北京十一实验中学人教版七年级数学上册_2.整式加减 教学设计
人教版七年级数学上册《整式的加减数学活动》教学设计

第二章整式的加减——数学活动一、内容和内容分析1.内容活动1:用火柴棍摆放图形,探究火柴棍的根数与图形的个数之间的对应关系;活动2:探究月历中数字之间所蕴含的关系和变化规律。
2.内容解析本节课的数学活动将第二章“整式的加减”所学知识应用于实际,进一步用整式表示数量关系,用整式的加减运算进行化简,是整式与整式加减的应用.两个数学活动综合运用整式和整式的加减运算,表示具体情境中的数量关系和变化规律.活动1中的核心问题是寻求三角形的个数与火柴棍根数之间的对应关系,问题的本质是变化与对应,由于观察图形时的角度不同,规律的显现方式不同,得到的表达形式不同,但经过整式的加减运算后得到的结论是唯一确定的.活动1先从图形的特殊情况入手,体现特殊到一般地观察、分析、判断、归纳的思维活动过程.活动2应用整式的加减探究月历中数字之间的规律:①月历中数字的排列规律;②由数字的排列规律引出运算规律,应用整式的加减进行化简,表示出一般规律;③如何设字母可以简化表示方法和简化运算。
基于以上分析,确定本节课的教学重点:用列代数式表示实际问题中的数量关系进而建立数学模型,体会应用从特殊到一般的探究方法。
二、目标和目标解析1.目标(1)列代数式表示关系和用数学模型及整式的加减运算解决实际问题中的数量关系。
(2)掌握从特殊到一般、从个体到整体地观察、分析问题的方法,尝试从不同角度探究问题,培养应用意识和创新意识,体会数学模型的抽象性和一般性。
2.目标解析达成目标(1)的标志是:学生能够列出代数式表示实际问题中的数量关系,用不同代数式表示同一问题,化简后结论一致。
用整式表示出月历中不同位置上的数字的一般表达式,并探寻一些规律;达成目标(2)的标志是:从特殊到一般,最后由整体总结规律,感受由特殊到一般的探究模式。
学生需要体会进行数学活动的基本方法:提出问题→动手实践→寻求规律→归纳总结,经历发现问题、独立思考、猜想验证、归纳总结这些数学活动,从不同视角观察问题、发现规律,提高应用意识和创新意识。
【人教版】七年级数学上册:第二章《整式的加减》全章教学设计

课题: 2.1 整式(第 1 课时)一、教学目标1. 经历列单项式表示数量关系的过程,发展符号感.2. 知道单项式及其系数、次数的意义,会准确确定一个单项式的系数和次数.二、教学重点和难点1. 重点:列单项式表示数量关系,单项式及其系数、次数的意义.2.难点:列单项式表示数量关系 .三、教学过程(一)基本训练,巩固旧知1. 填空:幂x3的指数是,底数是;幂a2的指数是,底数是;幂 n 的指数是,底数是.(二)创设情境,导入新课师:前面我们学习了第一章有理数,从今天开始,我们要学习第二章整式的加减. (板书:第二章整式的加减)同学们自然会问:什么是整式?我们将在本节课和下节课学习什么是整式 . (板书: 2.1 整式)这节课我们首先学习整式的一种,叫单项式 . (板书:(单项式))(三)尝试指导,讲授新课师:什么样的式子是单项式呢?请大家看一个例子. (师出示下面的板书)一种笔记本售价是每本 2 元,那么买 2 本所需钱是元,买5本所需钱是元,买 10 本所需钱是元,买100本所需钱是元,买 x 本所需钱是元.师:(指板书)一种笔记本售价是每本 2 元,那么买 2 本所需钱是多少元?生: 4 元 . (师板书: 4)师:(指板书)那么买5 本所需钱是多少元?生: 10 元. (师板书: 10)师:(指板书)那么买10 本所需钱是多少元?买100 本所需钱是多少元?生: 20 元,200 元 . (师板书: 20,200 )师:(指板书)一种笔记本售价是每本 2 元,那么买 x 本所需钱是多少元?生:(多让几位同学发表看法)师:(指板书)一种笔记本售价是每本2 元,那么买 x 本所需钱是 2×x 元 . (边讲边板书:2×x)为了书写方便,(指乘号)通常将乘号写成“·”,(边讲边将“2×x”改为“ 2·x”)或者将乘号省略不写 . (边讲边用彩笔将“ 2·x ”改为“ 2x”) 2x 就表示 2×x.师:(板书: 2x 并指 2x)2x 就是一个单项式 . 单项式当然不只2x 这么一个,在现实生活中,存在大量的其它的单项式,同学们通过把下面的问题列成式子,就能找到大量的单项式 .(四)试探练习,回授调节2.填空:(1)一支铅笔的售价是 x 元,一支圆珠笔的售价是铅笔的 2.5 倍,一支圆珠笔的售价是元;(2)边长为 a 的正方形面积为;(3)边长为 a 正方体的体积为;(4)一辆汽车的速度是每小时v 千米,它 t 小时行驶的路程为千米;( 5)数 n 的相反数是.(生做题,师巡视指导,完成后,生报答案,如果必要,酌情讲解,并将2.5x ,a2,a3, vt ,- n 板书出来)(五)尝试指导,讲授新课师:(指准板书) 2x 是单项式, 2.5x , a2,a3,vt ,-n 这些式子也是单项式 . 现在请问:什么样的式子叫做单项式?生:(多让几名学生发表看法,要肯定学生回答中合理的部分)师:这些式子有一个共同的特点,什么特点呢?它们都是数字与字母的积. (指准式子) 2x 是数 2 与字母 x 的积, 2.5x 是数 2.5 与字母 x 的积 . a 2是数 1 与字母 a2的积, a3是数 1 与字母 a3的积, vt 是数 1 与字母 v、t 的积,- n 是数- 1 与字母 n 的积 .师:通过上面的分析,哪位同学知道:什么叫做单项式?生:师:数字与字母的积,这样的式子叫做单项式. (板书:数字与字母的积,这样的式子叫做单项式)师:需要指出的是,单独一个数或一个字母也是单项式. (板书:单独一个数或一个字母也是单项式)譬如,单独一个数5,-1,2008 等都是单项式;又譬如,2单独的一个字母x 也是单项式 .(六)试探练习,回授调节3.判断下列式子是不是单项式:(1)4x;(2)- 4x2 y;(3)3a2bc;(4)7.2 ;(5)a;(6)2+x.(七)尝试指导,讲授新课师:(板书:- 4x2y)我们都知道,- 4x2y 是单项式,(指准式子)它是数字-4 与字母 x2、y 的积,换一种说法,- 4 是数字因数, x2、y 是字母因数,我们把数字因数- 4 叫做这个单项式的系数 . (板书:的系数是- 4)师:(指已板书的单项式2x)哪位同学知道2x 这个单项式的系数?生: 2.(以下师让生回答已板书的其它单项式的系数)师:明确了单项式系数的概念,下面我们再来看单项式的次数的概念. (板书:次数)师:(指准- 4x2y)这个单项式含有两个字母,字母 x 指数是 2,字母 y 的指数是 1,所有字母的指数和是 3,我们把单项式- 4x2y 所有字母指数的和 3 叫做这个单项式的次数 . (板书:是 3)师:一个单项式的次数是几次,我们就把这个单项式叫做几次单项式. (指- 4x2y)这个单项式的次数是3,就叫做三次单项式 . (板书:是三次单项式)师:(指已板书的单项式2x)这个单项式的次数是几次?生:师:(指 2x)这个单项式只含有一个字母,x 的指数是 1,所以所有字母指数的和也是 1,所以这个单项式的次数是 1,这个单项式是一次单项式 .(以下师让生回答已板书的其它单项式的次数)(八)试探练习,回授调节4.填空:( 1)单项式 2a2的系数是,次数是,是次单项式;( 2)单项式- 1.2h 的系数是,次数是,是次单项式;( 3)单项式 x2y 的系数是,次数是,是次单项式;( 4)单项式- t 2的系数是,次数是,是次单项式;( 5)单项式 5a4b 的系数是,次数是,是次单项式;( 6)单项式 x 的系数是,次数是,是次单项式;( 7)单项式3xyz 的系数是,次数是,是次单项式;5( 8)单项式2vt,次数是,是次单项式 .的系数是35.用单项式填空:( 1)每包书有 12 册, n 包书有册;( 2)一个长方形的长是0.9 ,宽是 a,这个长方形的面积是;(3)全校学生总数是x,其中女生占总数48%,则女生人数是,男生人数是;(4)产量由 m千克增长 10%,就达到千克.(九)归纳小结,布置作业师:本节课我们学习了什么?学习了本节课你有什么收获?生:(多让几位同学概括总结)(作业: P59习题 1. )四、板书设计第二章整式的加减2.1 整式(单项式)232.5x , a,a , vt ,- n一种笔记本售价是每本 2 元叫做单项式那么单独一个数或一个字母也是单项式- 4x2y 的系数是- 4,次数是 3,是三次单项式课题: 2.1 整式(第 2 课时)一、教学目标1. 知道多项式及其项、常数项、次数的意义,会指出多项式的各项与多项式次数.2.知道整式的意义 .二、教学重点和难点1.重点:多项式及其项、常数项、次数的概念 .2.难点:指出多项式的各项 .三、教学过程(一)基本训练,巩固旧知1.判断正误:对的画“√” ,错的画“×” .(1)5y 是单项式;()(2)5y+1 是单项式;()(3)1是单项式;()3(4)单项式 ab 的系数是 0;()(5)单项式2ab()的系数是 2;3(6)单项式 xy2次数是 2;()(7)单项式 4xy2是三次单项式 .()2. 填空:青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段. 列车在冻土地段行驶速度是每小时100 千米,它 2 小时行驶的路程是千米,3小时行驶的路程是千米, t 小时行驶的路程是千米.3.用单项式填空:( 1)底边长为 a,高为 h 的三角形面积是;(2)一辆汽车从拉萨出发, 3 小时后到达相距 s 千米的尼木县城,这辆长途汽车的平均速度是;(3)一台电视机原价 a 元,现按原价的9 折(9 折就是 90%)出售,这台电视机现在的售价为元 .(二)创设情境,导入新课师:上节课我们学习了整式的一种:单项式,本节课我们学习整式的另一种:多项式 . (板书课题:整式(多项式))(三)尝试指导,讲授新课(师出示下面的板书)4x- 56x2-2x+ 7师:这两个式子是单项式吗?生:不是 .师:这两个式了有什么共同的特点?(稍停)它们都是几个单项式的和. 它们怎么都是几个单项式的和呢?师:(指 4x-5)4x-5 可以转化为 4x+ ( - 5) ,(板书:(4x+( -5) )),所以, 4x -5 可以看成是单项式4x 与- 5 的和 .师:(指 6x2- 2x+7)6x2-2x+7 可以转化为 6x2+ ( - 2x) +7, (板书:( 6x2+( -2x) +7))所以, 6x2-2x+7 可以看成是 6x2,- 2x,7 的和 .师:(指两个式子)所以这两个式子的共同特点都是几个单项式的和.师:几个单项式的和叫做多项式. 所以 4x-5 是多项式,(板书:多项式)6x2-2x +7 也是多项式 .(板书:多项式)师:(指准式子)在多项式中,每个单项式叫做多项式的项. 所以,多项式4x- 52的项是 4x,- 5. (板书:的项是 4x,- 5)多项式 6x -2x+ 7 的项有哪些?22生: 6x ,- 2x,7. (师板书:的项是 6x ,- 2x,7)师:不含字母的项,叫做常数项. 所以,(指准式子)多项式4x-5 的常数项是-5.(板书:常数项是-5)多项式 6x2-2x+7 的常数项是什么?生: 7. (板书:常数项是7)(四)试探练习,回授调节4.填空:( 1)多项式 x2+3x+ 4 是单项式,,常数项是2(2)多项式- x -3+x 是单项式,,的和,它的项是;,,的和,它的项是,,,2,常数项是;,的和,它的项是,,(3)多项式 m-1 是单项式常数项是;(4)多项式 2x+3y2-3xy2是单项式,,的和,它的项是,,.(五)尝试指导,讲授新课师:(指准 4x- 5)这个多项式有两项, 4x 这一项的次数是一次,常数项的次数是0 次. 次数最高项的次数是一次,我们就说多项式4x-5 的次数是一次 . (板书:次数是 1 次)师:(指准 6x2-2x+ 7)这个多项式有三项,6x2这一项的次数是二次,-2x 这一项的次数是一次,常数项的次数是 0 次. 次数最高项的次数是二次,我们就说多项式 6x2-2x+ 7 的次数是二次 . (板书:次数是 2 次)(六)试探练习,回授调节5. 填空:(1)多项式 3+2x2-4x 次数最高项是,次数最高项的次数是,这个多项式的次数是;3,次数最高项的次数是,这个多(2)多项式 m-1 次数最高项是项式的次数是;(3)多项式 2x- 3xy2+1 次数最高项是,次数最高项的次数是,这个多项式的次数是;(4)多项式 3x4-2x2y2次数最高项是,次数最高项的次数是,这个多项式的次数是.(七)归纳小结,布置作业师:本节课我们学习了整式的另一种,叫做多项式 . (指准板书)几个单项式的和叫做多项式 . 在多项式中,每个单项式叫做多项式的项 . 其中,不含字母的项叫做常数项 . 多项式中,次数最高项的次数,就是这个多项式的次数 . 单项式和多项式统称整式 . (板书:单项式和多项式统称整式)(作业: P76复习题 2. )四、板书设计2.1 整式(多项式)多项式 4x- 5(4x + ( - 5)) 的项是 4x, - 5,常数项是- 5,次数是 1 次多项式 6x 222,常数项是7,次数是 2 次- 2x+ 7(6x+ ( - 2x)+ 7) 的项是 6x , - 2x,7单项式和多项式统称整式课题: 2.1 整式(第 3 课时)一、教学目标1.巩固单项式、多项式的有关概念 .2.会列较简单的多项式表示数量关系,发展符号感 .二、教学重点和难点1.重点:列多项式表示数量关系 .2.难点:列多项式表示数量关系 .三、教学过程(一)基本训练,巩固旧知1. 填空:(1)单项式 3x 的系数是,次数是,是次单项式;(2)单项式πr 2的系数是,次数是,是次单项式;(3)单项式- x2y 的系数是,次数是,是次单项式;(4)单项式 a2b2的系数是,次数是,是次单项式 .22. 填空:( 1)多项式― x 2― 3x +4 的项是,最高次项是,常数项是,次数是;2,最高次项是,常数项是( 2)多项式 3- m 的项是,次数是;( 3)多项式 a3+ a2 b+ ab2的项是,最高次项是,次数是.3.判断正误:对的画 " √ " ,错的画 " ×".(1)多项式 3a- 5 的项是 3a,5;()(2)多项式 x3+x2y2的次数是 3 次;()(3)几个多项式的和仍是多项式;()(4)单项式和多项式统称整式 .()(二)创设情境,导入新课师:上节课,我们学习了多项式的概念,本节课我们要学习用多项式表示数量关系. 请看例 1.(三)尝试指导,讲授新课例 1 用多项式填空:(1)温度由 t 度下降 5 度后是度;( 2)甲数 x 的1与乙数 y 的1的和可以表示为;32( 3)如图,圆环的面积为.r(四)试探练习,回授调节4. 用多项式填空:R( 1)温度由- 3 度下降 t度后是度;(2)温度由- 3 度上升 t 度后是度;(3)一个数比 x 的 2 倍小 3,这个数为;(4)a 与 b 两数平方的和为;a(5)如图,三角尺的面积为.r5. 用整式填空:b( 1)体重由 x 千克增加 2 千克后是千克;( 2) 1 千克大米售价 1.2元, x 千克大米售价元;( 3) a, b 分别表示长方形的长与宽,则长方形的周长为;(4)a, b 分别表示梯形的上底和下底, h 表示梯形的高,则梯形的面积为;(5)买一个篮球需要 x 元,买一个排球需要y 元,买一个足球需要z 元,买 3个篮球、 5 个排球、 2 个足球共需元.(6)如图,是一所住宅的建筑平面图,这所住宅的建筑面积是x 米平方米 .x米6米4米6. 思考题:如图,搭 1 个正方形需要 4 根小棒,搭 2 个正方形需要根小棒,搭 3 个正方形需要根小棒,搭x 个正方形需要根小棒,搭2008 个正方形需要根小棒.(教学建议:对不少学生而言,这些练习可能有一定难度. 要给学生充分时间思考,要让学生安下心来做题,快者快做,慢者慢做,不要催学生,不要求所有学生完成所有练习,差生能真正独立思考完成二三小题就不错了,中下生能完成 4 题就很好了 . 老师要加强巡视指导,给各类学生以适当鼓励)(五)归纳小结,布置作业师:今天我们学习了什么?通过本节课学习,你有什么收获?生:(多让几位同学回答)(作业: P60习题 2. )四、板书设计例1课题: 2.2 整式的加减(第 1 课时)一、教学目标1. 经历同类项概念的形成过程,知道什么是同类项.2. 经历合并同类项法则的形成过程,会合并同类项.二、教学重点和难点1.重点:同类项的概念,合并同类项 .2.难点:同类项概念的形成 .三、教学过程(一)创设情境,导入新课师:前面我们学习了整式的概念,从本节课开始,我们学习整式的加减. (板书课题:2.2 整式的加减)整式的加减实质上就是合并同类项,本节课我们先来学习合并同类项 . (板书:(合并同类项))(二)尝试指导,讲授新课师:要合并同类项,我们首先要弄清什么是同类项 . 让我们一起来看下面的例子 .师: 5 个 x 加上 2 个 x 等于什么?(边讲边板书: 5x+2x=)生: 7 个 x. (师板书: 7x)2222师:- 5ab 加上 3ab 等于什么?(边讲边板书:-5ab +3ab =)师:根据分配律,- 5ab2+3ab2= ( - 5+ 3)ab 2(边讲边板书: ( - 5+ 3)ab 2)等于-2ab2 . (板书:=- 2ab2)师:(指准 5x+ 2x=7x)这个式子的左边是5x 与 2x 两项,右边只有 7x 一项,这就是说,左边的两项可以合并成右边的一项.师:(指准- 5ab2+ 3ab2=- 2ab2)这个式子的左边也有两项-5ab2,3ab2,右边只有一项- 2ab2,这就是说,左边的两项也可以合并成一项.师:(指式子)观察、分析这两个式子,请大家分组讨论这么一个问题:怎么样的两项可以合并成一项?(出示板书:怎么样的两项可以合并成一项?)(生分组讨论,师巡视指导)师:哪位同学知道怎么样的两项可以合并成一项?生:(多让几位同学发表看法)师:(在- 5ab2,3ab2下面划线,并指准)两项所含字母相同,-5ab2这一项所含字母是 a,b,3ab2这一项所含字母也是 a, b. (板书:所含字母相同) 2 2这一项字母 a 的指数也是 1;这一项字母 b 的指数是 2,这一项字母 b 的指数也是2. (板书:并且相同的字母的指数也相同)师:(指- 5ab2,3ab2)像这样所含字母相同,相同字母的指数也相同的项,叫做同类项 . (板书:的项,叫做同类项)师:现在,我们再回到原来的问题:怎么样的两项可以合并成一项?生:师:同类项可以合并成一项,而且只有同类项才可以合并成一项,不是同类项不能合并成一项 .(三)试探练习,回授调节1.判断下列各组的两项是不是同类项:( 1) 12x 与 2x;(2)2x2y与-5x2y;(3)2a与a2;(4)4xy 与 5yx;(5)4abc与4ab;(6)7xy2与7x2y;33(7)a 与 5 ;(8)-25与12.(由于- 25 与 12 可以合并成一项- 13,因此,常数项与常数项也是同类项)2.找出多项式 4x2-8x+ 5-3x2+6x-2 中的同类项:( 1) 4x2与是同类项;( 2)- 8x 与是同类项;( 3) 5 与是同类项.(四)尝试指导,讲授新课师:我们已经知道,同类项是可以合并在一起的合并成一项,叫做合并同类项.. (指板书的课题)把几个同类项师:(指板书的两个式子)从这两个式子,哪位同学知道怎么合并同类项?生:(多让几位同学发表看法)师:系数相加,字母部分不变. (板书:系数相加,字母部分不变)例 1合并下列各式的同类项:(1)xy2-1xy2;( 2)- 3ab+ba-2ab. 5(先让生尝试,师再板演讲解,讲解时要紧扣法则)3. 填空:( 1) 6x-4x=()x=;( 2)- 7ab+6ab= ()ab=;( 3) 10y2+y2= ()y 2 =;( 4)- 0.5a +2a- 3.5a =()a=.4. 合并下列各式的同类项:( 1)- 8x2-7x2=( 2)1xy- xy=3(3)- 4a2 b+ 4a2b=(4)1y-1y+2y=425.判断正误:对的画 " √" ,错的画 " ×".( 1) 3a2- 2a2= 1;()( 2)3y-y=3;()( 3) 5a+2b=7ab;()( 4) 7ab-7ba=0;()( 5)4x2y-2xy2= 2x2y;()( 6)3x2+2x3=5x5.()6. 思考题:如图,大圆的半径是 R,小圆的面积是大圆面积的4,则阴影部分的面9积为.R(五)归纳小结,布置作业. (指准- 5ab2+3ab2师:本节课,我们学习了什么是同类项及怎么合并同类项这个式子)所含字母相同,并且相同字母的指数也相同的项叫做同类项. 合并同类项的方法是系数相加,字母部分不变. 合并同类项的这个方法是根据什么得到的?生:(根据分配律)(作业: P66练习 1.2. )四、板书设计2.2 整式的加减(合并同类项)5x+2x=7x例 1-5ab2+ 3ab2=( -5+3)ab 2=- 2ab2怎样的两项可以合并成一项?叫做同类项 .系数相加,字母部分不变.课题: 2.2 整式的加减(第 2 课时)一、教学目标1.会合并多项式中的同类项 .2.会先合并同类项,再求多项式的值 .二、教学重点和难点1.重点:合并多项式中的同类项 .2.难点:把多项式中的同类项写在一起 .三、教学过程(一)基本训练,巩固旧知1.判断下列各组中的两项是不是同类项:(1)0.2x 2y 与 0.2xy 2;(3)mn与- nm;( 2)4abc 与 4ac;( 4)- 125 与 20.2.合并下列各式的同类项:(1) 4x2- 8x2=(2)- 3x2 y+ 2x2y=(3) 3xy2-2xy2=(4) 2x2+ x2-3x2=3.判断正误:对的画“√” ,错的画“×” .( 1)a+b=b+a;()(2)a- b= b- a;()(3)a- b=- b+a;()(4)x2+2-x=x2+x-2;()(5)x2+ 2- x= x2-x+2;()(6)x2+2-x=x+2-x2;()(7)x2+2-x=- x+2+x2.()(强调:交换多项式的项,要连同符号一起交换)(二)创设情境,导入新课师:上节课我们学习了什么是同类项及怎么合并同类项,本节课我们将学习如何合并多项式中的同类项 . 请看例 1.(三)尝试指导,讲授新课例 1 合并多项式 4x2+2x+7+ 3x-8x2-2 的同类项 .解: 4x2+2x+7+3x- 8x2-2第一步:划线,找出同类项;=4x2-8x2+2x+ 3x+7-2第二步:把找出的同类项写在一起;=- 4x2+5x+5第三步:合并同类项 .(第二步不宜加括号,第三步可直接算出结果,这样可能会简单些)(四)试探练习,回授调节4.合并下列各式的同类项:(1) a2-3a+ 8- 3a2+ 5a-7==(2)- 3x2 y- 2xy2+3xy2+2x2y==(3) 4a2+ 3b2+ 2ab-4a2-4b2==(五)尝试指导,讲授新课例 2求多项式 3a+abc-1c2-3a+1c2的值,其中,a=-1, b= 2,c =- 3. 336(先合并多项式的同类项,再代入数值,最后得到结果,解题格式要与教材相同)(六)试探练习,回授调节5.求多项式 2x2- 5x+x2+ 4x-3x2-2 的值,其中 x=1 . 2(五)归纳小结,布置作业师:本节课我们学习了合并多项式的同类项,合并多项式的同类项有三步,是哪三步?生:(作业: P71习题 1.P 76复习题 2. )四、板书设计例 1例2课题: 2.2 整式的加减(第 3 课时)一、教学目标1.经历去括号法则的形成过程,知道去括号法则 .2.会去括号 .二、教学重点和难点1.重点:去括号 .2.难点:去括号法则的形成过程 .三、教学过程(一)基本训练,巩固旧知1.合并下列多项式的同类项:(1) 8a+2b-5a- b=(2) 8x-3y+z-4x- 3y+2z=2.求多项式 3x2- 8x+2x3-13x2+ 2x-2x3+3 的值,其中 x=- 4.3. 填空:分配律是a(b +c) =,利用分配律可得:6(x - 3) =,- 6(x - 3) =.(二)创设情境,导入新课师:(板书: 8a+ 2b-(5a -b) )这个式子合并同类项的结果是什么?生: 3a+b.师:这个结果是错误的!为什么呢?因为这个式子中含有括号,(用彩笔标括号)要合并含有括号的式子的同类项,先要去括号 . 如何去括号呢?这就是我们这节课要学习的内容 . (板书课题: 2.2 整式的加减(去括号))(三)尝试指导,讲授新课师:如何去括号呢?先看两个去括号的例子.师:(板书: 6(x -3) =)利用分配律, 6(x -3) 等于什么?生: 6x-18. (师板书: 6x-18)师:(板书:- 6(x - 3) =)利用分配律,- 6(x -3) 等于什么?生:- 6x+18. (师板书:- 6x+ 18)师:从这两个例子,我们可以看到,(指准-6(x-3)=-6x+18)去括号实际上就是运用分配律,把括号外的因数分别乘括号内的各项 .(师板书:+ (x -3) =-(x-3)=)师:运用分配律,我们又怎么去掉(指式子)这两个式子中的括号呢?请大家自己动笔先试一试 . (生尝试,师巡视)师:(指+ (x -3) )这个式子不好用分配律,我们可以把+(x -3) 写成 1× (x -3) ,(边讲边板书: 1×(x -3) )这样就可以用分配律了,运用分配律得到的结果是什么?生: x-3. (师板书:= x-3)师:(指- (x - 3) )这个式子也不好用分配律,我们可以把-(x - 3) 写成 ( -1) ×(x - 3) ,(边讲边板书: ( -1) × (x -3) )这样就可以用分配律了,运用分配律得到的结果是什么?生:- x+ 3. (师板书:=- x+3)师:从上面的四个例子说明,去括号的过程实际上就是运用分配律的过程. 前两个式子(指 6(x -3) ,- 6(x -3) )是直接用分配律去括号,而后两个式子(指+ (x -3) ,- (x -3) )用分配律去括号比较麻烦,这就有必要寻找去括号的规律 .师:去掉中间过程,(擦掉中间过程,板书成+(x - 3) =x -3,- (x -3) =- x +3)得到+ (x -3) = x-3,- (x -3) =- x+3. 从这两个式子,同学们发现去括号有什么规律吗?(生分组讨论,师巡视指导)师:哪位同学发现了去括号的规律?生:(多让几位同学发表看法)师:从这两个式子,我们可以发现,(指准+ (x -3) =x-3)如果括号前是“+”号,去括号后括号里的各项都不变符号;(板书上面这句话)(指准- (x - 3) =-x+3)如果括号前是“-”号,去括号后括号里各项都改变符号 . (板书上面的这句话)请大家把这两句话读一遍 . (生读)例1 去括号:( 1) a+ (b +c-d) ;(2)a+(-b+c-d);( 3) a- (b +c-d) ;(4)a-(-b+c-d).(四)试探练习,回授调节4. 去括号:( 1) a+ (b -c) ;(2)a-(b-c);( 3) a- ( - b+ c) ;(4)a+(-b+c);( 5) (a +b) -c;(6)-(a+b)-c.(五)尝试指导,讲授新课例 2 先去括号,再合并同类项:( 1) 8a+2b- (5a -b) ;( 2) (5a -3b) -3(a 2- 2b).(生先尝试,师再板演讲解;(2)题除教材中的解法,也可以用分配律直接去掉括号)(六)试探练习,回授调节5.化简:(1)12(x -0.5) =(2)- 5(1 -1x) =5(3)- 5a+(3a -2) -(3a -7) =(4)1(9y - 3) +2(y +1) =3(七)归纳小结,布置作业师:本节课我们学习了如何去括号. (指准+ (x -3) =x-3)如果括号前是“+”号,去括号后括号里各项都不变符号;(指准- (x - 3) =- x+3)如果括号前是“-”号,去括号后括号里各项都改变符号;(指准- 6(x - 3) =- 6x+18)如果括号前是其它因数,那么用分配律可以直接去掉括号 .(作业: P71习题 2. )四、板书设计2.2 整式的加减(去括号)6(x - 3) = 6x- 18例 1例 2- 6(x -3)=- 6x+ 18+ (x -3)= x-3如果括号前是“+”号-(x -3) =- x+ 3如果括号前是“-”号课题: 2.2 整式的加减(第 4 课时)一、教学目标1.会进行整式加减运算 .2.会先进行整式的加减,再求值 .二、教学重点和难点1.重点:进行整式加减运算 .2.难点:求值 .三、教学过程(一)基本训练,巩固旧知1.判断正误:对的画“√” ,错的画“×” .( 1) a- (b -c+d) =a-b- c+ d;()( 2) a- (b +c) -d=a-b- c- d;()( 3) (a +b) - ( - c+ d) =a+b-c-d;()( 4)a+( -b+c-d) = a- b+ c- d;()( 5)- (a - b) +(c -d) =- a+ b- c+ d.()2. 去括号:( 1) (a +b) +(c - d) =( 2) (a +b) -(c - d) =( 3)- (a + b) -( -c-d) =( 4) (a -b) -( -c+d) =( 5)- (a - b) +( -c-d) =(6) a- ( - b+ c) -d=(二)创设情境,导入新课师:前面我们学习了合并同类项、去括号,本节课我们学习整式的加减. (板书课题:2.2 整式的加减)进行整式的加减运算,实际上就是做两件事,第一件事是去括号,第二件事是合并同类项 . 请看例 1.(三)尝试指导,讲授新课例1 计算:( 1) (2x -3y) +(5x +4y) ;(2)(8a-7b)-(4a-5b).(按去括号、合并同类项两步先让生尝试)例2 计算:(2a - 3b) +[4a -(3a -b)].(先去小括号)(四)试探练习,回授调节3.计算:(1) ( - x+ 2x2+ 5) +(4x 2- 3- 6x) ;(2) (3a 2-ab+7) - ( - 4a2+2ab+ 7) ;(3) (2a -3b) -[4a + (3a - b)].4. 填空:整式 x+y 与整式 x-y 的和为,差为.(五)尝试指导,讲授新课例3 求1x- 2(x -1y2) +( -3x+1y2) 值,其中 x=- 2,y=2. 23233(按教材格式板演)(六)试探练习,回授调节5.先化简,再求值:5(3a 2b-ab2) - (ab 2+3a2b) ,其中 a=1,b=1.23(七)归纳小结,布置作业师:本节课我们学习了整式的加减,进行整式的加减运算有两步,是哪两步?生:(作业: P 习题 3.4. )71四、板书设计2.2整式的加减例 1例 2例 3课题: 2.2 整式的加减(第 5 课时)一、教学目标1.会列式计算整式加减的文字题 .2.会列较简单的整式加减式子表示实际问题中的数量关系,发展符号感.二、教学重点和难点1.重点:列较简单的整式加减式子表示数量关系 .2.难点:列较简单的整式加减式子表示数量关系 .三、教学过程(一)创设情境,导入新课师:前面我们学习了如何进行整式加减运算,本节课我们学习几个与整式加减有关的例题,算作是对整式加减的一种应用 .(板书课题: 2.2 整式的加减(应用))请看例 1.(二)尝试指导,讲授新课例1 列式表示比 x 的 7 倍大 3 的数与比 x 的-2 倍小 5 的数,计算这两个数的差 .解:比 x 的 7 倍大 3 的数为 7x+3,比x 的- 2 倍小 5 的数为- 2x-5,这两个数的差为 (7x + 3) -( -2x-5) = 7x+3+2x+5= 9x+8(每一步都让学生尝试)(三)试探练习,回授调节1.求整式 8xy- x2+y2与 x2-y2+8xy 的差 .2.列式表示比 a 的 5 倍大 4 的数与比 a 的 2 倍小 3 的数,计算这两个数的和 .(四)尝试指导,讲授新课例2一种笔记本的单价是x元,圆珠笔的单价是y元.卓玛买这种笔记本3个,买圆珠笔 2 支;扎西买这种笔记本 4 个,买圆珠笔 3 支 . 买这些笔记本和圆珠笔,卓玛和扎西一共花费多少钱?(教学建议:按教材P69解法一解比较自然,要让学生充分熟悉题意,充分尝试的基础上再讲解,熟悉题意的工夫要下足,这是需要耐心的,可以通过读题、说题、画题、列表、实物展示等方式让学生熟悉题意)(五)试探练习,回授调节3. 某村土豆种植面积是 a 亩,白菜种植面积比土豆种植面积少8 亩,青稞种植面积是白菜种植面积的10 倍,问该村土豆、白菜、青稞一共种植多少亩.(六)尝试指导,讲授新课例3 两船从同一港口同时出发反向而行,甲船顺水,速度为每小时 (50 + a) 千米,乙船逆水,速度为每小时 (50 - a) 千米 .(1) 2 小时后两船相距多远?(2) 2 小时后甲船比乙船多航行多少千米?(解题格式与板材P67例题相同)(七)试探练习,回授调节4.填空:已知某轮船顺水航行速度为每小时 (a + y) 千米,逆水航行速度为每小时(a - y) 千米,(1)轮船顺水航行 3 小时,航行了千米;(2)轮船逆水航行 1.5 小时,航行了千米;(3)轮船顺水航行 3 小时,逆水航行 1.5 小时,一共航行了千米.(八)归纳小结,布置作业师:本节课我们学习了几个例题,例 2 例 3 都是和实际问题有关的 . 做这类应用题,关键是要静下心来,好好读题,好好画题——把题目的意思画出来,搞清题目的意思 . 做应用题还需来有信心和毅力,不要被题目吓倒!如果你真的动了脑筋,自己做出了一道题,那么再做第二道题、第三道题就有希望了 .(作业: P68练习 2.P 71习题 7. )四、板书设计2.2 整式的加减(应用)例 1例2例3。
人教版七年级数学上册第二章《整式的加减》教案

人教版七年级数学上册第二章《整式的加减》教案一. 教材分析《整式的加减》是人教版七年级数学上册第二章的内容,主要包括整式的加减运算以及合并同类项的方法。
本节内容是学生学习代数初步知识的重要环节,为后续学习方程和不等式打下基础。
通过本节内容的学习,学生应该能够理解整式的加减运算法则,掌握合并同类项的方法,并能熟练进行整式的加减运算。
二. 学情分析七年级的学生已经掌握了实数的基本运算,具备了一定的逻辑思维能力。
但是,对于整式的加减运算和合并同类项的方法,学生可能还比较陌生,需要通过实例和练习来逐渐理解和掌握。
此外,学生可能对于代数式的运算规则还不够熟悉,需要教师在教学过程中进行引导和培养。
三. 教学目标1.理解整式的加减运算法则;2.掌握合并同类项的方法;3.能够熟练进行整式的加减运算;4.培养学生的逻辑思维能力和代数运算能力。
四. 教学重难点1.整式的加减运算法则;2.合并同类项的方法;3.整式的加减运算的实践应用。
五. 教学方法采用讲解法、示例法、练习法、讨论法等教学方法。
通过教师的讲解和示例,让学生理解整式的加减运算法则和合并同类项的方法,通过练习和讨论,让学生巩固所学知识,提高运算能力。
六. 教学准备教师准备教案、PPT、练习题等教学资源。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引入整式的加减运算,例如:“已知两个数的和是20,差是5,求这两个数分别是多少?”让学生思考和讨论,引导学生认识到整式的加减运算的重要性。
2.呈现(15分钟)教师通过PPT展示整式的加减运算法则和合并同类项的方法,并进行讲解和示例。
例如,对于两个整式的加减运算,先将同类项合并,再进行加减运算。
同时,教师可以通过举例说明合并同类项的方法,如系数相加减,字母和字母的指数不变。
3.操练(15分钟)教师布置一些练习题,让学生独立完成。
例如,计算以下整式的和:(1)2x+ 3y - 4x + 5y;(2)4a^2 - 3a - 2a^2 + 5a。
人教版七年级数学上册《整式的加减》教学设计

第二章 《整式的加减》单元教学设计一、单元教学策略分析(一) 教材所处的地位:人教版《数学》七年级上册第二章,本章由数到式,承前启后,既是有理数的概括与抽象,又是整式乘除和其他代数式运算的基础,也是学习方程、不等式和函数的基础。
(二) 单元教学目标:(1)理解并掌握单项式、多项式、整式等概念,弄清它们之间的区别与联系。
(2)理解同类项概念,掌握合并同类项的方法,掌握去括号时符号的变化规律,能正确地进行同类项的合并和去括号。
在准确判断、正确合并同类项的基础上,进行整式的加减运算。
(3)理解整式中的字母表示数,整式的加减运算建立在数的运算基础上;理解合并同类项、去括号的依据是分配律;理解数的运算律和运算律性质在整式的加减运算中仍然成立。
(4)能分析实际问题中的数量关系,并列出整式表示 。
体会用字母表示数后,从算术到代数的进步。
(5)渗透数学知识来源于生活,又要为生活而服务的辩证观点;通过由数的加减过渡到整式的加减的过程,培养学生由特殊到一般的思维;体会整式的加减实质上就是去括号,合并同类项,结果总是比原来简洁,体现了数学的简洁美。
(三) 单元教学的重难点:(1)重点:理解单项式、多项式的相关概念;熟练进行合并同类项和去括号的运算。
(2)难点:准确地进行合并同类项,准确地处理去括号时的符号。
(四) 单元教学思路及策略:(1)注意与小学相关内容的衔接。
(2)加强与实际的联系。
(3)类比“数”学习“式”,加强知识的内在联系,重视数学思想方法的渗透。
(4)抓住重难点、加强练习。
(五) 学生学习易错点分析:(1)忽视单项式的定义,误认为式子a1是单项式。
(2)忽视单项式系数的定义,误认为54ab的系数是4。
(3)忽视单项式的次数的定义,误认为3a 的次数是0。
(4)忽视多项式的定义,误认为54yx +是单项式。
(5)忽视多项式的定义,误认为x yx 422-的次数是7。
(6)忽视多项式的项的定义,误认为多项式8215233--+xy x y yx 的项分别为8,,21,5233xy x y y x 。
人教版教材数学七年级上册第二章《整式的加减》全章教案

第二章 整式的加减2.1 整式整式 (1)教课目的1 .知识与技术( 1)能用代数式表示实质问题中的数目关系.( 2)理解单项式、单项式的次数,系数等观点,会指出单项式的次数和系数. 重、难点与要点1 .要点:单项式的相关观点.2 .难点:负系数确实定以及正确确立一个单项式的次数.教课过程 一、新授6a 2,a 3, 2.5x , vt , -n .察看上边各式中运算有什么共同特色?上边各式中,数字与字母之间,字母与字母之间都是乘法运算, ?它们都是数字与字母的积,比如: 6a 2 表示 6×a 2, a 3 表示 1×a 3, 2.5x 表示 2.5 × x , vt 表示 1×v × t , -n? 表示 -1 ×n .像上边这样,只含有数与字母的积的式子叫做单项式.独自的一个数或一个字母也是单项式.如: -2 , a , 1 ,都是单项式,而1, 1+x 都不是单项.3a6a 2 的系数是 6,a 3的系数是单项式中的数字因数叫做这个单项式的系数,比如:1,-n 的系数是 -1 , -ab的系数是 - 1.55单项式表示数字与字母相乘时,往常把数字写成前方, 当一个单项式的系数是 1 或 -1 时往常省略不写.一个单项式中,全部字母的指数的和叫做这个单项式的次数.比如,2.5x? 中字母 x 的指数是 1,2.5x 是一次单项式; vt 中字母 v 与 t 的指数和是2,vt 是二次单项式, -a b 2c 中字母 a 、b 、c 的指数和是4, -a b 2c 是 4 次单项式.二、典范学习例 1.用单项式填空,并指出它们的系数和次数.( 1)每包书有 12 册,n 包书有 _______册.( 2)底边长为 a ,高为 h 的三角形的面积是 ______.( 3)一个长方体的长和宽都是a ,高是 h ,它的体积是 _______.( 4)一台电视机原价 a 元,现按原价的 9 折销售,这台电视机此刻售价为 _____元.( 5)一个长方形的长为 0.9 ,宽是 a ,这个长方形的面积是 _________.三、稳固练习1 .以下各式能否是单项式?为何?( 1)x-2y ; ( 2) - x;(3)4;(4)a b; ( 5) -1 .5m52 .判断以下各说法能否正确,错误的更正过来.( 1)单项式 -xy 2 的系数是 0,次数是 2. ( 2)单项式 27a 2的系数是 2,次数是 9.( 3)单项式 -2x n y的系数是 -2,次数是 n+1.333 .请你写出系数为 - ,含有 x 、 y ,次数为4 的全部单项式. 4.课本第 56 页练习 1、 2 题.四、讲堂小结1 .什么叫单项式?举例说明.2 .独自的一个数或一个字母是单项式吗?x是单项式吗?为何?a3 .什么叫单项式的系数?什么叫单项式的次数?举例说明.五、作业部署 1 .课本第 59 页至第 60 页,习题 2. 1 第 1、 2、 8 题. 2.采用课时作业设计.作业设计一、判断题.(对的打“∨” ,错的打“×” )1 . x 是单项式.( )2. 6 不是单项式.()3 .m 的系数是 0,次数也是 0.( )4.单项式xy 的系数是,次数是 2.( )44二、填空题.527ab 3 .x yz 的系数是 ________,次数是 ________.6.-的系数是 ______ ,次数是 _______.27 .假如单项式 -2 x 2y n与单项式 a 4b 的次数相同,则n=________.8 .写出系数为 5,含有 x 、y 、z?三个字母且次数为 4?的全部单项式, ?它们分别是 _______.三、选择题. 9.以下各式中单项式的个数是(). 3 , x+1, -2 1 ,- a,0 .72xy, x 1 .x2 42A .2个B .3个 C. 4 个D .5个10.单项式 -x 2yz 2 的系数、次数分别是().A . 0.2 B.0.4 C.-1 ,5D .1,4四、解答题.11.苹果的价钱比梨贵 35%,假如梨的价钱是每千克m 元,那么苹果的价钱是多少?假如梨的价钱比苹果廉价 10%,梨的价钱还是每千克 m 元,那么苹果的价钱是多少?12 .买一级肉 5 千克和买二级肉6 千克用的钱相同多,假如一级肉每千克 a 元,那么二级肉每千克多少元?假如用买 b 千克一级肉的钱去买二级肉,能够买多少千克?整式(2)教课目的使学生理解多项式、整式的观点,会正确确立一个多项式的项数和次数.重、难点与要点1.要点:多项式以及相关观点.2.难点:正确确立多项式的次数和项.教课过程一、复习发问2 .如何确立一个单项式的系数和次数?- 3ab2c的系数、次数分别是多少?73.列式表示以下问题:( 1)一个数比数 x 的 2 倍小 3,则这个数为 ________.( 2)买一个篮球需要x(元),买一个排球需要y(元),买一个足球需要z(元),买球, 5 个排球, 2 个足球共需 ________元.( 3)如图 1,三角尺的面积为________.( 4)如图 2 是一所住所的建筑平面图,这所住所的建筑面积是________平方米.3 个篮(1)(2)上边列出的式子2x-3 , 3x+5y+2z ,1ab-r2, x2+2x+18 ,它们是单项式吗?这些式子有什2么共同特色?与单项式有什么关系?2x-3可看作2x与 -3的和:3x+5y+2z能够看作单项式3x、 5y与2z的和;相同1ab-r 2看2作1ab 与 - r2的和, x2+2x+18 能够 x2、 2x、 18 的和.2二、新授请同学们阅读课本第 57页相关内容,并回答以下问题.1.几个单项式的和叫做_________;2 .在多项式中,每个单项式叫做_________ ;3.在多项式中,不含字母的项叫做_________;4.在多项式中, _____________________ ,叫做这个多项式的次数.5.多项式的次数与单项式的次数有什么差别?6 ( 1)多项式的次数与单项式的次数观点不一样,但又有联系,?第一求出此多项式各项(单项式)的次数,次数最高的就是这个多项式的次数.(2)一个多项式的最高次项能够不独一,次高项也能够不独一, ?如,?多项式1.什么叫单项式?举例说明.3x 2y-1xy 2+x 2-xy-5中,最高次项为3x 2y和 -1xy 2,二次项也有2 项, x 2 和 -xy ,?这个多项式为22二次五项式.单项式和多项式统称为整式,比如: 100t , 6a 3,vt , -n ,2x-3 , 3x+5y+2z 等都是整式.三、典范学习例 1.用多项式填空,并指出它们的项和次数.( 1)温度由 t ℃降落5℃后是 _______℃.( 2)甲数x 的 1与乙数y 的1的差能够表示为32_________.( 3)如课本图 2.1-3 ,圆环的面积为 ________.( 4)如课本图 2.1-4 ,钢管的体积是 ________.例 2.一条河流的水流速度为2.5 千米 / 时,假如已知船在静水中的速度,那么船在这条河流中顺流行驶和逆水行驶的速度分别如何表示?假如甲、?乙两条船在静水中的速度分别是20 千米/ 时和 35 千米 / 时, ?则它们在这条河流中的顺流行驶和逆水行驶的速度各是多少? 四、稳固练习1 .以下式子中,哪些是单项式?哪些是多项式?哪些是整式? 3x, 2x-1 ,m1, -ab , -5 ,2-1 , 3m-4n+m 2n .3 x2.鉴别正误: (1)多项式 -x 2y+2x 2-y 的次数 2.( )( 2)多项式 - 1-a+3a 2的一次项系数是 1.( )(3) -x-y-z 是三次三项式. ( )23.课本第 59 页练习. 4 .课本第 61 页第 10 题.五、讲堂小结1 .什么叫做多项式?多项式是整式吗?整式是多项式吗?2 .什么叫多项式的项?什么叫做常数项?举例说明?3 .什么叫做多项式的次数? 六、作业部署1 .课本第 60 页,习题 2. 1 第 2、 3、4、 5、 6、7 题作业设计一、填空题.2 1.式子 - 3 ab ,2x y ,x9 2 3, 3 , 1+1 中,单项式的是 ______,多项, -a bc ,1,x -2x+353 2ax式的是 _______.2 .多项式 -x 2 y +2x-3 是 _______ 次 _______ 项式,最高次项的系数是 ______ ,常数项是3________.3 . 2x 2-3x y 2+x-1 的各项分别为 ________.二、选择题.4.一个五次多项式,它任何一项的次数().A .都小于 5B.都等于 5C.都不小于 5 D .都不大于 55.以下说法正确的选项是().A.x2+x 3是五次多项式 B .a b不是多项式 C.x2-2 是二次二项式 D .xy 2-1 是二次二项3式三、列式表示.6.n 为整数,不可以被 3 整除的整数表示为 ________.7.一个三位数,十位数字为x,个位数字比十位数字少3,?百位数字是个位数字的 3 倍,则这个三位数可表示为________.8.某班有学生 a 人,若每 4 人分红一组,有一组少 2 人,则所分组数是 ________.9.以下图,暗影部分的面积表示为________.10.用火柴棒按图 4 的方式搭塔式三角形.(1)察看填表:一条边火柴棒根数 1 2 34小三角形个数火柴棒总根数( 2)照这样下去,搭起的大三角形一条边用了n 根火柴棒,这样的小三角形有多少个?整式(3)教课目的和要求:1.理解多项式的升(降 )幂摆列的观点,会进行多项式的升(降 )幂摆列。
人教版数学七年级上册第二章整式的加减教学设计

-鼓励学生进行小组合作,共同探讨整式加减的法则和技巧。
-通过小组讨论和互评,促进学生之间的交流,提高解决问题的能力。
4.多元评价,促进发展:
-采用过程性评价和终结性评价相结合的方式,全面评估学生的学习成果。
-注重评价学生的思考过程、合作态度和创新能力,激发他们的潜能。
5.知识拓展,提高能力:
-在确保学生掌握基本知识的基础上,适当拓展整式加减的深度和广度,提高他们的思维水平。
-引导学生进行总结反思,形成知识网络,提高解决问题的综合能力。
四、教学内容与过程
(一)导入新课
1.教学策略:利用生活实例,引起学生对整式加减的兴趣,为新课的引入做铺垫。
-教师通过多媒体展示购物小票,提出问题:“同学们,你们在购物时,是否注意过小票上的价格是如何计算的?其实,这里面就涉及到了我们今天要学习的整式的加减运算。”
2.难点:从具体到抽象的过渡、逻辑推理能力的提升、解决实际问题的应用。
-学生往往难以从具体的数字运算直接过渡到抽象的代数符号运算,需要教师通过直观的教具和生动的例子帮助学生理解。
-逻辑推理能力的培养是本章的难点,学生需要在教师的引导下,通过大量练习逐步提高。
-将整式的加减应用于解决实际问题,需要学生具备一定的抽象思维和问题分析能力,这对他们来说是一个挑战。
-引导学生学会倾听、尊重他人意见,形成良好的集体氛围。
二、学情分析
学生在进入七年级阶段,已经在小学阶段积累了基本的算术运算能力,对于数的概念和简单的四则运算有了较为扎实的掌握。在此基础上,本章整式的加减教学将有助于学生从具体的数字运算过渡到抽象的代数表达式的运算。然而,学生可能在学习过程中面临以下挑战:
1.基础练习:根据课堂所学的整式加减法则,完成课后练习题第1至第5题。这些题目旨在帮助学生掌握整式的基本概念和加减运算方法,加强对同类项合并的理解。
北京十一实验中学人教版七年级数学上册2

(一)教学重难点
1.重点:整式的概念、整式的加减运算规则、同类项的合并。
-整式的概念是本章的基础,学生需要理解并能够区分单项式和多项式。
-整式的加减运算是本章的核心,学生需要掌握运算规则,并能够熟练应用。
-同类项的合并是整式加减的关键步骤,学生需要掌握合并同类项的方法,提高代数表达式的简化能力。
2.实践应用题:选取生活中的实际问题,如购物、计费等,将其转化为整式加减问题,并求解。此类题目旨在培养学生的数学建模能力和解决实际问题的能力。
-例如:小华乘坐出租车,起步价为10元,超过3公里后,每公里加收2.5元。如果小华乘坐了8公里,请计算他需要支付的车费。
3.提高拓展题:完成课本第21页的拓展题4、5,这两题涉及整式的混合运算和较复杂的实际问题,旨在提高学生的逻辑思维能力和数学素养。
北京十一实验中学人教版七年级数学上册2.整式加减教学设计
一、教学目标
(一)知识与技能
1.理解整式的概念,掌握整式的加减运算规则,能够正确进行整式的加减运算。
-学生能够辨识单项式和多项式,理解它们的结构特点。
-学生能够运用整式的加减运算法则,解决实际问题,如代数表达式的简化、数学问题的建模等。
2.能够运用整式的加减法则,解决生活中的一些实际问题,提高解决问题的能力。
5.课后反思:要求学生结合自己的学习情况,撰写课后反思,内容包括对本节课整式加减知识点的理解、解题过程中的困惑以及改进措施。
四、教学内容与过程
(一)导入新课
为了激发学生对整式加减的学习兴趣,教师可以从生活中提取情境,如设计一个关于“购物”的问题情境:小明去超市购物,他买了一些苹果和橙子,苹果的价格是每千克3元,橙子的价格是每千克5元。如果小明购买了2千克的苹果和3千克的橙子,请同学们计算他一共花费了多少钱。
人教版七年级数学上册第二章《整式的加减》教学设计

人教版七年级数学上册第二章《整式的加减》教学设计一. 教材分析人教版七年级数学上册第二章《整式的加减》是学生在初中阶段首次接触整式运算的内容。
本章主要介绍整式的加减运算,包括同类项的定义、合并同类项的方法以及整式的加减法则。
通过本章的学习,学生能够掌握整式加减的基本运算方法,并为后续的代数学习打下基础。
二. 学情分析七年级的学生已经具备了一定的数学基础,对基本的数学运算有一定的了解。
但是,对于整式的加减运算,学生可能还存在一定的困难,特别是在理解同类项的定义和运用整式加减法则方面。
因此,在教学过程中,需要注重引导学生理解同类项的概念,并通过大量的例子让学生熟悉并掌握整式的加减运算方法。
三. 教学目标1.知识与技能目标:学生能够理解同类项的概念,掌握合并同类项的方法,能够运用整式加减法则进行简单的整式运算。
2.过程与方法目标:通过观察、操作、思考、交流等活动,培养学生的问题解决能力和合作能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,培养学生的耐心和细心。
四. 教学重难点1.教学重点:同类项的定义,合并同类项的方法,整式加减法则的应用。
2.教学难点:同类项的判断,整式加减运算的灵活运用。
五. 教学方法1.情境教学法:通过生活实例引入同类项的概念,激发学生的学习兴趣。
2.启发式教学法:通过提问引导学生思考,培养学生的问题解决能力。
3.合作学习法:通过小组讨论和合作,培养学生的合作能力和交流能力。
六. 教学准备1.教学PPT:制作精美的PPT,展示同类项的定义和整式加减运算的例子。
2.练习题:准备一些练习题,用于巩固学生的学习效果。
七. 教学过程1.导入(5分钟)利用生活实例,如购物时计算总价,引入同类项的概念,激发学生的学习兴趣。
2.呈现(10分钟)通过PPT展示同类项的定义和合并同类项的方法,让学生直观地理解同类项的概念,并学会如何合并同类项。
3.操练(10分钟)让学生通过小组合作,解决一些同类项的合并问题,巩固学生对同类项的理解和合并同类项的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“2015年新媒体新技术教学应用研讨会暨第八届全国中小学互动课堂教学实践观摩活动”教学设计表一、基本信息
知识与技能:用整式和整式的加减运算表示实际问题中的数量关系及探索的规律。
掌握从特殊到一般地观察、分析问题的方法。
过程与方法:经历探索数量关系、运用符号表示规律、通过运算验证规律的过程,培养观察、分析、推理能力;培养从特殊到一般、再到特殊的辩证思想。
在解决问题的过程中体验类比、转化、对应、数形结合等方法,养成良好的思维品质。
情感、态度与价值观:通过小组合作、小组竞争培养学生的合作探究能力,培养学生自我展示的能力,不断增强自信心;认识知识来源于生活,数学就在身边,感受“做”数学的乐趣,体验数学活动的探索性及创造性,激发学生的探究热情,鼓励学生大胆尝试,获得成功的体验。
三、学习者分析
学生通过对有理数及整式有关知识的学习,已经具备了初步的语言表达及符号表示能力,学生的学习方式得到了改变,学生通过前段时间小组合作学习的训练,现已具备非常强的参与意识;小组合作、小组质疑、小组释疑、小组交流、小组协作、小组展示、小组点评等已逐渐成熟,在此基础上进行图形变化中的规律探究,无论是数学思想还是数学方法都具备了良好的契机。
但这个阶段学生的思维仍属于经验的逻辑思维,很大程度上需依赖具体形象经验材料来理解抽象逻辑关系,数学思维的延伸与拓展性仍需加强,数学方法的归纳、总结能力也需加强。
因此本课程通过学生生独学、小组学,让学生充分讨论、交流从而产生思维的碰撞,通过小组编题不断断提升与拓展学的能力。
四、教学重难点分析及解决措施
重点:探索数量关系、运用整式表示规律,并通过运算验证规律。
难点:探索问题中的规律,并用符号表示规律
解决措施:本节课从学生熟知的、生活中常见的火柴棍着手,让学生经历自主学习、动手操作、寻找规律,并发现规律的过程,让学生体验探索规律,并运用符号表示规律,在数学趣味活动中感受规律的形成。
通过小组合作探究、小组释疑等方式不断体验新方法的发现过程,也不断提升学生的思维能力。
通过相应习题的练习、展示,进一步巩固了知识的运用,巩固了知识能力,是一节培养学生学会研究数学问题的探究课。
过程设计:学生已经学习了整式的加减运算,字母代替数字的优越性也有一定的了解。
这节课,通过开展数学活动,来达到巩固所学知识的目的。
为了促进同学们积极开展数学活动,我们制定了小组竞赛机制。
设计意图:特殊数学游戏,使学生体会到现实生活的规律性以及探索数量关系、运用符号表示规律、通过计算验证规律的过程,进一步发展其符号感;让学生经历从特殊到一般再到特殊的认识过程,发展其辩证唯物主义观点。
渗透“利用环境学习”的设计思想。
五、教学设计
图形编号苹果个数第一行
第行
问题一:日期中相邻的两个日期数之间有什么关系?
问题二:日历中的3个,4个,5个,…紧邻数字有哪些规律呢?
问题三:带阴影的方框中的9个数之和与方框正中心的数有什么关系?
小组讨论:这个问题我们如何研究?
画思维导图为优胜小组颁奖。
注:此模板可另附纸,为教学案例和教学论文的发表奠定基础。