人教A版高中数学必修二课件:第二章 2.3 2.3.4直线、平面垂直的判定及其性质(共69张PPT)
合集下载
人教A版高中数学必修二课件:第二章 2.3 2.3.1直线、平面垂直的判定及其性质(共58张PPT)

肉体监视心灵,智者用心灵监视肉体。 我很平凡,但骨子里的我却很勇敢。 不悲伤,定会快乐。不犹豫,定会坚持。 语言是心灵和文化教养的反映。 我们不能选择命运,但是我们能改变命运。 千万人的失败,都有是失败在做事不彻底,往往做到离成功只差一步就终止不做了。 诚无悔,恕无怨,和无仇,忍无辱。——宋《省心录》 为你制造一些困难和障碍的人未必是你的敌人,把你从困境里拉出来的人未必是你的朋友。不要用眼前的利益得失看人,要看长远,所谓路 遥知马力,日久见人心! 按照自己的活法,快乐的生活,活得像自己就好了,何必在意那么多,勇敢地走自己的路,让别人说去吧。 生活就像海洋,只有意志将强的人才能到达彼岸。 没有热忱,世间便无进步。 让生活的句号圈住的人,是无法前时半步的。 驾驭命运的舵是奋斗。 松软的沙滩上最容易留下脚樱钽也最容易被潮水抹去。 生气是拿别人做错的事来惩罚自己。 本来无望的事,大胆尝试,往往能成功。 觉得自己做的到和做不到,其实只在一念之间。 别着急要结果,先问自己够不够格,付出要配得上结果,工夫到位了,结果自然就出来了。 只有一条路不能选择――那就是放弃。 最后的措手不及是因为当初游刃有余的自己
人教版高中数学必修2(A版) 2.3.2平面与平面垂直的判定 PPT课件

类似地,下面的这个二面角应该如何表示?
Q l
B P
二面角的表示
(1)二面角-AB- (2)二面角P AB Q (3)二面角 l (4)二面角P l Q
A
三.新知的探索 思考4:我们常说“把门开得大一些”,是指哪个角
大一些?
三.新知的探索
在上述变化过程中,图形在变化,形成的二面角也在变化, 我们应该怎样刻画二面角的大小?
2.3.2平面与平面垂直的判定
一.复习与回顾
1.1如何作出两条异面直线的夹角? 1.2如何作出斜线与平面的夹角? “空间问题平面化” 1.3在研究上述两个问题时,我们采用了相同的方法,即将 空间角的问题转化为平面角进行处理.
P
a
a
O
a
b/
A
B
b
二.新知的引入
三.新知的探索
我们知道直线上的一点将直线分割成两部分, 每一部分分别叫射线. 那么平面上的一条直线将整个平面一分为二, 每一部分应该叫做什么呢?
(2)角的两边分别在两个面内
(3)角的两边都要垂直于二面角的棱
三.新知的探索 观察:
1.教室相邻的两个墙面分别与地面所成的二面角是多少度? 相邻的两个墙面所成的二面角又是多少度?
2.教室相邻的两个墙面分别与地面有什么样的位置关系? 相邻的两个墙面又有什么位置关系呢?
三.新知的探索 3.4定义:
线线垂直
线面垂直
面面垂直
3.转化与化归思想:空间问题平面化处理 习题2.3 必做题A组 第1题、第2题 选做题B组 第1题
P
PA BC PA AC A
BC AC
高一数学人教A版必修2232平面与平面垂直的判定.ppt

第二章 2.3 2.3.2
[知识拓展](1)二面角的平面角的大小是由二面角的两个面 的位置唯一确定的,与选择棱上的点的位置无关.
(2)平面角的两边分别在二面角的两个面内,且两边都与 二面角的棱垂直,这个角所确定的平面与棱垂直.
第二章 2.3 2.3.2
在长方体ABCD-A1B1C1D1中,二面角A-BC-A1的平面 角是( )
第二章 2.3 2.3.2
已知Rt△ABC中,AB=AC=1,AD是斜边BC上的高,以 AD为折痕将△ABD折起,使∠BDC成直角.
求证:(1)平面ABD⊥平面BDC,平面ACD⊥平面BDC; (2)∠BAC=60°.
第二章 2.3 2.3.2
[证明] (1)如图(1),∵AD⊥BC,
第二章 2.3 2.3.2
∴BC= 2BD= 2× 22=1. ∴AB=AC=BC.∴∠BAC=60°.
第二章 2.3 2.3.2
建模应用之路
第二章 2.3 2.3.2
命题方向 二面角的实际应用 [例3] 如图:一山坡的坡面与水平面成30°的二面角, 坡面上有一直道AB,它和坡脚的水平线成30°的角,沿这山 路行走20m后升高了多少米?
[答案] D
第二章 2.3 2.3.2
7.如图,△ADB和△ADC都是以D为直角顶点的直角三 角形,且AD=BD=CD,∠BAC=60°,则直线AD⊥平面 BDC ;直线BD⊥平面ADC;直线CD⊥平面ABD .
[答案] BDC ADC ABD
第二章 2.3 2.3.2
新课引入
第二章 2.3 2.3.2
命题方向 面面垂直的判定 [例2] 如图所示,已知△ABC中,∠ABC=90°,P为△ ABC所在平面外一点,PA=PB=PC.求证平面PAC⊥平面 ABC.
[知识拓展](1)二面角的平面角的大小是由二面角的两个面 的位置唯一确定的,与选择棱上的点的位置无关.
(2)平面角的两边分别在二面角的两个面内,且两边都与 二面角的棱垂直,这个角所确定的平面与棱垂直.
第二章 2.3 2.3.2
在长方体ABCD-A1B1C1D1中,二面角A-BC-A1的平面 角是( )
第二章 2.3 2.3.2
已知Rt△ABC中,AB=AC=1,AD是斜边BC上的高,以 AD为折痕将△ABD折起,使∠BDC成直角.
求证:(1)平面ABD⊥平面BDC,平面ACD⊥平面BDC; (2)∠BAC=60°.
第二章 2.3 2.3.2
[证明] (1)如图(1),∵AD⊥BC,
第二章 2.3 2.3.2
∴BC= 2BD= 2× 22=1. ∴AB=AC=BC.∴∠BAC=60°.
第二章 2.3 2.3.2
建模应用之路
第二章 2.3 2.3.2
命题方向 二面角的实际应用 [例3] 如图:一山坡的坡面与水平面成30°的二面角, 坡面上有一直道AB,它和坡脚的水平线成30°的角,沿这山 路行走20m后升高了多少米?
[答案] D
第二章 2.3 2.3.2
7.如图,△ADB和△ADC都是以D为直角顶点的直角三 角形,且AD=BD=CD,∠BAC=60°,则直线AD⊥平面 BDC ;直线BD⊥平面ADC;直线CD⊥平面ABD .
[答案] BDC ADC ABD
第二章 2.3 2.3.2
新课引入
第二章 2.3 2.3.2
命题方向 面面垂直的判定 [例2] 如图所示,已知△ABC中,∠ABC=90°,P为△ ABC所在平面外一点,PA=PB=PC.求证平面PAC⊥平面 ABC.
高一数学人教A版必修2课件:2.3.1直线与平面垂直的判定 教学课件

[ 思路分析]
(1) 求线面角的关键是找出直线在平面内的射影,为此须找出
过直线上一点的平面的垂线. (2) 中过 A1 作平面 BDD1B1 的垂线,该垂线必与 B1D1、BB1垂直,由正方体的特性知,直线A1C1满足要求.
[ 解析]
(1)∵直线 A1A⊥平面 ABCD, ∴∠A1CA 为直线 A1C 与平面 ABCD 所
∵∠ABC=90°,∴AB⊥BC.
又AB∩PA=A,∴BC⊥平面PAB. (2)∵BC⊥平面PAB,AE⊂平面PAB,∴BC⊥AE.
∵PB⊥AE,BC∩PB=B,∴AE⊥平面PBC.
(3)∵AE⊥平面PBC,PC⊂平面PBC, ∴AE⊥PC.∵AF⊥PC,AE∩AF=A,∴PC⊥平面AEF.
返回导航
返回导航
第二章 点、直线、平面之间的位置关系
命题方向2 ⇨直线与平面所成的角
在正方体 ABCD-A1B1C1D1 中, 导学号 09024474
(1)求直线 A1C 与平面 ABCD 所成的角的正切值; (2)求直线 A1B 与平面 BDD1B1 所成的角.
返回导航
第二章 点、直线、平面之间的位置关系
又 BB1∥AA1,∴CD⊥BB1, 又 AA1⊂平面 ABB1A1,BB1⊂平面 ABB1A1, ∴CD⊥平面 ABB1A1.
返回导航
第二章 点、直线、平面之间的位置关系
[ 错因分析]
错解中 AA1 和BB1 是平面 ABB1A1 内的两条平行直线,不是相交
直线,故不满足直线与平面垂直的判定定理的条件.
第二章 点、
线面垂直的判定方法:
(1)证明线面垂直的方法
①线面垂直的定义.
②线面垂直的判定定理. ③如果两条平行直线的一条直线垂直于一个平面,那么另一条直线也垂直 于这个平面. ④如果一条直线垂直于两个平行平面中的一个平面,那么它也垂直于另一 个平面.
高中数学第二章点直线平面之间的位置关系2.3.1直线与平面垂直的判定课件新人教A版必修2

错解:因为F,G分别为棱B1B,C1C的中点,所以BC∥FG. 因为BC⊥AB,BC⊥B1B,且B1B∩AB=B, 所以BC⊥平面A1ABB1. 又因为B1E⊂平面A1ABB1, 所以BC⊥B1E, 即FG⊥B1E. 同理A1D1⊥B1E,所以B1E⊥平面A1FGD1. 纠错:本题的错误在于只证明了直线和平面内的两条平行直线垂直,不符
(2)求直线A1B和平面BB1C1C所成的角的正弦值.
(2)解:作 A1F⊥DE,垂足为 F,连接 BF. 因为 A1E⊥平面 ABC,所以 BC⊥A1E. 因为 BC⊥AE,所以 BC⊥平面 AA1DE.所以 BC⊥A1F,所以 A1F⊥平面 BB1C1C. 所以∠A1BF 为直线 A1B 和平面 BB1C1C 所成的角.
(1)证明:A1D⊥平面A1BC;
(1)证明:设E为BC的中点,连接A1E,AE.由题意得A1E⊥平面ABC,所以 A1E⊥AE. 因为AB=AC,所以AE⊥BC. 故AE⊥平面A1BC. 连接DE,由D,E分别为B1C1,BC的中点,得DE∥B1B且DE=B1B, 从而DE∥A1A且DE=A1A, 所以AA1DE为平行四边形. 于是A1D∥AE. 又因为AE⊥平面A1BC,所以A1D⊥平面A1BC.
和这个平面所成的角.
锐角
(2)一条直线垂直于平面,称它们所成的角是 直角 ;一条直线在平面内或 一条直线和平面平行,称它们所成的角是 0° 的角,于是,直线与平面 所成的角θ 的范围是0°≤θ ≤90°.
自我检测
1.(线面垂直的性质)已知直线a⊥平面α ,直线b∥平面α ,则a与b的关系为
(B ) (A)a∥b
在 Rt△A1NB1 中,sin∠A1B1N= A1N = 1 ,因此∠A1B1N=30°.所以,直线 A1B1 与平面 BCB1 所成的角为 A1B1 2
高中数学 2.3.3-2.3.4直线与平面垂直的性质 平面与平面垂直的性质课件 新人教A版必修2

试判断直线
a与平面β的位置关系。
β B α A
a
学法小结
1. 直线与平面垂直的性质; 2. 平面与平面垂直的性质。
例题精析 例1:如图,在正方体ABCD-A′B′C′D′ 中,求证:平面ACC′A′⊥平面A′BDC′。
D′ A′
B′
C′
D
A B
C
B. 研读教材P71: 1. 平面与平面垂直的性质; 2. 平面与平面垂直的性质证明体现了“线面” 维度间怎样的联系?
3. 例题精析:
(1)P72 例4,如图,已知平面α、β, α⊥β,直线a满足α⊥β,
a
α,试判断直线a与平面
α a β
α的位置关系。
(2)P72
探究,平面α、β,直线a,且α⊥β=AB,a //α,a ⊥ AB,
此ppt下载后可自行编辑
高中数学课件
知识回顾 1. 直线与平面、平面与平面垂直的判定; 2. 直线、平面间所成的三类角的研究方法。
. 直线与平面垂直的性质; 2. 研究直线与平面垂直的性质的证明,体会 几何证明的方法及维度的选择?
3. 自我检测:
(1)教材P71练习部分; (2)教材P71探究部分。
高中数学人教A版必修二 2.3.3 直线与平面垂直的性质2.3.4 平面与平面垂直的性质 课件(39张)

2.3.3 直线与平面垂直的性质 2.3.4 平面与平面垂直的性质
要点 1 直线与平面垂直的性质定理 (1)文字语言:垂直于同一个平面的两条直线平行.
(2)图形语言: (3)符号语言:a⊥α,b⊥α⇒a∥b.
要点 2 直线 l 与平面 α 垂直,则 l 垂直于 α 内的任意一条 直线
要点 3 平面与平面垂直的性质定理 (1)文字语言:两个平面垂直,则一个平面内垂直于交线的直 线与另一个平面垂直.
探究 2 证明面面平行的方法: ①定义,②判定定理,③判定定理的推论,④平行公理的传 递性,⑤本题结论.
思考题 2 已知正方体 ABCD-A1B1C1D1,棱长为 a,
(1)截面 AB1D1 和截面 C1BD 的位置关系如何?并证明; (2)求 C 点到截面 BDC1 的距离; (3)截面 AB1D1 和截面 C1BD 之间的距离是多少? 【答案】 (1)平行,(可证明两截面都与直线 A1C 垂直) (2) 33a(可用等积法)
又 PD∩CD=D,∴AE⊥平面 PCD. ② 由①,②可知 AE∥MN.
题型二 证明面面平行
例 2 和同一条直线垂直的两个平面互相平行. 已知:直线 l⊥平面 α,直线 l⊥平面 β. 求证:α∥β.
【证明】 假设 α 与 β 不平行,则 α 与 β 相交,设 α∩β=m.
设 l∩α=A,l∩β=B,如图. 在 m 上取一点 D,则 l 和 D 确定一个平面 γ. 连接 BD、AD,则 AD⊂γ,AD⊂α,BD⊂γ,BD⊂β. ∵l⊥α,l⊥β,∴l⊥AD,l⊥BD. 这与在平面内过直线外一点只能作一条已知直线的垂线相 矛盾, ∴α∥β.
【证明】 (1)连接 BD.∵四边形 ABCD 为菱形,且∠DAB =60°,
∴BG⊥AD. ∵平面 PAD⊥平面 ABCD,BD⊂平面 ABCD,平面 PAD∩ 平面 ABCD=AD. ∴BG⊥平面 PAD.
要点 1 直线与平面垂直的性质定理 (1)文字语言:垂直于同一个平面的两条直线平行.
(2)图形语言: (3)符号语言:a⊥α,b⊥α⇒a∥b.
要点 2 直线 l 与平面 α 垂直,则 l 垂直于 α 内的任意一条 直线
要点 3 平面与平面垂直的性质定理 (1)文字语言:两个平面垂直,则一个平面内垂直于交线的直 线与另一个平面垂直.
探究 2 证明面面平行的方法: ①定义,②判定定理,③判定定理的推论,④平行公理的传 递性,⑤本题结论.
思考题 2 已知正方体 ABCD-A1B1C1D1,棱长为 a,
(1)截面 AB1D1 和截面 C1BD 的位置关系如何?并证明; (2)求 C 点到截面 BDC1 的距离; (3)截面 AB1D1 和截面 C1BD 之间的距离是多少? 【答案】 (1)平行,(可证明两截面都与直线 A1C 垂直) (2) 33a(可用等积法)
又 PD∩CD=D,∴AE⊥平面 PCD. ② 由①,②可知 AE∥MN.
题型二 证明面面平行
例 2 和同一条直线垂直的两个平面互相平行. 已知:直线 l⊥平面 α,直线 l⊥平面 β. 求证:α∥β.
【证明】 假设 α 与 β 不平行,则 α 与 β 相交,设 α∩β=m.
设 l∩α=A,l∩β=B,如图. 在 m 上取一点 D,则 l 和 D 确定一个平面 γ. 连接 BD、AD,则 AD⊂γ,AD⊂α,BD⊂γ,BD⊂β. ∵l⊥α,l⊥β,∴l⊥AD,l⊥BD. 这与在平面内过直线外一点只能作一条已知直线的垂线相 矛盾, ∴α∥β.
【证明】 (1)连接 BD.∵四边形 ABCD 为菱形,且∠DAB =60°,
∴BG⊥AD. ∵平面 PAD⊥平面 ABCD,BD⊂平面 ABCD,平面 PAD∩ 平面 ABCD=AD. ∴BG⊥平面 PAD.
人教A版高中数学必修二课件 《空间直线、平面的垂直》(直线与直线垂直、直线与平面垂直的定义及判定)

3.[变条件]本例中的条件“AE⊥PB 于点 E, AF⊥PC 于点 F”,改为“E,F 分别是 AB, PC 的中点,PA=AD”,其他条件不变,求证: EF⊥平面 PCD.
证明:取 PD 的中点 G,连接 AG,FG. 因为 G,F 分别是 PD,PC 的中点, 所以 GF═∥12CD,又 AE═ ∥12CD,所以 GF═ ∥AE, 所以四边形 AEFG 是平行四边形,所以 AG∥EF. 因为 PA=AD,G 是 PD 的中点, 所以 AG⊥PD,所以 EF⊥PD, 易知 CD⊥平面 PAD,AG⊂平面 PAD, 所以 CD⊥AG,所以 EF⊥CD. 因为 PD∩CD=D,所以 EF⊥平面 PCD.
8.6 空间直线、平面的垂直 第1课时直线与直线垂直、直线与平面垂直的定义及判定
第八章 立体几何初步
考点
学习目标
核心素养
会用两条异面直线所成角的
直观想象、逻辑
异面直线所成的 定义,找出或作出异面直线
推理、
角
所成的角,会在三角形中求简
数学运算
单的异面直线所成的角
第八章 立体几何初步
考点
学习目标
核心素养
所以∠GFE(或其补角)就是异面直线 EF 与 AB 所成的角,EG =GF. 因为 AB⊥CD,所以 EG⊥GF. 所以∠EGF=90°. 所以△EFG 为等腰直角三角形. 所以∠GFE=45°, 即 EF 与 AB 所成的角为 45°.
直线与平面垂直的定义
(1)直线 l⊥平面 α,直线 m⊂α,则 l 与 m 不可能( )
解析:当 l 与 α 内的一条直线垂直时,不能保证 l 与平面 α 垂 直,所以①不正确;当 l 与 α 不垂直时,l 可能与 α 内的无数条 平行直线垂直,所以②不正确,③正确.根据线面垂直的定义, 若 l⊥α,则 l 与 α 内的所有直线都垂直,所以④正确. 答案:③④