2018年江苏高考数学复习:第2部分 难点2 立体几何中的探索性与存在性问题含答案
2018年江苏高考数学二轮复习:第2部分 八大难点突破 难点4 解析几何中的范围、定值和探索性问题

难点四解析几何中的范围、定值和探索性问题(对应学生用书第68页)解析几何中的范围、定值和探索性问题仍是高考考试的重点与难点,主要以解答题形式考查,一般以椭圆为背景,考查范围、定值和探索性问题,试题难度较大.复习时不能把目标仅仅定位在知识的掌握上,要在解题方法、解题思想上深入下去.解析几何中基本的解题方法是使用代数方程的方法研究直线、曲线的某些几何性质,代数方程是解题的桥梁,要掌握一些解方程(组)的方法,掌握一元二次方程的知识在解析几何中的应用,掌握使用根与系数的关系进行整体代入的解题方法;其次注意分类讨论思想、函数与方程思想、化归与转化思想等的应用,如解析几何中的最值问题往往需建立求解目标函数,通过函数的最值研究几何中的最值.下面对这些难点一一分析:1.圆锥曲线中的定点、定值问题该类问题多以直线与圆锥曲线为背景,常与函数与方程、向量等知识交汇,形成了过定点、定值等问题的证明,难度较大.定点、定值问题是在变化中所表现出来的不变的量,那么就可以用变化的量表示问题的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系不受变化的量所影响的一个点、一个值,就是要求的定点、定值.化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量.【例1】 (2017·江苏省南京市迎一模模拟)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =32,直线y =x +2与以原点为圆心、椭圆C 的短半轴长为半径的圆O 相切.(1)求椭圆C 的方程;(2)设直线x =12与椭圆C 交于不同的两点M ,N ,以线段MN 为直径作圆D ,若圆D 与y 轴相交于不同的两点A ,B ,求△ABD 的面积;(3)如图1,A 1,A 2,B 1,B 2是椭圆C 的顶点,P 是椭圆C 上除顶点外的任意点,直线B 2P 交x 轴于点F ,直线A 1B 2交A 2P 于点E ,设A 2P 的斜率为k ,EF 的斜率为m ,求证:2m -k 为定值.【导学号:56394098】图1[解] (1)∵直线y =x +2与以原点为圆心、椭圆C 的短半轴长为半径的圆O 相切, ∴|0-2|2=b ,化为b =1.∵离心率e =32=c a ,b 2=a 2-c 2=1,联立解得a =2,c = 3. ∴椭圆C 的方程为x 24+y 2=1; (2)把x =12代入椭圆方程可得:y 2=1-116,解得y =±154. ∴⊙D 的方程为:⎝ ⎛⎭⎪⎫x -122+y 2=1516. 令x =0,解得y =±114, ∴|AB |=112,∴S △ABD =12|AB |·|OD |=12×112×12=118. (3)证明:由(1)知:A 1(-2,0),A 2(2,0),B 2(0,1),∴直线A 1B 2的方程为y =12x +1, 由题意,直线A 2P 的方程为y =k (x -2),k ≠0,且k ≠±12, 由⎩⎪⎨⎪⎧ y =12x +1,y =k x -,解得E ⎝ ⎛⎭⎪⎫4k +22k -1,4k 2k -1. 设P (x 1,y 1),则由⎩⎪⎨⎪⎧ y =k x -,x 24+y 2=1,得(4k 2+1)x 2-16k 2x +16k 2-4=0. ∴2x 1=16k 2-44k 2+1,∴x 1=8k 2-24k 2+1,y 1=k (x 1-2)=-4k 4k 2+1.∴P ⎝ ⎛⎭⎪⎫8k 2-24k 2+1,-4k 4k 2+1. 设F (x 2,0),则由P ,B 2,F 三点共线得,kB 2P =kB 2F .即-4k 4k 2+1-18k 2-24k 2+1-0=0-1x 2-0,∴x 2=4k -22k +1,∴F ⎝ ⎛⎭⎪⎫4k -22k +1,0. ∴EF 的斜率m =4k 2k -1-04k +22k -1-4k -22k +1=2k +14. ∴2m -k =2k +12-k =12为定值. [方法总结] 定值问题是解析几何中的一种常见问题,基本的求解思想是:先用变量表示所需证明的不变量,然后通过推导和已知条件,消去变量,得到定值,即解决定值问题首先是求解非定值问题,即变量问题,最后才是定值问题.(1)求定值问题常见的方法有两种①从特殊入手,求出定值,再证明这个值与变量无关.②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.(2)定点的探索与证明问题①探索直线过定点时,可设出直线方程为y =kx +m ,然后利用条件建立k ,m 等量关系进行消元,借助于直线系的思想找出定点.②从特殊情况入手,先探求定点,再证明与变量无关.2.圆锥曲线中的最值、范围问题圆锥曲线中参数的范围及最值问题,由于其能很好地考查学生对数学知识的迁移、组合、融会的能力,有利于提高学生综合运用所学知识分析、解决问题的能力.该类试题设计巧妙、命题新颖别致,常求特定量、 特定式子的最值或范围.常与函数解析式的求法、函数最值、不等式等知识交汇,成为近年高考热点.解决圆锥曲线中最值、范围问题的基本思想是建立目标函数和建立不等关系,根据目标函数和不等式求最值、范围,因此这类问题的难点,就是如何建立目标函数和不等关系.建立目标函数或不等关系的关键是选用一个合适变量,其原则是这个变 量能够表达要解决的问题,这个变量可以是直线的斜率、直线的截距、点的坐标等,要根据问题的实际情况灵活处理.图2【例2】 (苏北四市(徐州、淮安、连云港、宿迁)2017届高三上学期期末)如图2,在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且右焦点F 到左准线的距离为6 2.(1)求椭圆C 的标准方程;(2)设A 为椭圆C 的左顶点,P 为椭圆C 上位于x 轴上方的点,直线PA 交y 轴于点M ,过点F 作MF 的垂线,交y 轴于点N .(ⅰ)当直线的PA 斜率为12时,求△FMN 的外接圆的方程; (ⅱ)设直线AN 交椭圆C 于另一点Q ,求△APQ 的面积的最大值.[解] (1)由题意,得⎩⎪⎨⎪⎧ c a =22,c +a 2c =62,解得⎩⎨⎧ a =4,c =22,则b =22,所以椭圆C 的标准方程为x 216+y 28=1. (2)由题可设直线PA 的方程为y =k (x +4),k >0,则M (0,4k ),所以直线FN 的方程为y =224k (x -22),则N ⎝⎛⎭⎪⎫0,-2k . (ⅰ)当直线PA 的斜率为12,即k =12时,M (0,2),N (0,-4),F (22,0),MF →=(22,-2),FN →=(-22,-4),MF →·FN →=-8+8=0.所以MF ⊥FN ,所以圆心为(0,-1),半径为3,所以△FMN 的外接圆的方程为x 2+(y +1)2=9. (ⅱ)联立⎩⎪⎨⎪⎧ y =k x +,x 216+y 28=1,消去y 并整理得,(1+2k 2)x 2+16k 2x +32k 2-16=0, 解得x 1=-4或x 2=4-8k 21+2k 2,所以P ⎝ ⎛⎭⎪⎫4-8k21+2k 2,8k1+2k 2, 直线AN 的方程为y =-12k (x +4),同理可得,Q ⎝ ⎛⎭⎪⎫8k 2-41+2k 2,-8k 1+2k 2, 所以P ,Q 关于原点对称,即PQ 过原点.所以△APQ 的面积S =12OA ·(y P -y Q )=2×16k 1+2k 2=322k +1k ≤82,当且仅当2k =1k ,即k =22时,取“=”.所以△APQ 的面积的最大值为8 2.[方法总结] 这类问题在题目中往往没有给出不等关系,需要我们去寻找.求最值或范围常见的解法:(1)几何法:若题目的条件和结论能明显体现几何特征及意义,可考虑利用图形性质来解决;(2)代数法:若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求最值,求函数最值常用的方法有配方法、判别式法、导数法、基本不等式法及函数的单调性、有界性法等.用这种方法求解圆锥曲线的最值与范围问题时,除了重视建立函数关系式这个关键点外,还要密切注意所建立的函数式中的变量是否有限制范围,这些限制范围恰好制约了最值的取得,因此在解题时要予以高度关注.3.圆锥曲线中的探索性问题探索性问题主要考查学生探索解题途径,解决非传统完备问题的能力,是命题者根据学科特点,将数学知识有机结合并赋予新的情境创设而成的,要求学生自己观察、分析、创造性地运用所学知识和方法解决问题,它能很好地考查数学思维能力以及科学的探索精神.因此越来越受到高考命题者的青睐.探索性问题实质上是探索结论的开放性问题.相对于其他的开放性问题来说,由于这类问题的结论较少(只有存在、 不存在两个结论有时候需讨论),因此,思考途径较为单一,难度易于控制,受到各类考试命题者的青睐.解答这一类问题,往往从承认结论、变结论为条件出发,然后通过特例归纳,或由演绎推理证明其合理性.探索过程要充分挖掘已知条件,注意条件的完备性,不要忽略任何可能的因素.图3【例3】 (苏北四市(淮安、宿迁、连云港、徐州)2017届高三上学期期中)如图3,在平面直角坐标系xOy 中,已知圆C :x 2+y 2-4x =0及点A (-1,0),B (1,2).(1)若直线l 平行于AB ,与圆C 相交于M ,N 两点,MN =AB ,求直线l 的方程;(2)在圆C 上是否存在点P 满足条件,使得PA 2+PB 2=12?若存在,求点P 的个数;若不存在,说明理由.【导学号:56394099】[解] (1)圆C 的标准方程为(x -2)2+y 2=4,所以圆心C (2,0),半径为2.因为l ∥AB ,A (-1,0),B (1,2),所以直线l 的斜率为2-01--=1,设直线l 的方程为x -y +m =0,则圆心C 到直线l 的距离为d =|2-0+m |2=|2+m |2. 因为MN =AB =22+22=22, 而CM 2=d 2+⎝ ⎛⎭⎪⎫MN 22,所以4=+m22+2,解得m =0或m =-4,故直线l 的方程为x -y =0或x -y -4=0.(2)假设圆C 上存在点P 满足条件,设P (x ,y ),则(x -2)2+y 2=4, PA 2+PB 2=(x +1)2+(y -0)2+(x -1)2+(y -2)2=12,即x 2+y 2-2y -3=0,即x 2+(y -1)2=4,因为|2-2|<-2+-2<2+2, 所以圆(x -2)2+y 2=4与圆x 2+(y -1)2=4相交,所以点P 的个数为2.[方法总结] (1)解决存在性问题的解题步骤:第一步:先假设存在,引入参变量,根据题目条件列出关于参变量的方程(组)或不等式(组);第二步:解此方程(组)或不等式(组),若有解则存在,若无解则不存在;第三步:得出结论.(2)解决存在性问题应注意以下几点:①当条件和结论不唯一时要分类讨论;②当给出结论而要推导出存在的条件时,先假设成立,再推出条件;③当条件和结论都不知,按常规方法解题很难时,要思维开放,采取另外的途径.。
2018届苏教版 立体几何中的探索性与存在性问题 单元测试

难点二 立体几何中探索性与存在性问题训练1.【江苏省淮安市2015届高三第五次模拟考试】(本题满分14分)如图,边长为2的正方形ABCD 是圆柱的中截面,点E 为线段BC 的中点,点S 为圆柱的下底面圆周上异于A ,B 的一个动点.(1)在圆柱的下底面上确定一定点F ,使得//EF 平面ASC ;(2)求证:平面ASC ⊥平面BSC .【答案】(1)点F 为线段AB 的中点;(2)详见解析; 【解析】2.【2015年高考模拟(南通市数学学科基地命题)(2)】(本小题满分14分)已知直三棱柱111ABC A B C -中,,D E 分别为11,AA CC 的中点,AC BE ⊥,点F 在线段AB 上,且4AB AF =.⑴求证:1BC C D ⊥;⑵若M 为线段BE 上一点,试确定M 在线段BE 上的位置,使得1//C D 平面1B FM .【答案】(1)见解析;(2)BE=4ME【解析】⑵连结AE ,在BE 上取点M ,使BE=4ME,连结FM ,1B M ,F 1B ,在BEA 中,由BE=4ME ,AB=4AF所以MF//AE ,又在面AA 1C 1C 中,易证C 1D//AE ,所以1//C D 平面1B FM .3.【扬州市2014—2015学年度第四次调研测试试题高三数学】如图,三棱锥A BCD -中,侧面ABC 是等边三角形,M 是ABC ∆的中心.⑴若DM BC ⊥,求证AD BC ⊥;⑵若AD 上存在点N ,使//MN 平面BCD ,求AN ND的值.DB【答案】⑴见试题分析;⑵12【解析】⑵,M AE AE ∈⊂平面ADE ,所以M ∈平面ADE ,因为AD 上存在点N ,所以N ∈平面ADE ,所以MN ⊂平面ADE , 又//MN 平面BCD ,平面ADE 平面BCD DE =,所以//MN DE , 在ADE ∆中,因为12AM ME =,所以12AN ND =. 4.【2016届福建省福州市第八中学高三上学期第三次质检】在如图所示的几何体中,面CDEF 为正方形,面ABCD 为等腰梯形,AB //CD ,AC =22AB BC ==,AC FB ⊥.(1)求证: AC 平面FBC ;(2)求四面体FBCD 的体积;(2)线段AC 上是否存在点M ,使EA //平面FDM ?证明你的结论.【答案】(1)祥见解析;(2)123;(2)祥见解析. 【解析】5.【2016届辽宁省大连市第二十高级中学高三上学期期中考试】如图,四边形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=4,AB=2,E、F分别在BC、AD上,EF∥AB.现将四边形ABEF 沿EF折起,使得平面ABEF ⊥平面EFDC.(1)当1BE=,是否在折叠后的AD上存在一点P,使得CP∥平面ABEF?若存在,求出P点位置,若不存在,说明理由;(2)设BE=x,问当x为何值时,三棱锥A-CDF的体积有最大值?并求出这个最大值.【解析】(1)存在P使得满足条件CP∥平面ABEF,且此时.35APAD= 2分下面证明:35APAD=,过点P作MP∥FD,与AF交于点M,则有35MPFD=,又FD=5,故MP=3,又因为EC=3,MP∥FD∥EC,故有MP//=EC,故四边形MPCE为平行四边形,所以PC∥ME,又CP⊄平面ABEF,ME⊂平面ABEF,故有CP∥平面ABEF成立. 6分(2)因为平面ABEF⊥平面EFDC,平面ABEF 平面EFDC=EF,又AF⊥EF,所以AF⊥平面EFDC.由已知BE =x ,,所以AF =x (0<x …4),FD =6-x . 故222111112(6)(6)[(3)9](3)332333A CDF V x x x x x x -=⋅⋅⋅-⋅=-=--+=--+.所以,当x =3时,A CDF V -有最大值,最大值为3.。
(江苏专版)2018年高考数学二轮复习 第2部分 八大难点突破 难点1 与三角变换、平面向量综合的三角形问题课

【例 2】 (2017·江苏省无锡市高考数学一模)在△ABC 中,a,b,c 分别为角 A, B,C 的对边.若 acos B=3,bcos A=1,且 A-B=π6. (1)求边 c 的长; (2)求角 B 的大小. 【导学号:56394089】
[解] (1)∵acos B=3,bcos A=1,∴a×a2+2ca2c-b2=3,b×b2+2cb2c-a2=1, 化为:a2+c2-b2=6c,b2+c2-a2=2c. 相加可得:2c2=8c,解得 c=4.
(2)由 α∈0,π2,β∈0,2π得,α-β∈-π2,π2.
因
sin(α-β)=
1100,则
cos(α-β)=3
10 10 .
则 sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)
=255×31010- 55× 1100= 22,
若 P 是△ABC 内的一点,BA→→PP==tλ||BB→→AA→ →AABB||++||BB→→AA→ →CCCC||,,tλ>>00
⇒P 是△ABC 的内心; 若 D、E 两点分别是△ABC 的边 BC、CA 上的中点,且
D→P·P→B=D→P·P→C E→P·P→C=E→P·P→A
∴16sin2B+π6-16sin2B=8sin22B+π6, ∴ 1 - cos 2B+π3 - (1 - cos 2B) = sin2 2B+π6 , 即 cos 2B - cos 2B+π3 = sin22B+π6, ∴-2sin2B+6πsin-6π=sin22B+6π, ∴sin2B+6π=0 或 sin2B+6π=1,B∈0,152π. 解得:B=π6.
6.2 判断三角形形状 三角形的边可以看做向量的模长,三角形的内角可以看做向量的夹角,所以可 利用向量的数量积和夹角公式或者其他线性运算,结合平面几何知识来判断三 角形的形状
难点8 立体几何中的折叠问题、最值问题和探索性问题 -2018届高三文科数学新课标版难点讲义

难点8 立体几何中的折叠问题、最值问题和探索性问题 对立体几何中的折叠问题、最值问题和探索性问题,要求学生要有较强的空间想象力和准确的计算运算能力,才能顺利解答.从实际教学和考试来看,学生对这类题看到就头疼.分析原因,首先是学生的空间想象力较弱,其次是学生对这类问题没有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理.本文就高中阶段学习和考试出现这类问题加以总结的探讨.1 立体几何中的折叠问题折叠问题是立体几何的两个重要问题,这两种方式的转变正是空间几何与平面几何问题转化的集中体现.处理这类题型的关键是抓住两图的特征关系.折叠问题是立体几何的一类典型问题是实践能力与创新能力考查的好素材.解答折叠问题的关键在于画好折叠前后的平面图形与立体图形,并弄清折叠前后哪些发生了变化,哪些没有发生变化.这些未变化的已知条件都是我们分析问题和解决问题的依据.而表面展开问题是折叠问题的逆向思维、逆过程,一般地,涉及到多面体表面的问题,解题时不妨将它展开成平面图形试一试.例1【河南省中原名校2018届第五次联考】如图甲,在四边形ABCD 中, ABC ∆是边长为4的正三角形,把ABC ∆沿AC 折起到PAC ∆的位置,使得平面PAC ⊥平面ACD ,如图乙所示,点,,O M N 分别为棱,,AC PA AD 的中点.(1)求证: AD ⊥平面PON ;(2)求三棱锥M ANO -的体积.思路分析:(1)在正三角形APC ∆中可得PO AC ⊥,有根据题意得到PO ⊥平面ACD ,从而得PO AD ⊥,计算可得AD CD ⊥.由,O N 分别为棱,AC AD 的中点,得到//ON CD ,故ON AD ⊥.根据线面垂直的判定定理可得AD ⊥平面PON .(2,又可得点M-的体积.到平面ANO的距离为,故可求得三棱锥M ANO点评:本题考查了直线与平面、平面与平面垂直的判定与性质,以折叠问题为载体,折叠问题是考查学生空间想象能力的较好载体.如本题,不仅要求学生象解常规立几综合题一样懂得线线,线面和面面垂直的判定方法及相互转化,还要正确识别出折叠而成的空间图形,更要识得折前折后有关线线、线面位置的变化情况以及有关量(边长与角)的变化情况,否则无法正确解题.这正是折叠问题的价值之所在.2 立体几何中的最值问题解决空间图形有关的线段、角、距离、面积、体积等最值问题,通常应注意分析题目中所有的条件,首先应该在充分理解题意的基础上,分析是否能用公理与定义直接解决题中问题;如果不能,再看是否可将问题条件转化为函数,若能写出确定的表意函数,则可用建立函数法求解;再不能,则要考虑其中是否存在不等关系,看是否能运用解等不式法求解;还不行则应考虑是否可将其体图展开成平面,这样依次顺序思考,基本可以找到解题的途径.例2【宁夏育才中学2018届第三次月考】一个棱长为5的正四面体(棱长都相等的三棱锥)纸盒内放一个小正四面体,若小正四面体在纸盒内可以任意转动,则小正四面体棱长的最大值为__________.【答案】【解析】设大正四面体的内切球半径为r,则设小正四面体棱长的最大值为x,内切球为小正四面体的外接球,则点评:本题考查了球与几何体的问题,是高考中的重点问题,要有一定的空间想象能力,这样才能找准关系,得到结果,一般外接球需要求球心和半径,首先应确定球心的位置,借助于外接球的性质,球心到各顶点距离相等,这样可先确定几何体中部分点组成的多边形的外接圆的圆心,过圆心且垂直于多边形所在平面的直线上任一点到多边形的顶点的距离相等,然后同样的方法找到另一个多边形的各顶点距离相等的直线(这两个多边形需有公共点),这样两条直线的交点,就是其外接球的球心,再根据半径,顶点到底面中心的距离,球心到底面中心的距离,构成勾股定理求解,有时也可利用补体法得到半径,例:三条侧棱两两垂直的三棱锥,可以补成长方体,它们是同一个外接球.立体几何中经常碰到求最值问题,不少学生害怕这类问题,主要原因是难以将立体几何问题转化为平面几何问题或代数问题去求解,对立体几何的最值问题,一般可以从两方面着手:一是从问题的几何特征入手,充分利用其几何性质去解决;二是找出问题中的代数关系,建立目标函数,利用代数方法求目标函数的最值.解题途径很多,在函数建成后,可用一次函数的端点法、二次数的配方法、公式法、有界函数界值法(如三角函数等)及高阶函数的拐点导数法等.3 立体几何中的探索性问题 探究性问题常常是条件不完备的情况下探讨某些结论能否成立,立体几何中的探究性问题既能够考查学生的空间想象能力,又可以考查学生的意志力及探究的能力.近几年高考中立体几何试题不断出现了一些具有探索性、开放性的试题.内容涉及异面直线所成的角,直线与平面所成的角,二面角,平行与垂直等方面,对于这类问题一般可用综合推理的方法、分析法、特殊化法和向量法来解决.一般此类立体几何问题描述的是动态的过程,结果具有不唯一性或者隐藏性,往往需要耐心尝试及等价转化,因此,对于常见的探究方法的总结和探究能力的锻炼是必不可少的.例3【江西省2018届1月联考】如图,多面体11ABC DB C -是由三棱柱111ABC A B C -截去一部分而成, D 是1AA 的中点.(1)若1AD AC ==, AD ⊥平面ABC , BC AC ⊥,求点C 到面11B C D 的距离;(2)若E 为AB 的中点, F 在1CC 上,且,问λ为何值时,直线//EF 平面11BC D ? 思路分析:(1)由BC CD ⊥, 1CD C D ⊥,可得CD ⊥面11DC B ,即点C 到面11B C D 的距离等于CD ;(2)当4λ=时,直线//EF 平面11BC D ,理由如下:取1DB 的中点H ,连接EH ,可得1////AD EH CC ,时,四边形1C FEH 为平行四边形,即EF HC .点评:本题主要考查了点到面的距离,直线与平面平行的判定,属于基础题;在求点到面的距离中主要采用证明线面垂直找出距离或者等体积法;线面平行主要通过一下几种方式:1、利用三角形中位线;2、构造平行四边形;3、利用面面平行等.探索性题型通常是找命题成立的一个充分条件,所以解这类题采用下列二种方法:⑴通过各种探索尝试给出条件;⑵找出命题成立的必要条件,也证明了充分性.综合以上三类问题,折叠与展开问题、最大值和最小值问题和探究性问题都是高考中的热点问题,在高考试题的新颖性越来越明显,能力要求也越来越高,并且也越来越广泛.折叠与展开问题是立体几何的一对问题,这两种方式的转变正是空间几何与平面几何问题转化的集中体现,处理这类题型的关键是抓住两图的特征关系;求最值的途径很多,其中运用公理与定义法、利用代数知识建立函数法、由常用不等式解不等式法等都是常用的一些求最值的方法;对于立体几何的探索性问题一般都是条件开放性的探究问题,采用的方法一般是执果索因的方法,假设求解的结果存在,寻找使这个结论成立的充分条件,运用方程的思想或向量的方法转化为代数的问题解决.如果找到了符合题目结果要求的条件,则存在;如果找不到符合题目结果要求的条件,或出现了矛盾,则不存在.另外对于立体几何中的上述三种问题有时运用空间向量的方法也是一种行之有效的方法,能使问题简单、有效地解决.解答这些问题,需要主观的意志力,不要见到此类问题先发怵,进行消极的自我暗示,要通过一些必要的练习,加强解题信心的培养,确定解题的一般规律,积极的深入分析问题的特征,进而实现顺利解答.。
配套K12新课标版备战2018高考数学二轮复习难点2.8立体几何中的折叠问题最值问题和探索性问题教学

立体几何中的折叠问题、最值问题和探索性问题对立体几何中的折叠问题、最值问题和探索性问题,要求学生要有较强的空间想象力和准确的计算运算能力,才能顺利解答.从实际教学和考试来看,学生对这类题看到就头疼.分析原因,首先是学生的空间想象力较弱,其次是学生对这类问题没有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理.本文就高中阶段学习和考试出现这类问题加以总结的探讨.1 立体几何中的折叠问题折叠问题是立体几何的两个重要问题,这两种方式的转变正是空间几何与平面几何问题转化的集中体现.处理这类题型的关键是抓住两图的特征关系.折叠问题是立体几何的一类典型问题是实践能力与创新能力考查的好素材.解答折叠问题的关键在于画好折叠前后的平面图形与立体图形,并弄清折叠前后哪些发生了变化,哪些没有发生变化.这些未变化的已知条件都是我们分析问题和解决问题的依据.而表面展开问题是折叠问题的逆向思维、逆过程,一般地,涉及到多面体表面的问题,解题时不妨将它展开成平面图形试一试.例1【河南省中原名校2018届第五次联考】如图甲,在四边形ABCD 中, 2AD CD ==, ABC ∆是边长为4的正三角形,把ABC ∆沿AC 折起到PAC ∆的位置,使得平面PAC ⊥平面ACD ,如图乙所示,点,,O M N 分别为棱,,AC PA AD 的中点.(1)求证: AD ⊥平面PON ;(2)求三棱锥M ANO -的体积.思路分析:(1)在正三角形APC ∆中可得PO AC ⊥,有根据题意得到PO ⊥平面ACD ,从而得PO AD ⊥,计算可得AD CD ⊥.由,O N 分别为棱,AC AD 的中点,得到//ON CD ,故ON AD ⊥.根据线面垂直的判定定理可得AD ⊥平面PON .(2)由条件得ACD S ∆=,故142NAO ACD S S ∆∆==,又可得点M 到平面ANO 的距离为1h 2OP ==,故可求得三棱锥M ANO -的体积.点评:本题考查了直线与平面、平面与平面垂直的判定与性质,以折叠问题为载体,折叠问题是考查学生空间想象能力的较好载体.如本题,不仅要求学生象解常规立几综合题一样懂得线线,线面和面面垂直的判定方法及相互转化,还要正确识别出折叠而成的空间图形,更要识得折前折后有关线线、线面位置的变化情况以及有关量(边长与角)的变化情况,否则无法正确解题.这正是折叠问题的价值之所在. 2 立体几何中的最值问题 解决空间图形有关的线段、角、距离、面积、体积等最值问题,通常应注意分析题目中所有的条件,首先应该在充分理解题意的基础上,分析是否能用公理与定义直接解决题中问题;如果不能,再看是否可将问题条件转化为函数,若能写出确定的表意函数,则可用建立函数法求解;再不能,则要考虑其中是否存在不等关系,看是否能运用解等不式法求解;还不行则应考虑是否可将其体图展开成平面,这样依次顺序思考,基本可以找到解题的途径.例2【宁夏育才中学2018届第三次月考】一个棱长为5的正四面体(棱长都相等的三棱锥)纸盒内放一个小正四面体,若小正四面体在纸盒内可以任意转动,则小正四面体棱长的最大值为__________. 【答案】53【解析】设大正四面体的内切球半径为r ,则2211114553232r ⨯⨯⨯=⨯得12r =.设小正四面体棱长的最大值为x ,内切球为小正四面体的外接球,则22233r x x r ⎛⎫⎛⎫=+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,即222123312x x ⎛⎛⎫⎛=+- ⎪ ⎪ ⎝⎭⎝⎭⎝⎭,解得53x =.点评:本题考查了球与几何体的问题,是高考中的重点问题,要有一定的空间想象能力,这样才能找准关系,得到结果,一般外接球需要求球心和半径,首先应确定球心的位置,借助于外接球的性质,球心到各顶点距离相等,这样可先确定几何体中部分点组成的多边形的外接圆的圆心,过圆心且垂直于多边形所在平面的直线上任一点到多边形的顶点的距离相等,然后同样的方法找到另一个多边形的各顶点距离相等的直线(这两个多边形需有公共点),这样两条直线的交点,就是其外接球的球心,再根据半径,顶点到底面中心的距离,球心到底面中心的距离,构成勾股定理求解,有时也可利用补体法得到半径,例:三条侧棱两两垂直的三棱锥,可以补成长方体,它们是同一个外接球.立体几何中经常碰到求最值问题,不少学生害怕这类问题,主要原因是难以将立体几何问题转化为平面几何问题或代数问题去求解,对立体几何的最值问题,一般可以从两方面着手:一是从问题的几何特征入手,充分利用其几何性质去解决;二是找出问题中的代数关系,建立目标函数,利用代数方法求目标函数的最值.解题途径很多,在函数建成后,可用一次函数的端点法、二次数的配方法、公式法、有界函数界值法(如三角函数等)及高阶函数的拐点导数法等.3 立体几何中的探索性问题 探究性问题常常是条件不完备的情况下探讨某些结论能否成立,立体几何中的探究性问题既能够考查学生的空间想象能力,又可以考查学生的意志力及探究的能力.近几年高考中立体几何试题不断出现了一些具有探索性、开放性的试题.内容涉及异面直线所成的角,直线与平面所成的角,二面角,平行与垂直等方面,对于这类问题一般可用综合推理的方法、分析法、特殊化法和向量法来解决.一般此类立体几何问题描述的是动态的过程,结果具有不唯一性或者隐藏性,往往需要耐心尝试及等价转化,因此,对于常见的探究方法的总结和探究能力的锻炼是必不可少的.例3【江西省2018届1月联考】如图,多面体11ABC DB C -是由三棱柱111ABC A B C -截去一部分而成, D 是1AA 的中点.(1)若1AD AC ==, AD ⊥平面ABC , BC AC ⊥,求点C 到面11B C D 的距离;(2)若E 为AB 的中点, F 在1CC 上,且1CC CFλ=,问λ为何值时,直线//EF 平面11BC D ?思路分析:(1)由BC CD ⊥, 1CD C D ⊥,可得CD ⊥面11DC B ,即点C 到面11B C D 的距离等于CD ;(2)当4λ=时,直线//EF 平面11BC D ,理由如下:取1DB 的中点H ,连接EH ,可得1////AD EH CC ,当132C F EH ==时,四边形1C FEH 为平行四边形,即EF HC .点评:本题主要考查了点到面的距离,直线与平面平行的判定,属于基础题;在求点到面的距离中主要采用证明线面垂直找出距离或者等体积法;线面平行主要通过一下几种方式:1、利用三角形中位线;2、构造平行四边形;3、利用面面平行等.探索性题型通常是找命题成立的一个充分条件,所以解这类题采用下列二种方法:⑴通过各种探索尝试给出条件;⑵找出命题成立的必要条件,也证明了充分性综合以上三类问题,折叠与展开问题、最大值和最小值问题和探究性问题都是高考中的热点问题,在高考试题的新颖性越来越明显,能力要求也越来越高,并且也越来越广泛.折叠与展开问题是立体几何的一对问题,这两种方式的转变正是空间几何与平面几何问题转化的集中体现,处理这类题型的关键是抓住两图的特征关系;求最值的途径很多,其中运用公理与定义法、利用代数知识建立函数法、由常用不等式解不等式法等都是常用的一些求最值的方法;对于立体几何的探索性问题一般都是条件开放性的探究问题,采用的方法一般是执果索因的方法,假设求解的结果存在,寻找使这个结论成立的充分条件,运用方程的思想或向量的方法转化为代数的问题解决.如果找到了符合题目结果要求的条件,则存在;如果找不到符合题目结果要求的条件,或出现了矛盾,则不存在.另外对于立体几何中的上述三种问题有时运用空间向量的方法也是一种行之有效的方法,能使问题简单、有效地解决.解答这些问题,需要主观的意志力,不要见到此类问题先发怵,进行消极的自我暗示,要通过一些必要的练习,加强解题信心的培养,确定解题的一般规律,积极的深入分析问题的特征,进而实现顺利解答.。
江苏2018高三数学一轮复习 立体几何热点问题

高考导航立体几何是研究空间几何体的基础和必备内容,也是历年高考命题的热点.其中有两个考查热点:一是空间几何体的表面积、体积的求解,试题难度不大;二是空间平行与垂直关系的证明与探索性问题,难度中等.热点一求解空间几何体的表面积和体积空间几何体的表面积和体积多以常见几何体或与球的接、切组合体考查,主要考查空间想象能力、逻辑推理能力和计算能力.求解几何体的表面积时,要考虑全面;求解棱锥的体积时,等体积转化是常用的思想方法,转化原则是其高易求,底面放在已知几何体的某一面上.求不规则几何体的体积,常用分割或补形的思想,将不规则几何体转化为规则几何体以便于求解.例1(1)(2017·盐城模拟)如图,正四棱锥P ABCD的底面一边AB长为2 3 cm,侧面积为8 3 cm2,则它的体积为________cm3.(2)(2017·苏、锡、常、镇四市调研)如图,正三棱柱ABCA1B1C1中,AB=4,AA1=6.若E,F分别是棱BB1,CC1上的点,则三棱锥AA1EF的体积是________.解析(1)设正四棱锥P ABCD的侧面上的斜高为h′,又底面一边AB长为2 3 cm,则侧面积为4×12×23h′=83(cm2),解得h′=2(cm),则它的高h=22-(3)2=1,体积为13×(23)2×1=4(cm 3). (2)由正三棱柱的底面边长为4得点F 到平面A 1AE 的距离(等于点C 到平面A 1ABB 1的距离)为32×4=23,则1A A E F V -三棱锥=1F A AE V -三棱锥=131S A AE ∆×23=13×12×6×4×23=8 3.答案 (1)4 (2)8 3探究提高 (1)求多面体的表面积的基本方法就是逐个计算各个面的面积,然后求和.(2)求体积时可以把空间几何体进行分解,把复杂的空间几何体的体积分解为一些简单几何体体积的和或差.求解时注意不要多算也不要少算.训练1 (1)(2017·扬州中学模拟)在正三棱锥P ABC 中,M ,N 分别是PB ,PC 的中点,若截面AMN ⊥平面PBC ,则此棱锥中侧面积与底面积的比为________.第(1)题图 第(2)题图 (2)如图,正方体ABCDA 1B 1C 1D 1的棱长为1,E 为线段B 1C 上的一点,则三棱锥ADED 1的体积为________.解析 (1)取BC 的中点D ,连接AD ,PD ,且PD 与MN 的交点为E .因为AM =AN ,E 为MN 的中点,所以AE ⊥MN ,又截面AMN ⊥平面PBC ,所以AE ⊥平面PBC ,则AE ⊥PD ,又E 点是PD 的中点,所以P A =AD .设正三棱锥P ABC 的底面边长为a ,则侧棱长为32a ,斜高为22a ,则此棱锥中侧面积与底面积的比为3×12a ×22a 34a2=61. (2)1A DED V -=1E ADD V -=13×1S ADD ∆×CD =13×12×1=16.答案 (1)6∶1 (2)16热点二 空间平行关系和垂直关系的证明(规范解答)直线与平面的位置关系是立体几何的核心内容,高考始终把直线与平面的平行、垂直关系作为考查的重点,以多面体为载体的线面位置关系的论证是历年必考内容,其中既有单独考查直线和平面的位置关系的试题,也有以简单几何体体积的计算为载体考查直线和平面的位置关系的试题.从内容上看,主要考查对定义、定理的理解及符号语言、图形语言、文字语言之间的相互转换;从能力上来看,主要考查考生的空间想象能力和逻辑思维能力.例2(满分12分)(2015·山东卷)如图,三棱台DEF ABC 中,AB =2DE ,G ,H 分别为AC ,BC 的中点.(1)求证:BD ∥平面FGH ;(2)若CF ⊥BC ,AB ⊥BC ,求证:平面BCD ⊥平面EGH .满分解答 (1)证明 法一 连接DG ,CD ,设CD ∩GF =M ,连接MH……………………………………………………………………………………1分在三棱台DEF ABC 中,AB =2DE ,G 为AC 的中点,可得DF ∥GC ,DF =GC ,所以四边形DFCG 为平行四边形.则M 为CD 的中点,……………………………………………………………3分 又H 为BC 的中点,所以HM ∥BD ,…………………………………………4分 又HM ⊂平面FGH ,BD ⊄平面FGH ,所以BD ∥平面FGH . …………………………………………………………6分法二在三棱台DEF ABC中,由BC=2EF,H为BC的中点,可得BH∥EF,BH=EF,所以四边形HBEF为平行四边形,可得BE∥HF.…………………………………………………………………3分在△ABC中,G为AC的中点,H为BC的中点,所以GH∥AB.……………………………………………4分又GH∩HF=H,所以平面FGH∥平面ABED.……………………………5分因为BD⊂平面ABED,所以BD∥平面FGH.………………………………6分(2)证明连接HE,EG,因为G,H分别为AC,BC的中点,所以GH∥AB.………………………………………………………………7分由AB⊥BC,得GH⊥BC.又H为BC的中点,所以EF∥HC,EF=HC,因此四边形EFCH是平行四边形,所以CF∥HE. ……………………9分又CF⊥BC,所以HE⊥BC. ………………………………………………10分又HE,GH⊂平面EGH,HE∩GH=H,所以BC⊥平面EGH. ………………………………………………………11分又BC⊂平面BCD,所以平面BCD⊥平面EGH. …………………………12分❶(法一)作辅助线得1分,证明四边形DFCG为平行四边形得2分,再得到HM ∥BD得1分,最后根据线面平行的判定定理得结论得2分.❷(法二)证明四边形HBEF为平行四边形且BE∥HF得3分,再证明GH∥AB得1分,再推出平面FGH∥平面ABED得1分,最后得出BD∥平面FGH得1分.❸第(2)问中得到GF∥AB得1分,证明四边形EFCH是平行四边形且CH∥HE 得2分,再得到BC⊥HE得1分,再得到BC⊥平面EGH得1分,最后证得结论得1分.❹第(1)问法一中若漏写“HM⊂平面FGH”,“BD⊄平面FGH”各扣1分;在第(2)问最后漏写“BC⊂平面BCD”扣1分.证明线面平行问题(一)第一步:找(作)出所证线面平行中的平面内的一条直线.第二步:证明线线平行.第三步:根据线面平行的判定定理证明线面平行.第四步:反思回顾.检查关键点及答题规范.证明线面平行问题(二)第一步:在多面体中作出要证线面平行中的线所在的平面.第二步:利用线面平行的判定定理证明所作平面内的两条相交直线分别与所证平面平行;第三步:证明所作平面与所证平面平行.第四步:转化为线面平行.第五步:反思回顾,检查答题规范.证明面面垂直问题第一步:根据已知条件确定一个平面内的一条直线垂直于另一个平面内的一条直线.第二步:结合已知条件证明确定的这条直线垂直于另一平面内的两条相交直线.第三步:得出确定的这条直线垂直于另一平面.第四步:转化为面面垂直.第五步:反思回顾,检查答题规范.训练2(2016·苏北四市调研)如图,在几何体ABCDEF中,ABCD是正方形,DE ⊥平面ABCD.(1)求证:AC⊥平面BDE;(2)若AF ∥DE ,DE =3AF ,点M 在线段BD 上,且BM =13BD ,求证:AM ∥平面BEF .证明 (1)因为DE ⊥平面ABCD ,AC ⊂平面ABCD ,所以DE ⊥AC ,因为ABCD 是正方形,所以AC ⊥BD ,又BD ∩DE =D ,从而AC ⊥平面BDE .(2)延长EF ,DA 交于点G ,连接GB ,因为AF ∥DE ,DE =3AF ,所以GA GD =AF DE =13,因为BM =13BD ,所以BM BD =13,所以BM BD =GA GD =13,所以AM ∥GB ,又AM ⊄平面BEF ,GB ⊂平面BEF ,所以AM ∥平面BEF .热点三 平面图形折叠成空间几何体将平面图形沿其中一条或几条线段折起,使其成为空间图形,把这类问题称为平面图形的翻折问题.平面图形经过翻折成为空间图形后,原有的性质有的发生了变化,有的没有发生变化,弄清它们是解决问题的关键.一般地,翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化.解决这类问题就是要据此研究翻折以后的空间图形中的线面关系和几何量的度量值,这是化解翻折问题难点的主要方法.例3(2016·全国Ⅱ卷)如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E ,F 分别在AD ,CD 上,AE =CF ,EF 交BD 于点H ,将△DEF 沿EF 折到△D ′EF 的位置.(1)证明:AC ⊥HD ′;(2)若AB =5,AC =6,AE =54,OD ′=22,求五棱锥D ′ABCFE 的体积.(1)证明 由已知得AC ⊥BD ,AD =CD ,又由AE =CF 得AE AD =CF CD ,故AC ∥EF ,由此得EF ⊥HD ,故EF ⊥HD ′,所以AC ⊥HD ′.(2)解 由EF ∥AC 得OH DO =AE AD =14.由AB =5,AC =6得DO =BO =AB 2-AO 2=4,所以OH =1,D ′H =DH =3,于是OD ′2+OH 2=(22)2+12=9=D ′H 2,故OD ′⊥OH .由(1)知AC ⊥HD ′,又AC ⊥BD ,BD ∩HD ′=H ,所以AC ⊥平面BHD ′,于是AC ⊥OD ′,又由OD ′⊥OH ,AC ∩OH =O ,所以OD ′⊥平面ABC .又由EF AC =DH DO 得EF =92.五边形ABCFE 的面积S =12×6×8-12×92×3=694.所以五棱锥D ′ABCFE 的体积V =13×694×22=2322.探究提高 (1)①利用AC 与EF 平行,转化为证明EF 与HD ′垂直;②求五棱锥的体积需先求棱锥的高及底面的面积,结合图形特征可以发现OD ′是棱锥的高,而底面的面积可以利用菱形ABCD 与△DEF 面积的差求解,这样就将问题转化为证明OD ′与底面垂直以及求△DEF 的面积问题了.(2)解决与折叠有关的问题的关键是搞清折叠前后的变化量和不变量,一般情况下,线段的长度是不变量,而位置关系往往会发生变化,抓住不变量是解决问题的突破口.训练3(2017·徐州、连云港调研)如图1所示,在Rt△ABC中,∠C=90°,D,E 分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2所示.(1)求证:A1F⊥BE;(2)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.(1)证明由已知,得AC⊥BC,且DE∥BC.所以DE⊥AC,则DE⊥DC,DE⊥DA1,又因为DC∩DA1=D,所以DE⊥平面A1DC.由于A1F⊂平面A1DC,所以DE⊥A1F.又因为A1F⊥CD,CD∩DE=D,所以A1F⊥平面BCDE,又BE⊂平面BCDE,所以A1F⊥BE.(2)解线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:如图所示,分别取A1C,A1B的中点P,Q,则PQ∥BC.又因为DE∥BC,所以DE∥PQ.所以平面DEQ即为平面DEP.由(1)知,DE⊥平面A1DC,所以DE⊥A1C.又因为P是等腰△DA1C底边A1C的中点,所以A1C⊥DP,又DE∩DP=D,所以A1C⊥平面DEP.从而A1C⊥平面DEQ.故线段A1B上存在点Q,使得A1C⊥平面DEQ.热点四线、面位置关系中的开放存在性问题是否存在某点或某参数,使得某种线、面位置关系成立问题,是近几年高考命题的热点,常以解答题中最后一问的形式出现,一般有三种类型:(1)条件追溯型.(2)存在探索型.(3)方法类比探索型.例4(2017·郑州质检)如图所示,在四棱锥P ABCD中,底面ABCD是边长为a的正方形,侧面P AD⊥底面ABCD,且E,F分别为PC,BD的中点.(1)求证:EF∥平面P AD;(2)在线段CD上是否存在一点G,使得平面EFG⊥平面PDC?若存在,请说明其位置,并加以证明;若不存在,请说明理由.(1)证明如图所示,连接AC,在四棱锥P ABCD中,底面ABCD是边长为a的正方形,且点F为对角线BD的中点.所以对角线AC经过点F,又在△P AC中,点E为PC的中点,所以EF为△P AC的中位线,所以EF∥P A,又P A⊂平面P AD,EF⊄平面P AD,所以EF∥平面P AD.(2)解存在满足要求的点G.在线段CD上存在一点G为CD的中点,使得平面EFG⊥平面PDC,因为底面ABCD是边长为a的正方形,所以CD⊥AD.又侧面P AD⊥底面ABCD,CD⊂平面ABCD,侧面P AD∩平面ABCD=AD,所以CD⊥平面P AD.又EF∥平面P AD,所以CD⊥EF.取CD中点G,连接FG、EG.因为F为BD中点,所以FG∥AD.又CD⊥AD,所以FG⊥CD,又FG∩EF=F,所以CD⊥平面EFG,又CD⊂平面PDC,所以平面EFG⊥平面PDC.探究提高(1)在立体几何的平行关系问题中,“中点”是经常使用的一个特殊点,通过找“中点”,连“中点”,即可出现平行线,而线线平行是平行关系的根本.(2)第(2)问是探索开放性问题,采用了先猜后证,即先观察与尝试给出条件再加以证明,对于命题结论的探索,常从条件出发,探索出要求的结论是什么,对于探索结论是否存在,求解时常假设结论存在,再寻找与条件相容或者矛盾的结论.训练4(2017·南京师大附中检测)如图,四棱锥SABCD的底面是正方形,每条侧棱的长都是底面边长的2倍,P为侧棱SD上的点.(1)求证:AC⊥SD;(2)若SD⊥平面P AC,则侧棱SC上是否存在一点E,使得BE∥平面P AC?若存在,求SE∶EC;若不存在,试说明理由.(1)证明连接BD,设AC交BD于点O,连接SO,由题意得四棱锥SABCD是正四棱锥,所以SO⊥AC,在正方形ABCD中,AC⊥BD,又SO∩BD=O,所以AC⊥平面SBD,因为SD⊂平面SBD,所以AC⊥SD.(2)解在棱SC上存在一点E,使得BE∥平面P AC. 连接OP.设正方形ABCD的边长为a,则SC=SD=2a.由SD⊥平面P AC得SD⊥PC,易求得PD=2a 4.故可在SP上取一点N,使得PN=PD.过点N作PC的平行线与SC交于点E,连接BE,BN,在△BDN中,易得BN∥PO,又因为NE∥PC,NE⊂平面BNE,BN⊂平面BNE,BN∩NE=N,PO⊂平面P AC,PC⊂平面P AC,PO∩PC=P,所以平面BEN∥平面P AC,所以BE∥平面P AC.因为SN∶NP=2∶1,所以SE∶EC=2∶1.(建议用时:70分钟)一、填空题1.(2017·南通、扬州、泰州三市调研)已知正三棱柱的各条棱长均为a,圆柱的底面直径和高均为b.若它们的体积相等,则a3∶b3的值为________.解析由题意可得34a3=14πb3,则a3b3=3π3.答案3π32.(2017·苏北四市调研)已知矩形ABCD 的边AB =4,BC =3,若沿对角线AC 折叠,使平面DAC ⊥平面BAC ,则三棱锥DABC 的体积为________. 解析 在平面DAC 上过点D 作DE ⊥AC 于点E ,因为平面DAC ⊥平面BAC ,由面面垂直的性质定理可得DE ⊥平面BAC .又DE =125,所以三棱锥DABC 的体积为13×12×4×3×125=245. 答案 245 二、解答题3.(2017·盐城中学模拟)如图,在三棱锥P ABC 中,平面P AB ⊥平面ABC ,P A ⊥PB ,M ,N 分别为AB ,P A 的中点.(1)求证:PB ∥平面MNC ;(2)若AC =BC ,求证:P A ⊥平面MNC .证明 (1)因为M ,N 分别为AB ,P A 的中点,所以MN ∥PB , 又因为MN ⊂平面MNC ,PB ⊄平面MNC ,所以PB ∥平面MNC . (2)因为P A ⊥PB .MN ∥PB ,所以P A ⊥MN . 因为AC =BC ,AM =BM ,所以CM ⊥AB . 因为平面P AB ⊥平面ABC ,CM ⊂平面ABC ,平面P AB ∩平面ABC =AB . 所以CM ⊥平面P AB .因为P A ⊂平面P AB ,所以CM ⊥P A . 又MN ∩CM =M ,所以P A ⊥平面MNC .4.(2017·南京模拟)如图,在直三棱柱ABCA 1B 1C 1中,点D 为棱BC 上一点. (1)若AB =AC ,D 为棱BC 的中点,求证:平面ADC 1⊥平面BCC 1B 1;(2)若A1B∥平面ADC1,求BDDC的值.(1)证明因为AB=AC,点D为BC的中点,所以AD⊥BC.因为ABCA1B1C1是直三棱柱,所以BB1⊥平面ABC.因为AD⊂平面ABC,所以BB1⊥AD.因为BC∩BB1=B,BC⊂平面BCC1B1,BB1⊂平面BCC1B1,所以AD⊥平面BCC1B1.因为AD⊂平面ADC1,所以平面ADC1⊥平面BCC1B1.(2)连接A1C,交AC1于点O,连接OD,所以点O为A1C的中点.因为A1B∥平面ADC1,A1B⊂平面A1BC,平面ADC1∩平面A1BC=OD,所以A1B∥OD.因为点O为A1C的中点,所以点D为BC的中点.所以BDDC=1.5.(2017·苏、锡、常、镇、宿迁五市调研)如图,已知直三棱柱ABCA1B1C1的侧面ACC1A1是正方形,点O是侧面ACC1A1的中心,∠ACB=π2,点M是棱BC的中点.(1)求证:OM∥平面ABB1A1;(2)求证:平面ABC1⊥平面A1BC.证明(1)在△A1BC中,因为点O是A1C的中点,点M是BC的中点,所以OM ∥A1B.又OM⊄平面ABB1A1,A1B⊂平面ABB1A1,所以OM∥平面ABB1A1.(2)因为ABCA1B1C1是直三棱柱,所以CC1⊥平面ABC,所以CC1⊥BC.又∠ACB=π2,即BC⊥AC,且CC1,AC⊂平面ACC1A1,CC1∩AC=C,所以BC⊥平面ACC1A1.又AC1⊂平面ACC1A1,所以BC⊥AC1.又在正方形ACC1A1中,A1C⊥AC1,且BC,A1C⊂平面A1BC,BC∩A1C=C,所以AC1⊥平面A1BC.又AC1⊂平面ABC1,所以平面ABC1⊥平面A1BC.6.(2017·南京师大附中模拟)如图1,在等腰梯形PDCB中,已知PB∥DC,PB =3,DC=1,PD=2,DA⊥PB,垂足为点A.将△P AD沿AD折起,使平面P AD ⊥平面ABCD,如图2所示.(1)证明:平面P AD⊥平面PCD;(2)在图2中,已知点M是棱PB的中点,求三棱锥DACM的体积.证明(1)在等腰梯形PDCB中,PB∥CD,DA⊥PB,所以CD⊥DA.因为平面P AD⊥平面ABCD,平面P AD∩平面ABCD=AD.P A⊂平面P AD,P A⊥DA,所以P A⊥平面ABCD.因为CD⊂平面ABCD,所以P A⊥CD,因为AD∩AP=A,AD,AP⊂平面P AD,所以CD⊥平面P AD.又因为CD⊂平面PCD,所以平面P AD⊥平面PCD.(2)在图2中,过点M作MN∥P A交AB于点N,因为M是棱PB的中点,所以MN=12P A.由(1)知P A⊥平面ABCD,从而易证得MN⊥平面ABCD.在图1中,过点C作CE⊥PB,垂足为点E,因为四边形PDCB是等腰梯形,PB=3,DC=1,DA⊥PB,所以P A=AE=EB=1.又因为PD=BC=2,所以DA=1.从而V三棱锥DACM =V三棱锥MACD=13MN×S△ACD=13×12×12=112.7.(2017·石家庄质检)如图,在长方形ABCD中,AB=2,BC=1,E为CD的中点,F为AE的中点,现在沿AE将三角形ADE向上折起,在折起的图形中解答下列问题:(1)在线段AB上是否存在一点K,使BC∥平面DFK?若存在,请证明你的结论;若不存在,请说明理由;(2)若平面ADE⊥平面ABCE,求证:平面BDE⊥平面ADE.(1)解如图,线段AB上存在一点K,且当AK=14AB时,BC∥平面DFK.证明如下:设H为AB的中点,连接EH,则BC∥EH,∵AK=14AB,F为AE的中点,∴KF∥EH,∴KF∥BC,∵KF⊂平面DFK,BC⊄平面DFK,∴BC∥平面DFK.(2)证明∵在折起前的图形中E为CD的中点,AB=2,BC=1,∴在折起后的图形中,AE=BE=2,从而AE2+BE2=4=AB2,∴AE⊥BE.∵平面ADE⊥平面ABCE,平面ADE∩平面ABCE=AE,BE⊂平面ABCE,∴BE⊥平面ADE,∵BE⊂平面BDE,∴平面BDE⊥平面ADE.8.(2016·全国Ⅰ卷)如图,已知正三棱锥P ABC的侧面是直角三角形,P A=6,顶点P在平面ABC内的正投影为点D,D在平面P AB内的正投影为点E,连接PE 并延长交AB于点G.(1)证明:G是AB的中点;(2)在图中作出点E在平面P AC内的正投影F(说明作法及理由),并求四面体PDEF的体积.(1)证明因为P在平面ABC内的正投影为D,所以AB⊥PD.因为D在平面P AB内的正投影为E,所以AB⊥DE.又因为PD∩DE=D,所以AB⊥平面PED,又PG⊂平面PED,故AB⊥PG.又由已知可得,P A=PB,所以G是AB的中点.(2)解在平面P AB内,过点E作PB的平行线交P A于点F,F即为E在平面P AC 内的正投影.理由如下:由已知可得PB⊥P A,PB⊥PC,又EF∥PB,所以EF⊥P A,EF⊥PC.又P A∩PC=P,因此EF⊥平面P AC,即点F为E在平面P AC内的正投影.连接CG,因为P在平面ABC内的正投影为D,所以D是正三角形ABC的中心.由(1)知,G是AB的中点,所以D在CG上,故CD=23CG.由题设可得PC⊥平面P AB,DE⊥平面P AB,所以DE∥PC,因此PE=23PG,DE=13PC.由已知,正三棱锥的侧面是直角三角形且P A=6,可得DE=2,PE=2 2. 在等腰直角三角形EFP中,可得EF=PF=2.所以四面体PDEF的体积V=13×12×2×2×2=43.。
2018年江苏省高考数学第2轮复习 第2部分 八大难点突破 难点1 与三角变换、平面向量综合的三角形问题

∴缉私艇应向北偏东 47°方向追击, △ABC 中,由余弦定理可得 cos 120°=16+B8CB2C-AC2,∴BC≈1.686 15. B 到边界线 l 的距离为 3.8-4sin 30°=1.8, ∵1.686 15<1.8, ∴能用最短时间在领海内拦截成功.
若 P 是△ABC 内的一点,BA→→PP==tλ||BB→→AA→ →AABB||++||BB→→AA→ →CCCC||,,tλ>>00
⇒P 是△ABC 的内心; 若 D、E 两点分别是△ABC 的边 BC、CA 上的中点,且
D→P·P→B=D→P·P→C E→P·P→C=E→P·P→A
2 所以 tan 2B=1-2tatnanB2B=1-3132=34.
4.实际应用中的三角形问题 在实际生活中往往会遇到关于距离、角度、高度的测量问题,可以借助平面图 形,将上述量放在一个三角形中,借助解三角形知识达到解决问题的目的.
【例 4】 (2017·江苏省淮安市高考数学二模)一缉私艇巡 航至距领海边界线 l(一条南北方向的直线)3.8 海里的 A 处,发现在其北偏东 30°方向相距 4 海里的 B 处有一走 私船正欲逃跑,缉私艇立即追击,已知缉私艇的最大航 速是走私船最大航速的 3 倍,假设缉私艇和走私船均按 直线方向以最大航速航行.
(1)若走私船沿正东方向逃离,试确定缉私艇的追击方向,使得用最短时间在领 海内拦截成功;(参考数据:sin 17°≈ 63, 33≈5.744 6) (2)问:无论走私船沿何方向逃跑,缉私艇是否总能在领海内成功拦截?并说明 理由.
[解] (1)设缉私艇在 C 处与走私船相遇(如图),则 AC=3BC.
高考数学二轮复习第2部分八大难点突破难点2立体几何中的探索性与存在性问题学案(2021学年)

(江苏专版)2018年高考数学二轮复习第2部分八大难点突破难点2 立体几何中的探索性与存在性问题学案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((江苏专版)2018年高考数学二轮复习第2部分八大难点突破难点2 立体几何中的探索性与存在性问题学案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(江苏专版)2018年高考数学二轮复习第2部分八大难点突破难点2 立体几何中的探索性与存在性问题学案的全部内容。
难点二立体几何中的探索性与存在性问题(对应学生用书第65页)数学科考试大纲指出,通过考试,让学生提高多种能力,其中空间想象能力是对空间形式的观察、分析、抽象的能力.要在立体几何学习中形成.立体几何中的探索性与存在性问题实质是对线面平行与垂直性质定理的考查.探究性与存在性问题常常是条件不完备的情况下探讨某些结论能否成立,立体几何中的探究性与存在性问题既能够考查学生的空间想象能力,又可以考查学生的意志力及探究的能力.1.对命题条件的探索探索条件,即探索能使结论成立的条件是什么.对命题条件的探索常采用以下三种方法:(1)先猜后证,即先观察与尝试给出条件再给出证明;(2)先通过命题成立的必要条件探索出命题成立的条件,再证明充分性;(3)把几何问题转化为代数问题,探索出命题成立的条件.【例1】如图1,在四棱锥P-ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD=错误!AD,E 为棱AD的中点,异面直线PA与CD所成的角为90°。
在平面PAB内找一点M,使得直线CM∥平面PBE,并说明理由.【导学号:56394092】图1[解] 在梯形ABCD中,AB与CD不平行.如图,延长AB,DC,相交于点M(M∈平面PAB),点M即为所求的一个点.理由如下:由已知,知BC∥ED,且BC=ED,所以四边形BCDE是平行四边形,从而CM∥EB.又EB⊂平面PBE,CM⊄平面PBE,所以CM∥平面PBE。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
难点二
立体几何中的探索性与存在性问题
(对应学生用书第65页)
数学科考试大纲指出,通过考试,让学生提高多种能力,其中空间想象能力是对空间形式的观察、分析、抽象的能力.要在立体几何学习中形成.立体几何中的探索性与存在性问题实质是对线面平行与垂直性质定理的考查.
探究性与存在性问题常常是条件不完备的情况下探讨某些结论能否成立,立体几何中的探究性与存在性问题既能够考查学生的空间想象能力,又可以考查学生的意志力及探究的能力.
1.对命题条件的探索
探索条件,即探索能使结论成立的条件是什么.对命题条件的探索常采用以下三种方法:
(1)先猜后证,即先观察与尝试给出条件再给出证明;
(2)先通过命题成立的必要条件探索出命题成立的条件,再证明充分性;
(3)把几何问题转化为代数问题,探索出命题成立的条件.
【例1】如图1,在四棱锥P-ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=
CD=1
2
AD,E为棱AD的中点,异面直线PA与CD所成的角为90°.
在平面PAB内找一点M,使得直线CM∥平面PBE,并说明理由. 【56394092】
图1
[解] 在梯形ABCD中,AB与CD不平行.如图,延长AB,DC,相交于点M(M∈平面PAB),点M即为所求的一个点.
理由如下:
由已知,知BC∥ED,且BC=ED,
所以四边形BCDE是平行四边形,
从而CM∥EB.
又EB⊂平面PBE,CM⊄平面PBE,
所以CM∥平面PBE.
(说明:延长AP至点N,使得AP=PN,则所找的点可以是直线MN上任意一点)
[思路分析] 证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中的一条垂直于这个平面,则另一条也垂直于这个平面.解题时,注意线线、线面与面面关系的相互转化;(2)证明线面平行常用方法:一是利用线面平行的判定定理,二是利用面面平行的性质定理,三是利用面面平行的性质;(3)证明两个平面垂直,首先考虑直线与平
面垂直,也可以简单记为“证面面垂直,找线面垂直”,是化归思想的体现,这种思想方法与空间中的平行关系的证明类似,掌握化归与转化思想方法是解决这类题的关键.
[点评] 这类探索性题型通常是找命题成立的一个充分条件,所以解这类题采用下列二种方法:(1)通过各种探索尝试给出条件;(2)找出命题成立的必要条件,也证明充分性.
2.对命题结论的探索
探索结论,即在给定的条件下命题的结论是什么.对命题结论的探索,常从条件出发,探索出要求的结论是什么,另外还有探索的结论是否存在.求解时,常假设结论存在,再寻找与条件相容还是矛盾的结论.
【例2】如图2,在四棱锥P-ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.
图2
(1)求证:DC⊥平面PAC;
(2)求证:平面PAB⊥平面PAC;
(3)设点E为AB的中点,在棱PB上是否存在点F,使得PA∥平面CEF?说明
理由.
[解] (1)证明:因为PC⊥平面ABCD,。