量,而a 与d 是最基本的,它可以确定等差数列的通项公式和前n 项和公式.3.要注意等差数列通项公式和前n 项和公式的灵活应用,如a n =a m +(n -m )d ,S 2n -1=(2n -1)a n 等.4.在遇到三个数成等差数列问题时,可设三个数为①a ,a +d ,a +2d ;②a -d ,a ,a +d ;③a -d ,a +d ,a +3d 等可视具体情况而定.(满分:75分)一、选择题(每小题5分,共25分)1.(2010·重庆)在等差数列{a n }中,a 1+a 9=10,则a 5的值为 ( )A .5B .6C .8D .102.(2010·全国Ⅱ)如果等差数列{}a n 中,a 3+a 4+a 5=12,那么a 1+a 2+…+a 7= ( )A .14B .21C .28D .353.(2010·山东潍坊五校联合高三期中)已知{a n }是等差数列,a 1=-9,S 3=S 7,那么使其前n 项和S n 最小的n 是 ( )A .4B .5C .6D .74.在等差数列{a n }中,若a 4+a 6+a 8+a 10+a 12=120,则a 9-13a 11的值为 ( )A .14B .15C .16D .175.等差数列{a n }的前n 项和满足S 20=S 40,下列结论中正确的是 ( )A .S 30是S n 中的最大值B .S 30是S n 中的最小值 题号 1 2 3 4 5 答案 6.(2010·辽宁)设S n 为等差数列{a n }的前n 项和,若S 3=3,S 6=24,则a 9=________.7.(2009·海南,宁夏)等差数列{a n }的前n 项和为S n ,已知a m -1+a m +1-a 2m =0,S 2m -1=38,则m =________.8.在数列{a n }中,若点(n ,a n )在经过点(5,3)的定直线l 上,则数列{a n }的前9项和S 9=________.三、解答题(共38分)9.(12分)(2011·莆田模拟)设{a n }是一个公差为d (d ≠0)的等差数列,它的前10项和S 10=110,且a 22=a 1a 4.(1)证明:a 1=d ;(2)求公差d 的值和数列{a n }的通项公式.10.(12分)(2010·山东)已知等差数列{a n }满足:a 3=7,a 5+a 7=26,{a n }的前n 项和为S n .(1)求a n 及S n ;(2)令b n =1a 2n -1(n ∈N *),求数列{b n }的前n 项和T n .11.(14分)(2010·广东湛师附中第六次月考)在数列{a n }中,a 1=1,3a n a n -1+a n -a n -1=0(n ≥2).(1)证明数列{1a n}是等差数列;(2)求数列{a n }的通项;(3)若λa n +1a n +1≥λ对任意n ≥2的整数恒成立,求实数λ的取值范围.答案 自主梳理1.(1)2 差 a n +1-a n =d (2)A =a +b2等差中项2.(1)a 1+(n -1)d (n -m )d (2)na 1+n (n -1)2d(a 1+a n )n 23.An 2+Bn 4.(1)a m +a n =a p +a q a m +a n =2a p (3)递增数列 递减数列 常数列自我检测1.A 2.C 3.A 4.B 5.24 课堂活动区例1 解题导引 (1)等差数列{a n }中,a 1和d 是两个基本量,用它们可以表示数列中的任何一项,利用等差数列的通项公式与前n 项和公式,列方程组解a 1和d ,是解决等差数列问题的常用方法;(2)由a 1,d ,n ,a n ,S n 这五个量中的三个量可求出其余两个量,需选用恰当的公式,利用方程组观点求解.解 (1)由a n =a 1+(n -1)d ,a 10=30,a 20=50,得方程组⎩⎪⎨⎪⎧ a 1+9d =30,a 1+19d =50, 解得⎩⎪⎨⎪⎧a 1=12,d =2.所以a n =2n +10.(2)由S n =na 1+n (n -1)2d ,S n =242.得12n +n (n -1)2×2=242.解得n =11或n =-22(舍去). 变式迁移1 解 由题意,知 ⎩⎪⎨⎪⎧S 10=10a 1+10×92d =110,(a 1+d )2=a 1·(a 1+3d ),即⎩⎪⎨⎪⎧2a 1+9d =22,a 1d =d 2.∵d ≠0,∴a 1=d .解得a 1=d =2,∴a n =2n .例2 解题导引 1.等差数列的判定通常有两种方法:第一种是利用定义,即a n -a n -1=d (常数)(n ≥2),第二种是利用等差中项,即2a n =a n+1+a n -1 (n ≥2).2.解选择、填空题时,亦可用通项或前n 项和直接判断.(1)通项法:若数列{a n }的通项公式为n 的一次函数,即a n =An +B ,则{a n }是等差数列.(2)前n 项和法:若数列{a n }的前n 项和S n 是S n =An 2+Bn 的形式(A ,B 是常数),则{a n }为等差数列.3.若判断一个数列不是等差数列,则只需说明任意连续三项不是等差数列即可.(1)证明 ∵a n =2-1a n -1 (n ≥2,n ∈N *),b n =1a n -1,∴当n ≥2时,b n -b n -1=1a n -1-1a n -1-1=1⎝ ⎛⎭⎪⎫2-1a n -1-1-1a n -1-1=a n -1a n -1-1-1a n -1-1=1.又b 1=1a 1-1=-52.∴数列{b n }是以-52为首项,以1为公差的等差数列.(2)解 由(1)知,b n =n -72,则a n =1+1b n=1+22n -7,设函数f (x )=1+22x -7,易知f (x )在区间⎝ ⎛⎭⎪⎫-∞,72和⎝ ⎛⎭⎪⎫72,+∞内为减函数. ∴当n =3时,a n 取得最小值-1; 当n =4时,a n 取得最大值3.变式迁移2 解 (1)∵a 1=5,∴a 2=2a 1+22-1=13, a 3=2a 2+23-1=33.(2)假设存在实数λ,使得数列{a n +λ2n }为等差数列.设b n =a n +λ2n ,由{b n }为等差数列,则有2b 2=b 1+b 3.∴2×a 2+λ22=a 1+λ2+a 3+λ23.∴13+λ2=5+λ2+33+λ8,解得λ=-1.事实上,b n +1-b n =a n +1-12n +1-a n -12n=12n +1[(a n +1-2a n )+1]=12n +1[(2n +1-1)+1]=1. 综上可知,存在实数λ=-1,使得数列{a n +λ2n }为首项为2、公差为1的等差数列.例3 解题导引 本题可运用倒序求和的方法和等差数列的性质:若m +n =p +q (m ,n ,p ,q ∈N *),则a m +a n =a p +a q ,从中我们可以体会运用性质解决问题的方便与简捷,应注意运用;也可用整体思想(把a 1+n -12d 看作整体).解 方法一 设此等差数列为{a n }共n 项, 依题意有a 1+a 2+a 3+a 4+a 5=34,① a n +a n -1+a n -2+a n -3+a n -4=146. ② 根据等差数列性质,得a 5+a n -4=a 4+a n -3=a 3+a n -2=a 2+a n -1=a 1+a n .将①②两式相加,得(a 1+a n )+(a 2+a n -1)+(a 3+a n -2)+(a 4+a n -3)+(a 5+a n -4)=5(a 1+a n )=180,∴a 1+a n =36.由S n =n (a 1+a n )2=36n 2=360,得n =20.所以该等差数列有20项.方法二 设此等差数列共有n 项,首项为a 1,公差为d ,则S 5=5a 1+5×42d =34,①S n -S n -5=[n (n -1)d 2+na 1]-[(n -5)a 1+(n -5)(n -6)2d ]=5a 1+(5n -15)d =146.②①②两式相加可得10a 1+5(n -1)d =180,∴a 1+n -12d =18,代入S n =na 1+n (n -1)2d=n ⎝⎛⎭⎪⎫a 1+n -12d =360, 得18n =360,∴n =20.所以该数列的项数为20项.变式迁移3 解 (1)依题意,知a 1+a 2+a 3+a 4=21, a n -3+a n -2+a n -1+a n =67,∴a 1+a 2+a 3+a 4+a n -3+a n -2+a n -1+a n =88.∴a 1+a n =884=22.∵S n =n (a 1+a n )2=286,∴n =26.(2)∵S n ,S 2n -S n ,S 3n -S 2n 成等差数列, ∴S 3n =3(S 2n -S n )=54.(3)设项数为2n -1 (n ∈N *),则奇数项有n 项,偶数项有n -1项,中间项为a n ,则S 奇=(a 1+a 2n -1)·n 2=n ·a n =44,S 偶=(a 2+a 2n -2)·(n -1)2=(n -1)·a n =33,∴n n -1=43.∴n =4,a n =11.∴数列的中间项为11,项数为7.例4 解题导引 若{a n }是等差数列, 求前n 项和的最值时, (1)若a 1>0,d <0,且满足⎩⎪⎨⎪⎧ a n ≥0a n +1≤0,前n 项和S n 最大; (2)若a 1<0,d >0,且满足⎩⎪⎨⎪⎧a n ≤0a n +1≥0,前n 项和S n 最小;(3)除上面方法外,还可将{a n }的前n 项和的最值问题看作S n 关于n 的二次函数最值问题,利用二次函数的图象或配方法求解,注意n ∈N *.解 方法一 ∵2a n +1=a n +a n +2,∴{a n }是等差数列. 设{a n }的首项为a 1,公差为d ,由a 3=10,S 6=72,得⎩⎪⎨⎪⎧a 1+2d =106a 1+15d =72,∴⎩⎪⎨⎪⎧a 1=2d =4.∴a n =4n -2.则b n =12a n -30=2n -31.解⎩⎪⎨⎪⎧2n -31≤0,2(n +1)-31≥0,得292≤n ≤312.∵n ∈N *,∴n =15.∴{b n }前15项为负值. ∴S 15最小. 可知b 1=-29,d =2,∴S 15=15×(-29+2×15-31)2=-225.方法二 同方法一求出b n =2n -31.∵S n =n (-29+2n -31)2=n 2-30n =(n -15)2-225,∴当n =15时,S n 有最小值,且最小值为-225.变式迁移4 解 (1)设等差数列{a n }的首项为a 1,公差为d , ∵a 16+a 17+a 18=3a 17=-36,∴a 17=-12,∴d =a 17-a 917-9=3,∴a n =a 9+(n -9)·d =3n -63, a n +1=3n -60, 令⎩⎪⎨⎪⎧a n =3n -63≤0a n +1=3n -60≥0,得20≤n ≤21, ∴S 20=S 21=-630,∴n =20或21时,S n 最小且最小值为-630.(2)由(1)知前20项小于零,第21项等于0,以后各项均为正数.当n ≤21时,T n =-S n =-32n 2+1232n .当n >21时,T n =S n -2S 21=32n 2-1232n +1 260.综上,T n=⎩⎪⎨⎪⎧-32n 2+1232n (n ≤21,n ∈N *)32n 2-1232n +1 260 (n >21,n ∈N *).课后练习区1.A 2.C 3.B 4.C 5.D 6.15 7.10 8.279.(1)证明 ∵{a n }是等差数列,∴a 2=a 1+d ,a 4=a 1+3d ,又a 22=a 1a 4,于是(a 1+d )2=a 1(a 1+3d ),即a 21+2a 1d +d 2=a 21+3a 1d (d ≠0).化简得a 1=d .…………………………(6分)(2)解 由条件S 10=110和S 10=10a 1+10×92d ,得到10a 1+45d =110.由(1)知,a 1=d ,代入上式得55d =110, 故d =2,a n =a 1+(n -1)d =2n .因此,数列{a n }的通项公式为a n =2n ,n ∈N *.…………………………………………(12分)10.解 (1)设等差数列{a n }的首项为a 1,公差为d ,由于a 3=7,a 5+a 7=26, 所以a 1+2d =7,2a 1+10d =26,解得a 1=3,d =2.…………………………………………………………………………(4分)由于a n =a 1+(n -1)d ,S n =n (a 1+a n )2,所以a n =2n +1,S n =n (n +2).…………………………………………………………(6分)(2)因为a n =2n +1,所以a 2n -1=4n (n +1),因此b n =14n (n +1)=14⎝ ⎛⎭⎪⎫1n -1n +1.………………………………………………………(8分)故T n =b 1+b 2+…+b n=14⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=14⎝⎛⎭⎪⎫1-1n +1=n4(n +1). 所以数列{b n }的前n 项和T n =n4(n +1).…………………………………………………(12分)11.(1)证明 将3a n a n -1+a n -a n -1=0(n ≥2)整理得1a n -1a n -1=3(n ≥2).所以数列{1a n}为以1为首项,3为公差的等差数列.…………………………………(4分)(2)解 由(1)可得1a n=1+3(n -1)=3n -2,所以a n =13n -2.……………………………………………………………………………(7分)(3)解 若λa n +1a n +1≥λ对n ≥2的整数恒成立,即λ3n -2+3n +1≥λ对n ≥2的整数恒成立. 整理得λ≤(3n +1)(3n -2)3(n -1)………………………………………………………………(9分)令c n =(3n +1)(3n -2)3(n -1)c n +1-c n =(3n +4)(3n +1)3n -(3n +1)(3n -2)3(n -1)=(3n +1)(3n -4)3n (n -1).………………………(11分)因为n ≥2,所以c n +1-c n >0,即数列{c n }为单调递增数列,所以c 2最小,c 2=283.所以λ的取值范围为(-∞,283].……………………………………………………(14分)。