运筹学习题答案

合集下载

运筹学部分课后习题解答

运筹学部分课后习题解答

运筹学部分课后习题解答P47 1.1用图解法求解线性规划问题min z=2x 3x24为6x2 _ 6st ]4x1+2x2>4X i,X2 _0解:由图1可知,该问题的可行域为凸集MABC,且可知线段BA上的点都为3最优解,即该问题有无穷多最优解,这时的最优值为%=2 - 3P47 1.3用图解法和单纯形法求解线性规划问题max z=10x1 5x213为4x2乞9a )s.t」5为+2x2兰8x1, x^ 0解:由图1可知,该问题的可行域为凸集OABCO且可知B点为最优值点,即严+4卷=9斗|人3,即最优解为x」1,3(5X1 +2X2 =8 & =2 I 2丿这时的最优值为Z max = 10 1 5 -2 2原问题化成标准型为max z=10x1 5x23\ 4x2 x3 = 9 s.t <5^+2x2 +x4 =8X i,X2,X3,X4 —0z所以有—1,3 ,Z max=10 1 5I 2 丿 2 2P78 2.4已知线性规划问题:max z =2x 4x2x3x4/+3X2+x4兰82咅+x2<6彳x2+X3 +x4兰6X,+ x2+ X3<9XZX, X4 一0求:(1)写出其对偶问题;(2)已知原问题最优解为X^(2,2,410),试根据对偶理论,直接求出对偶问题的最优解。

解:(1)该线性规划问题的对偶问题为:min w =8y, 6y26y39y4\i+2y2 +y4 兰23yr H y<H yr H y^4彳y^y^iy i, y2,y3,y4—0(2)由原问题最优解为X* =(2,2,4,0),根据互补松弛性得:y1 2y2 y4 = 23y1 y2 y a y^4I y a + yU把X* = (2,2,4,0)代入原线性规划问题的约束中得第四个约束取严格不等号,即 2 2 4 =8 < 9 - y4=0y1 2y2 =2从而有+y2 +y a =4L ya =1得Y1 ,Y2 ,Y a = 1,y4 = 05 5所以对偶问题的最优解为y* =(4,3,1,0)T,最优值为W min =165 5P79 2.7考虑如下线性规划问题:min z = 60x i 40x2 80x3” 3x i + 2x2 + X3 兰24x i + X2 + 3x^ > 42x i +2X2 +2x3 兰3x i,x?,x^ >0(1)写出其对偶问题;(2)用对偶单纯形法求解原问题;解:(1)该线性规划问题的对偶问题为:max w = 2% 4y2 3y33% +4y2 +2y3 W60』2% +y2 +2y3 玄40y i 3y2 2y3 — 80[y i,y2,y^0(2)在原问题加入三个松弛变量X4,X5,X6把该线性规划问题化为标准型max z = -60旨-40X2-80X3—3x i — 2x? — X3 + X4 = -2~4x<i — x? — 3X3 + X5 ——4-2 X i — 2 X2 — 2 X3 + = _3X j "j =1川,6x* 5,?,O)T,Z max =60 540 - 80 06 3 6 3 3P81 2.12某厂生产A、B、C三种产品,其所需劳动力、材料等有关数据见下表。

运筹学课后习题答案

运筹学课后习题答案

第一章 线性规划1、由图可得:最优解为2、用图解法求解线性规划: Min z=2x 1+x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤≥+≤+-01058244212121x x x x x x解:由图可得:最优解x=1.6,y=6.4Max z=5x 1+6x 2⎪⎩⎪⎨⎧≥≤+-≥-0,23222212121x x x x x x解:由图可得:最优解Max z=5x 1+6x 2, Max z= +∞Maxz = 2x 1 +x 2⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤0,5242261552121211x x x x x x x由图可得:最大值⎪⎩⎪⎨⎧==+35121x x x , 所以⎪⎩⎪⎨⎧==2321x xmax Z = 8.1212125.max 23284164120,1,2maxZ .jZ x x x x x x x j =+⎧+≤⎪≤⎪⎨≤⎪⎪≥=⎩如图所示,在(4,2)这一点达到最大值为26将线性规划模型化成标准形式:Min z=x 1-2x 2+3x 3⎪⎪⎩⎪⎪⎨⎧≥≥-=++-≥+-≤++无约束321321321321,0,052327x x x x x x x x x x x x解:令Z ’=-Z,引进松弛变量x 4≥0,引入剩余变量x 5≥0,并令x 3=x 3’-x 3’’,其中x 3’≥0,x 3’’≥0Max z ’=-x 1+2x 2-3x 3’+3x 3’’⎪⎪⎩⎪⎪⎨⎧≥≥≥≥≥≥-=++-=--+-=+-++0,0,0'',0',0,05232'''7'''5433213215332143321x x x x x x x x x x x x x x x x x x x7将线性规划模型化为标准形式Min Z =x 1+2x 2+3x 3⎪⎪⎩⎪⎪⎨⎧≥≤-=--≥++-≤++无约束,321321321321,00632442392-x x x x x x x x x x x x解:令Z ’ = -z ,引进松弛变量x 4≥0,引进剩余变量x 5≥0,得到一下等价的标准形式。

运筹学部分课后习题解答

运筹学部分课后习题解答

运筹学部分课后习题解答P47 1.1 用图解法求解线性规划问题a)12121212min z=23466 ..424,0x xx xs t x xx x++≥⎧⎪+≥⎨⎪≥⎩解:由图1可知,该问题的可行域为凸集MABCN,且可知线段BA上的点都为最优解,即该问题有无穷多最优解,这时的最优值为min 3z=23032⨯+⨯= P47 1.3 用图解法和单纯形法求解线性规划问题a)12121212max z=10x5x349 ..528,0x xs t x xx x++≤⎧⎪+≤⎨⎪≥⎩解:由图1可知,该问题的可行域为凸集OABCO,且可知B点为最优值点,即112122134935282xx xx x x=⎧+=⎧⎪⇒⎨⎨+==⎩⎪⎩,即最优解为*31,2Tx⎛⎫= ⎪⎝⎭这时的最优值为max335z=101522⨯+⨯=单纯形法: 原问题化成标准型为121231241234max z=10x 5x 349..528,,,0x x x s t x x x x x x x +++=⎧⎪++=⎨⎪≥⎩ j c →10 5B CB Xb 1x2x3x4x0 3x 9 3 4 1 0 04x8[5] 2 0 1 j j C Z -105 0 0 0 3x 21/5 0 [14/5] 1 -3/5 101x8/51 2/5 0 1/5 j j C Z -1 0 -2 5 2x 3/2 0 1 5/14 -3/14 101x11 0 -1/72/7j j C Z --5/14 -25/14所以有*max 33351,,1015222Tx z ⎛⎫==⨯+⨯= ⎪⎝⎭P78 2.4 已知线性规划问题:1234124122341231234max24382669,,,0z x x x x x x x x x x x x x x x x x x x =+++++≤⎧⎪+≤⎪⎪++≤⎨⎪++≤⎪≥⎪⎩求: (1) 写出其对偶问题;(2)已知原问题最优解为)0,4,2,2(*=X ,试根据对偶理论,直接求出对偶问题的最优解。

(完整版)运筹学》习题答案运筹学答案

(完整版)运筹学》习题答案运筹学答案

《运筹学》习题答案一、单选题1.用动态规划求解工程线路问题时,什么样的网络问题可以转化为定步数问题求解()BA.任意网络B.无回路有向网络C.混合网络D.容量网络2.通过什么方法或者技巧可以把工程线路问题转化为动态规划问题?()BA.非线性问题的线性化技巧B.静态问题的动态处理C.引入虚拟产地或者销地D.引入人工变量3.静态问题的动态处理最常用的方法是?BA.非线性问题的线性化技巧B.人为的引入时段C.引入虚拟产地或者销地D.网络建模4.串联系统可靠性问题动态规划模型的特点是()DA.状态变量的选取B.决策变量的选取C.有虚拟产地或者销地D.目标函数取乘积形式5.在网络计划技术中,进行时间与成本优化时,一般地说,随着施工周期的缩短,直接费用是( )。

CA.降低的B.不增不减的C.增加的D.难以估计的6.最小枝权树算法是从已接接点出发,把( )的接点连接上CA.最远B.较远C.最近D.较近7.在箭线式网络固中,( )的说法是错误的。

DA.结点不占用时间也不消耗资源B.结点表示前接活动的完成和后续活动的开始C.箭线代表活动D.结点的最早出现时间和最迟出现时间是同一个时间8.如图所示,在锅炉房与各车间之间铺设暖气管最小的管道总长度是( )。

CA.1200B.1400C.1300D.17009.在求最短路线问题中,已知起点到A,B,C三相邻结点的距离分别为15km,20km,25km,则()。

DA.最短路线—定通过A点B.最短路线一定通过B点C.最短路线一定通过C点D.不能判断最短路线通过哪一点10.在一棵树中,如果在某两点间加上条边,则图一定( )AA.存在一个圈B.存在两个圈C.存在三个圈D.不含圈11.网络图关键线路的长度( )工程完工期。

CA.大于B.小于C.等于D.不一定等于12.在计算最大流量时,我们选中的每一条路线( )。

CA.一定是一条最短的路线B.一定不是一条最短的路线C.是使某一条支线流量饱和的路线D.是任一条支路流量都不饱和的路线13.从甲市到乙市之间有—公路网络,为了尽快从甲市驱车赶到乙市,应借用()CA.树的逐步生成法B.求最小技校树法C.求最短路线法D.求最大流量法14.为了在各住宅之间安装一个供水管道.若要求用材料最省,则应使用( )。

运筹学习题答案(1)

运筹学习题答案(1)

第一章 线性规划及单纯形法(作业)1.4 分别用图解法和单纯型法求解下列线性规划问题,并对照指出单纯形表中的各基可行解对应图解法中可行域的哪一顶点。

(1)Max z=2x 1+x 2St.⎪⎩⎪⎨⎧≥≤+≤+0,24261553212121x x x x x x 解:①图解法:由作图知,目标函数等值线越往右上移动,目标函数越大,故c 点为对应的最优解,最优解为直线⎩⎨⎧=+=+242615532121x x x x 的交点,解之得X=(15/4,3/4)T 。

Max z =33/4. ② 单纯形法:将上述问题化成标准形式有: Max z=2x 1+x 2+0x 3+0x 4St. ⎪⎩⎪⎨⎧≥≤++≤++0,,,242615535421421321x x x x x x x x x x其约束条件系数矩阵增广矩阵为:P 1 P 2 P 3 P 4⎥⎦⎤⎢⎣⎡241026150153 P 3,P 4为单位矩阵,构成一个基,对应变量向,x 3,x 4为基变量,令非基变量x 1,x 2为零,找到T 优解,代入目标函数得Max z=33/4.1.7 分别用单纯形法中的大M 法和两阶段法求解下列线性规划问题,并指出属哪一类。

(3)Min z=4x 1+x 2⎪⎪⎩⎪⎪⎨⎧=≥=++=-+=+)4,3,2,1(0426343342132121j xj x x x x x x x x 解:这种情况化为标准形式: Max z '=-4x 1-x 2⎪⎪⎩⎪⎪⎨⎧=≥=++=-+=+)4,3,2,1(0426343342132121j xj x x x x x x x x 添加人工变量y1,y2Max z '=-4x 1-x 2+0x 3+0x 4-My 1-My 2⎪⎪⎩⎪⎪⎨⎧≥=≥=++=+-+=++0,).4,3,2,1(04263433214112321121y y j xj x x x y x x x y x x(2) 两阶段法: Min ω=y 1+y 2St.⎪⎪⎩⎪⎪⎨⎧≥=≥=++=+-+=++0,).4,3,2,1(04263433214112321121y y j xj x x x y x x x y x x第二阶段,将表中y 1,y 2去掉,目标函数回归到Max z '=-4x 1-x 2+0x 3+0x 4第二章 线性规划的对偶理论与灵敏度分析(作业)2.7给出线性规划问题:Max z=2x 1+4x 2+x 3+x 4⎪⎪⎪⎩⎪⎪⎪⎨⎧=≥≤++≤++≤+≤++)4,3,2,1(096628332143221421j x x x x x x x x x x x x j要求:(1)写出其对偶问题;(2)已知原问题最优解为X *=(2,2,4,0),试根据对偶理论,直接求出对偶问题的最优解。

运筹学部分课后习题解答

运筹学部分课后习题解答

运筹学部分课后习题解答P47 1.1 用图解法求解线性规划问题a)12121212min z=23466 ..424,0x xx xs t x xx x++≥⎧⎪+≥⎨⎪≥⎩解:由图1可知,该问题的可行域为凸集MABCN,且可知线段BA上的点都为最优解,即该问题有无穷多最优解,这时的最优值为min 3z=23032⨯+⨯= P47 1.3 用图解法和单纯形法求解线性规划问题a)12121212max z=10x5x349 ..528,0x xs t x xx x++≤⎧⎪+≤⎨⎪≥⎩解:由图1可知,该问题的可行域为凸集OABCO,且可知B点为最优值点,即112122134935282xx xx x x=⎧+=⎧⎪⇒⎨⎨+==⎩⎪⎩,即最优解为*31,2Tx⎛⎫= ⎪⎝⎭这时的最优值为max335z=101522⨯+⨯=单纯形法: 原问题化成标准型为121231241234max z=10x 5x 349..528,,,0x x x s t x x x x x x x +++=⎧⎪++=⎨⎪≥⎩ j c →10 5B CB X b 1x2x3x4x0 3x 9 3 4 1 0 04x8[5] 2 0 1 j j C Z -105 0 0 0 3x 21/5 0 [14/5] 1 -3/5 101x8/51 2/5 0 1/5 j j C Z -1 0 -2 5 2x 3/2 0 1 5/14 -3/14 101x11 0 -1/72/7j j C Z --5/14 -25/14所以有*max 33351,,1015222Tx z ⎛⎫==⨯+⨯= ⎪⎝⎭P78 2.4 已知线性规划问题:1234124122341231234max24382669,,,0z x x x x x x x x x x x x x x x x x x x =+++++≤⎧⎪+≤⎪⎪++≤⎨⎪++≤⎪≥⎪⎩求: (1) 写出其对偶问题;(2)已知原问题最优解为)0,4,2,2(*=X ,试根据对偶理论,直接求出对偶问题的最优解。

运筹学习题参考答案

运筹学习题参考答案

习题参考答案第二章 习 题1.线性规划模型为:⎪⎪⎩⎪⎪⎨⎧≥≤++≤++≤++++0,,1800231200214002..453max 321321321321321x x x x x x x x x x x x t s x x x 2. 标准形式为:⎪⎪⎩⎪⎪⎨⎧≥=-++-=++=++---+-0,,,,,,1002333800120035.15.1..322min 87654328325473262543254x x x x x x x x x x x x x x x x x x x t s x x x x 3.(1)最优解为(2,2),最优值为8.(2)根据等式约束得:213--6x x x =代入规划等价于:⎪⎩⎪⎨⎧≥≥+≤+++0,3-6..62max 21212121x x x x x x t s x x 先用图解法求线性规划⎪⎩⎪⎨⎧≥≥+≤++0,3-6..2max 21212121x x x x x x t s x x 得最优解为(0,6)代入原规划可得最优解为(0,6,0)最优值为18.4.(1)以21,x x 为基变量可得基可行解(3,1,0),对应的基阵为:⎪⎪⎭⎫⎝⎛1101 以31,x x 为基变量可得基可行解(2,0,1),对应的基阵为:⎪⎪⎭⎫ ⎝⎛2111 (2)规划转化为标准形式:⎪⎩⎪⎨⎧≥=++=++--0,,,55623..34min 432142132121x x x x x x x x x x t s x x 以32,x x 为基变量可得基可行解(0,1,4,0),对应的基阵为:⎪⎪⎭⎫⎝⎛0512 5. 以432,,x x x 为基变量可得基可行解(0,2,3,9),对应的典式为:32192231412=+=+=x x x x x 非基变量1x 的检验数为21-。

6. (1) a=0,b=3,c=1,d=0;(2) 基可行解为(0,0,1,6,2) (3)最优值为3.7.(1)最优解为(1.6,0,1.2),最优值为-4.4;(2)令11-=x y ,则0≥y ,11+=y x ,在规划中用1+y 替代1x ,并化标准形式。

(完整版)运筹学》习题答案运筹学答案

(完整版)运筹学》习题答案运筹学答案

《运筹学》习题答案一、单选题1.用动态规划求解工程线路问题时,什么样的网络问题可以转化为定步数问题求解()BA.任意网络B.无回路有向网络C.混合网络D.容量网络2.通过什么方法或者技巧可以把工程线路问题转化为动态规划问题?()BA.非线性问题的线性化技巧B.静态问题的动态处理C.引入虚拟产地或者销地D.引入人工变量3.静态问题的动态处理最常用的方法是?BA.非线性问题的线性化技巧B.人为的引入时段C.引入虚拟产地或者销地D.网络建模4.串联系统可靠性问题动态规划模型的特点是()DA.状态变量的选取B.决策变量的选取C.有虚拟产地或者销地D.目标函数取乘积形式5.在网络计划技术中,进行时间与成本优化时,一般地说,随着施工周期的缩短,直接费用是( )。

CA.降低的B.不增不减的C.增加的D.难以估计的6.最小枝权树算法是从已接接点出发,把( )的接点连接上CA.最远B.较远C.最近D.较近7.在箭线式网络固中,( )的说法是错误的。

DA.结点不占用时间也不消耗资源B.结点表示前接活动的完成和后续活动的开始C.箭线代表活动D.结点的最早出现时间和最迟出现时间是同一个时间8.如图所示,在锅炉房与各车间之间铺设暖气管最小的管道总长度是( )。

CA.1200B.1400C.1300D.17009.在求最短路线问题中,已知起点到A,B,C三相邻结点的距离分别为15km,20km,25km,则()。

DA.最短路线—定通过A点B.最短路线一定通过B点C.最短路线一定通过C点D.不能判断最短路线通过哪一点10.在一棵树中,如果在某两点间加上条边,则图一定( )AA.存在一个圈B.存在两个圈C.存在三个圈D.不含圈11.网络图关键线路的长度( )工程完工期。

CA.大于B.小于C.等于D.不一定等于12.在计算最大流量时,我们选中的每一条路线( )。

CA.一定是一条最短的路线B.一定不是一条最短的路线C.是使某一条支线流量饱和的路线D.是任一条支路流量都不饱和的路线13.从甲市到乙市之间有—公路网络,为了尽快从甲市驱车赶到乙市,应借用()CA.树的逐步生成法B.求最小技校树法C.求最短路线法D.求最大流量法14.为了在各住宅之间安装一个供水管道.若要求用材料最省,则应使用( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章习题1.思考题(1)微分学求极值的方法为什么不适用于线性规划的求解?(2)线性规划的标准形有哪些限制?如何把一般的线性规划化为标准形式?(3)图解法主要步骤是什么?从中可以看出线性规划最优解有那些特点?(4)什么是线性规划的可行解,基本解,基可行解?引入基本解和基可行解有什么作用?(5)对于任意基可行解,为什么必须把目标函数用非基变量表示出来?什么是检验数?它有什么作用?如何计算检验数?(6)确定换出变量的法则是什么?违背这一法则,会发生什么问题?(7)如何进行换基迭代运算?(8)大M法与两阶段法的要点是什么?两者有什么共同点?有什么区别?(9)松弛变量与人工变量有什么区别?试从定义和处理方式两方面分析。

(10)如何判定线性规划有唯一最优解,无穷多最优解和无最优解?为什么?2.建立下列问题的线性规划模型:(1)某厂生产A,B,C三种产品,每件产品消耗的原料和设备台时如表1-18所示:润最大的模型。

(2)某公司打算利用具有下列成分(见表1-19)的合金配制一种新型合金100公斤,新合金含铅,锌,锡的比例为3:2:5。

如何安排配方,使成本最低?(3)某医院每天各时间段至少需要配备护理人员数量见表1-20。

表1-20假定每人上班后连续工作8小时,试建立使总人数最少的计划安排模型。

能否利用初等数学的视察法,求出它的最优解?(4)某工地需要30套三角架,其结构尺寸如图1-6所示。

仓库现有长6.5米的钢材。

如何下料,使消耗的钢材最少?图1-63. 用图解法求下列线性规划的最优解:⎪⎪⎩⎪⎪⎨⎧≥≤+-≥+≥++=0,425.134 12 64 min )1(2121212121x x x x x x x x x x z⎪⎪⎩⎪⎪⎨⎧≥≤+≥+-≤++=0,82 5 1032 44 max )2(2121212121x x x x x x x x x x z⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤≤-≤+-≤++=0,6054 4 22232 96 max )3(21221212121x x x x x xx x x x x z⎪⎩⎪⎨⎧≥≤+-≥++=0,1 1234 3 max )4(21212121x x x x x x x x z4. 把下列线性规划化为标准形式:⎪⎪⎩⎪⎪⎨⎧≥≤=-++-≥-+≤-+-+-=无约束432143213214313210,,01 32 212 min )1(x x x x x x x x x x x x x x x x x z⎪⎪⎩⎪⎪⎨⎧≤≤≥+-≤++=无约束211212121,02182 32 max )2(x x x x x x x x x z5. 判定下列集合是否凸集:(1)R 1={(x 1,x 2)|x 12+2x 22≤2}(2)R 2={(x 1,x 2)|x 12-2x 2+3≥0,x 2≥0,|x 1|≤1} (3)R 3={(x 1,x 2)|x 1x 2≥1,x 1≥1,x 2≥0}6. 求出下列线性规划的所有基本解,并指出其中的基可行解和最优解。

⎪⎪⎩⎪⎪⎨⎧=≥=++=+=++=5,,1 ,0182 312 2 4853 max 521423121 j x x x x x x x x x x z j7. 求下列线性规划的解: (1)(2)⎪⎪⎩⎪⎪⎨⎧≥≤+≤≤+=0,182 36 82 53 max 21212121x x x x x x x x z⎪⎩⎪⎨⎧≥≤+-≤++=0,1 42 42 max 21212121x x x x x x x x z(3)(4)⎪⎩⎪⎨⎧≥≤+--≥+-+=0,122 2 max 21212121x x x x x x x x z⎪⎪⎩⎪⎪⎨⎧≥≤≥≤--≤++≤+-++=0,0,020102603 2 max 321321321321321x x x x x x x x x x x x x x x z8. 利用大M 法或两阶段法求解下列线性规划: (1)(2)⎪⎪⎩⎪⎪⎨⎧≥≥+≥-≤++=0,2172 23 max 2121212121x x x x x x x x x x z⎪⎪⎩⎪⎪⎨⎧≥=-+≤+≥++--=0,,54 21823 2 max 32132121321321x x x x x x x x x x x x x x z (3)(4)⎪⎪⎩⎪⎪⎨⎧≥≥≤-≥++-=0,2 6 31234 max 212212121x x x x x x x x x z⎪⎩⎪⎨⎧≥≥+++≥++++++=0,,,1223615263 343 min 4321432143214321x x x x x x x x x x x x x x x x z 9. 对于问题⎩⎨⎧≥==0b max X AX CX z (1)设最优解为X *,当C 改为C 时,最优解为X ,则0))((*≥--X X C C 。

(2)如果X 1,X 2均为最优解,则对于α∈[0,1],αX 1+(1-α)X 2均为最优解。

10. 用单纯形法求解问题2(4)(合理下料问题)。

11. 表1-21是一个求极大值线性规划的单纯形表,其中x 4,x 5,x 6是松弛变量。

(2)要使上表成为最优表,a 应满足什么条件? (3)何时有无穷多最优解? (4)何时无最优解?(5)何时应以x 3替换x 1?第二章习题1.思考题(1)如何在以B为基的单纯形表中,找出B-1?该表是怎样由初始表得到的?(2)对偶问题的构成要素之间,有哪些对应规律?(3)如何从原问题最优表中,直接找到对偶最优解?(4)叙述互补松弛定理及其经济意义。

(5)什么是资源的影子价格?它在经济管理中有什么作用?(6)对偶单纯形法有哪些操作要点?它与单纯形法有哪些相同,哪些地方有区别?(7)灵敏度分析主要讨论什么问题?分析的基本思路是什么?四种基本情况的分析要点是什么?2.已知某线性规划的初始单纯形表和最终单纯形表如表2-21,请把表中空白处的数字填上,并指出最优基B及B-1。

3.某个线性规划的最终表是表2-22:表2-22初始基变量是1,4,5。

(1)求最优基B=(P1,P2,P3);(2)求初始表。

4.写出下列线性规划的对偶问题:⎪⎪⎩⎪⎪⎨⎧≤≥=+-≥-+-≤+++-=无约束321321321321321,0,01314242 3 max )1(x x x x x x x x x x x x x x x z ⎪⎪⎩⎪⎪⎨⎧≤≥≥++=++-≤--+++-=无约束432143132143214321,,0,01222 242 32 min (2)x x x x x x x x x x x x x x x x x x z ⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧+=≤+==≥+=≥+===≤=∑∑∑∑====nn j x n n j x n j x mm i b x a m m i b x a m i b x a x c z jj j i nj j ij i nj j ij i nj j ij nj jj ,,1,0,,1,,,1,0,,1,,,1,,,2,1, max (3)221121211111无约束 ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧==≥=====∑∑∑∑====nj m i x nj b x m i a x x c z ij j m i ij i nj ij m i nj ijij ,,1 ,,10,,1 ,,1min (4)11115. 已知线性规划⎪⎩⎪⎨⎧≥≥++≥++++=0,, min 32123232221211313212111332211x x x b x a x a x a b x a x a x a x c x c x c z (1)写出它的对偶问题;(2)引入松弛变量,化为标准形式,再写出对偶问题; (3)引入人工变量,把问题化为等价模型:⎪⎩⎪⎨⎧≥=+-++=+-+++-++=0,,)( max 7127532322212116431321211176332211x x b x x x a x a x a b x x x a x a x a x x M x c x c x c z 再写出它的对偶问题。

试说明上面三个对偶问题是完全一致的。

由此,可以得出什么样的一般结论? 6. 利用对偶理论说明下列线性规划无最优解:⎪⎩⎪⎨⎧≥≤≥≥+--≥++-+-=0,0,032242 max 321321321321x x x x x x x x x x x x z 7. 已知表2-23是某线性规划的最优表,其中x 4,x 5为松弛变量,两个约束条件为≤型。

j (2)写出原问题的对偶问题; (3)由表2-23求对偶最优解。

8. 已知线性规划问题⎪⎪⎪⎩⎪⎪⎪⎨⎧=≥≥+≥+≥+++≥+++++=4,3,2,1,02 2 633 2 6368 min 314343214214321j x x x x x x x x x x x x x x x x z j(1)写出对偶问题;(2)已知原问题的最优解为X *=(1,1,2,0)T ,求对偶问题的最优解。

9*. 已知线性规划⎪⎪⎩⎪⎪⎨⎧≥=+-≥++≤--+-=无约束321321321321321,0,41632532 34 max x x x x x x x x x x x x x x x z 的最优解为X *=(0,0,4)T 。

(1)写出对偶问题; (2)求对偶问题最优解。

10. 用对偶单纯形法解下列各线性规划:⎪⎩⎪⎨⎧≥≥+-≥++++=0,,43232 432 min (1)321321321321x x x x x x x x x x x x z⎪⎩⎪⎨⎧≥≥++≥++++=0,,10536423 425 min (2)321321321321x x x x x x x x x x x x z11. 设线性规划问题⎪⎩⎪⎨⎧=≥=≤=∑∑==n j x m i b x a x c z ji nj j ij nj jj ,,2,1 ,0,,2,1 max 11(2.41)的m 种资源的影子价格为y 1*,y 2*,…,y m *。

线性规划⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=≥=≤>≤=∑∑∑===n j x m i b x a b x a x c z j i n j j ij nj j j nj jj ,,2,1 ,0,,2max 11111λλλ (2.42)与(2.41)是等价的,两者有相同的最优解,请说明(2.42)的m 种资源的影子价格为(y 1*/λ,y 2*,…,y m *),并指出这一结果的经济意义。

12*. 已知线性规划⎪⎩⎪⎨⎧≤≥≥+-+≥-++--+=0,,0,423322 2812 min 4321432143214321x x x x x x x x x x x x x x x x z(1)写出对偶问题,用图解法求最优解;(2)利用对偶原理求原问题最优解。

相关文档
最新文档