运筹学习题 (1)
运筹学试题1_研究生考试-专业课

管理运筹学复习题第一章一、单项选择题1.用运筹学分析与解决问题的过程是一个( B )A.预测过程B.科学决策过程C.计划过程D.控制过程2.运筹学运用数学方法分析与解决问题,以达到系统的最优目标。
可以说这个过程是一个( C )A.解决问题过程B.分析问题过程C.科学决策过程D.前期预策过程3从趋势上看,运筹学的进一步发展依赖于一些外部条件及手段,其中最主要的是( C )A.数理统计 B.概率论 C.计算机 D.管理科学4运筹学研究功能之间关系是应用( A )A.系统观点 B.整体观点 C.联系观点 D.部分观点5运筹学的主要目的在于求得一个合理运用人力、物力和财力的( B )A.最优目标B.最佳方案C.最大收益D.最小成本6.运筹学的主要研究对象是各种有组织系统的( C )A.近期目标与具体投入B.生产计划及盈利C.管理问题及经营活动D.原始数据及相互关系7.运筹学研究和解决问题的优势是应用各学科交叉的方法,其具有的典型特性为( A )A.综合应用 B.独立研究 C.以计算为主 D.定性与定量8.数学模型中,“s·t”表示( B )A. 目标函数B. 约束C. 目标函数系数D. 约束条件系数9.用运筹学解决问题的核心是( B )A.建立数学模型并观察模型 B.建立数学模型并对模型求解C.建立数学模型并验证模型 D.建立数学模型并优化模型10.运筹学作为一门现代的新兴科学,起源于第二次世界大战的( B )A.工业活动B.军事活动C.政治活动D.商业活动11.运筹学是近代形成的一门( C )A.管理科学 B.自然科学 C.应用科学 D.社会科学12.用运筹学解决问题时,要对问题进行( B )A.分析与考察B.分析和定义C.分析和判断D.分析和实验13.运筹学中所使用的模型是( C )A.实物模型B.图表模型C.数学模型D.物理模型14.运筹学的研究对象是( B )A.计划问题 B.管理问题 C.组织问题 D.控制问题二、多项选择题1.运筹学的主要分支包括( ABDE )A.图论B.线性规划 C .非线性规划 D.整数规划 E.目标规划三、简答题1.运筹学的数学模型有哪些缺点?答:(1)数学模型的缺点之一是模型可能过分简化,因而不能正确反映实际情况。
运筹学习题集(第一章)

判断题判断正误,如果错误请更正第1章线性规划1.任何线形规划一定有最优解。
2.若线形规划有最优解,则一定有基本最优解。
3.线形规划可行域无界,则具有无界解。
4.在基本可行解中非基变量一定为0。
5.检验数λj表示非基变量Xj增加一个单位时目标函数值的改变量。
6.minZ=6X1+4X2|X1-2X|︳<=10 是一个线形规划模型X1+X2=100X1>=0,X2>=07.可行解集非空时,则在极点上至少有一点达到最优解.8.任何线形规划都可以化为下列标准型Min Z=∑C j X j∑a ij x j=b1, i=1,2,3……,mX j>=0,j=1,2,3,……,n:b i>=0,i=1,2,3,……m9.基本解对应的基是可行基.10.任何线形规划总可用大M 单纯形法求解.11.任何线形规划总可用两阶段单纯形法求解。
12.若线形规划存在两个不同的最优解,则必有无穷多个最优解。
13.两阶段中第一阶段问题必有最优解。
14.两阶段法中第一阶段问题最优解中基变量全部非人工变量,则原问题有最优解。
15.人工变量一旦出基就不会再进基。
16.普通单纯形法比值规则失效说明问题无界。
17.最小比值规则是保证从一个可行基得到另一个可行基。
18.将检验数表示为λ=C B B-1A-的形式,则求极大值问题时基本可行解是最优解的充要条件为λ》=0。
19.若矩阵B为一可行基,则|B|≠0。
20.当最优解中存在为0的基变量时,则线形规划具有多重最优解。
选择题在下列各题中,从4个备选答案中选出一个或从5个备选答案中选出2~5个正确答案。
第1章线性规划1.线形规划具有无界解是指:A可行解集合无界B有相同的最小比值C存在某个检验数λk>0且a ik<=0(i=1,2,3,……,m) D 最优表中所有非基变量的检验数非0。
2.线形规划具有多重最优解是指:A 目标函数系数与某约束系数对应成比例B最优表中存在非基变量的检验数为0 C可行解集合无界D存在基变量等于03.使函数Z=-X1+X2-4X3增加的最快的方向是:A (-1,1,-4)B(-1,-1,-4)C(1,1,4)D(1,-1,-4-)4.当线形规划的可行解集合非空时一定A包含原点X=(0,0,0……)B有界C 无界D 是凸集5.线形规划的退化基本可行解是指A基本可行解中存在为0的基变量B非基变量为C非基变量的检验数为0 D最小比值为06.线形规划无可行解是指A进基列系数非正B有两个相同的最小比值C第一阶段目标函数值大于0 D用大M法求解时最优解中含有非0的人工变量E可行域无界7.若线性规划存在可行基,则A一定有最优解B一定有可行解C可能无可行解D可能具有无界解E全部约束是〈=的形式8.线性规划可行域的顶点是A可行解B非基本解C基本可行解D最优解E基本解9.minZ=X1-2X2,-X1+2X2〈=5,2X1+X2〈=8,X1,X2〉=0,则A有惟一最优解B有多重最优解C有无界解D无可行解E存在最优解10.线性规划的约束条件为X1+X2+X3=32X1+2X2+X4=4X1,X2,X3,X4〉=0 则基本可行解是A(0,0,4,3)B(0,0,3,4)C(3,4,0,0)D(3,0,0,-2)计算题1.1 对于如下的线性规划问题MinZ= X1+2X2s.t. X1+ X2≤4-X1+ X2≥1X2≤3X1, X2≥0的图解如图所示。
《运筹学》习题集

第一章线性规划1.1将下述线性规划问题化成标准形式1)min z=-3x1+4x2-2x3+5 x4-x2+2x3-x4=-24xst. x1+x2-x3+2 x4 ≤14-2x1+3x2+x3-x4 ≥ 2x1,x2,x3≥0,x4无约束2)min z =2x1-2x2+3x3+x2+x3=4-xst. -2x1+x2-x3≤6x1≤0 ,x2≥0,x3无约束1.2用图解法求解LP问题,并指出问题具有唯一最优解、无穷多最优解、无界解还是无可行解。
1)min z=2x1+3x24x1+6x2≥6st2x1+2x2≥4x1,x2≥02)max z=3x1+2x22x1+x2≤2st3x1+4x2≥12x1,x2≥03)max z=3x1+5x26x1+10x2≤120st5≤x1≤103≤x2≤84)max z=5x1+6x22x1-x2≥2st-2x1+3x2≤2x1,x2≥01.3找出下述LP问题所有基解,指出哪些是基可行解,并确定最优解(1)min z=5x1-2x2+3x3+2x4x1+2x2+3x3+4x4=7st2x1+2x2+x3 +2x4=3x1,x2,x3,x4≥01.4 分别用图解法与单纯形法求解下列LP 问题,并对照指出最优解所对应的顶点。
1) maxz =10x 1+5x 23x 1+4x 2≤9 st 5x 1+2x 2≤8 x 1,x 2≥02) maxz =2x 1+x 2 3x 1+5x 2≤15 st 6x 1+2x 2≤24x 1,x 2≥01.5 分别用大M 法与两阶段法求解下列LP 问题。
1) minz =2x 1+3x 2+x 3 x 1+4x 2+2x 3≥8 st 3x 1+2x 2 ≥6x 1,x 2 ,x 3≥02) max z =4x 1+5x 2+ x 3. 3x 1+2x 2+ x 3≥18St. 2x 1+ x 2 ≤4x 1+ x 2- x 3=53) maxz = 5x 1+3x 2 +6x 3 x 1+2x 2 -x 3 ≤ 18 st 2x 1+x 2 -3 x 3 ≤ 16 x 1+x 2 -x 3=10 x 1,x 2 ,x 3≥01231231231231234)m ax 101512539561515.25,,0z x x x x x x x x x st x x x x x x =++++≤⎧⎪-++≤⎪⎨++≥⎪⎪≥⎩1.61.7某班有男生30人,女生20人,周日去植树。
运筹学(第五版) 习题答案

d
4
1
0
0
2
-1
-3
0
1
-1
0
3
-5
0
0
-4
1
0
0
-3
0
解:
(1)有唯一最优解时,d 0, 0, 0
(2)存在无穷多最优解时,d 0, 0, =0或d 0, =0, 0.
(3)有无界解时,d 0, 0, 0且
(4)此时,有d 0, 0并且 , ,3/ d/4
1.9某昼夜服务的公交线路每天个时间段内所需司机和乘务员人数如下:
班次
时间
所需人数
1
6点到10点
60
2
10点到14点
70
3
14点到18点
60
4
18点到22点
50
5
22点到2点
20
6
2点到6点
30
设司机和乘务人员分别在各时间区段一开始时上班,并连续上班8小时,问该公交线路至少配备多少司机和乘务人员。列出线型规划模型。
解:
设 (k=1,2,3,4,5,6)为 个司机和乘务人员第k班次开始上班。
丙
原料成本(元/千克)
每月限制用量(千克)
A
60%
15%
2
2000
B
1.5
2500
C
20%
60%
50%
1
1200
加工费
0.5
0.4
0.3
售价
3.4
2.85
2.25
问该厂每月应当生产这三种牌号糖果各多少千克,使得获利最大?建立数学模型。
解:
解:设 , , 是甲糖果中的A,B,C成分, , , 是乙糖果的A,B,C成分, , , 是丙糖果的A,B,C成分。
运筹学习题

习题一1.1 用图解法求解下列线性规划问题,并指出各问题是具有唯一最优解、无穷多最优解、无界解或无可行解。
(1) min z =6x1+4x2(2) max z =4x1+8x2st. 2x1+x2≥1 st. 2x1+2x2≤103x1+4x2≥1.5 -x1+x2≥8x1, x2≥0 x1, x2≥0(3) max z =x1+x2(4) max z =3x1-2x2st. 8x1+6x2≥24 st. x1+x2≤14x1+6x2≥-12 2x1+2x2≥42x2≥4 x1, x2≥0x1, x2≥0(5) max z =3x1+9x2(6) max z =3x1+4x2st. x1+3x2≤22 st. -x1+2x2≤8-x1+x2≤4 x1+2x2≤12x2≤6 2x1+x2≤162x1-5x2≤0 x1, x2≥0x1, x2≥01.2. 在下列线性规划问题中,找出所有基本解,指出哪些是基本可行解并分别代入目标函数,比较找出最优解。
(1) max z =3x1+5x2(2) min z =4x1+12x2+18x3st. x1+x3=4 st. x1+3x3-x4=32x2+x4=12 2x2+2x3-x5=53x1+2x2+x5=18 x j≥0 (j=1, (5)x j≥0 (j=1, (5)1.3. 分别用图解法和单纯形法求解下列线性规划问题,并对照指出单纯形法迭代的每一步相当于图解法可行域中的哪一个顶点。
(1) max z =10x1+5x2st. 3x1+4x2≤95x1+2x2≤8x1, x2≥0(2) max z =100x1+200x2st. x1+x2≤500x1≤2002x1+6x2≤1200x1, x2≥01.4. 分别用大M法和两阶段法求解下列线性规划问题,并指出问题的解属于哪一类:(1) max z =4x1+5x2+x3(2) max z =2x1+x2+x3st. 3x1+2x2+x3≥18 st. 4x1+2x2+2x3≥42x1+x2≤4 2x1+4x2≤20x1+x2-x3=5 4x1+8x2+2x3≤16x j≥0 (j=1,2,3)x j≥0 (j=1,2,3)(3) max z = x 1+ x 2 (4) max z =x 1+2x 2+3x 3-x 4 st. 8x 1+6x 2≥24 st. x 1+2x 2+3x 3=154x 1+6x 2≥-12 2x 1+ x 2+5x 3=202x 2≥4 x 1+2x 2+ x 3+ x 4=10x 1, x 2≥0 x j ≥0 (j =1, (4)(5) max z =4x 1+6x 2 (6) max z =5x 1+3x 2+6x 3 st. 2x 1+4x 2 ≤180 st. x 1+2x 2+ x 3≤183x 1+2x 2 ≤150 2x 1+ x 2+3x 3≤16 x 1+ x 2=57 x 1+ x 2+ x 3=10x 2≥22 x 1, x 2≥0,x 3无约束 x 1, x 2≥01.5 线性规划问题max z =CX ,AX =b ,X ≥0,如X*是该问题的最优解,又λ>0为某一常数,分别讨论下列情况时最优解的变化:(1) 目标函数变为max z =λCX ;(2) 目标函数变为max z =(C +λ)X ;(3) 目标函数变为max z =C X ,约束条件变为AX =λb 。
运筹学复习习题

运筹学学习与考试指导模拟考试试题(一)一、单项选择题(从下列各题四个备选答案中选出一个正确答案,答案选错或未选者,该题不得分.每小题2分,共10分)1。
博弈论中,局中人从一个博弈中得到的结果常被称为( ): A. 效用; B. 支付; C. 决策; D 。
利润。
2.设线性规划的约束条件为⎪⎩⎪⎨⎧≥=++=++0,,,4223421421321x x x x x x x x x则基本可行解为( ). A 。
(0,0,4,3) B.(3,4,0,0) C 。
(2,0,1,0) D 。
(3,0,4,0) 3.minZ=3x1+4x2, x1+x2≥4, 2x1+x2≤2, x1、x2≥0,则( ). A.无可行解B 。
有唯一最优解C 。
有多重最优解D 。
有无界解4.互为对偶的两个线性规划问题的解存在关系( ). A.原问题无可行解,对偶问题也无可行解 B 。
对偶问题有可行解,原问题也有可行解 C.若最优解存在,则最优解相同D.一个问题有无界解,则另一个问题无可行解5.下列图形中阴影部分构成的集合是凸集的是( ):二、判断题(你认为下列命题是否正确,对正确的打“√”;错误的打“×”。
每小题2分,共20分)1。
线性规划问题的每一个基本可行解对应可行域的一个顶点。
( )2. 如果在单纯形表中,所有的检验数都为正,则对应的基本可行解就是最优解。
( )3. 在可行解的状态下,原问题与对偶问题的目标函数值是相等的。
4.可行解集非空时,则在极点上至少有一点达到最优值。
( ) 5.原问题具有无界解,则对偶问题不可行。
( )6.互为对偶问题,或者同时都有最优解,或者同时都无最优解。
( ) 7.加边法就是避圈法.( )8.一对正负偏差变量至少一个大于零.( ) 9.要求不超过目标值的目标函数是minZ=d+。
( )10.求最小值问题的目标函数值是各分枝函数值的下界。
( ) 三、填空(1分/空,共5分)1.原问题的第1个约束方程是“="型,则对偶问题相应的变量是 变量. 2.若原问题可行,但目标函数无界,则对偶问题 。
运筹学习题答案(1)

第一章 线性规划及单纯形法(作业)1.4 分别用图解法和单纯型法求解下列线性规划问题,并对照指出单纯形表中的各基可行解对应图解法中可行域的哪一顶点。
(1)Max z=2x 1+x 2St.⎪⎩⎪⎨⎧≥≤+≤+0,24261553212121x x x x x x 解:①图解法:由作图知,目标函数等值线越往右上移动,目标函数越大,故c 点为对应的最优解,最优解为直线⎩⎨⎧=+=+242615532121x x x x 的交点,解之得X=(15/4,3/4)T 。
Max z =33/4. ② 单纯形法:将上述问题化成标准形式有: Max z=2x 1+x 2+0x 3+0x 4St. ⎪⎩⎪⎨⎧≥≤++≤++0,,,242615535421421321x x x x x x x x x x其约束条件系数矩阵增广矩阵为:P 1 P 2 P 3 P 4⎥⎦⎤⎢⎣⎡241026150153 P 3,P 4为单位矩阵,构成一个基,对应变量向,x 3,x 4为基变量,令非基变量x 1,x 2为零,找到T 优解,代入目标函数得Max z=33/4.1.7 分别用单纯形法中的大M 法和两阶段法求解下列线性规划问题,并指出属哪一类。
(3)Min z=4x 1+x 2⎪⎪⎩⎪⎪⎨⎧=≥=++=-+=+)4,3,2,1(0426343342132121j xj x x x x x x x x 解:这种情况化为标准形式: Max z '=-4x 1-x 2⎪⎪⎩⎪⎪⎨⎧=≥=++=-+=+)4,3,2,1(0426343342132121j xj x x x x x x x x 添加人工变量y1,y2Max z '=-4x 1-x 2+0x 3+0x 4-My 1-My 2⎪⎪⎩⎪⎪⎨⎧≥=≥=++=+-+=++0,).4,3,2,1(04263433214112321121y y j xj x x x y x x x y x x(2) 两阶段法: Min ω=y 1+y 2St.⎪⎪⎩⎪⎪⎨⎧≥=≥=++=+-+=++0,).4,3,2,1(04263433214112321121y y j xj x x x y x x x y x x第二阶段,将表中y 1,y 2去掉,目标函数回归到Max z '=-4x 1-x 2+0x 3+0x 4第二章 线性规划的对偶理论与灵敏度分析(作业)2.7给出线性规划问题:Max z=2x 1+4x 2+x 3+x 4⎪⎪⎪⎩⎪⎪⎪⎨⎧=≥≤++≤++≤+≤++)4,3,2,1(096628332143221421j x x x x x x x x x x x x j要求:(1)写出其对偶问题;(2)已知原问题最优解为X *=(2,2,4,0),试根据对偶理论,直接求出对偶问题的最优解。
《管理运筹学》习题1解答

《管理运筹学》习题11.永久机械厂生产Ⅰ、Ⅱ、Ⅲ三种产品,均要经过A、B两道工序加工。
设有两种规格的设备A1、A2能完成A工序;有三种规格的设备B1、B2、B3能完成B工序。
Ⅰ可在A、B 的任何规格的设备上加工;Ⅱ可在任意规格的A设备上加工,但对B工序,只能在B1设备上加工;Ⅲ只能在A2与B2设备上加工。
加工单位产品所需的工序时间及其他各项数据如表所示。
问:为使该厂获得最大利润,应如何制定产品加工方案?(只建模,不求解。
)表12.某快餐店坐落在一个旅游景点中,雇佣了两名正式职工,两人都是每天工作8小时。
其余工作由临时工来担任。
在星期六,该快餐店从上午11时开始营业到夜晚10时关门。
根据游客就餐情况,在星期六每个营业小时所需职工数(包括正式工和临时工)如表2所示。
已知一名正式职工11点开始上班,工作4个小时后,休息1个小时,而后再工作4个小时;另一名正式职工13点开始上班,工作4个小时后,休息1个小时,而后再工作4个小时。
临时工每班连续工作时间存在3小时、4小时两种情况,前者每小时工资为4元但每班人数不超过5人,后者每小时工资为5元但每班人数不受限制。
那么应如何安排临时工的班次,使得使用临时工的总成本最小?(只建模,不求解。
)3.某公司生产Ⅰ,Ⅱ两种产品,市场对Ⅰ,Ⅱ两种产品的需求量为:产品Ⅰ在1—4月每月需10000件,5—9月每月30000件,10—12月每月需100000件;产品Ⅱ在3—9月每月15000件,其他月每月50000件。
该公司生产这两种产品成本为:产品Ⅰ在1—5月内生产每件5元,6—12月内生产每件4.5元;产品Ⅱ在1—5月内生产每件8元,6—12月内生产每件7元。
该公司每月生产这两种产品的总和不超过120000件。
产品Ⅰ容积为每件0.2立方米,产品Ⅱ容积为每件0.4立方米,该公司仓库容积为15000立方米,占用公司每月每立方米库容需1元,如该公司仓库不足时,可从外面仓库租借,租用外面仓库每月没立方米库容需1.5元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.对某厂I 、II 、III 三种产品下一年各季度的合同预订数如表——1所示。
该三种产品1季度初无库存,要求在4季度末各库存150件。
已知该厂每季度生产工时为15000小时,生产I 、II 、III 产品每件分别需要2、4、3小时。
因更换工艺装备,产品I 在2季度无法生产。
规定当产品不能按期交货时,产品I 、II 每件每迟交一个季度赔偿20元,产品III 赔10元;又生产出来产品不在本季度交货的,每件每季度的库存费用为5元。
问该厂应如何安排生产,使总的赔偿加库存的费用为最小。
(要求建立模型,不需要求解)
2.某厂生产Ⅰ、Ⅱ、Ⅲ三种产品,分别经过A 、B 、C 三种设备加工。
已知生产单位各种产品所需的设备台时、设备的现有能力及每件产品的预期利润见表――2所示。
(1)求获利最大的产品生产计划;
(2)产品Ⅲ每件的利润增加到多大时才值得安排生产?如产品Ⅲ每件的利润增加到50/6元,求最优计划的变化;
(3)产品Ⅰ的利润在多大范围内变化时,原最优计划保持不变;
(4)设备A 的能力如为100+10t ,确定最优基不变的 t 的变化范围;
(5)如有一种新产品,加工一件需设备A 、B 、C 的台时各为1、4、3小时,预期每件的利润为8元,是否值得安排生产;
(6)如合同规定该厂至少生产10件产品Ⅲ,试确定最优计划的变化。
3.已知线性规划问题:
⎪⎩⎪
⎨⎧≥≤≤-+-=++-+-=.
,0,064..22min 321
321321321unr x x x kx x x x x x t s x x x Z ,
;1,0,5321-==-=x x x
(1)求k 的值;
(2)写出并求出其对偶问题的最优解。
4.6个人完成4项工作任务,由于个人的技术专长不同,他们完成4项任务所获得的收益如下表所示,且规定每人只能做一项工作,一项工作任务只需一人操作。
试求使总收益最大的分派方案。
一、某工厂生产A 、B 两种产品,均需经过两道工序,每生产1t A 产品需要经第一道工序
加工2h ,第二道工序加工3h ;每生产1t B 产品需要经第一道工序加工3h ,第二道工序加工4h 。
可供利用的第一道工序工时为15h ,第二道工序工时为25h 。
生产产品
B 的同时可产出副产品
C ,每生产1t 产品B ,可同时得到2t 产品C 而不需要外加任何费用。
副产品C 一部分可以盈利,但剩下的只能报废,报废需要有一定的费用。
各项费用的情况为:出售产品A 每吨可盈利400元;出售产品B 每吨可盈利800元;每销售1t 副产品C 可盈利300元。
当剩余的产品C 报废时,每吨损失费为200元。
经市场预测,在计划期内产品C 的最大销量为5t 。
应如何安排A 、B 两种产品的产量使总盈利最大? 试列出本问题的线性规划模型,并用相关软件求解。
二、石家庄北方研究院有一、二、三三个区。
每年分别需要用煤3000、1000、2000吨,由
河北临城、山西盂县两处煤矿负责供应,价格、质量相同。
供应能力分别为1500、4000吨,运价为:
由于需大于供,经院研究决定一区供应量可减少0--200吨,二区必须满足需求量,三区供应量不少于1700吨,试求总费用为最低的调运方案。
三、设有非线性规划问题:
,0,22.16
412
52min 2121212
221≥≥≤++
--+x x x x t
s x x x x
求它的Kuhn -Kucker 点,并判断它(们)是否为极值点。
四、解下面问题:
3
,2,1,10
1021531052max 321321321==≤++≥-+-++=j or x x x x x x x x x x f j。