最新人教版七年级数学下册 5.2 平行线及其判定

合集下载

新人教版七年级数学下册同步练习5.2平行线及其判定(练习卷+解析版)

新人教版七年级数学下册同步练习5.2平行线及其判定(练习卷+解析版)

新人教版七年级数学下册同步练习 5.2 平行线及其判定
参考答案与试题解析
一.选择题(共 10 小题,每小题 3 分,满分 30 分)
1.在同一平面内,不重合的两条直线的位置关系是( )
A.平行
B.相交
C.平行或相交
D.平行、相交或垂直
选:C.
2.直线 a、b、c 在同一平面内,
(1)如果 a⊥b,b⊥c,那么 a∥c;
B.有两条
C.不存在
D.有一条或不存在
解:①若点 P 在 OA 上,则不能画出与 OA 平行的直线,
②若点 P 不在 OA 上,则过点 P 有且只有一条直线与 OA 平行,
所以,这样的直线有一条或不存在.
故选 D.
4.下面推理正确的是( )
A.∵a∥b,b∥c,∴c∥d
B.∵a∥c,b∥d,∴c∥d
16.如图,EF⊥AB 于点 F,CD⊥AB 于点 D,E 是 AC 上一点,∠1=∠2,则图中互相平行 的直线有 2 对.
解:∵EF⊥AB,CD⊥AB, ∴∠EFA=∠CDA=90°, ∴EF∥CD, ∴∠1=∠EDC, ∵∠1=∠2, ∴∠EDC=∠2, ∴DE∥BC, 即图中互相平行的直线有 2 对, 故答案为:2.
(2)如果 a∥b,b∥c,c∥d,那么 a∥d;
(3)如果 a∥b,b⊥c,那么 a⊥c;
(4)如果 a 与 b 相交,b 与 c 相交,那么 a 与 c 相交.
在上述四种说法中,正确的个数为( )
A.1 个
B.2 个
C.3 个
D.4 个
解:直线 a、b、c 在同一平面内,
(1)如果 a⊥b,b⊥c,那么 a∥c;正确.
8.两条直线相交所成的四个角都相等时,这两条直线的位置关系是( )

新人教版七年级数学下册平行线及判定

新人教版七年级数学下册平行线及判定

③过一点可以而且只可以画一条直线与已知直线
平行。
(╳)
D 2、用符号“∥”表示图中平行四
C
边形的两组对边分别平行。
AB∥ CD,AD∥ BC。 A
B
巩固练习
下列说法正确的是( D )
A、在同一平面内,两条直线的位置关系有相交, 垂直,平行三种。
B、在同一平面内,不垂直的两直线必平行。 C、在同一平面内,不平行的两直线必垂直。 D、在同一平面内,不相交的两直线一定不垂直。
5.2 平行线及其判定 5.2.2 平行线的判定
平行线的画法
一放 二靠 三移 四画
从画图过程,三角板起到什么作用?
要判断直线a //b,你有办法了吗?
平行线的判定定理1: 两条直线被第三条直线所截, 如果同位角相等,那么两直线 平行。简单地说: 同位角相等,两直线平行。 如图: ∵ ∠1=∠2(已知)
C
相交的两
Hale Waihona Puke 条直线。 abB
直线AB平行
AB D
CD 于直线CD
a b 直线a平行
于直线b
平面内的两条直线除平行 外还有什么位置关系?
同一平面内的两条不重 合的直线的位置关系只有两种:
相交或平行
课内练习
1、判断下列说法是否正确,并说明理由。
①不相交的两条直线是平行线。
(╳)
②在同一平面内,两条不相交的线段是平行线。(╳)
E
A
B
4
C
7
D
F
两条直线被第三条直线所截, 如果同旁内角互补,那么这两条直线平行.
简单地说:同旁内角互补,两直线平行.
判定两条直线平行的方法
文字叙述
符号语言

人教版七年级数学下册课件《平行线的判定(第2课时)》

人教版七年级数学下册课件《平行线的判定(第2课时)》

B
C
∴( EF∥BC( 同旁内角)互. 补,两直线平行).
巩固练习
如图所示,直线a,b都与直线c相交,给出的下列条件:
①∠1=∠7;②∠3=∠5;③∠1+∠8=180°;④∠3=∠6.
其中能判断a∥b的是( D )
c
A. ①③ B. ②③ C. ③④ D. ①②③
41
a
32 85
b
76
探究新知
例2 已知:如图,ABC、CDE都是直线, 且∠1=∠2,∠1=∠C,
D. B
C
探究新知
例3 已知:如图,四边形ABCD中,AC平分∠BAD,∠1=∠2,AB 与CD平行吗?为什么?
解: AB∥CD .理由如下: ∵ AC平分∠BAD,∴ ∠1=∠3 .
∵∠1=∠2, ∴ ∠2=∠3 .
D
C 2
A13
B
∵ ∠2和∠3是内错角,
∴ AB∥CD(内错角相等,两直线平行).
余,试说明AB∥DC.
解:∵∠1与∠2互余,∴∠1+∠2= 90°.
∵BE,EC分别平分∠ABC,∠BCD, ∴∠ABC=2∠1,∠BCD=2∠2. ∴∠ABC+∠BCD
=2∠1+2∠2=2(∠1+∠2) =180°.
课堂检测
拓广探索题
如图,MF⊥NF于F,MF交AB于点E,NF交CD于点G,∠1=140°,
1.平行线的定义. 2.如果两条直线都与第三条直线平行,
那么这两条直线也互相平行. 3.平行线的判定方法: (1)同位角相等, 两直线平行. (2)内错角相等, 两直线平行. (3)同旁内角互补, 两直线平行. 4.如果两条直线都与第三条直线垂直, 那么这两条直线也互相平行.
直线平行吗?为什么?

七年级数学下册 5.2平行线及其判定(十大题型)(解析版 )

七年级数学下册 5.2平行线及其判定(十大题型)(解析版 )

七级下册数学《第五章相交线与平行线》5.2平行线及其判定平行线及其表示方法★1、平行线定义:在同一个平面内,不相交的两条直线叫做平行线.记作:AB∥CD;记作:a∥b;读作:直线AB平行于直线CD.读作:直线a平行于直线b.【注意】1、在同一平面内,不重合的两条直线只有两种位置关系:相交和平行.(重合的直线视为一条直线)2、.线段或射线平行是指它们所在的直线平行.平行线的画法◆过直线外一点画已知直线的平行线的方法:一“落”把三角尺一边落在已知直线上;二“靠”把直尺紧靠三角尺的另一边;三“移”沿直尺移动三角尺,使三角尺与已知直线重合的边过已知点;四“画”沿三角尺过已知点的边画直线.【注意】1.经过直线上一点不能作已知直线的平行线.2.画线段或射线的平行线是指画它们所在直线的平行线.3.借助三角尺画平行线时,必须保持紧靠,否则画出的直线不平行.平行公理及其推论★1、平行公理:经过直线外一点,有且只有一条直线与这条直线平行.★2、平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.也就是说:如图,如果b∥a,c∥a,那么b∥c.几何语言:∵b∥a,c∥a,∴b∥c.【注意】1、平行公理的推论中,三条直线可以不在同一个平面内.2、平行公理中强调“直线外一点”,因为若点在直线上,不可能有平行线;“有且只有”强调这样的直线是存在的,也是唯一的.平行线的判定方法★1、平行线的判定:判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:同位角相等,两直线平行.几何语言表示:∵∠2=∠3(已知),∴a∥b(同位角相等,两直线平行).判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行.几何语言表示:∵∠2=∠4(已知),∴a∥b.(内错角相等,两直线平行).判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:同旁内角互补,两直线平行.几何语言表示:∵∠1+∠2=180°(已知),∴a∥b(同旁内角互补,两直线平行).★2、在同一平面内,垂直于同一条直线的两直线垂直.几何语言表示:直线a,b,c在同一平面内,∵a⊥c,b⊥c,∴a∥b.【注意】三条直线在“同一平面内”是前提,没有这个条件结论不一定成立.★3、判定两直线平行的方法(1)平行线的定义;(2)平行公理的推论(如果两条直线都与第三条直线平行,那么这两条直线也互相平行);(3利用同位角相等说明两直线平行;(4)利用内错角相等说明两直线平行;(5)利用同旁内角互补说明两直线平行;(6)同一平面内,垂直于同一直线的两直线平行.【例题1】(2023秋•埇桥区期中)在同一平面内,两条直线的位置关系可能是()A.相交或垂直B.垂直或平行C.平行或相交D.相交或垂直或平行【分析】根据两条直线有一个交点的直线是相交线,没有交点的直线是平行线,可得答案.【解答】解:在同一平面内,两条直线有一个交点,两条直线相交;在同一平面内,两条直线没有交点,两条直线平行,故C正确;故选:C.【点评】本题考查了平行线,两条直线有一个交点的直线是相交线,没有交点的直线是平行线.解题技巧提炼解题的关键是准确把握平行线的概念,牢记平行线的三个条件:①在同一平面内;②不相交;③都是直线,通过与定义进行对比来进行判断.【变式1-1】如图所示,能相交的是,平行的是.(填序号)【分析】根据平行线、相交线的定义,逐项进行判断,即可正确得出结果.【解答】解:①中一条直线,一条射线,不可相交,也不会平行;②中一条直线,一条线段,不可相交,也不会平行;③中一条直线,一条线段,可相交;④中都是线段,不可延长,不可相交,也不平行,⑤中都是直线,延长后不相交,是平行.故答案为:③,⑤.【点评】本题考查平行线和相交线,解题的关键是掌握直线可以沿两个方向延伸,射线可以沿一个方向延伸,线段不能延伸.【变式1-2】下列说法正确的是()A.同一平面内,如果两条直线不平行,那么它们互相垂直B.同一平面内,如果两条直线不相交,那么它们互相垂直C.同一平面内,如果两条直线不相交,那么它们互相平行D.同一平面内,如果两条直线不垂直,那么它们互相平行【分析】根据平行线的判定及垂直、相交的定义判断求解即可.【解答】解:在同一平面内,如果两条直线不平行,那么这两条直线相交,故A不符合题意;在同一平面内,两条直线不相交,那么这两条直线平行,故B不符合题意;同一平面内,如果两条直线不相交,那么这两条直线平行,故C符合题意;同一平面内,如果两条直线不垂直,它们不一定平行,故D不符合题意;故选:C.【点评】此题考查了平行线的判定、垂直、相交等知识,熟练掌握有关定理、定义是解题的关键.【变式1-3】(2022春•莱芜区校级期末)下列说法中,正确的是()A.两条不相交的直线叫做平行线B.一条直线的平行线有且只有一条C.在同一平面内,若直线a∥b,a∥c,则b∥cD.若两条线段不相交,则它们互相平行【分析】根据平行线的定义、性质、判定方法判断,排除错误答案.【解答】解:A、平行线的定义:在同一平面内,两条不相交的直线叫做平行线.故错误;B、过直线外一点,有且只有一条直线与已知直线平行.一条直线的平行线有无数条,故错误;C、在同一平面内,平行于同一直线的两条直线平行.故正确;D、根据平行线的定义知是错误的.故选:C.【点评】本题考查平行线的定义、性质及平行公理,熟练掌握公理和概念是解决本题的关键.【变式1-4】(2022秋•乌鲁木齐期末)如图,在长方体AB CD-EFGH中,与棱EF异面且与平面EFGH 平行的棱是.【分析】与棱EF异面且与平面EFGH平行的棱是:棱AD和棱BC.【解答】解:与棱EF异面且与平面EFGH平行的棱是:棱AD和棱BC.故答案为:棱AD和棱BC.【点评】本题主要考查了平行线与立体图形,熟练掌握平行线与立体图形的特征进行求解是解决本题的关键.【变式1-5】(2022春•沙河市期末)观察如图所示的长方体,与棱AB平行的棱有几条()A.4B.3C.2D.1【分析】根据长方体即平行线的性质解答.【解答】解:图中与AB平行的棱有:EF、CD、GH.共有3条.故选:B.【点评】本题考查了平行线的定义、长方体的性质.一个长方形的两条对边平行.【变式1-6】在同一平面内,直线l1与l2满足下列关系,写出其对应的位置关系:(1)若l1与l2没有公共点,则l1和l2;(2)若l1与l2只有一个公共点,则l1和l2;(3)若l1与l2有两个公共点,则l1和l2.【分析】(1)结合平行线的定义进行解答即可;(2)结合相交的定义进行解答即可;(3)结合重合的定义进行解答即可.【解答】解:(1)由于l1和l2没有公共点,所以l1和l2平行;(2)由于l1和l2有且只有一个公共点,所以l1和l2相交;(3)由于l1和l2有两个公共点,所以l1和l2重合;故答案为:(1)平行;(2)相交;(3)重合.【点评】本题侧重考查两直线的位置关系,掌握平行定义是解题关键.【变式1-7】(2022春•赵县月考)在同一平面内,直线a,b相交于P,若a∥c,则b与c的位置关系是.【分析】根据同一平面内,一条直线与两条平行线中的一条相交,则必与另一条直线也相交.解答即可.【解答】解:因为a∥c,直线a,b相交,所以直线b与c也有交点;故答案为:相交.【点评】本题主要考查了平行线和相交线,同一平面内,一条直线与两条平行线中的一条相交,则必与另一条直线也相交.【例题2】(2022春•梁山县期中)若a、b、c是同一平面内三条不重合的直线,则它们的交点可以有()A.1个或2个或3个B.0个或1个或2个或3个C.1个或2个D.以上都不对【分析】根据平行线的定义,相交线的定义,可得答案.【解答】解:当三条直线互相平行,交点是个0;当两条直线平行,与第三条直线相交,交点是2个;当三条直线两两相交交于同一点,交点个数是1个;当三条直线两两相交且不交于同一点,交点个数是3个;故选:B.【点评】本题考查了平行线,分类讨论是解题关键.解题技巧提炼用分类讨论的思想根据平面内两条直线的位置关系去讨论求解.【变式2-1】在同一平面内,两条不重合直线的位置关系可能是()A.垂直或平行B.垂直或相交C.平行或相交D.平行、垂直或相交【分析】同一平面内,直线的位置关系通常有两种:平行或相交;垂直不属于直线的位置关系,它是特殊的相交.【解答】解:平面内的直线有平行或相交两种位置关系.故选:C.【点评】本题主要考查了在同一平面内的两条直线的位置关系.【变式2-2】在同一平面内有三条直线,如果使其中有且只有两条直线平行,那么这三条直线有且只有个交点.【分析】根据同一平面内直线的位置关系得到第三条直线与另两平行直线相交,再根据直线平行和直线相交的定义即可得到交点的个数.【解答】解:∵在同一平面内有三条直线,如果其中有两条且只有两条相互平行,∴第三条直线与另两平行直线相交,∴它们共有2个交点.故答案为2.【点评】本题考查了直线平行的定义:没有公共点的两条直线是平行直线.也考查了同一平面内两直线的位置关系有:平行,相交.【变式2-3】平面内四条直线共有三个交点,则这四条直线中最多有条平行线.【分析】根据同一平面内两条直线的位置关系有两种:相交或平行,及一条直线的平行线有无数条,由四条直线相互平行,其交点为0个开始分析,然后依次变为三条直线相互平行、两条直线相互平行即可求解.【解答】解:若四条直线相互平行,则没有交点;若四条直线中有三条直线相互平行,则此时恰好有三个交点;若四条直线中有两条直线相互平行,另两条不平行,则此时有三个交点或五个交点;若四条直线中有两条直线相互平行,另两条也平行,但它们之间相互不平行,则此时有四个交点;若四条直线中没有平行线,则此时的交点是一个或四个或六个.综上可知,平面内四条直线共有三个交点,则这四条直线中最多有三条平行线.故答案是:三.【点评】本题考查了平行线,题目没有明确平面上四条不重合直线的位置关系,需要运用分类讨论思想,从四条直线都是平行线,然后数量上依次递减,直至都不平行,这样可以做到不重不漏,准确找出答案.【变式2-4】平面上不重合的四条直线,可能产生交点的个数为个.【分析】从平行线的角度考虑,先考虑四条直线都平行,再考虑三条、两条直至都不平行,作出草图即可看出.【解答】解:(1)当四条直线平行时,无交点;(2)当三条平行,另一条与这三条不平行时,有三个交点;(3)当两两直线平行时,有4个交点;(4)当有两条直线平行,而另两条不平行时,有5个交点;(5)当四条直线同交于一点时,只有一个交点;(6)当四条直线两两相交,且不过同一点时,有6个交点;(7)当有两条直线平行,而另两条不平行并且交点在平行线上时,有3个交点.故答案为:0,1,3,4,5,6.【点评】本题没有明确平面上四条不重合直线的位置关系,需要运用分类讨论思想,从四条直线都平行线,然后数量上依次递减,直至都不平行,这样可以做到不重不漏,准确找出所有答案;本题对学生要求较高.【例题3】如图,直线a,点B,点C.(1)过点B画直线a的平行线,能画几条?(2)过点C画直线a的平行线,它与过点B的平行线平行吗?【分析】根据平行公理及推论进行解答.【解答】解:(1)如图,过直线a外的一点画直线a的平行线,有且只有一条直线与直线a平行;(2)过点C画直线a的平行线,它与过点B的平行线平行.理由如下:如图,∵b∥a,c∥a,∴c∥b.【点评】本题考查了平行公理及推论.平行公理:经过直线外一点,有且只有一条直线与这条直线平行(平行公理中要准确理解“有且只有”的含义.从作图的角度说,它是“能但只能画出一条”的意思);推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.【变式3-1】如图中完成下列各题.(1)用直尺在网格中完成:①画出直线AB的一条平行线;②经过C点画直线垂直于CD.(2)用符号表示上面①、②中的平行、垂直关系.【分析】(1)根据AB所在直线,利用AB所在直角三角形得出EF,以及MD⊥CD即可;(2)根据图形得出EF,MD⊥CD,标出字母即可.【解答】解:(1)如图所示:(2)EF∥AB,MC⊥CD.【点评】此题考查了基本作图以及直角三角形的性质,利用直角三角形的性质得出平行线以及垂线是解答此题的关键.【变式3-2】如图,已知直线a和直线a外一点A.(1)完成下列画图:过点A画AB⊥a,垂足为点B,画AC∥a;(2)过点A你能画几条直线和a垂直?为什么?过点A你能画几条直线和a平行?为什么?(3)说出直线AC与直线AB的位置关系.【分析】(1)根据要求画出图形即可;(2)过点A有一条直线和直线a垂直,过点A可以画一条直线和a平行.(3)结论:AC⊥AB.【解答】解:(1)直线AB、AC如图所示;(2)过点A有一条直线和直线a垂直,理由:过直线外一点有且只有一条直线和已知直线垂直.过点A可以画一条直线和a平行.理由:过直线外一点有且只有一条直线和已知直线平行.(3)结论:AC⊥AB.【点评】本题考查复杂作图、垂线、平行线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.【变式3-3】作图题:(只保留作图痕迹)如图,在方格纸中,有两条线段AB、BC.利用方格纸完成以下操作:(1)过点A作BC的平行线;(2)过点C作AB的平行线,与(1)中的平行线交于点D;(3)过点B作AB的垂线.【分析】(1)A所在的横线就是满足条件的直线;(2)在直线AD上到A得等于BC的点D,则直线CD即为所求;(3)取AE上D右边的点F,过B,F的直线即为所求.【解答】解:如图,(1)A所在的横线就是满足条件的直线,即AE就是所求;(2)在直线AE上,到A距离是5个格长的点就是D,则CD就是所求与AB平行的直线;(3)取AE上D右边的点F,过B,F作直线,就是所求.【点评】本题考查复杂作图、垂线、平行线的定义等知识,解题的关键是灵活运用所学知识解决问题,【变式3-4】(2022秋•内乡县期末)如图所示,在∠AOB内有一点P.(1)过P画l1∥OA;(2)过P画l2∥OB;(3)用量角器量一量l1与l2相交的角与∠O的大小有怎样关系?【分析】用两个三角板,根据同位角相等,两直线平行来画平行线,然后用量角器量一量l1与l2相交的角与∠O的关系为:相等或互补.【解答】解:(1)(2)如图所示,(3)l1与l2夹角有两个:∠1,∠2;∠1=∠O,∠2+∠O=180°,所以l1和l2的夹角与∠O相等或互补.【点评】注意∠2与∠O是互补关系,容易漏掉.【例题4】(2022•寻乌县模拟)下面推理正确的是()A.∵a∥b,b∥c,∴c∥d B.∵a∥c,b∥d,∴c∥dC.∵a∥b,a∥c,∴b∥c D.∵a∥b,c∥d,∴a∥c【分析】根据平行公理的推论“如果两条直线都和第三条直线平行,那么这两条直线平行“进行分析,得出正确答案.【解答】解:A、a、c都和b平行,应该推出的是a∥c,而非c∥d,故错误;B、没有两条直线都和第三条直线平行,推不出平行,故错误;C、b、c都和a平行,可推出是b∥c,故正确;D、a、c与不同的直线平行,无法推出两者也平行.故选:C.【点评】本题考查的重点是平行公理的推论:如果两条直线都和第三条直线平行,那么这两条直线平行.【变式4-1】(2022春•丛台区校级期中)如图,过点A画直线l的平行线,能画()A.两条以上B.2条C.1条D.0条【分析】经过直线外一点,有且只有一条直线与这条直线平行.【解答】解:因为经过直线外一点,有且只有一条直线与这条直线平行.所以如图,过点A画直线l的平行线,能画1条.故选:C.【点评】本题考查了平行公理及推论.平行公理中要准确理解“有且只有”的含义.从作图的角度说,它是“能但只能画出一条”的意思.【变式4-2】(2023春•萨尔图区期中)下面说法正确的个数为()(1)在同一平面内,过直线外一点有一条直线与已知直线平行;(2)过一点有且只有一条直线与已知直线垂直;(3)两角之和为180°,这两个角一定邻补角;(4)同一平面内不平行的两条直线一定相交.A.1个B.2个C.3个D.4个【分析】根据同一平面内,过直线外一点有一条直线和已知直线平行即可判断(1);在同一平面内,过一点有且只有一条直线和已知直线垂直即可判断(2);举出反例即可判断(3);根据在同一平面内,两直线的位置关系是平行或相交,即可判断(4).【解答】解:在同一平面内,过直线外一点有一条直线和已知直线平行,故(1)正确;只有在同一平面内,过一点有且只有一条直线和已知直线垂直,故(2)错误;如图:∠ABC=∠DEF=90°,且∠ABC+∠DEF=180°,但是两角不是邻补角,故(3)错误;同一平面内不平行的两条直线一定相交正确,因为不特别指出时,一般认为,两条直线重合就是同一条直线,所以所提出的命题是正确的,故(4)正确.即正确的个数是2个.故选:B.【点评】本题考查了平行公理和推论,邻补角,垂线,平行线等知识点,此题比较典型,但是一道比较容易出错的题目.【变式4-3】(2023春•泸县校级期中)下列说法正确的是()A.经过一点有一条直线与已知直线平行B.经过一点有无数条直线与已知直线平行C.经过一点有且只有一条直线与已知直线平行D.经过直线外一点有且只有一条直线与已知直线平行【分析】平行线公理:经过直线外一点有且只有一条直线与已知直线平行.【解答】解:根据平行线公理:经过直线外一点有且只有一条直线与已知直线平行,可判断只有D选项正确.【点评】本题考查了平行公理,要熟练掌握.【变式4-4】(2023春•新民市期中)已知a∥b,c∥d,若由此得出b∥d,则直线a和c应满足的位置关系是()A.在同一个平面内B.不相交C.平行或重合D.不在同一个平面内【分析】根据平行推论:平行于同一条直线的两条直线互相平行,可得答案.【解答】解:当a∥c时,a∥b,c∥d,得b∥d;当a、c重合时,a∥b,c∥d,得b∥d,故C正确;故选:C.【点评】本题考查了平行公理及推论,利用了平行推论:平行于同一条直线的两条直线互相平行.【变式4-5】(2022春•和平区校级月考)下列语句正确的有()个①任意两条直线的位置关系不是相交就是平行②过一点有且只有一条直线和已知直线平行③过两条直线a,b外一点P,画直线c,使c∥a,且c∥b④若直线a∥b,b∥c,则c∥a.A.4B.3C.2D.1【分析】根据同一平面内,任意两条直线的位置关系是相交、平行;过直线外一点有且只有一条直线和已知直线平行;如果两条直线都与第三条直线平行,那么这两条直线也互相平行进行分析即可.【解答】解:①任意两条直线的位置关系不是相交就是平行,说法错误,应为根据同一平面内,任意两条直线的位置关系不是相交就是平行;②过一点有且只有一条直线和已知直线平行,说法错误,应为过直线外一点有且只有一条直线和已知直线平行;③过两条直线a,b外一点P,画直线c,使c∥a,且c∥b,说法错误;④若直线a∥b,b∥c,则c∥a,说法正确;【点评】此题主要考查了平行线,关键是掌握平行公理:过直线外一点有且只有一条直线和已知直线平行;推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.【变式4-6】(2022春•大荔县期末)如图,已知OM∥a,ON∥a,所以点O、M、N三点共线的理由是.【分析】利用平行公理:经过直线外一点,有且只有一条直线与这条直线平行,进而得出答案.【解答】解:已知OM∥a,ON∥a,所以点O、M、N三点共线的理由:经过直线外一点,有且只有一条直线与这条直线平行.故答案为:经过直线外一点,有且只有一条直线与这条直线平行.【点评】此题主要考查了平行公理,正确掌握平行公理是解题关键.【变式4-7】(2022春•海阳市期末)若P,Q是直线AB外不重合的两点,则下列说法不正确的是()A.直线PQ可能与直线AB垂直B.直线PQ可能与直线AB平行C.过点P的直线一定与直线AB相交D.过点Q只能画出一条直线与直线AB平行【分析】根据过直线外一点有且只有一条直线与已知直线平行以及两直线的位置关系即可回答.【解答】解:PQ与直线AB可能平行,也可能垂直,过直线外一点有且只有一条直线与已知直线平行,故A、B、D均正确,故C错误;故选:C.【点评】本题考查了平行线、相交线、垂线的性质,掌握相关定义和性质是解题的关键.【变式4-8】如图所示,将一张长方形纸对折三次,则产生的折痕与折痕间的位置关系是()A.平行B.垂直C.平行或垂直D.无法确定【分析】根据平行公理和垂直的定义解答.【解答】解:∵长方形对边平行,∴根据平行公理,前两次折痕互相平行,∵第三次折叠,是把平角折成两个相等的角,∴是90°,与前两次折痕垂直.∴折痕与折痕之间平行或垂直.故选:C.【点评】本题利用平行公理和垂直定义求解,需要熟练掌握.【例题5】(2022春•昭阳区校级月考)如图,把三角尺的直角顶点放在直线b上.若∠1=50°,则当∠2=时,a∥b.【分析】由直角三角板的性质可知∠3=180°﹣∠1﹣90°=40°,当∠2=40°时,∠2=∠3,得出a∥b即可.【解答】解:当∠2=40°时,a∥b;理由如下:如图所示:∵∠1=50°,∴∠3=180°﹣90°﹣50°=40°,当∠2=40°时,∠2=∠3,∴a∥b.故答案为:40°.【点评】本题考查了平行线的判定方法、平角的定义;熟记同位角相等,两直线平行是解决问题的关键.【变式5-1】(2022春•洞头区期中)如图,在下列给出的条件中,能判定DF∥BC的是()A.∠B=∠3B.∠1=∠4C.∠1=∠B D.∠B+∠2=180°【分析】根据平行线的判定定理求解即可.【解答】解:∵∠B=∠3,∴AB∥EF,故A不符合题意;∵∠1=∠4,∴AB∥EF,故B不符合题意;∵∠1=∠B,∴DF∥BC,故C符合题意;∵∠B+∠2=180°,∴AB∥EF,故D不符合题意;故选:C.【点评】此题考查了平行线的判定,熟记平行线的判定定理是解题的关键.【变式5-2】(2023秋•淮阳区校级期末)如图,木条a,b,c在同一平面内,经测量∠1=115°,要使木条a∥b,则∠2的度数应为()A.65°B.75°C.115°D.165°【分析】根据邻补角互补和平行线的判定定理求解即可.【解答】解:∠2的度数应为65°.证明:如图,∵∠1=115°,∴∠3=180°﹣115°=65°,∵∠2=65°,∴∠2=∠3,∴a∥b.故选:A.【点评】本题考查邻补角互补,平行线的判定.熟练掌握平行线的判定定理是解题关键.【变式5-3】(2023秋•泾阳县期末)如图,直线AB、CD分别与EF相交于点G、H,已知∠1=70°,∠2=70°,试说明:AB∥CD.【分析】根据对顶角相等得出∠1=∠AGH,进而根据∠2=∠AGH,即可得证.【解答】解:∵∠1=∠AGH,∠1=∠2=70°,∴∠2=∠AGH,∴AB∥CD.【点评】本题考查了对顶角相等,同位角相等两直线平行,熟练掌握平行线的判定定理是解题的关键.【变式5-4】(2023秋•泰和县期末)如图,CE平分∠ACD,若∠1=30°,∠2=60°,求证:AB∥CD.【分析】根据平行线的判定,依据角平分线的定义即可解决问题.【解答】证明:∵CE平分∠ACD,∠1=30°,∴∠ACD=2∠1=60°(角平分线定义),∵∠2=60°,(已知),∴∠2=∠ACD(等量代换),∴AB∥CD(同位角相等两直线平行).【点评】本题主要考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.【变式5-5】(2023春•樟树市期中)将一副三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.求证:CF∥AB.【分析】根据CF平分∠DCE以及∠DCE=90°即可得出∠FCE=45°,再根据三角形ABC为等腰直角三角形,即可得出∠ABC=∠FCE=45°,利用“同位角相等,两直线平行”即可证出结论.【解答】证明:∵CF平分∠DCE,∠DCE=90°,∴∠FCE=12∠DCE=45°.∵△ABC为等腰直角三角形,∴∠ABC=45°,∴∠ABC=∠FCE,∴CF∥AB.【点评】本题考查了平行线的判定,解题的关键是找出∠ABC=∠FCE=45°.本题属于基础题,难度不大,解决该题型题目时,找出相等(或互补)的角的关键.【变式5-6】(2023秋•靖边县期末)如图,AF与BD相交于点C,∠B=∠ACB,且CD平分∠ECF.试说明:AB∥CE.【分析】根据角平分线的定义结合对顶角得到∠ECD=∠ACB,则可证明∠B=∠ECD,根据平行线的判定即可证明AB∥CE.【解答】证明:因为CD平分∠ECF,所以∠ECD=∠FCD(角平分线的定义).因为∠ACB=∠FCD(对顶角相等),所以∠ECD=∠ACB(等量代换).因为∠B=∠ACB,。

最新人教版七年级数学下册5.2.2平行线的判定(教案)

最新人教版七年级数学下册5.2.2平行线的判定(教案)
解决方法:加强学生对角度计算的练习,尤其是特殊角度的计算,提高其数学运算能力。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《平行线的判定》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两条直线永远不会相交的情况?”(如教室墙壁的边缘线)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索平行线的奥秘。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解平行线的基本概念。平行线是在同一平面内,永不相交的两条直线。它们在几何学中具有重要地位,广泛应用于日常生活和各类工程设计。
2.案例分析:接下来,我们来看一个具体的案例。通过教室墙壁的边缘线,展示平行线在实际中的应用,以及它如何帮助我们理解和设计空间结构。
此外,我还发现,在课堂总结环节,部分学生仍然存在疑问。这说明我在课堂教学中,可能没有充分关注到每一个学生的学习情况。为了解决这个问题,我打算在今后的教学中,更加注重学生的个体差异,及时了解他们的学习进度和需求,尽量让每个学生都能跟上课堂节奏。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
பைடு நூலகம்(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“平行线在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
(3)解决实际问题时,将问题转化为数学模型的能力:学生可能难以将实际问题抽象为数学问题,从而无法运用所学知识解决问题。
解决方法:设计具有代表性的实际问题,引导学生学会将实际问题转化为数学模型,并运用平行线判定定理解决问题。

5.2.2 平行线的判定 人教版七年级数学下册分层作业(含答案)

5.2.2 平行线的判定 人教版七年级数学下册分层作业(含答案)

第五章相交线与平行线5.2.2 平行线的判定1.(2023秋·山西晋中·八年级统考期末)如图,将两个完全相同的三角板的斜边重合放在同一平面内,可以画出两条互相平行的直线.这样画的依据是()A.内错角相等,两直线平行B.两直线平行,内错角相等C.同位角相等,两直线平行D.两直线平行,同位角相等【答案】A【分析】如图,利用三角形板的特征可确定,然后根据内错角相等,两直线平行可判断.【详解】解:如图,由题意得,根据内错角相等,两直线平行可得.故选:A.【点睛】此题考查了平行线的判定,熟练掌握内错角相等,两直线平行是解题的关键.2.(2022秋·河南新乡·七年级校考期末)如图,下列推理中,正确的是()A.如果,那么B.如果,那么C.如果,那么D.如果,那么【答案】B【分析】根据平行线的判定条件逐一判断即可.【详解】解:A、由内错角相等,两直线平行可知如果,那么,不能得到,故此选项不符合题意;B、由内错角相等,两直线平行可知如果,那么,故此选项符合题意;C、由同旁内角互补,两直线平行可知,如果,那么,故此选项不符合题意;D、由同旁内角互补,两直线平行可知,如果,那么,故此选项不符合题意;故选B.【点睛】本题主要考查了平行线的判定,熟知同位角相等,两直线平行,内错角相等,两直线平行,同旁内角互补,两直线平行是解题的关键.3.(2022春·辽宁沈阳·七年级校考期中)如图,现有条件:①;②;③;④.能判断的条件有()A.①②B.②③C.①③D.②④【答案】C【分析】根据平行线的判定定理即可求解.【详解】①∵∴②∵∴③∵∴④∵∴∴能得到的条件是①③.故选C.【点睛】此题主要考查了平行线的判定,解题的关键是合理利用平行线的判定,确定同位角、内错角、同旁内角,平行线的判定:同旁内角互补,两直线平行;内错角相等,两直线平行;同位角相等,两直线平行.4.(2022春·四川成都·七年级校考阶段练习)如图,点在的延长线上,在下列四个条件中,不能判断的是()A.B.C.D.【答案】C【分析】直接利用平行线的判定方法分析选择符号题意的选项即可.【详解】解:A、,,故此选项不合题意;B、,,故此选项不合题意;C、,,故此选项符合题意;D、,,故此选项不合题意.故选:C.【点睛】此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.5.(2022秋·山东枣庄·八年级校考期末)如图,在下列给出的条件中,不能判定的是( )A.B.C.D.【答案】C【分析】根据平行线的判定定理,逐项判断即可求解.【详解】解:若,则,故本选项不符合题意;B、若,则,故本选项不符合题意;C、若,则,故本选项符合题意;D,若,则,故本选项不符合题意;故选:C【点睛】本题主要考查了平行线的判定,熟练掌握平行线的判定定理是解题的关键.6.(2023春·江苏·七年级专题练习)如图,点,,分别在的边,,上,连接,,在下列给出的条件中,不能判定的是( )A.B.C.D.【答案】C【分析】根据同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.依据平行线的判定方法进行判断即可.【详解】解:A.若,则(同旁内角互补,两直线平行);B.若,则(内错角相等,两直线平行);C.若,则(同位角相等,两直线平行);D.,则(同位角相等,两直线平行);故选:C.【点睛】本题主要考查了平行线的判定,掌握:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解决问题的关键.7.(2023春·七年级课时练习)如图,下列条件中不能判定的是( )A.B.C.D.【答案】D【分析】根据平行线的判定定理逐项分析判断即可求解.【详解】解:A. ,内错角相等两直线平行,能判定;B. ,同位角相等两直线平行,能判定;C. ,,可知,内错角相等两直线平行,能判定;D. 是同旁内角相等,但不一定互补,所以不能判定.故选:D.【点睛】本题考查了平行线的判定定理,掌握平行线的判定定理是解题的关键.8.(2022秋·内蒙古乌兰察布·七年级校考期末)如图是两条直线平行的证明过程,证明步骤被打乱,则下列排序正确的是( )如图,已知,,求证:与平行.证明:①:;②:,;③:;④:;⑤:.A.①②③④⑤B.②③⑤④①C.②④⑤③①D.③②④⑤①【答案】B【分析】先证明,结合,证明,从而可得结论.【详解】根据平行线的判定解答即可.证明:∵(已知),(邻补角的定义),∴(同角的补角相等).∵(已知),∴(等量代换),∴(同位角相等,两直线平行).所以排序正确的是②③⑤④①,故选:B.【点睛】本题考查的是补角的性质,平行线的判定,证明是解本题的关键.9.(2021春·浙江宁波·七年级校考期中)如图把三角板的直角顶点放在直线上,若,则当______度时,.【答案】【分析】由直角三角板的性质可知,当时,,得出即可.【详解】当当时,,理由如下:∵,∴,当时,,∴故答案为:【点睛】本题主要考查了平行线的判定方法、平角的定义;熟记同位角相等,两直线平行是解题的关键.10.(2021春·江苏南京·七年级南京钟英中学校考期中)如图,直线、被直线所截,,当______时,.【答案】115【分析】若,则,由可得的度数,从而求得的度数.【详解】解:如图,若要,则,∵,∴,∴.故答案为:115.【点睛】本题考查平行线的判定方法,熟记平行线判定方法是解题的关键.11.(2021春·浙江绍兴·七年级校考期中)如图,,,若使,则可将直线b绕点A 逆时针旋转___________度.【答案】42【分析】先根据邻补角进行计算得到,根据平行线的判定当b与a的夹角为时,,由此得到直线b绕点A逆时针旋转.【详解】解:如图:∵,∴,∵,∴当时,,∴直线b绕点A逆时针旋转.故答案为:42.【点睛】本题考查的是平行线的判定定理,熟知同位角相等,两直线平行是解答此题的关键.12.(2022春·江苏宿迁·七年级校考阶段练习)如图,条件______填写所有正确的序号一定能判定.①;②;③;④;【答案】①③④【分析】根据平行线的判定解答即可.【详解】解:∵,∴;①一定能判定,符合题意.∵,∴;③一定能判定,不合题意.∵,∴;③一定能判定,符合题意.∵,∴;④一定能判定,符合题意.故答案为:【点睛】此题主要考查了平行线的判定,关键是掌握平行线的判定定理.13.(2022春·山东泰安·七年级统考期中)如图,点在的延长线上,下列条件:①;②;③;④.其中能判定的是________.(将所有正确的序号都填入)【答案】①②③【分析】根据平行线的判定条件逐一判断即可.【详解】解:由∠C=∠5,可以判断(同位角相等,两直线平行),故①正确;由∠C+∠BDC=180°,可以判断(同旁内角互补,两直线平行),故②正确;由,可以判断(内错角,两直线平行),故③正确;由可以判断(内错角,两直线平行),不能判定,故④不正确;故答案为:①②③.【点睛】本题主要考查了平行线的判定,熟知平行线的判定条件是解题的关键.14.(2022春·山东枣庄·七年级统考期中)平行线在生活中应用很广泛,人们为了准确地画出平行线,往往利用三角尺和直尺按照下面的方法去做:第一步:作直线AB,并用三角尺的一条边贴住直线AB;第二步:用直尺紧靠三角尺的另一条边;第三步:沿直尺下移三角尺;第四步:沿三角尺的边作出直线CD.这样,就得到.请写出其中的道理:______.【答案】同位角相等,两直线平行【分析】根据作图过程可得∠1=∠2,根据平行线的判定可得答案.【详解】解:如下图所示,∵∠1=∠2,∴(同位角相等,两直线平行),故答案为:同位角相等,两直线平行【点睛】本题主要考查了复杂作图,关键是掌握同位角相等,两直线平行.15.(2022秋·山西临汾·七年级统考期末)阅读下面的解答过程,并填空.如图,,平分,平分,.求证:.证明:∵平分,平分,(已知)∴__________,_________.(角平分线的定义)又∵,(已知)∴∠____________=∠____________.(等量代换)又∵,(已知)∴∠____________=∠____________.(等量代换)∴.(____________)【答案】;;;;;;同位角相等,两直线平行【分析】根据角平分线的定义,等量代换,同位角相等两直线平行,联系证明过程,可推理出答案.【详解】证明:∵平分,平分,(已知)∴,.(角平分线的定义)又∵,(已知)∴.(等量代换)又∵,(已知)∴.(等量代换)∴.(同位角相等,两直线平行).【点睛】本题考查了平行线的判定,角平分线的定义,解决本题的关键是熟悉相关的几何定理,联系证明过程进行推导.16.(2022春·福建厦门·七年级统考期末)如图,,,.与平行吗?为什么?解:,理由如下:∵,(已知)∴,即.(垂直的定义)又∵,且,(已知)∴.(等量代换)∴.(____________)∴.(____________)【答案】,,同角的余角相等,同位角相等,两直线平行;【分析】先证明,,结合同角的余角相等可得,从而可得答案.【详解】解:,理由如下:∵,(已知)∴,即.(垂直的定义)又∵,且,(已知)∴.(等量代换)∴.(同角的余角相等)∴.(同位角相等,两直线平行)【点睛】本题考查的是垂直的定义,余角的性质,平行线的判定,熟练的证明是解本题的关键.17.(2023春·全国·七年级专题练习)已知:如图,于点C,于点D,.求证:.【答案】见详解【分析】根据垂直的定义得到,等量代换可得,再根据平行线的判定定理即可得到结论.【详解】解:∵,,∴,∴,∵,∴,∴.【点睛】本题考查了平行线的判定,余角的性质,熟练掌握平行线的判定定理是解题的关键.18.(2022秋·全国·八年级专题练习)如图,直线a,b直线c所截.(1)当∠1=∠3时,直线a,b平行吗?请说明理由.(2)当∠2+∠3=180°时,直线a,b平行吗?请说明理由.【答案】(1),理由见解析(2),理由见解析【分析】(1)根据等角的补角相等可得∠2=∠4,再根据同位角相等,两直线平行即可得a b;(2)根据同角的补角相等可得∠2=∠4,再根据同位角相等,两直线平行即可得a b;【详解】(1)解:如图,当∠1=∠3时,a b,理由如下:∵∠1+∠2=180°,∠3+∠4=180°,∠1=∠3,∴∠2=∠4,∴a b;(2)当∠2+∠3=180°时,a b,理由如下:∵∠2+∠3=180°,∠3+∠4=180°,∴∠2=∠4,∴a b;【点睛】本题考查了平行线的判定,解决本题的关键是熟练运用平行线的判定定理.1.(2023春·七年级单元测试)如图,下列说法中,正确的是()A.若,则B.若,则C.若,则D.若,则【答案】D【分析】根据平行线的判定条件逐一判断即可得到答案.【详解】解:A、,不能判断,选项错误;B、,可以判断,不能判断,选项错误;C、,可以判断,不能判断,选项错误;D、,可以判断,选项正确,故选D.【点睛】本题考查了平行线的判定,解题关键是掌握平行线的判定条件:①内错角相等,两直线平行;②同位角相等,两直线平行;③同旁内角互补,两直线平行.2.(2023春·全国·七年级专题练习)如图,点在的延长线上,下列条件不能判定的是()A.B.C.D.【答案】C【分析】根据平行线的判定定理对各选项进行逐一分析即可.【详解】解:A.根据内错角相等,两直线平行可判定,故此选项不合题意;B.根据同位角相等,两直线平行可判定,故此选项不合题意;C.根据内错角相等,两直线平行可判定,无法判定,故此选项符合题意;D.根据同旁内角互补,两直线平行可判定,故此选项不合题意;故选:C.【点睛】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.3.(2023春·七年级课时练习)如图,,下列结论正确的是( )①若,则;②若,则;③若,则;④若,则.A.①②B.②④C.②③④D.②【答案】B【分析】根据平行线的判定定理,即可一一判定.【详解】解:由,不能判定,故①不符合题意;,,,,故②符合题意;由,,不能判定,故③不符合题意;,,,,故④符合题意;故选:B.【点睛】本题考查了平行线的判定定理,熟练掌握和运用平行线的判定定理是解决本题的关键.4.(2022春·河北邯郸·七年级校考期中)将一副三角板按如图所示方式放置.结论Ⅰ:若∠1=45°,则有;结论Ⅱ:若∠1=30°,则有;下列判断正确的是()A.I和Ⅱ都对B.I和Ⅱ都不对C.Ⅰ不对Ⅱ对D.Ⅰ对Ⅱ不对【答案】D【分析】根据三角板中角的和差关系,当结论Ⅰ时得到∠B+∠BAE=180°,根据平行线的判定即可得到结论;当结论Ⅱ时,无法得出结论,结合选项逐个判断即可.【详解】解:如图所示:结论Ⅰ:∵∠1=45°,∴∠2=90°−∠1=45°,∴∠BAE=90°+45°=135°,∴∠B+∠BAE=45°+135°=180°,∴BC AE,故结论Ⅰ正确;结论Ⅱ:∵∠1=30°,∴∠2=90°−∠1=60°,∴∠BAE=90°+60°=150°,∴∠E+∠BAE=60°+150°=210°,∴无法得到DE AB,故结论Ⅱ错误,故选:D.【点睛】本题考查平行线的判定,等腰直角三角形等知识点,能灵活运用定理进行推理是解题的关键.5.(2022春·新疆乌鲁木齐·七年级乌鲁木齐市第九中学校考期中)如图,下列判断中错误的是()A.因为∠1=∠2,所以B.因为∠5=∠BAE,所以C.因为∠3=∠4,所以D.因为∠5=∠BDC,所以【答案】B【分析】根据平行线的判定定理求解判断即可.【详解】因为∠1=∠2,所以AE∥BD,故A正确,不符合题意;因为∠5=∠BAE,所以AB∥CD,故B错误,符合题意;因为∠3=∠4,所以AB∥CD,故C正确,不符合题意;因为∠5=∠BDC,所以AE∥BD,故D正确,不符合题意;故选:B.【点睛】此题考查了平行线的判定,熟记平行线的判定定理是解题的关键.6.(2022春·江苏扬州·七年级校联考期中)如图,下列条件中:①;②;③;④;能判定的条件个数有()A.1B.2C.3D.4【答案】B【分析】利用平行线的判定定理对条件依次验证即可知正确条件个数.【详解】解:当①;利用同位角互补,两直线平行可知①能判定;当②;可以判定,故②不能判定;③;可以判定,故②不能判定;④;利用内错角相等,两直线平行可知①能判定;故选:B【点睛】本题考查平行线的判定定理,解题的关键是熟练掌握平行线的判定定理.7.(2022·全国·七年级假期作业)如图,直线a,b被直线c所截,现给出下列四个条件:①∠1=∠5;②∠4=∠6;③∠4+∠5=180°;④∠2+∠3=180°.其中能判定a∥b的条件的个数有()A.1个B.2个C.3个D.4个【答案】C【分析】根据平行线的判定定理“同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行”逐项排查即可.【详解】解:①∠1=∠5可根据同位角相等,两直线平行得到a∥b;②∠4=∠6可根据内错角相等,两直线平行得到a∥b;③∠4+∠5=180°可根据同旁内角互补,两直线平行得到a∥b;④∠2、∠3是邻补角,则∠3+∠2=180°不能得到a∥b;故选:C.【点睛】此题主要考查了平行线的判定,平行线的判定定理有同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.8.(2023春·七年级课时练习)如图(1),在中,,边绕点按逆时针方向旋转一周回到原来的位置.在旋转的过程中(图(2)),当()时,.A.42°B.138°C.42°或138°D.42°或128°【答案】C【分析】结合旋转的过程可知,因为位置的改变,与∠A可能构成内错角,也有可能构成同旁内角,所以需分两种情况加以计算即可.【详解】解:如图(2),当∠ACB'=42°时,∵,∴∠ACB'=∠A.∴CB'∥AB.如图(2),当∠ACB'=138°时,∵∠A=42°,∴∴CB'∥AB.综上可得,当或时,CB'∥AB.故选:C【点睛】本题考查了平行线的判定、分类讨论的数学思想等知识点,根据CB'在旋转过程中的不同位置,进行分类讨论是解题的关键.9.(2023春·七年级课时练习)如图,不添加辅助线,请写出一个能判定AB CD的条件__【答案】∠1=∠4##∠B=∠5##∠B+∠BCD=180°【分析】根据平行线的判定定理即可解答.【详解】解:由“内错角相等,两直线平行”可以添加条件∠1=∠4.由“同位角相等,两直线平行”可以添加条件∠B=∠5.由“同旁内角互补,两直线平行”可以添加条件∠B+∠BCD=180°.综上所述,满足条件的有:∠1=∠4或∠B=∠5或∠B+∠BCD=180°.故答案是:∠1=∠4或∠B=∠5或∠B+∠BCD=180°.【点睛】本题主要考查了平行线的判定.解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题是一道探索性条件开放性题目,能有效地培养学生“执果索因”的思维方式与能力.10.(2023春·七年级课时练习)如图,a、b、c三根木棒钉在一起,,现将木棒a、b同时顺时针旋转一周,速度分别为18度/秒和3度/秒,两根木棒都停止时运动结束,则___________秒后木棒a,b平行.【答案】2或14或50或110【分析】设t秒后木棒a,b平行,分四种情况讨论:当秒时,当时,当时,当时,即可求解.【详解】解:设t秒后木棒a,b平行,根据题意得:当秒时,,解得:t=2;当时,,解得:t=14;当时,木棒a停止运动,当时,,解得:t=-10;(不合题意,舍去)当时,或,解得:t=50或t=110;综上所述,2或14或50或110秒后木棒a,b平行.故答案为:2或14或50或110【点睛】本题主要考查了平行线的判定,一元一次方程的应用,明确题意,利用分类讨论思想解答是解题的关键.11.(2023春·七年级课时练习)在同一平面内有2022条直线,如果,,,……那么与的位置关系是_____________.【答案】垂直【分析】根据垂直的定义和平行线的性质可得依次是垂直,垂直,平行,平行,4个一循环,依此可得,的位置关系.【详解】解:∵在同平面内有2022条直线,若,,,……∴与依次是垂直,垂直,平行,平行,…,∵…1,∴与的位置关系是垂直.故答案为:垂直.【点睛】本题考查垂线、平行线的规律问题,解题的关键是找出规律.12.(2023春·七年级课时练习)将一块三角板ABC(∠BAC=90°,∠ABC=30°)按如图方式放置,使A,B两点分别落在直线m,n上,对于给出的五个条件:①∠1=25.5°,∠2=55°;②∠1+∠2=90°;③∠2=2∠1;④∠ACB=∠1+∠3;⑤∠ABC=∠2-∠1.能判断直线m n的有__.(填序号)【答案】①④⑤【分析】根据平行线的判定方法和题目中各个小题中的条件,逐一判断是否可以得到m∥n,从而可以解答本题.【详解】解:∵∠1=25.5°,∠2=55°,∠ABC=30°,∴∠ABC+∠1=55.5°=55°=∠2,∴m n,故①符合题意;∵∠1+∠2=90°,∠ABC=30°,∴∠1+∠ABC不一定等于∠2,∴m和n不一定平行,故②不符合题意;∵∠2=2∠1,∠ABC=30°,∴∠1+∠ABC不一定等于∠2,∴m和n不一定平行,故③不符合题意;过点C作CE m,∴∠3=∠4,∵∠ACB=∠1+∠3,∠ACB=∠4+∠5,∴∠1=∠5,∴EC n,∴m n,故④符合题意;∵∠ABC=∠2-∠1,∴∠2=∠ABC+∠1,∴m n,故⑤符合题意;故答案为:①④⑤.【点睛】本题考查平行线的判定,解答本题的关键是明确题意,利用数形结合的思想解答.13.(2021春·全国·七年级专题练习)如图,点是延长线上一点,在下列条件中:①;②;③且平分;④,能判定的有__.(填序号)【答案】③④【分析】根据平行线的判定方法分别判定得出答案.【详解】①中,,(内错角相等,两直线平行),不合题意;②中,,(同位角相等,两直线平行),不合题意;③中,且平分,,,故此选项符合题意;④中,,(同旁内角互补,两直线平行),故此选项符合题意;答案:③④.【点睛】此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.14.(2021春·湖南岳阳·七年级统考期末)如图,将一副三角板按如图所示放置,,,,且,则下列结论中:①;②若平分,则有;③将三角形绕点旋转,使得点落在线段上,则此时;④若,则.其中结论正确的选项有______.(写出所有正确结论的序号)【答案】②③④【分析】①根据同角的余角相等得∠1=∠3,但不一定得45°;②都是根据角平分线的定义、内错角相等,两条直线平行,可得结论;③根据对顶角相等和三角形的外角等于不相邻的两个内角得和,可得结论;④根据三角形内角和定理及同角的余角相等,可得结论.【详解】解:①如图,∵∠CAB=∠DAE=90°,即∠1+∠2=∠3+∠2+90°,∴∠1=∠3≠45°,故①不正确;②∵AD平分∠CAB,∴∠1=∠2=45°,∵∠1=∠3,∴∠3=45°,又∵∠C=∠B=45°,∴∠3=∠B,∴BC∥AE,故②正确;③将三角形ADE绕点A旋转,使得点D落在线段AC上,则∠4=∠ADE-∠ACB=60°-45°=15°,故③正确;④∵∠3=2∠2,∠1=∠3,∴∠1=2∠2,∠1+∠2=90°,∴3∠2=90°,∴∠2=30°,∴∠3=60°,又∠E=30°,设DE与AB交于点F,则∠AFE=90°,∵∠B=45°,∴∠4=45°,∴∠C=∠4,故④正确,故答案为:②③④.【点睛】本题主要考查了同角的余角相等、角平分线定义、平行线的判定的运用,解题关键是熟练掌握同角的余角相等及平行线的判定.15.(2021春·山东济南·七年级校考期中)如图,直线,相交于点,平分,平分,,垂足为,那么,请说明理由.【答案】见解析【分析】根据角平分线的定义得到,,根据垂直的定义得到,根据平行线的判定定理即可得到结论.【详解】证明:∵平分,∴,∵平分,∴,∴,∵,∴,∴,∴.【点睛】本题考查了角平分线的定义,平行线的判定,熟练掌握平行线的判定是解题的关键.16.(2023春·全国·七年级专题练习)如图,直线、交于点O,,分别平分和,已知,且.(1)求的度数;(2)试说明的理由.【答案】(1)的度数为(2)见解析【分析】(1)根据角平分线的定义推出,再根据对顶角性质求解即可;(2)结合等量代换得出,根据“内错角相等,两直线平行”即可得解.【详解】(1)解:∵,分别平分和,∴,,∵,∴,∵,∴,∴,∵,∴,∴,∴,∴,∴;(2)解:,,∴,∴.【点睛】本题主要考查了平行线的判定与性质,角平分线的定义,余角的性质,熟记平行线的判定与性质是解题的关键.17.(2023春·七年级课时练习)如图,已知点O在直线AB上,射线OE平分∠AOC,过点O作OD⊥OE,G是射线OB上一点,连接DG,使∠ODG+∠DOG=90°.(1)求证:∠AOE=∠ODG;(2)若∠ODG=∠C,试判断CD与OE的位置关系,并说明理由.【答案】(1)证明见解析(2)CD OE,理由见解析【分析】(1)由OD⊥OE得到∠EOC+∠COD=∠AOE+∠DOG=90°,再利用等角的余角相等即可证明∠AOE=∠ODG;(2)证明∠EOC=∠C,利用内错角相等两直线平行,即可证明CD OE.【详解】(1)证明:∵OD⊥OE,∴∠EOC+∠COD=∠AOE+∠DOG=90°,∵∠ODG+∠DOG=90°,∴∠AOE=∠ODG;(2)解:CD OE.理由如下:由(1)得∠AOE=∠ODG,∵射线OE平分∠AOC,∴∠AOE=∠EOC,∵∠ODG=∠C,∴∠EOC=∠C,∴CD OE.【点睛】本题考查了角平分线定义,垂直的定义,平行线的判定,等角的余角相等,正确识图是解题的关求证:.证明:∵∠1=∠2(已知)∠ABF=∠1(对顶角相等)∴______FC平分∠BFG∴______∴∠EBF=______∴(【答案】对顶角相等;∠∴∠FC平分∠BFG∴∠∴∠EBF=∠∴(内错角相等,两直线平行)故答案为:对顶角相等;∠统考中考真题)如图,直线,且直线定直线的是(A.B...【答案】C、当时,;故、当时,;故B不符合题意;、当时,;故C、∵,则,∵,则,∴;故D不符合题意;故选:C【点睛】本题主要考查平行线的判定,解答的关键是熟记平行线的判定条件并灵活运用.2.(2022·吉林·统考中考真题)如图,如果,那么,其依据可以简单说成()A.两直线平行,内错角相等B.内错角相等,两直线平行C.两直线平行,同位角相等D.同位角相等,两直线平行【答案】D【分析】根据“同位角相等,两直线平行”即可得.【详解】解:因为与是一对相等的同位角,得出结论是,所以其依据可以简单说成同位角相等,两直线平行,故选:D.【点睛】本题考查了平行线的判定,熟练掌握平行线的判定方法是解题关键.3.(2022·浙江台州·统考中考真题)如图,已知,为保证两条铁轨平行,添加的下列条件中,正确的是()A.B.C.D.【答案】C【分析】根据平行线的判定方法进行判断即可.【详解】解:A.∠1与∠2是邻补角,无法判断两条铁轨平行,故此选项不符合题意;B. ∠1与∠3与两条铁轨平行没有关系,故此选项不符合题意;C. ∠1与∠4是同位角,且∠1=∠4=90°,故两条铁轨平行,所以该选项正确;D. ∠1与∠5与两条铁轨平行没有关系,故此选项不符合题意;故选:C.【点睛】本题主要考查了平行线的判定,熟练掌握平行线的判定是解答本题的关键.4.(2020·浙江金华·统考中考真题)如图,工人师傅用角尺画出工件边缘的垂线和,得到,理由是()A.在同一平面内,垂直于同一条直线的两条直线平行B.在同一平面内,过一点有且仅有一条直线垂直于已知直线C.连接直线外一点与直线各点的所有直线中,垂线段最短D.经过直线外一点,有且只有一条直线与这条直线平行【答案】A【分析】根据在同一平面内,垂直于同一条直线的两条直线平行判断即可.【详解】解:由题意得:∴a∥b(在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行),故选:A.【点睛】本题考查平行线的判定,平行公理,解题关键是理解题意,灵活运用所学直线解决问题.5.(2020·湖南郴州·统考中考真题)如图,直线被直线所截,下列条件能判定的是()A.B.C.D.【答案】D【分析】直接利用平行线的判定方法进而分析得出答案.【详解】A、当∠1=∠3时,c∥d,不能判定a∥b,故此选项不合题意;B、当∠2+∠4=180°时,c∥d,不能判定a∥b,故此选项不合题意;C、当∠4=∠5时,c∥d,不能判定a∥b,故此选项不合题意;D、当∠1=∠2时,a∥b,故此选项符合题意;故选:D【点睛】本题主要考查了平行线的判定,正确掌握判定方法是解题关键.6.(2020·浙江衢州·统考中考真题)过直线l外一点P作直线l的平行线,下列尺规作图中错误的是( )A.B.C.D.【答案】D【分析】根据平行线的判定方法一一判断即可.【详解】A、由作图可知,内错角相等两直线平行,本选项不符合题意.B、由作图可知,同位角相等两直线平行,本选项不符合题意.C、与作图可知,垂直于同一条直线的两条直线平行,本选项不符合题意,D、无法判断两直线平行,故选:D.【点睛】本题考查作图-复杂作图,平行线的判定等知识,解题的关键是读懂图象信息,属于中考常考题型.7.(2021·甘肃兰州·统考中考真题)将一副三角板如图摆放,则______∥______,理由是______.【答案】内错角相等,两直线平行【分析】根据三角板的角度可知,根据内错角相等,两直线平行判断即可.【详解】解:一副三角板如图摆放,∴,∴(内错角相等,两直线平行),故答案为:;;内错角相等,两直线平行.【点睛】本题考查了平行线的判定,熟知平行线的判定定理是解本题的关键.8.(2021·广西桂林·统考中考真题)如图,直线a,b被直线c所截,当∠1 ___∠2时,a//b.(用“>”,“<”或“=”填空)【答案】=.【分析】由图形可知∠1 与∠2是同位角,利用直线平行判定定理可以确定∠1 =∠2,可判断a//b.【详解】解:∵直线a,b被直线c所截,∠1与∠2是同位角,∴当∠1 =∠2,a//b.故答案为=.【点睛】本题考查平行线判定,掌握平行线判定判定定理是解题关键.9.(2020·湖北咸宁·中考真题)如图,请填写一个条件,使结论成立:∵__________,∴.【答案】∠1=∠4(答案不唯一)【分析】根据平行线的判定添加条件即可.【详解】解:如图,若∠1=∠4,则a∥b,故答案为:∠1=∠4(答案不唯一)【点睛】本题考查了平行线的判定,可围绕截线找同位角、内错角和同旁内角解答.。

5.2.2平行线的判定(课件)七年级数学下册(人教版)

5.2.2平行线的判定(课件)七年级数学下册(人教版)
CD
AB
A
D
1
B
C
人教版数学七年级下册
谢谢聆听
∴∠1=∠2(同角的补角相等)
∴a∥b(同位角相等,两直线平行)
1
3 4
a
2
b
探究新知
人教版数学七年级下册
判定两条直线平行的方法:
判定方法3:两条直线被第三条直线所截,如果同旁内角互补,
那么这两条直线平行.
1
a
3 4
简单说成:同旁内角互补,两直线平行.
2
符号语言表示:∵∠2+∠4=180°(已知)
人教版数学七年级下册
课后作业
人教版数学七年级下册
2.如图:
如果∠1=∠D,那么______∥________;
AD
BC
如果∠1=∠B,那么______∥________;
CD
AB
如果∠A+∠B=180°,那么______∥________;
BC
AD
如果∠A+∠D=180°,那么______∥________.
人教版数学七年级下册
2.如图:
AD
BC
如果∠B=∠1,则可得____//___
同位角相等,两直线平行
根据是_____________________
AB
CD
如果∠D=∠1,则可得到____//___
B
内错角相等,两直线平行
根据是_______________________
A
1
D
C
巩固练习
人教版数学七年级下册
但是,由于直线无限延伸,检验它们是否相交有困难,
所以难以直接根据两条直线是否相交来判定是否平行,那么

人教版数学七下课件-平行线的判定

人教版数学七下课件-平行线的判定

∴a∥b.
c
a
2
43
b
1
课堂检测
基础巩固题
1.如图,可以确定AB∥CE的条件是( C )
A.∠2=∠B B. ∠1=∠A C. ∠3=∠B D. ∠3=∠A
A
E
2
13
B
C
D
课堂检测
基础巩固题
2.如图,已知∠1=30°,∠2或∠3满足条件_∠__2_=__1_5_0_°或_ ∠3=30°_,
则a//b.
bc
1
2
∴b∥c(内错角相等,两直线平行).
探究新知
在同一平面内,b⊥a,c⊥a,试说明:b∥c.
解法3:如图, ∵ b⊥a,c⊥a(已知),
∴∠1=∠2=90°(垂直定义). a
b
c
12
∴ ∠1+∠2=180°.
∴b∥c(同旁内角互补,两直线平行).
探究新知
同一平面内,垂直于同一条直线的两条直线平行.
例3 如图:直线AB、CD都和AE相交,且 A
∠1+∠A=180º.求证:AB//CD
C
证明:∵∠1+∠A=180º ( 已知 ) ∠1=∠2 (对顶角相等 )
B
2 13
D
E
∴∠2+∠A=180º ( 等量代换 )
∴ AB∥CD ( 同旁内角互补,两直线平行 )
巩固练习
3.根据条件完成填空.
E
① ∵ ∠2 = ∠ 6(已知)
人教版 数学 七年级 下册
5.2 平行线及其判定 5.2.2 平行线的判定
第一课时 第二课时
第一课时
利用同位角、内错角、同旁内角 判定平行线
A1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

下册
5.2 平行线及其判定
5.2.1 平行线
教学目标
1.经历观察教具模式的演示和通过画图等操作,交流归纳与活动,进一步发展空间观念.
2.了解平行线的概念、平面内两条直线的相交和平行的两种位置关系,知道平行公理以及平行公理的推论.
3.会用符号语方表示平行公理推论,会用三角尺和直尺过已知直线外一点画这条直线的平行线.
教学重点
探索和掌握平行公理及其推论.
教学难点
对平行线本质属性的理解,用几何语言描述图形的性质.
课时安排
1课时.
一、创设问题情境
提问:两条直线相交有几个交点?相交的两条直线有什么特殊的位置关系?
学生回答后,教师让学生思考,在一个平面内,两条直线除了相交外,还有别的位置关系吗?
二、新课教学
1. 平行及平行线
在学生思考后,教师演示教
具(如下左图):分别将木条
a、b与木条c钉在一起,并把它
们想象成在同一平面内两端可以
无限延伸的三条直线.沿顺时针
方向转动a,可以发现,直线a从与b相交逐步变为不相交(如右图).木条转动过程中的这种直线a与b不相交的情形,我们就说直线a与b互相平行,记作a∥b.同一平面内,不相交的两条直线叫做平行线.直线a与b是平行线,这里“∥”是平行符号.
在同一平面内,两条直线只有两种位置关系:相交或平行,两者必居其一,即两条直线不相交就是平行(或者不平行就是相交).
2.平行公理及平行公理推论
(1)在转动木条a 的过程中,有几个位置使得直线a与b平行?
经过实验,可以发现:有并且只有一个位置使a与b平
行.
(2)如右图,过点B画直线a的平行线,能画几条?再过点C画直线a的平行线,它与前面过点B的平行线平行吗?
(3)通过观察画图、归纳平行公理及推论.
经过观察和画图,可以发现一个基本事实(平行公理):经过直线外一点,有且只有一条直线与这条直线平行.
(4)比较平行公理和垂线的第一条性质.
共同点:都是“有且只有一条直线”,这表明与已知直线平行或垂直的直线存在并且是唯一的.
不同点:平行公理中所过的“一点”要在已知直线外,两垂线性质中对“一点”没有限制,可在直线上,也可在直线外.
(5)归纳平行公理推论.
①学生直观判定过B点、C点的a的平行线b、c是互相平行.
②从直线b、c产生的过程说明直线b∥直线c.
③学生用三角尺与直尺用平推方验证b∥c.
④师生用数学语言表达这个结论,教师板书.
如果两条直线都与第三条直线平行,那么这条直线也互相平行.
结合图形,教师引导学生用符号语言表达平行公理推
论:如果b∥a,c∥a,那么b∥c(如右图).
3.简单应用.
练习:如果多于两条直线,比如三条直线a、b、c与
直线l都平行,那么这三条直线互相平行吗?请说明理由.
本练习是让学生在反复运用平行公理推论中掌握平行
公理推论以及说理规范.
三、布置作业
教材P12练习.
下册
5.2.2 平行线的判定
教学目标
1. 理解并掌握两直线平行的条件──同位角相等,两直线平行.
2. 理解用三角板和直尺过直线外一点画已知直线的平行线的依据.
3. 会判断内错角、同旁内角.
4. 掌握直线平行的第二种方法和第三种方法及其应用.
5.经历观察、操作、想象、推理、交流等活动,进一步发展空间观念、推理能力和有条理的表达能力.
教学重点
判定两条直线平行的第二种和第三种方法.
教学难点
综合运用平行线的判定和性质解决问题.
课时安排
共2课时.
第1课时
一、导入新课
装修工人正在向墙上钉木条,如果木条b与墙壁边缘垂直,那么木条a与墙壁边缘所夹角为多少度时,才能使木条a与木条b平行?
要解决这个问题,就要弄清楚平行的判定.
二、新课教学
以前我们学过用直尺和三角尺画平行线,如教材P12图5.2-5,在三角板移动的过程中,什么没有变?
三角板经过点P的边与靠在直尺上的边所成的角没有变.
简化图5.2-5,得下图.可以看出,画直线AB的平行线CD,实际上就是过点P 画与∠2相等的∠1,而∠2和∠1正是直线AB,CD被直线EF截得的同位角.这说明,如果同位角相等,那么AB∥CD.
一般地,有如下利用同位角判定两条直线平行的方法:
判定方法1 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.
简单说成:同位角相等,两直线平行.
符号语言:∵∠1=∠2,∴AB∥CD.
如下图,你能说出木工用图中这种叫做角尺的工具画平行线的道理吗?
用角尺画平行线,实际上是画出了两个直角,根据“同位角相等,两条直线平行.”,可知这样画出的就是平行线.
思考:如图,(1)如果∠2=∠3,能得出a∥b吗?(2)如果∠2+∠4=180°,能得出a∥b吗?
(1)∵∠2=∠3(已知),∠3=∠1(对顶角相等),
∴∠1=∠2(等量代换).
∴a∥b(同位角相等,两条直线平行).
你能用文字语言概括上面的结论吗?
判定方法2 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.
简单说成:内错角相等,两直线平行.
符号语言:∵∠2=∠3,∴a∥b.
(2)∵∠4+∠2=180°,∠4+∠1=180°(已知)
∴∠2=∠1(同角的补角相等)
∴a∥b.(同位角相等,两条直线平行)
你能用文字语言概括上面的结论吗?
判定方法3 两条直线被第三条直线所截,如果同旁内角互补,那么两条直线平行.
简单地说:同旁内角互补,两直线平行.
符号语言:∵∠4+∠2=180°,∴a∥b.
下册
四、课堂练习
教材P14练习1,补充(3)由∠A+∠AB C=180°可以判断哪两条直线平行?依据是什么?
五、课堂小结
怎样判断两条直线平行?
六、布置作业
教材P15习题5.2第1、2、4题.
第2课时
一、导入新课
我们学习过哪些判断两直线平行的方法?
1.平行线的定义
在同一平面内不相交的两条直线平行.
2.平行公理的推论
如果两条直线都平行于第三条直线,那么这两条直线也互相平行.
3.两直线平行的条件
两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.
两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.
两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.
二、实例探究
例1 在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行吗?为什么?
分析:垂直总与直角联系在一起,进而用判断两条直线平行的方法进行判定.
解:这两条直线平行,理由如下:
如右图,∵b⊥a,c⊥a(已知),
∴∠1=∠2=90°(垂直的定义).
∵∠1和∠2是同位角,
∴b∥c(同位角相等,两直线平行).
你还能用其它方法说明b∥c吗?
方法一:如图(1),利用“内错角相等,两直线
平行”说明;
方法二:如图(2),利用“同旁内角相等,两直线平行”说明.
(1)(2)注意:本例也是一个有用的结论.
例2 如右图,点B在DC上,BE平分∠ABD,
∠DBE=∠A,则BE∥AC,请说明理由.
分析:由BE平分∠AB D我们可以知道什么?联系∠DBE=∠A,我们又可以知道什么?由此能得出
BE∥AC吗?为什么?
解:∵BE平分∠A BD,
∴∠ABE=∠DBE(角平分线的定义).
又∠DBE=∠A,
∴∠ABE=∠A(等量代换).
∴BE∥AC(内错角相等,两直线平行).
注意:用符号语言书写证明过程时,要步步有据.
四、布置作业
教材P17习题5.2第10题.
A
B C D
E。

相关文档
最新文档