2015-2016学年江苏省泰州市高一(上)期末数学试卷
高三数学上学期期末试卷(含解析)-人教版高三全册数学试题

2015-2016学年某某省某某市正定中学高三(上)期末数学试卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中只有一项是符合题目要求的.1.设集合M={x|x<3},N={x|x>﹣1},全集U=R,则∁U(M∩N)=()A.{x|x≤﹣1} B.{x|x≥3} C.{x|0<x<3} D.{x|x≤﹣1或x≥3}2.已知=1+i,则复数z在复平面上对应点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知函数f(x)=(1+cos2x)sin2x,x∈R,则f(x)是()A.最小正周期为π的奇函数B.最小正周期为的奇函数C.最小正周期为π的偶函数D.最小正周期为的偶函数4.等比数列{a n}中,a1+a2=40,a3+a4=60,那么a7+a8=()A.9 B.100 C.135 D.805.设函数f(x)=,则f(﹣98)+f(lg30)=()A.5 B.6 C.9 D.226.某几何体的三视图如图所示,则其体积为()A.4 B. C. D.87.过三点A(1,2),B(3,﹣2),C(11,2)的圆交x轴于M,N两点,则|MN|=()A. B. C. D.8.根据如图所示程序框图,若输入m=42,n=30,则输出m的值为()A.0 B.3 C.6 D.129.球O半径为R=13,球面上有三点A、B、C,AB=12,AC=BC=12,则四面体OABC的体积是()A.60B.50C.60D.5010.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,如图描述了甲、乙、丙三辆汽车在不同速度下燃油效率情况,下列叙述中正确的是()A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油11.已知双曲线E: =1(a>0,b>0)的左,右顶点为A,B,点M在E上,△ABM 为等腰三角形,且顶角θ满足cosθ=﹣,则E的离心率为()A.B.2 C.D.12.设函数f′(x)是偶函数f(x)(x∈R)的导函数,f(x)在区间(0,+∞)上的唯一零点为2,并且当x∈(﹣1,1)时,xf′(x)+f(x)<0.则使得f(x)<0成立的x的取值X围是()A.(﹣2,0)∪(0,2)B.(﹣∞,﹣2)∪(2,+∞) C.(﹣1,1)D.(﹣2,2)二、填空题:本大题共4小题,每小题5分.13.设向量,是相互垂直的单位向量,向量λ+与﹣2垂直,则实数λ=.14.若x,y满足约束条件,则z=x﹣2y的最大值为.15.已知对任意实数x,有(m+x)(1+x)6=a0+a1x+a2x2+…+a7x7,若a1+a3+a5+a7=32,则m=.16.已知数列{a n}满足a1=1,a n=(n≥2),其中S n为{a n}的前n项和,则S2016=.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.△ABC的三个内角A,B,C所对的边分别为a,b,c,且asinAsinB+bcos2A=a.(I)求;(Ⅱ)若c2=a2+,求角C.18.如图,三棱柱ABC﹣A1B1C1中,CC1⊥平面ABC,AC=BC=,D是棱AA1的中点,DC1⊥BD.(Ⅰ)证明:DC1⊥BC;(Ⅱ)设AA1=2,A1B1的中点为P,求点P到平面BDC1的距离.19.班主任为了对本班学生的考试成绩进行分析,决定从全班25名女同学,15名男同学中随机抽取一个容量为8的样本进行分析.(Ⅰ)如果按性别比例分层抽样,可以得到多少个不同的样本?(只要求写出计算式即可,不必计算出结果)(Ⅱ)随机抽取8位,他们的数学分数从小到大排序是:60,65,70,75,80,85,90,95,物理分数从小到大排序是:72,77,80,84,88,90,93,95.(i)若规定85分以上(包括85分)为优秀,求这8位同学中恰有3位同学的数学和物理分数均为优秀的概率;(ii)若这8位同学的数学、物理分数事实上对应如下表:学生编号 1 2 3 4 5 6 7 8数学分数x 60 65 70 75 80 85 90 95物理分数y 72 77 80 84 88 90 93 95根据上表数据,用变量y与x的相关系数或散点图说明物理成绩y与数学成绩x之间线性相关关系的强弱.如果具有较强的线性相关关系,求y与x的线性回归方程(系数精确到0.01);如果不具有线性相关性,请说明理由.参考公式:相关系数r=;回归直线的方程是:,其中对应的回归估计值b=,a=,是与x i对应的回归估计值.参考数据:≈457,≈23.5.20.已知P是圆C:x2+y2=4上的动点,P在x轴上的射影为P′,点M满足,当P 在圆上运动时,点M形成的轨迹为曲线E(Ⅰ)求曲线E的方程;(Ⅱ)经过点A(0,2)的直线l与曲线E相交于点C,D,并且=,求直线l的方程.21.已知函数f(x)=.(Ⅰ)求函数f(x)的图象在点x=1处的切线的斜率;(Ⅱ)若当x>0时,f(x)>恒成立,求正整数k的最大值.请考生在第(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,[选修4-1:几何证明选讲]22.如图,等腰梯形ABDC内接于圆,过B作腰AC的平行线BE交圆于F,过A点的切线交DC的延长线于P,PC=ED=1,PA=2.(Ⅰ)求AC的长;(Ⅱ)求证:BE=EF.[选修4-4:坐标系与参数方程]23.以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线l的参数方程为为参数,0<α<π),曲线C的极坐标方程为ρsin2θ=4cosθ.(Ⅰ)求曲线C的直角坐标方程;(Ⅱ)设点P的直角坐标为P(2,1),直线l与曲线C相交于A、B两点,并且,求tanα的值.[选修4-5:不等式选讲]24.设函数f(x)=|x﹣|+|x﹣a|,x∈R.(Ⅰ)求证:当a=﹣时,不等式lnf(x)>1成立.(Ⅱ)关于x的不等式f(x)≥a在R上恒成立,某某数a的最大值.2015-2016学年某某省某某市正定中学高三(上)期末数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中只有一项是符合题目要求的.1.设集合M={x|x<3},N={x|x>﹣1},全集U=R,则∁U(M∩N)=()A.{x|x≤﹣1} B.{x|x≥3} C.{x|0<x<3} D.{x|x≤﹣1或x≥3}【考点】交、并、补集的混合运算.【分析】先求出M∩N,从而求出M∩N的补集即可.【解答】解:集合M={x|x<3},N={x|x>﹣1},全集U=R,则M∩N={x|﹣1<x<3},则∁U(M∩N)={x|x≤﹣1或x≥3},故选:D.2.已知=1+i,则复数z在复平面上对应点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】复数代数形式的乘除运算;复数的代数表示法及其几何意义.【分析】利用复数的运算法则、几何意义即可得出.【解答】解: =1+i,∴=(3+i)(1+i)=2+4i,∴z=2﹣4i,则复数z在复平面上对应点(2,﹣4)位于第四象限.故选:D.3.已知函数f(x)=(1+cos2x)sin2x,x∈R,则f(x)是()A.最小正周期为π的奇函数B.最小正周期为的奇函数C.最小正周期为π的偶函数D.最小正周期为的偶函数【考点】三角函数中的恒等变换应用;三角函数的周期性及其求法.【分析】用二倍角公式把二倍角变为一倍角,然后同底数幂相乘公式逆用,变为二倍角正弦的平方,再次逆用二倍角公式,得到能求周期和判断奇偶性的表示式,得到结论.【解答】解:∵f(x)=(1+cos2x)sin2x=2cos2xsin2x=sin22x==,故选D.4.等比数列{a n}中,a1+a2=40,a3+a4=60,那么a7+a8=()A.9 B.100 C.135 D.80【考点】等比数列的通项公式.【分析】由题意可得等比数列的公比q,而7+a8=(a1+a2)q6,代值计算可得.【解答】解:设等比数列{a n}的公比为q,∴q2===,∴a7+a8=(a1+a2)q6=40×=135,故选:C.5.设函数f(x)=,则f(﹣98)+f(lg30)=()A.5 B.6 C.9 D.22【考点】函数的值.【分析】利用分段函数的性质及对数函数性质、运算法则和换底公式求解.【解答】解:∵函数f(x)=,∴f(﹣98)=1+lg100=3,f(lg30)=10lg30﹣1==3,∴f(﹣98)+f(lg30)=3+3=6.故选:B.6.某几何体的三视图如图所示,则其体积为()A.4 B. C. D.8【考点】由三视图求面积、体积.【分析】几何体为四棱锥,底面为直角梯形,高为侧视图三角形的高.【解答】解:由三视图可知几何体为四棱锥,棱锥底面为俯视图中的直角梯形,棱锥的高为侧视图中等腰三角形的高.∴四棱锥的高h==2,∴棱锥的体积V==4.故选A.7.过三点A(1,2),B(3,﹣2),C(11,2)的圆交x轴于M,N两点,则|MN|=()A. B. C. D.【考点】圆的一般方程.【分析】设圆的标准方程为(x﹣6)2+(y﹣b)2=r2,代入A(1,2),B(3,﹣2),求出b,r,利用勾股定理求出|MN|.【解答】解:设圆的标准方程为(x﹣6)2+(y﹣b)2=r2,代入A(1,2),B(3,﹣2),可得,解得:b=2,r=5,所以|MN|=2=2,故选:D.8.根据如图所示程序框图,若输入m=42,n=30,则输出m的值为()A.0 B.3 C.6 D.12【考点】程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量m的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:第一次执行循环体后,r=12,m=30,n=12,不满足退出循环的条件;第二次执行循环体后,r=6,m=12,n=6,不满足退出循环的条件;第三次执行循环体后,r=0,m=6,n=0,满足退出循环的条件;故输出的m值为6,故选:C;9.球O半径为R=13,球面上有三点A、B、C,AB=12,AC=BC=12,则四面体OABC的体积是()A.60B.50C.60D.50【考点】球内接多面体.【分析】求出△ABC的外接圆的半径,可得O到平面ABC的距离,计算△ABC的面积,即可求出四面体OABC的体积.【解答】解:∵AB=12,AC=BC=12,∴cos∠ACB==﹣,∴∠ACB=120°,∴△ABC的外接圆的半径为=12,∴O到平面ABC的距离为5,∵S△ABC==36,∴四面体OABC的体积是=60.故选:A.10.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,如图描述了甲、乙、丙三辆汽车在不同速度下燃油效率情况,下列叙述中正确的是()A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油【考点】函数的图象与图象变化.【分析】根据汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,以及图象,分别判断各个选项即可.【解答】解:对于选项A,从图中可以看出当乙车的行驶速度大于40千米每小时时的燃油效率大于5千米每升,故乙车消耗1升汽油的行驶路程远大于5千米,故A错误;对于选项B,以相同速度行驶相同路程,三辆车中,甲车消耗汽油最小,故B错误,对于选项C,甲车以80千米/小时的速度行驶1小时,里程为80千米,燃油效率为10,故消耗8升汽油,故C错误,对于选项D,因为在速度低于80千米/小时,丙的燃油效率高于乙的燃油效率,故D正确.11.已知双曲线E: =1(a>0,b>0)的左,右顶点为A,B,点M在E上,△ABM 为等腰三角形,且顶角θ满足cosθ=﹣,则E的离心率为()A.B.2 C.D.【考点】双曲线的简单性质.【分析】根据△ABM是顶角θ满足cosθ=﹣的等腰三角形,得出|BM|=|AB|=2a,cos∠MBx=,进而求出点M的坐标,再将点M代入双曲线方程即可求出离心率.【解答】解:不妨取点M在第一象限,如右图:∵△ABM是顶角θ满足cosθ=﹣的等腰三角形,∴|BM|=|AB|=2a,cos∠MBx=,∴点M的坐标为(a+,2a•),即(,),又∵点M在双曲线E上,∴将M坐标代入坐标得﹣=1,整理上式得,b2=2a2,而c2=a2+b2=3a2,∴e2==,因此e=,故选:C.12.设函数f′(x)是偶函数f(x)(x∈R)的导函数,f(x)在区间(0,+∞)上的唯一零点为2,并且当x∈(﹣1,1)时,xf′(x)+f(x)<0.则使得f(x)<0成立的x的取值X围是()A.(﹣2,0)∪(0,2)B.(﹣∞,﹣2)∪(2,+∞) C.(﹣1,1)D.(﹣2,2)【考点】利用导数研究函数的单调性;函数奇偶性的性质.【分析】令g(x)=xf(x),判断出g(x)是R上的奇函数,根据函数的单调性以及奇偶性求出f(x)<0的解集即可.【解答】解:令g(x)=xf(x),g′(x)=xf′(x)+f(x),当x∈(﹣1,1)时,xf′(x)+f(x)<0,∴g(x)在(﹣1,1)递减,而g(﹣x)=﹣xf(﹣x)=﹣xf(x)=﹣g(x),∴g(x)在R是奇函数,∵f(x)在区间(0,+∞)上的唯一零点为2,即g(x)在区间(0,+∞)上的唯一零点为2,∴g(x)在(﹣∞,﹣1)递增,在(﹣1,1)递减,在(1,+∞)递增,g(0)=0,g(2)=0,g(﹣2)=0,如图示:,x≥0时,f(x)<0,即xf(x)<0,由图象得:0≤x<2,x<0时,f(x)<0,即xf(x)>0,由图象得:﹣2<x<0,综上:x∈(﹣2,2),故选:D.二、填空题:本大题共4小题,每小题5分.13.设向量,是相互垂直的单位向量,向量λ+与﹣2垂直,则实数λ= 2 .【考点】平面向量数量积的运算.【分析】根据向量垂直,令数量积为零列方程解出.【解答】解:∵向量,是相互垂直的单位向量,∴=0,.∵λ+与﹣2垂直,∴(λ+)•(﹣2)=λ﹣2=0.解得λ=2.故答案为2.14.若x,y满足约束条件,则z=x﹣2y的最大值为 2 .【考点】简单线性规划.【分析】作出可行域,变形目标函数,平移直线y=x可得.【解答】解:作出约束条件所对应的可行域(如图△ABC及内部),变形目标函数可得y=x﹣z,平移直线y=x可知,当直线经过点A(2,0)时,截距取最小值,z取最大值,代值计算可得z的最大值为2,故答案为:2.15.已知对任意实数x,有(m+x)(1+x)6=a0+a1x+a2x2+…+a7x7,若a1+a3+a5+a7=32,则m= 0 .【考点】二项式定理的应用.【分析】在所给的等式中,分别令x=1、x=﹣1,可得2个等式,再结合a1+a3+a5+a7=32,求得m的值.【解答】解:对任意实数x,有(m+x)(1+x)6=a0+a1x+a2x2+…+a7x7,若a1+a3+a5+a7=32,令x=1,可得(m+1)(1+1)6=a0+a1+a2+…+a7①,再令x=﹣1,可得(m﹣1)(1﹣1)6=0=a0﹣a1+a2+…﹣a7②,由①﹣②可得 64(m+1)=2(a1+a3+a5+a7)=2×32,∴m=0,故答案为:0.16.已知数列{a n}满足a1=1,a n=(n≥2),其中S n为{a n}的前n项和,则S2016=.【考点】数列的求和.【分析】通过对a n=(n≥2)变形可知2S n S n﹣1=S n﹣1﹣S n,进而可知数列{}是首项为1、公差为2的等差数列,计算即得结论.【解答】解:∵a n=(n≥2),∴2=2S n a n﹣a n,∴2﹣2S n a n=S n﹣1﹣S n,即2S n S n﹣1=S n﹣1﹣S n,∴2=﹣,又∵=1,∴数列{}是首项为1、公差为2的等差数列,∴S2016==,故答案为:.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.△ABC的三个内角A,B,C所对的边分别为a,b,c,且asinAsinB+bcos2A=a.(I)求;(Ⅱ)若c2=a2+,求角C.【考点】正弦定理;余弦定理.【分析】(I)由正弦定理化简已知等式,整理即可得解.(II)设b=5t(t>0),由(I)可求a=3t,由已知可求c=7t,由余弦定理得cosC的值,利用特殊角的三角函数值即可求解.【解答】(本题满分为12分)解:(I)由正弦定理得,,…即,故.…(II)设b=5t(t>0),则a=3t,于是.即c=7t.…由余弦定理得.所以.…18.如图,三棱柱ABC﹣A1B1C1中,CC1⊥平面ABC,AC=BC=,D是棱AA1的中点,DC1⊥BD.(Ⅰ)证明:DC1⊥BC;(Ⅱ)设AA1=2,A1B1的中点为P,求点P到平面BDC1的距离.【考点】点、线、面间的距离计算;空间中直线与直线之间的位置关系.【分析】(1)由题目条件结合勾股定理,即可证得结论;(2)建立空间直角坐标系,代入运用公式进行计算即可得出答案.【解答】(1)证明:由题设知,三棱柱的侧面为矩形.∵D为AA1的中点,∴DC=DC1.又,可得,∴DC1⊥DC.而DC1⊥BD,DC∩BD=D,∴DC1⊥平面BCD.∵BC⊂平面BCD,∴DC1⊥BC.…(2)解:由(1)知BC⊥DC1,且BC⊥CC1,则BC⊥平面ACC1A1,∴CA,CB,CC1两两垂直.以C为坐标原点,的方向为x轴的正方向,建立如图所示的空间直角坐标系C﹣xyz.由题意知,,.则,,.设是平面BDC1的法向量,则,即,可取.设点P到平面BDC1的距离为d,则.…12分19.班主任为了对本班学生的考试成绩进行分析,决定从全班25名女同学,15名男同学中随机抽取一个容量为8的样本进行分析.(Ⅰ)如果按性别比例分层抽样,可以得到多少个不同的样本?(只要求写出计算式即可,不必计算出结果)(Ⅱ)随机抽取8位,他们的数学分数从小到大排序是:60,65,70,75,80,85,90,95,物理分数从小到大排序是:72,77,80,84,88,90,93,95.(i)若规定85分以上(包括85分)为优秀,求这8位同学中恰有3位同学的数学和物理分数均为优秀的概率;(ii)若这8位同学的数学、物理分数事实上对应如下表:学生编号 1 2 3 4 5 6 7 8数学分数x 60 65 70 75 80 85 90 95物理分数y 72 77 80 84 88 90 93 95根据上表数据,用变量y与x的相关系数或散点图说明物理成绩y与数学成绩x之间线性相关关系的强弱.如果具有较强的线性相关关系,求y与x的线性回归方程(系数精确到0.01);如果不具有线性相关性,请说明理由.参考公式:相关系数r=;回归直线的方程是:,其中对应的回归估计值b=,a=,是与x i对应的回归估计值.参考数据:≈457,≈23.5.【考点】线性回归方程.【分析】(I)根据分层抽样原理计算,使用组合数公式得出样本个数;(II)(i)使用乘法原理计算;(ii)根据回归方程计算回归系数,得出回归方程.【解答】解:(I)应选女生位,男生位,可以得到不同的样本个数是.(II)(i)这8位同学中恰有3位同学的数学和物理分数均为优秀,则需要先从物理的4个优秀分数中选3个与数学优秀分数对应,种数是(或),然后将剩下的5个数学分数和物理分数任意对应,种数是,根据乘法原理,满足条件的种数是.这8位同学的物理分数和数学分数分别对应的种数共有种.故所求的概率.(ii)变量y与x的相关系数.可以看出,物理与数学成绩高度正相关.也可以数学成绩x为横坐标,物理成绩y为纵坐标做散点图如下:从散点图可以看出这些点大致分布在一条直线附近,并且在逐步上升,故物理与数学成绩高度正相关.设y与x的线性回归方程是,根据所给数据,可以计算出,a=84.875﹣0.66×77.5≈33.73,所以y与x的线性回归方程是.20.已知P是圆C:x2+y2=4上的动点,P在x轴上的射影为P′,点M满足,当P 在圆上运动时,点M形成的轨迹为曲线E(Ⅰ)求曲线E的方程;(Ⅱ)经过点A(0,2)的直线l与曲线E相交于点C,D,并且=,求直线l的方程.【考点】直线和圆的方程的应用.【分析】(Ⅰ)利用代入法,求曲线E的方程;(Ⅱ)分类讨论,设直线l:y=kx+2与椭圆方程联立,利用韦达定理,向量得出坐标关系,求出直线的斜率,即可求直线l的方程.【解答】解:(I)设M(x,y),则P(x,2y)在圆x2+4y2=4上,所以x2+4y2=4,即…..(II)经检验,当直线l⊥x轴时,题目条件不成立,所以直线l存在斜率.设直线l:y=kx+2.设C(x1,y1),D(x2,y2),则.…△=(16k)2﹣4(1+4k2)•12>0,得.….①,…②.…又由,得,将它代入①,②得k2=1,k=±1(满足).所以直线l的斜率为k=±1.所以直线l的方程为y=±x+2…21.已知函数f(x)=.(Ⅰ)求函数f(x)的图象在点x=1处的切线的斜率;(Ⅱ)若当x>0时,f(x)>恒成立,求正整数k的最大值.【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求出函数的导数,计算f′(1)即可;(Ⅱ)问题转化为对x>0恒成立,根据函数的单调性求出h(x)的最小值,从而求出正整数k的最大值.【解答】解:(Ⅰ)∵f′(x)=﹣+,∴…(Ⅱ)当x>0时,恒成立,即对x>0恒成立.即h(x)(x>0)的最小值大于k.…,,记ϕ(x)=x﹣1﹣ln(x+1)(x>0)则,所以ϕ(x)在(0,+∞)上连续递增.…又ϕ(2)=1﹣ln3<0,ϕ(3)=2﹣2ln2>0,所以ϕ(x)存在唯一零点x0,且满足x0∈(2,3),x0=1+ln(x0+1).…由x>x0时,ϕ(x)>0,h'(x)>0;0<x<x0时,ϕ(x)<0,h'(x)<0知:h(x)的最小值为.所以正整数k的最大值为3.…请考生在第(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,[选修4-1:几何证明选讲]22.如图,等腰梯形ABDC内接于圆,过B作腰AC的平行线BE交圆于F,过A点的切线交DC的延长线于P,PC=ED=1,PA=2.(Ⅰ)求AC的长;(Ⅱ)求证:BE=EF.【考点】与圆有关的比例线段.【分析】(I)由PA是圆的切线结合切割线定理得比例关系,求得PD,再由角相等得三角形相似:△PAC∽△CBA,从而求得AC的长;(II)欲求证:“BE=EF”,可先分别求出它们的值,比较即可,求解时可结合圆中相交弦的乘积关系.【解答】解:(I)∵PA2=PC•PD,PA=2,PC=1,∴PD=4,…又∵PC=ED=1,∴CE=2,∵∠PAC=∠CBA,∠PCA=∠CAB,∴△PAC∽△CBA,∴,…∴AC2=PC•AB=2,∴…证明:(II)∵,CE=2,而CE•ED=BE•EF,…∴,∴EF=BE.…[选修4-4:坐标系与参数方程]23.以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线l的参数方程为为参数,0<α<π),曲线C的极坐标方程为ρsin2θ=4cosθ.(Ⅰ)求曲线C的直角坐标方程;(Ⅱ)设点P的直角坐标为P(2,1),直线l与曲线C相交于A、B两点,并且,求tanα的值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(I)对极坐标方程两边同乘ρ,得到直角坐标方程;(II)将l的参数方程代入曲线C的普通方程,利用参数意义和根与系数的关系列出方程解出α.【解答】解:(I)∵ρsin2θ=4cosθ,∴ρ2sin2θ=4ρcosθ,∴曲线C的直角坐标方程为y2=4x.(II)将代入y2=4x,得sin2α•t2+(2sinα﹣4cosα)t﹣7=0,所以,所以,或,即或.[选修4-5:不等式选讲]24.设函数f(x)=|x﹣|+|x﹣a|,x∈R.(Ⅰ)求证:当a=﹣时,不等式lnf(x)>1成立.(Ⅱ)关于x的不等式f(x)≥a在R上恒成立,某某数a的最大值.【考点】绝对值不等式的解法.【分析】(Ⅰ)当a=﹣时,根据f(x)=的最小值为3,可得lnf(x)最小值为ln3>lne=1,不等式得证.(Ⅱ)由绝对值三角不等式可得 f(x)≥|a﹣|,可得|a﹣|≥a,由此解得a的X围.【解答】解:(Ⅰ)证明:∵当a=﹣时,f(x)=|x﹣|+|x+|=的最小值为3,∴lnf(x)最小值为ln3>lne=1,∴lnf(x)>1成立.(Ⅱ)由绝对值三角不等式可得 f(x)=|x﹣|+|x﹣a|≥|(x﹣)﹣(x﹣a)|=|a﹣|,再由不等式f(x)≥a在R上恒成立,可得|a﹣|≥a,∴a﹣≥a,或 a﹣≤﹣a,解得a≤,故a的最大值为.。
江苏省常州市2015-2016学年高一上学期期末考试数学试卷-Word版含答案

江苏省常州市2015-2016学年高一上学期期末考试数学试卷-Word版含答案高一数学(必修1必修4)综合训练试题注意事项:1.本试卷满分100分,考试用时120分钟.2.答题时,填空题和解答题的答案写在答题卡上对应题目的区域内,答案写在试卷上无效..........本卷考试结束后,上交答题卡.一、填空题:本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请将答案填写在答题卡相应的位置上.......... 1.已知全集{1,2,3,4}U =,集合{1,4}A =,{2,4}B =,则UA B=.函数y =的最小正周期为 ▲ . {1,2,3},则()f x 的值(2,2)--,则||a b -的值为▲ .6.已知函数1()1(0,1)x f x a a a +=->≠且的图象恒过定点P ,则点P 的坐标为 ▲ .7.若πtan()24α+=,则tan α= ▲ .8.函数()ln(42)813xf x x =++-的定义域为 ▲ .9.已知扇形的半径为1cm ,圆心角为2rad ,则该扇形的面积为 ▲ cm 2.10.已知123a -=,31log 2b =,121log3c =,则,,a b c 按从大到小的顺序排列为 ▲ . 11.已知函数()3sin()(0,0π)f x x ωϕωϕ=+><≤的部分图象如图所示,则该函数的解析式为()f x =▲ .12.在平行四边形ABCD 中,E 为BC 的中点,F 在线段DC 上,且2CF DF =.若AC AE AF λμ=+,,λμ均为实数,则λμ+的值为 ▲ .13.已知()f x 是定义在R 上且周期为6的奇函数,当(0,3)x ∈时,2()lg(2)f x x x m =-+.若函数()f x 在区间[3,3]-上有且仅有5个零点(互不相同),则实数m的取值范围 是 ▲ .14.对任意两个非零的平面向量,αβ,定义α和β之间的新运算:αβαβββ⋅=⋅.已知非零的平面向量,a b满足:a b 和b a 都在集合3{|,}kx x k =∈Z 中,且||||a b ≥.设a 与b 的夹角ππ(,)64θ∈,则()sin ab θ=(第11求函数()f x 的单调区间;(2)若)(x f 在区间(0,2)上有且只有1个零点,求实数m 的取值范围.B .已知函数1()2(0)f x x x=- >.(1)当0a b <<且()()f a f b =时,①求11a b +的值;②求2212a b+的取值范围;(2)已知函数()g x 的定义域为D ,若存在区间[,]m n D ⊆,当[,]x m n ∈时,()g x 的值域为[,]m n ,则称函数()g x 是D 上的“保域函数”,区间[,]m n 叫做“等域区间”.试判断函数()f x 是否为(0,)+∞上的“保域函数”?若是,求出它的“等域区间”;若不是,请说明理由.参考答案及评分标准一、填空题:本大题共14小题,每小题3分,共计42分. 1.{1} 2.12 3.π2 4.{2,0}- 5.5 6.(1,0)- 7.138.(2,4]-9.110.,,c a b11.ππ3sin()44x+12.7513.19(,1]{}8814.23二、解答题:本大题共6小题,共计58分.解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分8分)解:(1){|26}A B x x=-<≤. …………………………2分(2)∵{|13}A B x x=<≤,∵x∈Z,∴{2,3}C=. …………………………5分∴集合C的所有子集为:,{2},{3},{2,3}∅. …………………………8分16.(本小题满分8 分)解:(1)∵4cos5α=,α为锐角,∴3sin5α==,…………………………2分∴3424sin22sin cos25525ααα==⨯⨯=. …………………………4分(2)∵,αβ均为锐角,∴(0,)αβπ+∈,又∵5cos()13αβ+=, ∴12sin()13αβ+===, …………………………6分∴1245333sin sin[()]sin()cos cos()sin 13513565βαβααβααβα=+-=+-+=⨯-⨯=. …………………………8分 17.(本小题满分10 分) 解:(1)∵73a b ⋅=-,∴7sin cos 23θθ-=-,∴1sin cos 3θθ=-. ………………………2分∴25(sin cos )12sin cos 3θθθθ-=-=.…………………………4分 ∵θ为第二象限角,∴sin 0,cos 0θθ><, ∴sin cos θθ-.…………………………5分(2)∵a ∥b ,∴2sin cos 0θθ--=,∴1tan 2θ=-. …………………………7分 ∴2222223cos 3sin 2cos 2311sin sin tan θθθθθθ-+==+=, …………………………8分22tan 4tan 21tan 3θθθ==--,…………………………9分 ∴223cos 3tan 211473sin θθθ-+=-=.…………………………10分 18.(本小题满分10分) 解:(1)由题意,20160e ,40e.b k b+⎧=⎨=⎩∴10e 160,1e .2b k ⎧=⎪⎨=⎪⎩ …………………………2分 ∴当30x =时,301031e (e )e 160208k b k by +==⋅=⋅=. …………………………4分答:该食品在30℃的保鲜时间为20小时. …………………………5分 (2)由题意e 80kx by +=≥,∴10801e e 1602kxk==≥, …………………………7分∴10kx k ≥.由101e 2k=可知0k <,故10x ≤. …………………………9分答:要使该食品的保鲜时间至少为80小时,储存温度不能超过10℃. ………………10分 19.(本小题满分10 分) 解:(1)由题意,22()(4log )log h x x x=-⋅, 令2log t x=,则224(2)4y t t t =-+=--+, …………………………2分 ∵1(,8)2x ∈,∴(1,3)t ∈-,(5,4]y ∈- 即函数()h x 的值域为(5,4]-. …………………………4分(2)∵32()()()f x f x kg x ⋅>,令2log t x =,则[0,3]t ∈﹒∴(43)(42)t t kt-->对[0,3]t ∈恒成立. …………………………5分 令()t ϕ=2(43)(42)6(20)16t t kt t k t ---=-++,则[0,3]t ∈时,()0t ϕ>恒成立. …………………………6分∵()t ϕ的图象抛物线开口向上,对称轴2012k t +=,∴①当2012k +≤0,即k ≤-20时,∵(0)0ϕ>恒成立,∴k ≤-20;…………………………7分②当20312k +≥,即16k ≥时, 由(3)0ϕ>,得103k <,不成立; …………………………8分③当200312k +<<,即2016k -<<时,由20()012k ϕ+>,得2020k --<-+∴2020k -<<-+.…………………………9分 综上,20k <-+.…………………………10分 20.(本小题满分12 分) A :解:(1)当3m =时,22()3|1|f x x x x =+--.①当11x -≤≤时,22317()2312()48f x x x x =+-=+-.∴()f x 在3(1,)4--递减,在3(,1)4-递增. …………………………2分②当1x <-或1x >时,()31f x x =+. ∴()f x 在(,1)-∞-和(1,)+∞递增. …………………………4分综上,()f x 的单调递增区间为(,1)-∞-和3(,)4-+∞,单调递减区间为3(1,)4--. …………………………5分(2)∵)(x f 在区间(0,2)上有且只有1个零点, ∴方程22|1|0x mx x +--=在区间(0,2)上有且只有1解, …………………………6分即方程2|1|x m xx-=-在区间(0,2)上有且只有1解,从而函数2|1|,(0,2)x y x x x-=-∈图象与直线y m =有且只有一个公共点. ……………8分 作出函数12,01,1,12x x x y x x⎧-<<⎪⎪=⎨⎪-<⎪⎩≤,的图象,结合图象知实数m 的取值范围是:12m -≥或1m =-. …………………………12分B :解:(1)由题意,112,0,2()112,.2x x f x x x ⎧-<<⎪⎪=⎨⎪-≥⎪⎩∴)(x f 在1(0,)2上为减函数,在1(,)2+∞上为增函数. ………………………1分①∵0a b <<,且()()f a f b =,∴102a b <<<,且1122a b -=-, ∴114a b+=.………………………3分②由①知114a b=-, ∴2222221212381432(4)163()33a b b b b b b +=-+=-+=-+, ∵102b<<,∴221232[,16)3a b +∈. ………………………5分(2)假设存在[,](0,)m n ⊆+∞,当[,]x m n ∈时,()f x 的值域为[,]m n ,则0m >.∵1()02f =,∴1[,]2m n ∉.………………………7分①若102m n <<<,∵()f x 在1(0,)2上为减函数, ∴12,12.n m m n⎧-=⎪⎪⎨⎪-=⎪⎩解得1m n =或=1m n =-,不合题意. ………………………9分②若12m n<<,∵()f x在1(,)2+∞上为增函数,∴12,12.mmnn⎧-=⎪⎪⎨⎪-=⎪⎩解得1,1.mn=⎧⎨=⎩不合题意. ………………………11分综上可知,不存在[,](0,)m n⊆+∞,当[,]x m n∈时,()f x的值域为[,]m n,即()f x不是(0,)+∞上的“保域函数”.………………………12分。
江苏省泰州市海陵区2015-2016学年高二上学期期末考试数学理试卷 含答案

2015~2016学年度第一学期期末考试高二数学试题(理科)一.填空1。
命题“2,240x R xx ∀∈-+≥”的否定为 .2。
若复数15z i =-+,则z = .3。
顶点在原点,焦点为(1,0)F 的抛物线方程为 。
4。
命题“若2x <,则2x <”的否命题为 。
5. 已知函数()sin f x x x =,则'()2f π= .6. 若双曲线2221(0)4x y a a -=>的一条渐近线方程为2y x=,则a =。
7。
“2x <"是“1x <”的 条件。
(从“充分不必要”、“必要不充分”、“充要”和“既不充分又不必要"中,选出适当的一种填空) 8. 椭圆2212x y +=上一点P 到右焦点的距离为22,则点P 到左准线的距离为 . 9。
已知数列113⨯,135⨯,157⨯,,1(21)(21)n n -+,的前n 项和为nS ,计算得113S=,225S =,337S =,照此规律,n S = .10.已知函数32()231f x xx =-+,对于区间1[,2]2上的任意1x ,2x ,12()()f x f x -的最大值是 。
11.已知动抛物线的准线方程为1y =-,且经过点(0,0),则动抛物线焦点的轨迹方程是 .12。
已知函数()f x 的导函数'()(1)()f x a x x a =--,若()f x 在x a =处取得极大值,则实数a 的取值范围是 .13.如图,已知椭圆C :221(04)4x y m m+=<<的左顶点为A ,点N的坐标为(1,0).若椭圆C 上存在点M (点M 异于点A ),使得点A 关于点M 对称的点P满足PO =,则实数m 的最大值为 .14.若函数xy e =与函数2112y xmx =++的图像有三个不同交点,则实数m 的取值范围为 。
二.解答题 15。
XXX2015-2016学年高一上学期期末考试数学试卷 Word版含答案

XXX2015-2016学年高一上学期期末考试数学试卷 Word版含答案XXX2015-2016学年度第一学期期末考试高一数学一、选择题:本大题共8小题,共40分。
1.设全集 $U=\{1,2,3,4,5,6\}$,集合 $M=\{1,4\}$,$N=\{1,3,5\}$,则 $N\cap (U-M)=()$A。
$\{1\}$ B。
$\{3,5\}$ C。
$\{1,3,4,5\}$ D。
$\{1,2,3,5,6\}$2.已知平面直角坐标系内的点 $A(1,1)$,$B(2,4)$,$C(-1,3)$,则 $AB-AC=()$A。
$22$ B。
$10$ C。
$8$ D。
$4$3.已知 $\sin\alpha+\cos\alpha=-\frac{1}{\sqrt{10}}$,$\alpha\in(-\frac{\pi}{2},\frac{\pi}{2})$,则 $\tan\alpha$ 的值是()A。
$-\frac{3}{4}$ B。
$-\frac{4}{3}$ C。
$\frac{3}{4}$ D。
$\frac{4}{3}$4.已知函数 $f(x)=\sin(\omega x+\frac{\pi}{4})$($x\inR,\omega>0$)的最小正周期为 $\pi$,为了得到函数$g(x)=\cos\omega x$ 的图象,只要将 $y=f(x)$ 的图象():A.向左平移 $\frac{\pi}{4}$ 个单位长度B.向右平移$\frac{\pi}{4}$ 个单位长度C.向左平移 $\frac{\pi}{2}$ 个单位长度D.向右平移$\frac{\pi}{2}$ 个单位长度5.已知 $a$ 与 $b$ 是非零向量且满足 $3a-b\perp a$,$4a-b\perp b$,则 $a$ 与 $b$ 的夹角是()A。
$\frac{\pi}{4}$ B。
$\frac{\pi}{3}$ C。
江苏省泰州市2014~2015学年度第一学期期末考试高三数学试卷

江苏省泰州市2014~2015学年度第一学期期末考试高三数学试题一、填空题:(本大题共14小题,每小题5分,共70分.请将答案填入答题纸填空题的相应答题线上.)1.已知{}1,3,4A =,{}3,4,5B =,则A B = ▲ .2.函数()sin(3)6f x x π=+的最小正周期为 ▲ .3.复数z 满足i z 34i =+(i 是虚数单位),则z = ▲ .4.函数()f x =的定义域为 ▲ .5.执行如右图所示的流程图,则输出的n 为 ▲ .6.若数据2,,2,2x 的方差为0,则x = ▲ .7.袋子里有两个不同的红球和两个不同的白球,从中任取两个球,则这两个球颜色相同的概率为 ▲ .8.等比数列{}n a 中,16320a a +=,3451a a a =,则数列的前6项和为 ▲ .9.已知函数22sin ,0()cos(),0x x x f x x x x α⎧+≥=⎨-++<⎩是奇函数,则sin α= ▲ .10.双曲线12222=-by a x 的右焦点到渐近线的距离是其到左顶点距离的一半,则双曲线的离心率e = ▲ .11.若αβ、是两个相交平面,则在下列命题中,真命题的序号为 ▲ .(写出所有真命题的序号) ①若直线m α⊥,则在平面β内,一定不存在与直线m 平行的直线. ②若直线m α⊥,则在平面β内,一定存在无数条直线与直线m 垂直. ③若直线m α⊂,则在平面β内,不一定存在与直线m 垂直的直线. ④若直线m α⊂,则在平面β内,一定存在与直线m 垂直的直线. 12.已知实数,,a b c 满足222a b c +=,0c ≠,则2ba c-的取值范围为 ▲ . 13.在梯形A B C D 中,2A B D C =,6BC =,P 为梯形A B C D 所在平面上一点,且满足4AP BP DP ++=0,DA CB DA DP ⋅=⋅,Q 为边AD 上的一个动点,则PQ 的最小值为 ▲ .14.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若22274a b c ++=则ABC ∆面积的最大值为 ▲ .二、解答题:(本大题共6小题,共90分.解答应写出文字说明,证明过程或演算步骤.) 15.(本题满分14分)在平面直角坐标系xOy 中,角α的终边经过点(3,4)P . (1)求sin()4πα+的值;(2)若P 关于x 轴的对称点为Q ,求OP OQ ⋅的值.16.(本题满分14分)如图,在多面体ABCDEF 中,四边形ABCD 是菱形,,AC BD 相交于点O ,//EF AB ,2AB EF =,平面BCF ⊥平面ABCD ,BF CF =,点G 为BC 的中点. (1)求证:直线//OG 平面EFCD ; (2)求证:直线AC ⊥平面ODE .17.(本题满分14分)如图,我市有一个健身公园,由一个直径为2km 的半圆和一个以PQ 为斜边的等腰直角三角形PRQ ∆构成,其中O 为PQ 的中点.现准备在公园里建设一条四边形健康跑道ABCD ,按实际需要,四边形ABCD 的两个顶点C D 、分别在线段QR PR 、上,另外两个顶点A B 、在半圆上, ////AB CD PQ ,且AB CD 、间的距离为1km .设四边形ABCD 的周长为c km . (1)若C D 、分别为QR PR 、的中点,求AB 长; (2)求周长c 的最大值.18.(本题满分16分)如图,在平面直角坐标系xOy 中,离心率为2的椭圆:C 22221(0)x y a b a b+=>>的左顶点为A ,过原点O 的直线(与坐标轴不重合)与椭圆C 交于,P Q 两点,直线,PA QA 分别与y 轴交于,M N 两点.若直线PQ斜率为2时,PQ = (1)求椭圆C 的标准方程;(2)试问以MN 为直径的圆是否过定点?若存在,求出定点坐标; 若不存在,说明理由.19.(本题满分16分)数列}{n a ,}{n b ,}{n c 满足:12n n n b a a +=-,1222n n n c a a ++=+-,*n N ∈. (1)若数列}{n a 是等差数列,求证:数列}{n b 是等差数列;(2)若数列}{n b ,}{n c 都是等差数列,求证:数列}{n a 从第二项起为等差数列;(3)若数列}{n b 是等差数列,试判断当130b a +=时,数列}{n a 是否成等差数列?证明你的结论.20.(本题满分16分) 已知函数1()ln f x x x=-,()g x ax b =+. (1)若函数()()()h x f x g x =-在(0,)+∞上单调递增,求实数a 的取值范围; (2) 若直线()g x ax b =+是函数1()ln f x x x=-图象的切线,求a b +的最小值; (3)当0b =时,若()f x 与()g x 的图象有两个交点1122(,),(,)A x y B x y ,求证:12x x 22e >. (取e 为2.8,取ln 2为0.7为1.4)附加题21.([选做题]请考生在A 、B 、C 、D 四小题中任选两题作答,如果多做,则按所做的前两题记分. A .(本小题满分10分,几何证明选讲)如图,EA 与圆O 相切于点A ,D 是EA 的中点,过点D 引O 的割线,与圆O 相交于点,B C ,连结EC . 求证:DEB DCE ∠=∠.B .(本小题满分10分,矩阵与变换) 已知矩阵1002A ⎡⎤=⎢⎥⎣⎦,1201B ⎡⎤=⎢⎥⎣⎦,若矩阵1AB -对应的变换把直线l 变为直线:20l x y '+-=,求直线l 的方程.C .(本小题满分10分,坐标系与参数方程选讲) 己知在平面直角坐标系xOy 中,圆O 的参数方程为2cos 2sin x y αα=⎧⎨=⎩(α为参数).以原点O 为极点,以x 轴的非负半轴为极轴的极坐标系中,直线l 的极坐标方程为(sin cos )1ρθθ-=,直线l 与圆M 相交于,A B 两点,求弦长AB 的值.D .(本小题满分10分,不等式选讲) 已知正实数,,a b c 满足3a b c ++=,求证:2223b c aa b c ++≥.[必做题]第22题,第23题,每题10分,共计20分.解答时应写出文字说明、证明过程或演算步骤. 22.((本小题满分10分)如图,在长方体ABCD A B C D ''''-中,2DA DC ==,1DD '=,A C ''与B D ''相交于点O ',点P 在线段BD 上(点P 与点B 不重合).(1)若异面直线O P '与BC '所成角的余弦值为55,求DP 的长度;(2)若2DP =,求平面PA C ''与平面DC B '所成角的正弦值.23.((本小题满分10分)记ri C 为从i 个不同的元素中取出r 个元素的所有组合的个数.随机变量ξ表示满足212ri C i ≤的二元数组(,)r i 中的r ,其中}{2,3,4,5,6,7,8,9i ∈,求E ξ.2013~2014学年度第一学期期末考试高三数学参考答案一、填空题1.{}3,4; 2.23π; 3.43i -; 4.[2,)+∞; 5.4; 6.2; 7.13; 8.214-; 9.1-; 10.53;11.②④; 12.[,]33- ; 13; 14.5. 二、解答题15. 解:(1)∵角α的终边经过点(3,4)P ,∴43sin ,cos 55αα==,∴43sin()sin coscos sin44455πππααα+=+==.……………7分 (2)∵(3,4)P 关于x 轴的对称点为Q ,∴(3,4)Q -.∴(3,4),(3,4)OP OQ ==-,∴334(4)7OP OQ ⋅=⨯+⨯-=-. ……………14分 16. 证明(1)∵四边形ABCD 是菱形,ACBD O =,∴点O 是BD 的中点,∵点G 为BC 的中点 ∴//OG CD , ………………3分 又∵OG ⊄平面EFCD ,CD ⊂平面EFCD ,∴直线//OG 平面EFCD .………7分(2)∵ BF CF =,点G 为BC 的中点, ∴FG BC ⊥, ∵平面BCF ⊥平面ABCD ,平面BCF 平面ABCD BC =, FG ⊂平面BCF ,FG BC ⊥ ∴FG ⊥平面ABCD , ………………9分∵AC ⊂平面ABCD ∴FG AC ⊥, ∵1//,2OG AB OG AB =,1//,2EF AB EF AB =,∴//,OG EF OG EF =, ∴四边形EFGO 为平行四边形, ∴//FG EO , ………………11分 ∵FG AC ⊥,//FG EO ,∴AC EO ⊥, ∵四边形ABCD 是菱形,∴AC DO ⊥, ∵AC EO ⊥,AC DO ⊥,EODO O =,EO DO 、在平面ODE 内,∴AC ⊥平面ODE . ………………14分 17. (1)解:连结RO 并延长分别交AB CD 、于M N 、,连结OB , ∵C D 、分别为QR PR 、的中点,2PQ =,∴112CD PQ ==,12NO =.∵1MN =,∴12MO =.在Rt BMO ∆中,1BO =,∴2BM ==,∴2AB BM == ……………6分 (2) 解法1 设BOM θ∠=,02πθ<<.在Rt BMO ∆中,1BO =,∴sin BM θ=,cos OM θ=.∵1MN =,∴1cos CN RN ON OM θ==-==,∴BC AD ==,∴2(sin cos c AB CD BC AD θθ=+++=+……………10分≤=(当12πθ=或512π时取等号)∴当12πθ=或512πθ=时,周长c 的最大值为km . ………………14分 解法2 以O 为原点,PQ 为y 轴建立平面直角坐标系. 设(,)B m n ,,0m n >,221m n +=,(1,)C m m -,∴2AB n =,2CD m =,BC AD ==∴2(c AB CD BC AD m n =+++=++ ……………10分≤=(当4m =4n =或4m =,4n =时取等号)∴当m =,n =或m =,n =时,周长c 的最大值为km . ……………14分18. 解:(1)设00(,)2P x x ,∵直线PQ 时,PQ =2200)3x x +=,∴202x =…………3分∴22211a b+=,∵2c e a ===,∴224,2a b ==.∴椭圆C 的标准方程为22142x y +=. ………………6分 (2)以MN为直径的圆过定点(F .设00(,)P x y ,则00(,)Q x y --,且2200142x y +=,即220024x y +=, ∵(2,0)A -,∴直线PA 方程为:00(2)2y y x x =++ ,∴002(0,)2y M x + , 直线QA 方程为:00(2)2y y x x =+- ,∴002(0,)2y N x -, ………………9分 以MN 为直径的圆为000022(0)(0)()()022y y x x y y x x --+--=+- 即222000220044044x y y x y y x x +-+=--, ………………12分∵220042x y -=-,∴22220x x y y y ++-=, 令0y =,2220x y +-=,解得x =∴以MN为直径的圆过定点(F . ………………16分19.证明:(1)设数列}{n a 的公差为d , ∵12n n n b a a +=-,∴1121121(2)(2)()2()2n n n n n n n n n n b b a a a a a a a a d d d +++++++-=---=---=-=-, ∴数列}{n b 是公差为d -的等差数列. ………………4分 (2)当2n ≥时,1122n n n c a a -+=+-,∵12n n n b a a +=-,∴112n n n b c a -+=+,∴1112n n n b ca +++=+, ∴111112222n n n n n n n nn n b c b c b b c c a a +-+++++---=-=+,∵数列}{n b ,}{n c 都是等差数列,∴1122n n n nb bc c ++--+为常数, ∴数列}{n a 从第二项起为等差数列. ………………10分 (3)数列}{n a 成等差数列. 解法1 设数列}{n b 的公差为d ', ∵12n n n b a a +=-,∴11222n n n n n n b a a ++=-,∴1111222n n n n n n b a a ----=-,…,2112222b a a =-, ∴11111122222n n n n n n b b b a a -+-++++=-, 设211212222n n n n n T b b b b --=+++,∴21112222n n n n n T b b b +-=+++,两式相减得:21112(222)2n n n n n T b d b -+'-=+++-,即11124(21)2n n n n T b d b -+'=---+,∴11111124(21)222n n n n n b d b a a -+++'---+=-,∴1111111112224(21)22242()n n n n n n n a a b d b a b d b d +-+++'''=++--=+---,∴1111224()2n n n a b d a b d ++'+-'=--, ………………12分令2n =,得111132133224224()22a b d a b d a b d b ''+-+-'=--=-,∵130b a +=,∴1113322402a b d b a '+-=+=,∴112240a b d '+-=, ∴1()n n a b d +'=--,∴211()()n n n n a a b d b d d +++'''-=--+-=-,∴数列}{n a (2n ≥)是公差为d '-的等差数列, ………………14分 ∵12n n n b a a +=-,令1n =,1232a a a -=-,即12320a a a -+=,∴数列}{n a 是公差为d '-的等差数列. ………………16分 解法2 ∵12n n n b a a +=-,130b a +=,令1n =,1232a a a -=-,即12320a a a -+=, ………………12分 ∴1122n n n b a a +++=-,2232n n n b a a +++=-,∴12122132(2)2(2)n n n n n n n n n b b b a a a a a a +++++++--=-----, ∵数列}{n b 是等差数列,∴1220n n n b b b ++--=,∴1221322(2)n n n n n n a a a a a a +++++--=--, ………………14分 ∵12320a a a -+=,∴1220n n n a a a ++--=,∴数列}{n a 是等差数列. ………………16分20. 解:(1)()()()h x f x g x =-1ln x ax b x =---,则211()h x a x x'=+-, ∵()()()h x f x g x =-在(0,)+∞上单调递增,∴对0x ∀>,都有211()0h x a x x'=+-≥,即对0x ∀>,都有211a x x ≤+,∵2110x x+>,∴0a ≤,故实数a 的取值范围是(,0]-∞. ………………4分 (2) 设切点0001(,ln )x x x -,则切线方程为002000111(ln )()()y x x x x x x --=+-, 即00220000011111()()(ln )y x x x x x x x x =+-++-,亦即02000112()(ln 1)y x x x x x =++--, 令10t x =>,由题意得202000112,ln 1ln 21a t t b x t t x x x =+=+=--=---,……7分令2()ln 1a b t t t t ϕ+==-+--,则1(21)(1)()21t t t t t tϕ+-'=-+-=,当(0,1)t ∈时 ,()0t ϕ'<,()t ϕ在(0,1)上单调递减;当(1,)t ∈+∞时,()0t ϕ'>,()t ϕ在(1,)+∞上单调递增,∴()(1)1a b t ϕϕ+=≥=-,故a b +的最小值为1-. ………………10分 (3)由题意知1111ln x ax x -=,2221ln x ax x -=, 两式相加得12121212ln ()x x x x a x x x x +-=+,两式相减得21221112ln ()x x xa x x x x x --=-, 即212112ln1x x a x x x x +=-,∴21211212122112ln 1ln ()()xx x x x x x x x x x x x x +-=++-,即1212212122112()ln ln x x x x x x x x x x x x ++-=-, …………12分 不妨令120x x <<,记211x t x =>,令2(1)()ln (1)1t F t t t t -=->+,则2(1)()0(1)t F t t t -'=>+, ∴2(1)()ln 1t F t t t -=-+在(1,)+∞上单调递增,则2(1)()ln (1)01t F t t F t -=->=+, ∴2(1)ln 1t t t ->+,则2211122()ln x x x x x x ->+,∴1212212122112()ln ln 2x x x x x x x x x x x x ++-=>-,又1212121212122()ln ln ln 2ln x x x x x x x x x x +-<==∴2>,即1>, 令2()ln G x x x =-,则0x >时,212()0G x x x '=+>,∴()G x 在(0,)+∞上单调递增,又1ln 210.8512=+≈<,∴1G =>>,即2122x x e >. ………………16分 附加题参考答案21.A .证明:∵EA 与O 相切于点A .由切割线定理:2DA DB DC =⋅.∵D 是EA 的中点,∴DA DE =.∴2DE DB DC =⋅ . ………………5分 ∴DE DB DC DE=.∵EDB CDE ∠=∠ ∴EDB CDE ∆∆∴DEB DCE ∠=∠……10分 21.B .解:∵1201B ⎡⎤=⎢⎥⎣⎦,∴11201B --⎡⎤=⎢⎥⎣⎦, ∴1101212020102AB ---⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, ………………5分 设直线l 上任意一点(,)x y 在矩阵1AB -对应的变换下为点(,)x y ''1202x x y y '-⎤⎤⎡⎤⎡⎡=⎥⎥⎢⎥⎢⎢'⎣⎦⎣⎣⎦⎦,∴22x x y y y '=-⎧⎨'=⎩.代入l ',:(2)(2)20l x y y '-+-=,化简后得::2l x =. ………………10分21.C .解:圆O :224x y +=,直线l :10x y -+=, ………………5分 圆心O 到直线l的距离2d ==,弦长AB == 21.D . 证明:∵正实数,,a b c 满足3a b c ++=,∴3a b c =++≥1abc ≤, ………………5分∴2223b c a a b c ++≥=≥. ………………10分 22. 解:(1)以,,DA DC DD '为一组正交基底,建立如图所示的空间直角坐标系D xyz -, 设(,,0)P t t ,(0,0,0)D ,(2,0,1)A ',(2,2,0)B ,(0,2,1)C ',(1,1,1)O '∴(1,1,1)O P t t '=---,(2,0,1)BC '=-设异面直线O P '与BC '所成角为θ,则cos 2(O P BC O P BC θ''⋅===''⋅,化简得:2212040t t -+=,解得:23t =或27t =, DP =或DP = ………………5分 (2)∵2DP =,∴33(,,0)22P , (0,2,1)DC '=,(2,2,0)DB =,13(,,1)22PA '=-,31(,,1)22PC '=-, 设平面DC B '的一个法向量为1111(,,)n x y z =,∴1100n DC n DB ⎧'⋅=⎪⎨⋅=⎪⎩,∴111120220y z x y +=⎧⎨+=⎩,即11112z y x y =-⎧⎨=-⎩,取11y =-,1(1,1,2)n =-, 设平面PA C ''的一个法向量为2222(,,)n x y z =,∴2200n PA n PC ⎧'⋅=⎪⎨'⋅=⎪⎩,∴2222221302231022x y z x y z ⎧-+=⎪⎪⎨⎪-++=⎪⎩,即2222z y x y =⎧⎨=⎩,取21y =,2(1,1,1)n =, 设平面PA C ''与平面DC B '所成角为ϕ,∴1212cos 36n n n n ϕ⋅===⋅, ∴sin 3ϕ=. ………………10分 23.解:∵ 212r i C i ≤, 当2i ≥时, 02112i i iC C i ==≤,11212i i i C C i i -==≤,222(1)122i i i i i C C i --==≤,23552C ≤, ∴当25,*i i N ≤≤∈时,212ri C i ≤的解为0,1,,r i =. ………………4分 当610,*i i N ≤≤∈, 112r r i i i C C r +-≥⇔≤, 由32(1)(2)162i i i i C i --=≤3,4,5i ⇔=可知: 当0,1,2,2,1,r i i i =--时,212r i C i ≤成立, 当3,,3r i =-时,321r i i C C i ≥≥(等号不同时成立),即21r i C i >. ………………8分∴311177(012)(345678)9101616244824E ξ=++⨯++++++⨯+⨯+⨯=. ………………10分。
《解析》江苏省泰州市2015-2016学年高一上学期期末物理试卷Word版含解析

2015-2016学年江苏省泰州市高一(上)期末物理试卷一、单项选择题:本题共7小题,每小题3分,共21分。
每小题只有一个选项符合题意。
1.在国际单位制中,下列物理量属于基本物理量的是()A.质量B.速度C.力D.加速度2.关于惯性的大小,下列说法正确的是()A.物体的速度越大,其惯性就越大B.物体的质量越大,其惯性就越大C.物体的加速度越大,其惯性就越大D.物体所受的合力越大,其惯性就越大3.泰州首条高架﹣东环高架已于2015年12月份通车,全长6.49km,在高架的某些时段树立了许多交通标志.图甲是路线指示标志,图乙为限速标志,告示牌上各数字的意思是()A.甲是指位移,乙是平均速度B.甲是指路程,乙是瞬时速度C.甲是指位移,乙是瞬时速度D.甲是指路程,乙是平均速度4.已知两个共点力的合力为60N,分力F1的方向与合力F的方向成30°角,分力F2的大小为35N,则()A.F1的大小是唯一的B.F2的方向是唯一的C.F2有两个可能的方向D.F2可能任意方向5.用如图所示的方法可以测出一个人的反应时间:受测者将手放在直尺的某一刻度处,看到直尺开始下落时立即抓住直尺,记下此时的刻度,如果直尺下落的距离△h=10.00cm,则受测者的反应时间t约为(g取10m/s2)()A.0.14s B.0.20s C.0.04s D.0.02s6.如图所示,起重机将重为G的正六边形厚度均匀的钢板匀速吊起,六条对称的钢索与竖直方向的夹角为30°,则每根钢索中弹力大小为()A.B.C.D.7.如图所示,质量均为m的两个木块P、Q叠放在水平地面上,P、Q接触面的倾角为θ,现在Q上加一水平推力F,使P、Q保持相对静止一起向左做加速直线运动,下列说法正确的是()A.物体Q对地面的压力一定大于2mgB.若Q与地面间的动摩擦因数为μ,则C.若P、Q之间光滑,则加速度a=gtanθD.地面与Q间的滑动摩擦力随推力F的增大而增大二、多项选择题:本题共5小题,每小题4分,共计20分。
高中高一数学上学期第三次月考试卷(含解析)-人教版高一全册数学试题

2015-2016学年某某省某某市航天高中高一(上)第三次月考数学试卷一.选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符是合题目要求的.)1.设集合A={x|x﹣1>0},B={x|2x>0},则A∩B=()A.{x|x>1} B.{x|x>0} C.{x|x<﹣1} D.{x|x<﹣1或x>1}2.若,且α是第二象限角,则cosα的值等于()A. B. C.D.3.为了得到函数的图象,只需把函数y=sinx的图象上所有的点()A.向右平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向左平移个单位长度4.下列四个函数中,既是(0,)上的增函数,又是以π为周期的偶函数的是()A.y=tanx B.y=|sinx| C.y=cosx D.y=|cosx|5.幂函数y=x m(m∈Z)的图象如图所示,则m的值可以为()A.1 B.﹣1 C.﹣2 D.26.函数y=ax2+bx+3在(﹣∞,﹣1]上是增函数,在[﹣1,+∞)上是减函数,则()A.b>0且a<0 B.b=2a<0C.b=2a>0 D.a,b的符号不确定7.根据表格内的数据,可以断定方程e x﹣x﹣2=0的一个根所在的区间是()x ﹣1 0 1 2 3e x0.37 1 2.72 7.39 20.08x+2 1 2 3 4 5A.(﹣1,0)B.(0,1)C.(1,2)D.(2,3)8.将下列各式按大小顺序排列,其中正确的是()A.cos0<cos<cos1<cos30°B.cos0<cos<cos30°<cos1C.cos0>cos>cos1>cos30°D.cos0>cos>cos30°>cos19.若lgx﹣lgy=a,则=()A.3a B.C.a D.10.若sinα,cosα是关于x的方程4x2+2x+3m=0的两根,则m的值为()A.B. C.D.11.设函数f(x)=,若方程f(x)=m有三个不同的实数解,则m的取值X围是()A.m>0或m<﹣1 B.m>﹣1 C.﹣1<m<0 D.m<012.已知a是实数,则函数f(x)=1+asinax的图象不可能是()A.B.C.D.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.)13.已知角α的终边经过点P(﹣4,3),则cosα=.14.已知扇形的周长等于它所在圆的周长的一半,则这个扇形的圆心角是.15.函数,则=.16.当x>0时,不等式(a2﹣3)x>(2a)x恒成立,则实数a的取值X围是.三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明、证明过程及演算步骤.)17.已知(1)求tanα的值;(2)求的值.18.设,(1)在下列直角坐标系中画出f(x)的图象;(2)若f(t)=3,求t值.19.已知x∈[﹣,],(1)求函数y=cosx的值域;(2)求函数y=﹣3(1﹣cos2x)﹣4cosx+4的值域.20.函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<)在x∈(0,7π)内取到一个最大值和一个最小值,且当x=π时,y有最大值3;当x=6π时,y有最小值﹣3.(1)求此函数的解析式;(2)求此函数的单调区间.21.已知二次函数f(x)=x2﹣16x+q+3(1)若函数在区间[﹣1,1]上存在零点,某某数q的取值X围;(2)问:是否存在常数q(0<q<10),使得当x∈[q,10]时,f(x)的最小值为﹣51?若存在,求出q的值,若不存在,说明理由.22.已知函数.(1)当a=1时,求函数f(x)在(﹣∞,0)上的值域;(2)若对任意x∈[0,+∞),总有f(x)<3成立,某某数a的取值X围.2015-2016学年某某省某某市航天高中高一(上)第三次月考数学试卷参考答案与试题解析一.选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符是合题目要求的.)1.设集合A={x|x﹣1>0},B={x|2x>0},则A∩B=()A.{x|x>1} B.{x|x>0} C.{x|x<﹣1} D.{x|x<﹣1或x>1}【考点】交集及其运算.【专题】计算题;集合思想;定义法;集合.【分析】求出A与B中不等式的解集确定出A与B,找出两集合的交集即可.【解答】解:由A中不等式解得:x>1,即A={x|x>1},由B中不等式变形得:2x>0,得到B=R,∴A∩B={x|x>1},故选:A.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.若,且α是第二象限角,则cosα的值等于()A. B. C.D.【考点】同角三角函数间的基本关系.【专题】计算题;三角函数的求值.【分析】由sinα的值,以及α的X围,利用同角三角函数间的基本关系求出cosα的值即可.【解答】解:∵sinα=,α是第二象限角,∴cosα=﹣=﹣.故选C【点评】此题考查了同角三角函数间的基本关系,熟练掌握基本关系是解本题的关键.3.为了得到函数的图象,只需把函数y=sinx的图象上所有的点()A.向右平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向左平移个单位长度【考点】函数y=Asin(ωx+φ)的图象变换.【专题】三角函数的图像与性质.【分析】直接利用函数图象的平移法则逐一核对四个选项得答案.【解答】解:∵由y=sinx到y=sin(x﹣),只是横坐标由x变为x﹣,∴要得到函数y=sin(x﹣)的图象,只需把函数y=sinx的图象上所有的点向右平行移动个单位长度.故选:A.【点评】本题主要考查三角函数的平移.三角函数的平移原则为左加右减上加下减.是基础题.4.下列四个函数中,既是(0,)上的增函数,又是以π为周期的偶函数的是()A.y=tanx B.y=|sinx| C.y=cosx D.y=|cosx|【考点】正弦函数的图象;余弦函数的图象.【专题】三角函数的图像与性质.【分析】根据函数单调性,周期性和奇偶性分别进行判断即可得到结论.【解答】解:A.函数y=tanx为奇函数,不满足条件.B.函数y=|sinx|满足既是(0,)上的增函数,又是以π为周期的偶函数.C.y=cosx的周期为2π,不满足条件.D.y=|cosx|在(0,)上是减函数,不满足条件.故选:B.【点评】本题主要考查三角函数的图象和性质,要求熟练掌握三角函数的周期性,奇偶性和单调性.5.幂函数y=x m(m∈Z)的图象如图所示,则m的值可以为()A.1 B.﹣1 C.﹣2 D.2【考点】幂函数的性质.【专题】应用题;函数思想;定义法;函数的性质及应用.【分析】由给出的幂函数的图象,得到幂指数小于0,且幂函数为偶函数,即可判断答案.【解答】解:根据幂函数的图象可知函数在第一象限内单调递减,且为偶函数.则m<0且为偶数,故选:C.【点评】本题主要考查幂函数的图象和性质,要求熟练掌握幂函数的性质的应用.6.函数y=ax2+bx+3在(﹣∞,﹣1]上是增函数,在[﹣1,+∞)上是减函数,则()A.b>0且a<0 B.b=2a<0C.b=2a>0 D.a,b的符号不确定【考点】二次函数的性质.【专题】计算题.【分析】利用对称轴的公式求出对称轴,根据二次函数的单调区间得到,得到选项.【解答】解:∵函数y=ax2+bx+3的对称轴为∵函数y=ax2+bx+3在(﹣∞,﹣1]上是增函数,在[﹣1,+∞)上是减函数∴∴b=2a<0故选B【点评】解决与二次函数有关的单调性问题,一般要考虑二次函数的开口方向、对称轴.7.根据表格内的数据,可以断定方程e x﹣x﹣2=0的一个根所在的区间是()x ﹣1 0 1 2 3e x0.37 1 2.72 7.39 20.08x+2 1 2 3 4 5A.(﹣1,0)B.(0,1)C.(1,2)D.(2,3)【考点】二分法求方程的近似解.【专题】计算题;函数的性质及应用.【分析】令f(x)=e x﹣x﹣2,求出选项中的端点函数值,从而由根的存在性定理判断根的位置.【解答】解:由上表可知,令f(x)=e x﹣x﹣2,则f(﹣1)≈0.37+1﹣2<0,f(0)=1﹣0﹣2=﹣1<0,f(1)≈2.72﹣1﹣2<0,f(2)≈7.39﹣2﹣2>0,f(3)≈20.09﹣3﹣2>0.故f(1)f(2)<0,故选:C.【点评】考查了二分法求方程近似解的步骤,属于基础题.8.将下列各式按大小顺序排列,其中正确的是()A.cos0<cos<cos1<cos30°B.cos0<cos<cos30°<cos1C.cos0>cos>cos1>cos30°D.cos0>cos>cos30°>cos1【考点】余弦函数的单调性.【专题】三角函数的图像与性质.【分析】先将1和化为角度,再根据余弦函数的单调性,判断出四个余弦值的大小关系.【解答】解:∵1≈57.30°,∴≈28.56°,则0<<30°<1,∵y=cosx在(0°,180°)上是减函数,∴cos0>cos>cos30°>cos1,故选D.【点评】本题主要考查余弦函数的单调性,以及弧度与角度之间的转化,属于基础题.9.若lgx﹣lgy=a,则=()A.3a B.C.a D.【考点】对数的运算性质.【专题】计算题.【分析】直接利用对数的性质化简表达式,然后把lgx﹣lgy2a代入即可.【解答】解: =3(lgx﹣lg2)﹣3(lgy﹣lg2)=3(lgx﹣lgy)=3a故选A.【点评】本题考查对数的运算性质,考查计算能力,是基础题.10.若sinα,cosα是关于x的方程4x2+2x+3m=0的两根,则m的值为()A.B. C.D.【考点】同角三角函数基本关系的运用.【专题】转化思想;综合法;三角函数的求值.【分析】由条件利用韦达定理求得sinα+cosα=﹣,sinα•cosα=,再利用同角三角函数的基本关系求得sinα•cosα=﹣,从而求得 m的值.【解答】解:∵sinα,cosα是关于x的方程4x2+2x+3m=0的两根,∴sinα+cosα=﹣,sinα•cosα=,再根据1+2sinαcosα=,∴sinα•cosα=﹣,∴m=﹣,故选:D.【点评】本题主要考查韦达定理、同角三角函数的基本关系,属于基础题.11.设函数f(x)=,若方程f(x)=m有三个不同的实数解,则m的取值X围是()A.m>0或m<﹣1 B.m>﹣1 C.﹣1<m<0 D.m<0【考点】根的存在性及根的个数判断.【专题】函数的性质及应用.【分析】由题意可得函数y=f(x)和直线y=m有3个不同的交点,数形结合可得m的取值X 围.【解答】解:由题意可得函数y=f(x)和直线y=m有3个不同的交点,如图所示:当﹣1<m<0时,函数y=f(x)和直线y=m有3个不同的交点,故选C.【点评】本题主要考查方程的根的存在性及个数判断,体现了数形结合的数学思想,属于中档题.12.已知a是实数,则函数f(x)=1+asinax的图象不可能是()A.B.C.D.【考点】正弦函数的图象.【专题】三角函数的图像与性质.【分析】函数f(x)=1+asinax的图象是一个正弦曲线型的图,其振幅为|a|,周期为,周期与振幅成反比,从这个方向观察四个图象.【解答】解:对于振幅大于1时,三角函数的周期为:,∵|a|>1,∴T<2π,而D不符合要求,它的振幅大于1,但周期反而大于了2π.对于选项A,a<1,T>2π,满足函数与图象的对应关系,故选D.【点评】由于函数的解析式中只含有一个参数,这个参数影响振幅和周期,故振幅与周期相互制约,这是本题的关键.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.)13.已知角α的终边经过点P(﹣4,3),则cosα=.【考点】任意角的三角函数的定义.【专题】计算题.【分析】先求出角α的终边上的点P(﹣4,3)到原点的距离为 r,再利用任意角的三角函数的定义cosα=求出结果.【解答】解:角α的终边上的点P(﹣4,3)到原点的距离为 r=5,由任意角的三角函数的定义得cosα==.故答案为:.【点评】本题考查任意角的三角函数的定义,两点间的距离公式的应用,考查计算能力.14.已知扇形的周长等于它所在圆的周长的一半,则这个扇形的圆心角是(π﹣2)rad .【考点】弧长公式.【专题】计算题.【分析】由题意,本题中的等量关系是扇形的周长等于弧所在的圆的半周长,可令圆心角为θ,半径为r,弧长为l,建立方程,求得弧长与半径的关系,再求扇形的圆心角.【解答】解:令圆心角为θ,半径为r,弧长为l由题意得2r+l=πr∴l=(π﹣2)r∴θ==π﹣2故答案为:(π﹣2)rad.【点评】本题考查弧长公式,解题的关键是熟练掌握弧长公式,且能利用公式建立方程进行运算,本题考查对公式的准确记忆能力15.函数,则= ﹣.【考点】三角函数的化简求值.【专题】计算题;转化思想;综合法;三角函数的求值.【分析】利用诱导公式先求出f(x)=,再把cos=代入,能求出结果.【解答】解:∵===,∵cos=,∴==.故答案为:﹣.【点评】本题考查三角函数值的求法,是基础题,解题时要认真审题,注意诱导公式的合理运用.16.当x>0时,不等式(a2﹣3)x>(2a)x恒成立,则实数a的取值X围是a>3 .【考点】函数恒成立问题.【专题】计算题;函数思想;综合法;函数的性质及应用.【分析】由题意结合幂函数的单调性列关于a的不等式组得答案.【解答】解:∵x>0时,不等式(a2﹣3)x>(2a)x恒成立,∴,解得:a>3.故答案为:a>3.【点评】本题考查函数恒成立问题,应用了幂函数的单调性,同时注意指数式的底数大于0且不等于1,是中档题.三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明、证明过程及演算步骤.)17.已知(1)求tanα的值;(2)求的值.【考点】同角三角函数基本关系的运用.【专题】综合题;方程思想;综合法;三角函数的求值.【分析】(1)直接弦化切,即可求tanα的值;(2)法一:求出sinα,cosα,分类讨论求的值.法二:原式分子分母同除以cos2α,弦化切,即可求的值.【解答】解:(1)∵,∴tanα=﹣tanα+1(2)法一:由(1)知:,∴或当,时,原式=当,时,原式=综上:原式=法二:原式分子分母同除以cos2α得:原式==【点评】本题考查同角三角函数关系,考查学生的转化能力,属于中档题.18.设,(1)在下列直角坐标系中画出f(x)的图象;(2)若f(t)=3,求t值.【考点】分段函数的解析式求法及其图象的作法.【专题】计算题;作图题.【分析】由分段函数,按照基本函数作图,第一段一次函数,第二次二次函数,第三次为一次函数,要注意每段的定义域.【解答】解:(1)如图(2)由函数的图象可得:f(t)=3即t2=3且﹣1<t<2.∴t=【点评】本题主要考查分段函数的作图和用数形结合解决问题的能力,分段函数知识点容量大且灵活,是高考的热点,在解决中要注意部分与整体的关系.19.已知x∈[﹣,],(1)求函数y=cosx的值域;(2)求函数y=﹣3(1﹣cos2x)﹣4cosx+4的值域.【考点】余弦函数的图象.【专题】转化思想;综合法;三角函数的图像与性质.【分析】(1)由条件利用余弦函数的定义域和值域,求得函数y=cosx的值域.(2)把函数y的解析式化为y=3(cosx﹣)2﹣,结合cosx∈[﹣,1],利用二次函数的性质求得y的值域.【解答】解:(1)∵y=cosx在[﹣,0]上为增函数,在[0,]上为减函数,∴当x=0时,y取最大值1;x=时,y取最小值﹣,∴y=cosx的值域为[﹣,1].(2)原函数化为:y=3cos2x﹣4cosx+1,即y=3(cosx﹣)2﹣,由(1)知,cosx∈[﹣,1],故y的值域为[﹣,].【点评】本题主要考查余弦函数的值域,二次函数的性质,属于基础题.20.函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<)在x∈(0,7π)内取到一个最大值和一个最小值,且当x=π时,y有最大值3;当x=6π时,y有最小值﹣3.(1)求此函数的解析式;(2)求此函数的单调区间.【考点】函数y=Asin(ωx+φ)的图象变换;由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】三角函数的图像与性质.【分析】(1)由题意得到A和周期,代入周期公式求ω,在由点(π,3)在此函数图象上结合φ的X围求得φ,则函数解析式可求;(2)直接由复合函数的单调性求函数的单调区间.【解答】解:(1)由题意可知:A=3,,∴T=10π,则,∴y=3sin(φ),∵点(π,3)在此函数图象上,∴,.φ=.∵|φ|<,∴φ=.∴y=3sin();(2)当,即﹣4π+10kπ≤x≤π+10kπ,k∈Z时,函数y=3sin()单调递增,∴函数的单调增区间为[﹣4π+10kπ,π+10kπ](k∈Z);当,即π+10kπ≤x≤6π+10kπ,k∈Z时,函数单调递减,∴函数的单调减区间为[π+10kπ,6π+10kπ](k∈Z).【点评】本题考查y=Asin(ωx+φ)型函数图象的求法,考查了复合函数的单调性的求法,复合函数的单调性满足“同增异减”的原则,是中档题.21.已知二次函数f(x)=x2﹣16x+q+3(1)若函数在区间[﹣1,1]上存在零点,某某数q的取值X围;(2)问:是否存在常数q(0<q<10),使得当x∈[q,10]时,f(x)的最小值为﹣51?若存在,求出q的值,若不存在,说明理由.【考点】二次函数的性质.【专题】存在型;分类讨论;转化思想;分类法;函数的性质及应用.【分析】(1)若函数在区间[﹣1,1]上存在零点,则,即,解得实数q的取值X围;(2)假定存在满足条件的q值,结合二次函数的图象和性质,对q进行分类讨论,最后综合讨论结果,可得答案.【解答】解:(1)若二次函数f(x)=x2﹣16x+q+3的图象是开口朝上,且以直线x=8为对称轴的抛物线,故函数在区间[﹣1,1]上为减函数,若函数在区间[﹣1,1]上存在零点,则,即,解得:q∈[﹣20,12];(2)若存在常数q(0<q<10),使得当x∈[q,10]时,f(x)的最小值为﹣51,当0<q≤8时,f(8)=q﹣61=﹣51,解得:q=10(舍去),当8<q<10时,f(q)=q2﹣15q+3=﹣51,解得:q=9,或q=6(舍去),综上所述,存在q=9,使得当x∈[q,10]时,f(x)的最小值为﹣51.【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.22.已知函数.(1)当a=1时,求函数f(x)在(﹣∞,0)上的值域;(2)若对任意x∈[0,+∞),总有f(x)<3成立,某某数a的取值X围.【考点】函数恒成立问题.【专题】综合题;函数思想;综合法;函数的性质及应用.【分析】(1)法一、把a=1代入函数解析式,由指数函数的单调性求得f(x)在(﹣∞,0)上的值域;法二、令换元,由x的X围求出t的X围,转化为二次函数求值域;(2)由f(x)<3,即,分离参数a,然后利用换元法求函数的最小值得答案.【解答】解:(1)法一、当a=1时,,由指数函数单调性知f(x)在(﹣∞,0)上为减函数,∴f(x)>f(0)=3,即f(x)在(﹣∞,1)的值域为(3,+∞);法二、令,由x∈(﹣∞,0)知:t∈(1,+∞),∴y=g(t)=t2+t+1(t>1),其对称轴为直线,∴函数g(t)在区间(1,+∞)上为增函数,∴g(t)>g(1)=3,∴函数f(x)在(﹣∞,1)的值域为(3,+∞);(2)由题意知,f(x)<3,即,由于,在[0,+∞)上恒成立.若令2x=t,,则:t≥1且a≤h min(t).由函数h(t)在[1,+∞)上为增函数,故φmin(t)=φ(1)=1.∴实数a的取值X围是(﹣∞,1].【点评】本题考查函数恒成立问题,考查了指数函数的单调性,训练了分离变量法,是中档题.。
江苏省泰州市泰兴中学2015-2016学年高一(上)12月段考数学试卷(解析版)(1)

2015-2016学年江苏省泰州市泰兴中学高一(上)12月段考数学试卷一、填空题:本大题共14小题,每小题5分,共70分.1.设集合A={x|x2+x≤0,x∈R},则集合A∩Z中有个元素.2.函数y=3tan(+)的最小正周期为.3.下列关于向量的说法中不正确的个数有个①向量与是共线向量,则A、B、C、D四点必在一直线上;②单位向量都相等;③任一向量与它的相反向量不相等;④四边形ABCD是平行四边形当且仅当=.4.已知cos(π+x)=,x∈(π,2π),则tan(π﹣x)=.5.已知sin(2x+)=,则sin(﹣2x)+sin2(﹣2x)=.6.函数y=的定义域为.7.不等式log3(x++)≤2﹣log32的解集为.8.已知函数y=sinωx(ω>0)在区间[0,]上为增函数,且图象关于点(3π,0)对称,则ω的最大值为.9.已知函数f(x)=是奇函数,则sinλα=.10.设函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增,则满足不等式f(1)<f(lg(2x))的x的取值范围是.11.已知f(x)=|x2﹣4|+x2+kx,若f(x)在(0,4)上有两个不同的零点x1,x2,则k的取值范围是.12.已知x,y均为正数,θ∈(,),且满足=, +=,则的值为.13.设函数f(x)的定义域为D,若函数f(x)满足条件:存在[a,b]⊆D,使f(x)在[a,b]上的值域为[,],则称f(x)为“倍缩函数”,若函数f(x)=log2(2x+t)为“倍缩函数”,则t的范围为.14.设f(x)=x2+ax+bcosx,{x|f(x)=0,x∈R}={x|f(f(x))=0,x∈R}≠∅,则满足条件的所有实数a,b的值分别为.二、解答题:本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明或演算步骤.15.某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<)在某一个周期内的(2)将y=f(x)图象上所有点向左平行移动个单位长度,得到y=g(x)图象,求出y=g(x)在区间[0,]上的最小值和取得最小值时x的值.16.如图,一个水轮的半径为4m,水轮圆心O距离水面2m,已知水轮每分钟转动5圈,如果当水轮上点P从水中浮现时(图中点p0)开始计算时间.(1)将点p距离水面的高度z(m)表示为时间t(s)的函数;(2)点p第一次到达最高点大约需要多少时间?17.已知函数f(x)=ax2+,其中a为实数.(1)根据a的不同取值,判断函数f(x)的奇偶性,并说明理由;(2)若a∈(1,3),判断函数f(x)在[1,2]上的单调性,并用定义证明.18.已知函数f(x)=lg(a﹣ax﹣x2).(Ⅰ)若函数f(x)存在,求a的取值范围.(Ⅱ)若f(x)在x∈(2,3)上有意义,求a的取值范围.(Ⅲ)若f(x)>0的解集为(2,3),求a的值.19.已知关于x的二次函数f(x)=x2﹣2sinθx+,(θ∈R).(1)若θ=,求函数f(x)在x∈[﹣1,1]上的值域;(2)若函数f(x)在区间[﹣,]上是单调函数,求θ的取值集合;(3)若对任意x1,x2,∈[2,3],总有|f(x1)﹣f(x2)|≤2sinθt2+8t+5对任意θ∈R恒成立,求t的取值范围.20.已知f1(x)=|3x﹣1|,f2(x)=|a•3x﹣9|(a>0),x∈R,且f(x)=.(1)当a=1时,求f(x)的解析式;(2)在(1)的条件下,若方程f(x)﹣m=0有4个不等的实根,求实数m的范围;(3)当2≤a<9时,设f(x)=f2(x)所对应的自变量取值区间的长度为l(闭区间[m,n]的长度定义为n﹣m),试求l的最大值.2015-2016学年江苏省泰州市泰兴中学高一(上)12月段考数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共70分.1.设集合A={x|x2+x≤0,x∈R},则集合A∩Z中有2个元素.【考点】交集及其运算;集合的表示法.【分析】先求出集合A,从而求出A∩B,由此能求出集合A∩Z中元素的个数.【解答】解:∵集合A={x|x2+x≤0,x∈R}={x|﹣1≤x≤0},∴集合A∩Z={﹣1,0}.∴集合A∩Z中有2个元素.故答案为:2.2.函数y=3tan(+)的最小正周期为2π.【考点】正切函数的图象.【分析】根据正切函数的图象与性质即可求出最小正周期.【解答】解:函数y=3tan(+)的最小正周期为:T===2π.故答案为:2π.3.下列关于向量的说法中不正确的个数有4个①向量与是共线向量,则A、B、C、D四点必在一直线上;②单位向量都相等;③任一向量与它的相反向量不相等;④四边形ABCD是平行四边形当且仅当=.【考点】平行向量与共线向量.【分析】直接利用向量共线与相等以及平行的关系判断选项即可.【解答】解:①向量与是共线向量,则A、B、C、D四点必在一直线上;不正确,例如直线AB∥CD.②单位向量都相等;不正确,单位向量的方向不一定相同,所以不正确;③任一向量与它的相反向量不相等;例如零向量.不正确;④四边形ABCD是平行四边形当且仅当=.并且A、B、C、D不在一条直线上.所以④不正确;故答案为:4.4.已知cos(π+x)=,x∈(π,2π),则tan(π﹣x)=﹣.【考点】三角函数的化简求值;同角三角函数基本关系的运用.【分析】根据诱导公式和同角三角函数关系进行解答.【解答】解:∵cos(π+x)=﹣cosx=,∴cosx=﹣,∵x∈(π,2π),∴sinx=﹣=﹣,∴tan(π﹣x)=﹣tanx=﹣=﹣=﹣.故答案是:﹣.5.已知sin(2x+)=,则sin(﹣2x)+sin2(﹣2x)=.【考点】三角函数的化简求值.【分析】根据同角三角函数关系求得cos2(2x+)=,然后利用诱导公式进行化简求值.【解答】解:∵sin(2x+)=,∴cos2(2x+)=1﹣sin2(2x+)=,sin(﹣2x)+sin2(﹣2x)=sin(2x+)+cos2(2x+)=+=.故答案是:.6.函数y=的定义域为(,1).【考点】对数函数的值域与最值;对数函数的定义域.>0且4x﹣3>0可解得,【分析】根据对数函数的性质得,由log0.5(4x﹣3)【解答】解:由题意知log0.5(4x﹣3)>0且4x﹣3>0,由此可解得,故答案为:(,1).7.不等式log3(x++)≤2﹣log32的解集为.【考点】指、对数不等式的解法.【分析】把不等式两边化为同底数,然后转化为分式不等式组求解.【解答】解:由log3(x++)≤2﹣log32,得:log3(x++)≤log3,即0<x++≤,解得:﹣2<x<或x=1.∴不等式log3(x++)≤2﹣log32的解集为.故答案为:.8.已知函数y=sinωx(ω>0)在区间[0,]上为增函数,且图象关于点(3π,0)对称,则ω的最大值为.【考点】正弦函数的图象.【分析】由条件可得,k∈Z,由此求得ω的最大值.【解答】解:由题意知,,即其中k∈Z,故有ω的最大值为.故答案为:.9.已知函数f(x)=是奇函数,则sinλα=1.【考点】函数奇偶性的性质.【分析】利用函数f(x)=是奇函数的性质可求得λ与α,再利用三角函数的诱导公式即可求得答案.【解答】解:∵f(x)=是奇函数,∴当x<0时,﹣x>0,∴f(﹣x)=(﹣x)2+2015(﹣x)+sin(﹣x)=﹣f(x)=﹣[﹣x2+λx+cos(x+α)],∴λ=2015,且sinx=cos(α+x),∴α=2kπ﹣(k∈Z),∴sinλα=sin2015(2kπ﹣)=﹣sin(﹣)=1.故答案为:1.10.设函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增,则满足不等式f(1)<f(lg(2x))的x的取值范围是(0,)∪(5,+∞).【考点】函数奇偶性的性质.【分析】根据函数是偶函数,把不等式转化成f(1)<f(|lg(2x)|),就可以利用函数在区间[0,+∞)上单调递增转化成一般的不等式进行求解.【解答】解:∵函数f(x)是定义在R上的偶函数,∴f(1)<f(lg(2x))=f(|lg(2x)|)∵函数f(x)在区间[0,+∞)上单调递增,∴|lg(2x)|>1,即lg(2x)>1或lg(2x)<﹣1解得:x>5或0<x<所以满足不等式f(1)<f(lg(2x))的x的取值范围是(0,)∪(5,+∞).故答案为:(0,)∪(5,+∞).11.已知f(x)=|x2﹣4|+x2+kx,若f(x)在(0,4)上有两个不同的零点x1,x2,则k 的取值范围是(﹣7,﹣2).【考点】带绝对值的函数;函数的零点.【分析】可构造函数g(x)=|x2﹣4|+x2(0<x<4),h(x)=﹣kx,作出二函数的图象,数形结合由k的几何意义即可求得k的取值范围.【解答】解:令g(x)=|x2﹣4|+x2=,h(x)=﹣kx,作图如下:∵f(x)=|x2﹣4|+x2+kx在(0,4)上有两个不同的零点x1,x2,∴g(x)=|x2﹣4|+x2与h(x)=﹣kx在(0,4)上有两个交点,由图可知P(2,4),Q(4,28),∴k OP=2,k OQ=7,∴2<﹣k<7,∴﹣7<k<﹣2.故答案为:(﹣7,﹣2).12.已知x,y均为正数,θ∈(,),且满足=, +=,则的值为.【考点】基本不等式.【分析】利用条件,求出x=y代入,化简可得结论.【解答】解:∵+=,=∴化简可得=,∵cos6θ+sin6θ=(cos2θ+sin2θ)(cos4θ+sin4θ﹣sin2θcos2θ)=1×[(cos2θ+sin2θ)2﹣3sin2θcos2θ]=1﹣3sin2θcos2θ,∴=,化为sin2θ+cos2θ=,与sin2θ+cos2θ=1联立解得sin2θ=,cos2θ=或sin2θ=,cos2θ=.由θ∈(,),得0<cosθ<<sinθ<1故取sin2θ=,cos2θ=,解得sinθ=,cosθ=,∴=,即x=y代入,可得=.故答案为:.13.设函数f(x)的定义域为D,若函数f(x)满足条件:存在[a,b]⊆D,使f(x)在[a,b]上的值域为[,],则称f(x)为“倍缩函数”,若函数f(x)=log2(2x+t)为“倍缩函数”,则t的范围为(0,).【考点】函数的值域.【分析】由题意得,函数是增函数,构造出方程组,利用方程组的解都大于0,求出t的取值范围.【解答】解:∵函数f(x)=log2(2x+t)为“倍缩函数”,且满足存在[a,b]⊆D,使f(x)在[a,b]上的值域是[,],∴f(x)在[a,b]上是增函数;∴,即,∴方程+t=0有两个不等的实根,且两根都大于0;∴,解得:0<t<,∴满足条件t的范围是(0,).故答案为:(0,).14.设f(x)=x2+ax+bcosx,{x|f(x)=0,x∈R}={x|f(f(x))=0,x∈R}≠∅,则满足条件的所有实数a,b的值分别为0≤a<4,b=0.【考点】集合关系中的参数取值问题;集合的相等.【分析】根据已知中f(x)=x2+ax,我们分a=0时和a≠0时,对{{x|f(x)=0,x∈R}={x|f (f(x))=0,x∈R}≠∅进行讨论,最后综合讨论结果,即可得到答案.【解答】解:∵f(x)=x2+ax,∴f(f(x))=f(x)2+af(x)=(x2+ax)2+a•(x2+ax)=x4+2ax3+(a2+a)x2+a2x当a=0时,{x|f(x)=0,x∈R}={x|f(f(x))=0,x∈R}={0}≠∅当a≠0时,{x|f(x)=0,x∈R}={0,﹣a}.若{x|f(f(x))=0,x∈R}={0,﹣a},则f(f(﹣a))=0且除0,﹣a外f(f(x))=0无实根,即x2+ax+a=0无实根即a2﹣4a<0,即0<a<4综上满足条件的所有实数a的取值范围为0≤a<4故答案为:0≤a<4,b=0.二、解答题:本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明或演算步骤.15.某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<)在某一个周期内的(2)将y=f(x)图象上所有点向左平行移动个单位长度,得到y=g(x)图象,求出y=g(x)在区间[0,]上的最小值和取得最小值时x的值.【考点】函数y=Asin(ωx+φ)的图象变换;由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】(Ⅰ)利用五点法作图,将表格数据补充完整,并求得函数f(x)=Asin(ωx+φ)的解析式.(Ⅱ)利用函数y=Asin(ωx+φ)的图象变换规律,求得g(x)的解析式,再利用正弦函数的定义域和值域,求得y=g(x)在区间[0,]上的最小值和取得最小值时x的值.【解答】解(Ⅰ)根据表中已知数据可得:A=5,,,解得.数据补全如下表:y=sinx且函数表达式为f(x)=5sin(2x﹣).(Ⅱ)由(Ⅰ)知,因此,在区间[0,]上,,当=,即时,函数的最小值为﹣5.16.如图,一个水轮的半径为4m,水轮圆心O距离水面2m,已知水轮每分钟转动5圈,如果当水轮上点P从水中浮现时(图中点p0)开始计算时间.(1)将点p距离水面的高度z(m)表示为时间t(s)的函数;(2)点p第一次到达最高点大约需要多少时间?【考点】已知三角函数模型的应用问题.【分析】(1)先根据z的最大和最小值求得A和B,利用周期求得ω,当x=0时,z=0,进而求得φ的值,则函数的表达式可得;(2)令最大值为6,即z=4sin+2=6可求得时间.【解答】解:(1)依题意可知z的最大值为6,最小为﹣2,∴⇒;∵op每秒钟内所转过的角为,得z=4sin,当t=0时,z=0,得sinφ=﹣,即φ=﹣,故所求的函数关系式为z=4sin+2(2)令z=4sin+2=6,得sin=1,取,得t=4,故点P第一次到达最高点大约需要4S.17.已知函数f(x)=ax2+,其中a为实数.(1)根据a的不同取值,判断函数f(x)的奇偶性,并说明理由;(2)若a∈(1,3),判断函数f(x)在[1,2]上的单调性,并用定义证明.【考点】利用导数研究函数的单调性;函数奇偶性的判断.【分析】(1)通过讨论a的范围,判断函数的奇偶性问题;(2)根据函数单调性的定义判断函数的单调性即可.【解答】解:(1)当a=0时,f(x)=,显然是奇函数;当a≠0时,f(1)=a+1,f(﹣1)=a﹣1,f(1)≠f(﹣1)且f(1)+f(﹣1)≠0,所以此时f(x)是非奇非偶函数.(2)设∀x1<x2∈[1,2],则f(x1)﹣f(x2)=a(x1﹣x2)(x1+x2)+=(x1﹣x2)[a(x1+x2)﹣],因为x1,x2∈[1,2],所以x1﹣x2<0,2<x1+x2<4,1<x1x2<4,所以2<a(x1+x2)<12,<<1,<<2,所以a(x1+x2)﹣>0,所以f(x1)﹣f(x2)<0,即f(x1)<f(x2),故函数f(x)在[1,2]上单调递增.18.已知函数f(x)=lg(a﹣ax﹣x2).(Ⅰ)若函数f(x)存在,求a的取值范围.(Ⅱ)若f(x)在x∈(2,3)上有意义,求a的取值范围.(Ⅲ)若f(x)>0的解集为(2,3),求a的值.【考点】对数函数的图象与性质.【分析】第(Ⅰ)问是能成立问题,相当于存在实数x,使a﹣ax﹣x2>0成立;第(Ⅱ)问是恒成立问题,等价于ϕ(x)=a﹣ax﹣x2>0在(2,3)恒成立,即ϕ(x)的最小值大于0;第(Ⅲ)问是恰成立问题,等价于不等式a﹣ax﹣x2>1的解集为(2,3),于是有x2+ax+1﹣a<0,等价于方程x2+ax+1﹣a=0的两个根为2和3.【解答】解:(Ⅰ)f(x)的定义域非空,相当于存在实数x,使a﹣ax﹣x2>0成立,即ϕ(x)=a﹣ax﹣x2的最大值大于0成立,解得a<﹣4或a>0.(Ⅱ)f(x)在区间(2,3)上有意义,等价于ϕ(x)=a﹣ax﹣x2>0在(2,3)恒成立,即ϕ(x)的最小值大于0.解不等式组或或解得.(Ⅲ)f(x)>0的解集为(2,3),等价于不等式a﹣ax﹣x2>1的解集为(2,3);于是有x2+ax+1﹣a<0,这等价于方程x2+ax+1﹣a=0的两个根为2和3,于是可解得a=﹣5.19.已知关于x的二次函数f(x)=x2﹣2sinθx+,(θ∈R).(1)若θ=,求函数f(x)在x∈[﹣1,1]上的值域;(2)若函数f(x)在区间[﹣,]上是单调函数,求θ的取值集合;(3)若对任意x1,x2,∈[2,3],总有|f(x1)﹣f(x2)|≤2sinθt2+8t+5对任意θ∈R恒成立,求t的取值范围.【考点】二次函数的性质.【分析】(1)化简二次函数f(x),利用配方法求解二次函数的值域即可.(2)化简二次函数f(x)=(x﹣sinθ)2+﹣sin2θ,通过函数的单调性,推出函数单调减时sinθ≥,单调增时sinθ≤﹣,求解即可.(3)判断函数在[2,3]上单调递增,求出最值,得到|f(x1)﹣f(x2)|的最值,推出不等式求解t即可.【解答】解:(1)二次函数f(x)=x2﹣2sinθx+,θ=,可得:f(x)=x2﹣x+=(x﹣)2∈[0,].函数的值域为:[0,].(2)由题意二次函数f(x)=x2﹣2sinθx+=(x﹣sinθ)2+﹣sin2θ,函数f(x)在区间[﹣,]上是单调函数,∴函数单调减时sinθ≥,单调增时sinθ≤﹣,.(3)因为对称轴x=sinθ≤1,所以函数在[2,3]上单调递增,从而|f(x1)﹣f(x2)|≤f(x)max﹣f(x)min=f(3)﹣f(2).=5﹣2sinθ≤2sinθt2+8t+5,所以(1+t2)sinθ+4t≥0,对任意θ∈R恒成立,即,所以t2﹣4t+1≤0,则t的取值范围:.20.已知f1(x)=|3x﹣1|,f2(x)=|a•3x﹣9|(a>0),x∈R,且f(x)=.(1)当a=1时,求f(x)的解析式;(2)在(1)的条件下,若方程f(x)﹣m=0有4个不等的实根,求实数m的范围;(3)当2≤a<9时,设f(x)=f2(x)所对应的自变量取值区间的长度为l(闭区间[m,n]的长度定义为n﹣m),试求l的最大值.【考点】对数函数图象与性质的综合应用;指数函数综合题.【分析】(1)当a=1时,根据函数f1(x)和函数f2(x)的解析式以及条件f(x)=可得f(x)的解析式.(2)在(1)的条件下,由题意可得,函数y=f(x)与直线y=m有4个不同的交点,数形结合可得实数m的范围.(3)由于2≤a<9,分x≥时、当0≤x≤时、当x<0时,分别由f2(x)﹣f1(x)≤0 求得x的范围,再把所得的x的范围取并集,从而得到区间长度l的解析式,再根据函数的单调性求得l的最大值.【解答】解:(1)当a=1时,f1(x)=,f2(x)=,∴当x=log35时,f1(x)=f2(x).∴f(x)=.(2)在(1)的条件下,若方程f(x)﹣m=0有4个不等的实根,则函数y=f(x)与直线y=m有4个不同的交点.数形结合可得,0<m<1,故实数m的范围是(0,1).(3)由于2≤a<9,当x≥时,∵a•3x﹣9≥0,3x﹣1>0,∴由f2(x)﹣f1(x)=(a•3x﹣9)﹣(3x﹣1)≤0 可得x≤,从而当≤x≤时,f(x)=f2(x).当0≤x≤时,∵a•3x﹣9<0,3x﹣1≥0,∴由f2(x)﹣f1(x)=﹣(a•3x﹣9)﹣(3x﹣1)=10﹣(a+1)3x≤0 解得x≥,从而当≤x≤时,f(x)=f2(x).当x<0时,由f2(x)﹣f1(x)=﹣(a•3x﹣9)﹣(1﹣3x)=8﹣(a﹣1)3x>0,故f(x)=f2(x)一定不成立.综上可得,当且仅当x∈[,]时,有f(x)=f2(x)一定成立.故l=﹣=,从而当a=2时,l取得最大值为.2016年12月5日。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5. (5.00 分) 若函数 ( f x) =x3+2x﹣1 的零点在区间 (k, k+1) (k∈Z) 内, 则 k= 6. (5.00 分)化简: + ,且 = . ,则 与 的夹角为 .
7. (5.00 分)| |=1,| |=2,
8. (5.00 分)已知一次函数 y=x+1 与二次函数 y=x2﹣x﹣1 的图象交于两点 A(x1, y1) ,B(x2,y2) ,则 + = . 与 共线,且
(1)在政府未出台补贴措施时,我市种植这种蔬菜的总收益为多少元? (2)求出政府补贴政策实施后,我市有机蔬菜的总收益 W(元)与政府补贴数 额 x 之间的函数关系式; (3)要使我市有机蔬菜的总收益 W(元)最大,政府应将每亩补贴金额 x 定为 多少元? 19. (16.00 分)四边形 ABCD 中,E,F 分别为 BD,DC 的中点,AE=DC=3,BC=2, BD=4. (1)试求 , 表示 ;
4. (5.00 分)将函数 y=sinx 的图象向右平移 解析式是 y=sin(x﹣ ) .
个单位后得到的图象对应的函数
【解答】解:根据函数图象的平移变换的法则 函数 f(x)的图象向右平移 a 个单位得到函数 f(x﹣a)的图象 故函数 y=sinx 的图象向右平移 (x﹣ )
第 2 页(共 16 页)
(2)求 (3)求
2
+
2
的值;
•
的最大值.
20. (16.00 分)对于函数 y=f(x) ,若 x0 满足 f(x0)=x0,则称 x0 位函数 f(x) 的一阶不动点,若 x0 满足 f(f(x0) )=x0,则称 x0 位函数 f(x)的二阶不动点, 若 x0 满足 f(f(x0) )=x0,且 f(x0)≠x0,则称 x0 为函数 f(x)的二阶周期点. (1)设 f(x)=kx+1. ①当 k=2 时,求函数 f(x)的二阶不动点,并判断它是否是函数 f(x)的二阶周 期点; ②已知函数 f(x)存在二阶周期点,求 k 的值; (2)若对任意实数 b,函数 g(x)=x2+bx+c 都存在二阶周期点,求实数 c 的取 值范围.
第 1 页(共 16 页)
.
) ,若函数 y=f(asinx+1) ,x∈R 没
二、解答题(本大题共 6 小题,共 90 分,解答应写出文字说明、证明过程或演 算步骤) 15. (14.00 分)已知集合 A={x|2x>8},B={x|x2﹣3x﹣4<0}. (1)求 A,B; (2)设全集 U=R,求(∁ UA)∩B. 16. (14.00 分)直线 y=1 分别与函数 f(x)=log2(x+2) ,g(x)=logax 的图象交 于 A,B 两点,且 AB=2. (1)求 a 的值; (2)解关于 x 的方程,f(x)+g(x)=3. 17. (14.00 分)已知函数 f(x)=sin(ωx+φ) (ω>0,0≤φ≤π)的图象经过点 (0,1) ,且其相邻两对称轴之间的距离为 π. (1)求函数 f(x)的解析式; (2) 设若 sinα+f (α) = , α∈ (0, π) , 求 的值. 18. (16.00 分)现代人对食品安全的要求越来越高,无污染,无化肥农药等残留 的有机蔬菜更受市民喜爱, 为了适应市场需求,我市决定对有机蔬菜实行政府补 贴,规定每种植一亩有机蔬菜性补贴农民 x 元,经调查,种植亩数与补贴金额 x 之间的函数关系式为 f(x)=8x+800(x≥0) ,每亩有机蔬菜的收益(元)与补贴 金额 x 之间的函数关系式为 g(x)= .
2. (5.00 分)若幂函数 y=xa 的图象过点(意,点(2, )在幂函数 y=xa 的图象上, 则有 =2a, 解可得 a=﹣1; 故答案为:﹣1.
3. (5.00 分)因式分解:x3﹣2x2+x﹣2=
(x﹣2) (x2+1)
.
【解答】解:原式=x2(x﹣2)+(x﹣2)=(x﹣2) (x2+1) . 故答案为: (x﹣2) (x2+1) .
12. (5.00 分)已知定义在 R 上的奇函数 y=f(x)满足:①当 x∈(0,1]时,f (x)=( )x;②f(x)的图象关于直线 x=1 对称,则 f(﹣log224)= .
13. (5.00 分)已知函数 f(x)=x2+bx,g(x)=|x﹣1|,若对任意 x1,x2∈[0, 2], 当 x1<x2 时都有 ( f x1) ﹣( f x2) <g (x1) ﹣g ( x 2) , 则实数 b 的最小值为 14. (5.00 分)已知函数 f(x)=sin(πx﹣ 有零点,则实数 a 的取值范围是 .
第 3 页(共 16 页)
2015-2016 学年江苏省泰州市高一(上)期末数学试卷
参考答案与试题解析
一、填空题(本大题共 14 小题,每小题 5 分,共 70 分) 1. (5.00 分)已知集合 A={0,1,2},B={1,2,3},则集合 A∪B 中元素个数为 4 .
【解答】解:∵A={0,1,2},B={1,2,3}, ∴A∪B={0,1,2,3}, 则集合 A∪B 中元素个数为 4, 故答案为:4.
2015-2016 学年江苏省泰州市高一(上)期末数学试卷
一、填空题(本大题共 14 小题,每小题 5 分,共 70 分) 1. (5.00 分) 已知集合 A={0, 1, 2}, B={1, 2, 3}, 则集合 A∪B 中元素个数为 2. (5.00 分)若幂函数 y=xa 的图象过点(2, ) ,则 a= 3. (5.00 分)因式分解:x3﹣2x2+x﹣2= 4. (5.00 分)将函数 y=sinx 的图象向右平移 解析式是 . . . 个单位后得到的图象对应的函数 . .
9. (5.00 分)已知 O 为坐标原点,A(1,2) ,B(﹣2,1) ,若 ⊥( +2 ) ,则点 C 的坐标为 .
10. (5.00 分)若点 P(1,﹣1)在角 φ(﹣π<φ<0)终边上,则函数 y=3cos (x+φ) ,x∈[0,π]的单调减区间为 .
11. (5.00 分)当 x∈{x|(log2x)2﹣log2x﹣2≤0}时,函数 y=4x﹣2x+3 的最小值 是 .