整体法与隔离法的运用及平衡问题中常用的方法
整体法和隔离法

整体法和隔离法一.整体法和隔离法在平衡中的应用1. 整体法:整体法是指对物理问题中的整个系统或整个过程进行分析、研究的方法。
在力学中,就是把几个物体视为一个整体,作为研究对象,受力分析时,只分析这一整体对象之外的物体对整体的作用力〔外力〕,不考虑整体内部之间的相互作用力〔内力〕。
整体法的思维特点:整体法是从局部到全局的思维过程,是系统论中的整体原理在物理中的应用。
整体法的优点:通过整体法分析物理问题,可以弄清系统的整体受力情况和全过程的受力情况,从整体上揭示事物的本质和变体规律,从而避开了中间环节的繁琐推算,能够灵活地解决问题。
通常在分析外力对系统的作用时,用整体法。
2. 隔离法:隔离法是指对物理问题中的单个物体或单个过程进行分析、研究的方法。
在力学中,就是把要分析的物体从相关的物体体系中隔离出来,作为研究对象,只分析该研究对象以外的物体对该对象的作用力,不考虑研究对象对其他物体的作用力。
隔离法的优点:容易看清单个物体的受力情况或单个过程的运动情形,问题处理起来比较方便、简单,便于初学者使用。
在分析系统内各物体〔或一个物体的各个部分〕间的相互作用时用隔离法。
3.实例分析例1. 如图1所示,质量为m=2kg的物体,置于质量为M=10kg的斜面体上,现用一平行于斜面的力F=20N推物体,使物体向上匀速运动,斜面体的倾角,始终保持静止,求地面对斜面体的摩擦力和支持力〔取〕解析:〔1〕隔离法:先对物体m受力分析,如图甲所示。
由平衡条件有甲垂直斜面方向:①平行斜面方向:②再对斜面体受力分析,如图乙所示,由平衡条件有乙水平方向:③竖直方向:④结合牛顿第三定律知⑤联立以上各式,可得地面对斜面体的摩擦力,方向水平向左;地面对斜面体的支持力,方向竖直向上。
〔2〕整体法:因此题没有要求求出物体和斜面体之间的相互作用力,而且两个物体均处于平衡状态〔尽管一个匀速运动,一个静止〕,故可将物体和斜面体视为整体,作为一个研究对象来研究,其受力如图丙所示,由平衡条件有:丙水平方向:⑤竖直方向:⑥将题给数据代入,求得比较上面两种解法,整体法的优点是显而易见的。
物体的平衡的整体法和隔离法

整体法和隔离法解决平衡问题:(1)整体法:把几个物体视为一个整体,只分析这一整体对象之外的物体对整体的作用力(外力),不考虑整体内部之间的相互作用力(内力。
(2)隔离法:对单个物体进行分析、研究。
使用原则:通常在分析外力对系统的作用时,用整体法,在分析系统内部物体间相互作用力时,用隔离法;有时候整体法和隔离法交替使用。
适用条件:两物体对地静止或作匀速直线运动,或两物体虽作加速运动但相对静止(即对地有共同的加速度)实战巩固练习:1 .如图所示,三个完全相同的物体叠放在水平面上,用大小相同、方向相反的两个水平力F分别拉物块A和B三物体均处于静止状态()A.A对B的摩擦力大小为F,方向向左B .水平面对C没有摩擦力作用C.B对A没有摩擦力作用D.C对B的摩擦力大小为F,方向向左2 .在粗糙水平面上有一个三角形木块a,在它的两个粗糙斜面上分别放着质量为mRD m2的两个木块b和c,如图所示,已知m1>m2,三木块均处于静止状态,则关于粗糙地面对三角形木块下列说法正确的是()A .有摩擦力作用,摩擦力的方向水平向右B .有摩擦力作用,摩擦力的方向水平向左C.有摩擦力作用,但摩擦力的方向不能确定D .没有摩擦力作用3 .如图,斜面放在光滑地板上并紧靠左边墙壁,两滑块叠放在一起沿斜面匀速下滑,则4 .如图所示,两只均匀光滑的相同小球,质量均为m ,置于静止的半径为R 的圆柱形容器, 已知小球的半径r(r<R),则以下说法正确的是:()5 .如图,质量为M 的楔形物块静置在水平地面上,其斜面的倾角为e .斜 面上有一质量为m 的小物块,小物块与斜面之间存在摩擦.用恒力F 沿斜 面向上拉小物块,使之匀速上滑.在小物块运动的过程中,楔形物块始终保持静止.地面对 楔形物块的支持力为:A.(M + m)gB.(M + m)g-FC.(M + m)g +Fsin0D.(M + m)g - Fsine 6 .如图,一物体静止在一倾角为e=30°的斜面上,斜面又静止在水平地面 上.若用竖直向上大小为5N 的力F 拉物体,物体仍然静止,则 A .物体受到的合外力减小5N B .斜面体受到的压力减小2.5NA .斜面受到墙壁的弹力.C .斜面受到M 滑块的压力. B .斜面受到滑块的摩擦力沿斜面向上D - M 受到N 的摩擦力沿斜面向上.①容器底部对球的弹力等于2mg②两球间的弹力大小可能大于、等于或小于mg ③容器两壁对球的弹力大小相等 ④容器壁对球的弹力可能大于、小于或等于2mgA .①②③B .①②④ C.①③④ D.②③④C .斜面受到的摩擦力减小2.5ND .地面受到的压力减小5N5N7 .如图所示,在一根水平的粗糙的直横梁上,套有两个质量均为m的铁环,两铁环系有等长的细绳,共同拴着质量为M的小球,两铁环与小球均保持静止。
整体法和隔离法

整体法和隔离法一.整体法和隔离法在平衡中的应用1. 整体法:整体法是指对物理问题中的整个系统或整个过程进行分析、研究的方法。
在力学中,就是把几个物体视为一个整体,作为研究对象,受力分析时,只分析这一整体对象之外的物体对整体的作用力(外力),不考虑整体内部之间的相互作用力(内力)。
整体法的思维特点:整体法是从局部到全局的思维过程,是系统论中的整体原理在物理中的应用。
整体法的优点:通过整体法分析物理问题,可以弄清系统的整体受力情况和全过程的受力情况,从整体上揭示事物的本质和变体规律,从而避开了中间环节的繁琐推算,能够灵活地解决问题。
通常在分析外力对系统的作用时,用整体法。
2. 隔离法:隔离法是指对物理问题中的单个物体或单个过程进行分析、研究的方法。
在力学中,就是把要分析的物体从相关的物体体系中隔离出来,作为研究对象,只分析该研究对象以外的物体对该对象的作用力,不考虑研究对象对其他物体的作用力。
隔离法的优点:容易看清单个物体的受力情况或单个过程的运动情形,问题处理起来比较方便、简单,便于初学者使用。
在分析系统内各物体(或一个物体的各个部分)间的相互作用时用隔离法。
3.实例分析例1. 如图1所示,质量为m=2kg的物体,置于质量为M=10kg的斜面体上,现用一平行于斜面的力F=20N推物体,使物体向上匀速运动,斜面体的倾角,始终保持静止,求地面对斜面体的摩擦力和支持力(取)解析:(1)隔离法:先对物体m受力分析,如图甲所示。
由平衡条件有甲垂直斜面方向:①平行斜面方向:②再对斜面体受力分析,如图乙所示,由平衡条件有乙水平方向:③竖直方向:④结合牛顿第三定律知⑤联立以上各式,可得地面对斜面体的摩擦力,方向水平向左;地面对斜面体的支持力,方向竖直向上。
(2)整体法:因本题没有要求求出物体和斜面体之间的相互作用力,而且两个物体均处于平衡状态(尽管一个匀速运动,一个静止),故可将物体和斜面体视为整体,作为一个研究对象来研究,其受力如图丙所示,由平衡条件有:丙水平方向:⑤竖直方向:⑥将题给数据代入,求得比较上面两种解法,整体法的优点是显而易见的。
高中物理讲义:整体法、隔离法的应用(基础)

整体法、隔离法的应用【考点归纳】一、整体法与隔离法在进行受力分析时,第一步就是选取研究对象。
选取的研究对象可以是一个物体(质点),也可以是由几个物体组成的整体(质点组)。
1.隔离法:将某物体从周围物体中隔离出来,单独分析该物体所受到的各个力,称为隔离法。
隔离法的原则:把相连结的各个物体看成一个整体,如果要分析的是整体内物体间的相互作用力(即内力),就要把跟该力有关的某物体隔离出来。
当然,对隔离出来的物体而言,它受到的各个力就应视为外力了。
2.整体法:把相互连结的几个物体视为一个整体(系统),从而分析整体外的物体对整体中各个物体的作用力(外力),称为整体法。
整体法的基本原则:(1)当整体中各物体具有相同的加速度(加速度不相同的问题,中学阶段不建议采用整体法)或都处于平衡状态(即a=0)时,命题要研究的是外力,而非内力时,选整体为研究对象。
(2)整体法要分析的是外力,而不是分析整体中各物体间的相互作用力(内力)。
(3)整体法的运用原则是先避开次要矛盾(未知的内力)突出主要矛盾(要研究的外力)这样一种辨证的思想。
3.整体法、隔离法的交替运用对于连结体问题,多数情况既要分析外力,又要分析内力,这时我们可以采取先整体(解决外力)后隔离(解决内力)的交叉运用方法,当然个别情况也可先隔离(由已知内力解决未知外力)再整体的相反运用顺序。
二、解答平衡问题常用的物理方法1.隔离法与整体法隔离法:为了弄清系统(接连体)内某个物体的受力和运动情况,一般可采用隔离法。
运用隔离法解题的基本步骤是:(1)明确研究对象或过程、状态;(2)将某个研究对象、某段运动过程或某个状态从全过程中隔离出来;(3)画出某状态下的受力图或运动过程示意图;(4)选用适当的物理规律列方程求解。
2.整体法:当只涉及研究系统而不涉及系统内部某些物体的力和运动时,一般可采用整体法。
运用整体法解题的基本步骤是:(1)明确研究的系统和运动的全过程;(2)画出系统整体的受力图和运动全过程的示意图;(3)选用适当的物理规律列方程求解。
专题讲解整体法和隔离法的综合应用

整体法和隔离法的综合应用1.涉及隔离法与整体法的具体问题类型1涉及滑轮的问题;若要求绳的拉力,一般都必须采用隔离法;本例中,绳跨过定滑轮,连接的两物体虽然加速度大小相同但方向不同,故采用隔离法;2水平面上的连接体问题;①这类问题一般多是连接体系统各物体保持相对静止,即具有相同的加速度;解题时,一般采用先整体、后隔离的方法;②建立坐标系时也要考虑矢量正交分解越少越好的原则,或者正交分解力,或者正交分解加速度;3斜面体与上面物体组成的连接体的问题;当物体具有沿斜面方向的加速度,而斜面体相对于地面静止时,解题时一般采用隔离法分析;2.解决这类问题的关键正确地选取研究对象是解题的首要环节,弄清各个物体之间哪些属于连接体,哪些物体应该单独分析,分别确定出它们的加速度,然后根据牛顿运动定律列方程求解;选择研究对象是解决物理问题的首要环节;若一个系统中涉及两个或者两个以上物体的平衡问题,在选取研究对象时,要灵活运用整体法和隔离法;对于多物体问题,如果不求物体间的相互作用力,我们优先采用整体法,这样涉及的研究对象少,未知量少,方程少,求解简便;很多情况下,通常采用整体法和隔离法相结合的方法;一,平衡问题典例1 如图2-9所示,放置在水平地面上的质量为M的直角劈上有一个质量为m的物体,若物体在直角劈上匀速下滑,直角劈仍保持静止,那么下列说法正确的是图2-9A.直角劈对地面的压力等于M+mgB.直角劈对地面的压力大于M+mgC.地面对直角劈没有摩擦力D.地面对直角劈有向左的摩擦力解析方法一:隔离法先隔离物体,物体受重力mg、斜面对它的支持力F N、沿斜面向上的摩擦力F f,因物体沿斜面匀速下滑,所以支持力F N和沿斜面向上的摩擦力F f可根据平衡条件求出;再隔离直角劈,直角劈受竖直向下的重力Mg、地面对它竖直向上的支持力F N地,由牛顿第三定律得,物体对直角劈有垂直斜面向下的压力F N′和沿斜面向下的摩擦力F f′,直角劈相对地面有没有运动趋势,关键看F f′和F N′在水平方向上的分量是否相等,若二者相等,则直角劈相对地面无运动趋势,若二者不相等,则直角劈相对地面有运动趋势,而摩擦力方向应根据具体的相对运动趋势的方向确定;对物体进行受力分析,建立坐标系如图2-10甲所示,因物体沿斜面匀速下滑,由平衡条件得:支持力F N=mg cos θ,摩擦力F f=mg sin θ;图2-10对直角劈进行受力分析,建立坐标系如图乙所示,由牛顿第三定律得F N=F N′,F f=F f′,在水平方向上,压力F N′的水平分量F N′sinθ=mg cos θsin θ,摩擦力F f′的水平分量F f′cosθ=mg sin θcos θ,可见F f′cosθ=F N′sinθ,所以直角劈相对地面没有运动趋势,所以地面对直角劈没有摩擦力;在竖直方向上,直角劈受力平衡,由平衡条件得:F N地=F f′sinθ+F N′cosθ+Mg=mg +Mg;方法二:整体法直角劈对地面的压力和地面对直角劈的支持力是一对作用力和反作用力,大小相等、方向相反;而地面对直角劈的支持力、地面对直角劈的摩擦力是直角劈和物体整体的外力,所以要讨论这两个问题,可以以整体为研究对象;整体在竖直方向上受到重力和支持力,因物体在斜面上匀速下滑、直角劈静止不动,即整体处于平衡状态,所以竖直方向上地面对直角劈的支持力等于物体和直角劈整体的重力;水平方向上地面若对直角劈有摩擦力,无论摩擦力的方向向左还是向右,水平方向上整体都不能处于平衡状态,所以整体在水平方向上不受摩擦力,整体受力如图丙所示;答案AC2012·湖北调考如图2所示,100个大小相同、质量均为m且光滑的小球,静止放置于L 形光滑木板上;木板斜面AB与水平面的夹角为30°;则第2个小球对第3个小球的作用力大小为图2A.错误!B.48mgC.49mg D.98mg解析:选C 以第3个到第100个这98个小球整体为研究对象,受到三个力的作用,即重力、斜面AB的支持力和第2个小球对第3个小球的作用力,由于整体处于平衡状态,沿斜面AB方向的受力应平衡,所以有F23=98mg sin 30°=49mg,所以选项C正确;二,非平衡问题例2 2012·江苏高考如图3-3-5所示,一夹子夹住木块,在力F作用下向上提升;夹子和木块的质量分别为m、M,夹子与木块两侧间的最大静摩擦力均为f;若木块不滑动,力F 的最大值是 A图3-3-5A.错误!B.错误!C.错误!-m+MgD.错误!+m+Mg例2如图2-12,m和M保持相对静止,一起沿倾角为θ的光滑斜面下滑,则M和m间的摩擦力大小是多少f=mgsinθ·cosθ方向沿水平方向m受向左的摩擦力,M受向右的摩擦力;分析解答因为m和M保持相对静止,所以可以将m+M整体视为研究对象;受力,如图2-14,受重力M十mg、支持力N′如图建立坐标,根据牛顿第二定律列方程x:M+ngsinθ=M+ma ①解得a=gsinθ沿斜面向下;因为要求m和M间的相互作用力,再以m为研究对象,受力如图2-15;根据牛顿第二定律列方程因为m,M的加速度是沿斜面方向;需将其分解为水平方向和竖直方向如图2-16;由式②,③,④,⑤解得评析此题可以视为连接件问题;连接件问题对在解题过程中选取研究对象很重要;有时以整体为研究对象,有时以单个物体为研究对象;整体作为研究对象可以将不知道的相互作用力去掉,单个物体作研究对象主要解决相互作用力;单个物体的选取应以它接触的物体最少为最好;如m只和M接触,而M和m还和斜面接触;另外需指出的是,在应用牛顿第二定律解题时,有时需要分解力,有时需要分解加速度,具体情况分析,不要形成只分解力的认识;1一斜劈,在力F推动下在光滑的水平面上向左做匀加速直线运动,且斜劈上有一木块与斜面保持相对静止,如图3-3-2所示,已知斜劈的质量为M,木块的质量为m,求斜面对木块作用力的大小;图3-3-22.如图3-3-3所示,在光滑水平面上有甲、乙两木块,质量分别为m1和m2,中间用一原长为L、劲度系数为k的轻质弹簧连接起来,现用一水平力F向左推木块乙,当两木块一起匀加速运动时,两木块之间的距离是 B图3-3-3A.L+错误!B.L-错误!C.L-错误!D.L+错误!.如图5所示,在光滑水平地面上,水平外力F拉动小车和木块一起做无相对滑动的加速运动;小车质量为M,木块质量为m,加速度大小为a,木块和小车之间的动摩擦因数为μ,则在这个过程中,木块受到的摩擦力大小是BD图5A.μmg B.错误!C.μM+mg D.ma2012·豫南九校联考如图7所示,质量为M的劈体ABDC放在水平地面上,表面AB、AC 均光滑,且AB∥CD,BD⊥CD,AC与水平面成角θ;质量为m的物体上表面为半球形以水平速度v0冲上BA后沿AC面下滑,在整个运动的过程中,劈体M始终不动,P为固定的弧形光滑挡板,挡板与轨道间的宽度略大于半球形物体m的半径,不计转弯处的能量损失,则下列说法中正确的是 D图7A.水平地面对劈体M的摩擦力始终为零B.水平地面对劈体M的摩擦力先为零后向右C.劈体M对水平地面的压力大小始终为M+mgD.劈体M对水平地面的压力大小先等于M+mg,后小于M+mg.如图5所示,一个人坐在小车的水平台面上,用水平力拉绕过定滑轮的细绳,使人和车以相同的加速度向右运动;水平地面光滑,则BC图5A.若人的质量大于车的质量,车对人的摩擦力为0B.若人的质量小于车的质量,车对人的摩擦力方向向左C.若人的质量等于车的质量,车对人的摩擦力为0D.不管人、车质量关系如何,车对人的摩擦力都为02013·江西联考如图6所示,动物园的水平地面上放着一只质量为M的笼子,笼内有一只质量为m的猴子,当猴子以某一加速度沿竖直柱子加速向上爬时,笼子对地面的压力为F1;当猴子以同样大小的加速度沿竖直柱子加速下滑时,笼子对地面的压力为F2;关于F1和F2的大小,下列判断中正确的是BC图6A.F1=F2B.F1>M+mg,F2<M+mgC.F1+F2=2M+mgD.F1-F2=2M+mg.2012·福州模拟如图9所示,质量为m1和m2的两个物体用细线相连,在大小恒定的拉力F作用下,先沿光滑水平面,再沿粗糙的水平面运动,则在这两个阶段的运动中,细线上张力的大小情况是 C图9A.由大变小B.由小变大C.始终不变D.由大变小再变大10.质量为M的光滑圆槽放在光滑水平面上,一水平恒力F作用在其上促使质量为m的小球静止在圆槽上,如图10所示,则 CA.小球对圆槽的压力为错误!B.小球对圆槽的压力为错误!C.水平恒力F变大后,如果小球仍静止在圆槽上,小球对圆槽的压力增加D.水平恒力F变大后,如果小球仍静止在圆槽上,小球对圆槽的压力减小2013·长沙模拟如图5所示,光滑水平面上放置质量分别为m、2m和3m的三个木块,其中质量为2m和3m的木块间用一不可伸长的轻绳相连,轻绳能承受的最大拉力为F T;现用水平拉力F拉质量为3m的木块,使三个木块以同一加速度运动,则以下说法正确的是 C图5A.质量为2m的木块受到四个力的作用B.当F逐渐增大到F T时,轻绳刚好被拉断C.当F逐渐增大到1.5 F T时,轻绳还不会被拉断D.轻绳刚要被拉断时,质量为m和2m的木块间的摩擦力为错误!F T12.如图11所示,固定在水平面上的斜面倾角θ=37°,长方体木块A的MN面上钉着一颗小钉子,质量m=1.5 kg的小球B通过一细线与小钉子相连接,细线与斜面垂直,木块与斜面间的动摩擦因数μ=0.50;现将木块由静止释放,木块将沿斜面下滑;图11求在木块下滑的过程中小球对木块MN面的压力;取g=10 m/s2,sin 37°=0.6,cos 37°=0.8答案:6.0 N,方向沿斜面向下5.如图6所示,质量为80 kg的物体放在安装在小车上的水平磅秤上,小车在平行于斜面的拉力F作用下沿斜面无摩擦地向上运动,现观察到物体在磅秤上读数为1 000 N;已知斜面倾角θ=30°,小车与磅秤的总质量为20 kg;g=10 m/s2图61拉力F为多少2物体对磅秤的静摩擦力为多少解析: 1选物体为研究对象,受力分析如图甲所示;甲将加速度a沿水平和竖直方向分解,则有:F N1-mg=ma sin θ解得a=5 m/s2取小车、物体、磅秤这个整体为研究对象,受力分析如图乙所示;F-M+mg sin θ=M+ma所以F=M+mg sin θ+M+ma=1 000 N2对物体有F f静=ma cos θ=200错误! N根据牛顿第三定律得,物体对磅秤的静摩擦力大小为200错误! N,方向水平向左;答案:11 000 N 2200错误! N 方向水平向左16.14分静止在水平面上的A、B两个物体通过一根拉直的轻绳相连,如图18所示,轻绳长L=1 m,承受的最大拉力为8 N,A的质量m1=2 kg,B的质量m2=8 kg,A、B与水平面间的动摩擦因数μ=0.2,现用一逐渐增大的水平力F作用在B上,使A、B向右运动,当F增大到某一值时,轻绳刚好被拉断g=10 m/s2;图181求绳刚被拉断时F的大小;2若绳刚被拉断时,A、B的速度为2 m/s,保持此时的F大小不变,当A静止时,A、B间的距离为多少答案:140 N 23.5 m。
整体法和隔离法的应用

整体法和隔离法的应用整体法和隔离法是管理学中常用的两种管理模式,它们在企业管理的实践中,被广泛应用。
从理论上说,两种管理模式都有其优点和劣势,但具体的管理应用则需要根据企业的实际情况和管理目标来选择。
本文将从整体和隔离的定义、特点、优缺点等方面,分别探讨两种管理模式的应用。
一、整体法整体法是指将企业看作一个整体来进行管理。
它强调企业的内部各项职能和部门之间的密切合作,以提高企业的整体效益和竞争力。
整体法的特点是以全局为导向,注重协同合作,提高整体效益。
应用方面,在实践中,企业如果希望采用整体管理模式,需要有以下几个方面需要考虑:1、打破各部门之间的隔阂,加强协同合作。
不同部门之间通常存在着比较严重的信息堵塞和合作协调的问题,这需要通过制定相关流程和机制,以及分配任务和责任来解决。
2、加强内部沟通,建立健康和谐的工作环境。
企业内部的交流和沟通是很重要的,如果内部信息流通不畅,部门之间缺少合作和协作,很容易导致企业目标的不一致,甚至是内部矛盾的发生。
3、优化管理流程,减少不必要的环节。
企业需要将发现的问题及时上报到高层管理层,以及给出相应的解决方案。
在流程中需要规范突发事件的处理流程,根据事件情况及时给出处理办法。
二、隔离法隔离法是指将不同区域和功能划分为不同的管理部门,形成相对独立的管理体系,最终达到优化管理、提高效率的目的。
隔离法的特点是区域和职能相对独立,能够减少不必要的干扰和影响,提高工作效率。
应用方面,在实践中,企业采用隔离法通常需要考虑以下几个方面:1、运营过程需要规划清晰,在工作制度和流程上需要有所约束。
各项工作的执行必须遵循明确的流程和标准,对于工作细节等相关信息必须进行严密监管,任何不符合标准的行为都将被严肃处理。
2、管理部门要加强沟通和合作。
不同管理区域和功能之间一定要密切合作,以保证企业目标的协调性和一致性。
在实践中,这需要建立适合企业的沟通和合作机制,加强信息和资源共享。
3、制定合理的考核制度,以及加强员工培训。
物体平衡问题的求解方法[整理]
![物体平衡问题的求解方法[整理]](https://img.taocdn.com/s3/m/bf35b56b7375a417866f8f4c.png)
物体平衡问题的求解方法闫俊仁(忻州第一中学 山西 忻州 034000)物体处于静止或匀速运动状态,称之为平衡状态。
平衡状态下的物体是是物理中重要的模型,解平衡问题的基础是对物体进行受力分析。
物体的平衡在物理学中有着广泛的应用,在高考中,直接出现或间接出现的概率非常大。
本文结合近年来的高考试题探讨物体平衡问题的求解策略。
1.整体法和隔离法对于连接体的平衡问题,在不涉及物体间相互作用的内力时,应道德考虑整体法,其次再考虑隔离法。
有时一道题目的求解要整体法、隔离法交叉运用。
[例1] (1998年上海高考题)有一个直角支架AOB ,AO 水平放置,表面粗糙,OB 竖直向下,表面光滑,AO 上套有小环P ,OB 上套有小环P ,两环质量均为m ,两环间由一根质量可忽略、不可伸长的细绳相连,并在某一位置平衡,如图1。
现将P 环向左移一小段距离,两环再次达到平衡,那么将移动后的平衡状态和原来的平衡状态比较,AO 杆对P 环的支持力N 和细绳上的拉力T 的变化情况是( )A .N 不变,T 变大B .N 不变,T 变小C .N 变大,T 变大D .N 变大,T 变小解析 用整体法分析,支持力mg N 2=不变。
再隔离Q 环,设PQ 与OB 夹角为θ,则不mg T =θcos ,θ角变小,cos θ变大,从上式看出T 将变小。
故本题正确选项为B 。
2.正交分解法物体受到3个或3个以上的力作用时,常用正交分解法列平衡方程,形式为0=合x F ,0=合y F 。
为简化解题步骤,坐标系的建立应达到尽量少分解力的要求。
[例2] (1997年全国高考题)如图2所示,重物的质量为m ,轻细绳AO 与BO 的A 端、B 端是固定的,平衡时AO 是水平的,BO 与水平面夹角为θ,AO 的拉力F 1和BO 的拉力F 2的大小是( )A .θcos 1mg F =B .θcot 1mg F =C .θsin 2mg F =D .θsin /2mg F =解析 选O 点为研究对象,O 点受3个力的作用。
2023届新高考物理重点突破:第04讲 共点力的平衡

第04讲共点力的平衡知识图谱受力分析中的整体法和隔离法知识精讲一.整体法和隔离法的基本思想1.选择研究的对象选择研究对象是解决物理问题的首要环节。
在很多物理问题中,研究对象的选择方案是多样的,研究对象的选取方法不同会影响求解的繁简程度。
隔离法与整体法都是物理解题的基本方法。
2.整体法整体法就是对物理问题的整个系统进行研究的方法。
如果由几个物体组成的系统具有相同的加速度,一般可用整体法求加速度,但整体法不能求出系统的内力。
3.隔离法分析系统内各物理之间的相互作用时,需要选用隔离法,一般隔离受力较少的物体。
在某些情况下,解答一个问题时要多次选取研究对象,需要整体法与隔离法交叉使用,通常先整体后隔离。
二.受力分析中的整体法和隔离法的应用1.整体法的应用例如,在粗糙水平面上有一个三角形木块abc,在它的两个粗糙斜面上分别放两个质量为m1、m2的木块,且m1>m2,如图所示。
已知三角形木块和两物体都静止,讨论粗糙水平面与三角形木块之间的摩擦力问题。
这个问题的一种求解方法是:分别隔离1m 、2m 和三角形木块进行受力分析,利用牛顿第三定律及平衡条件讨论确定三角形木块与粗糙水平面间的摩擦力。
采用整体法求解更为简捷:由于1m 、2m 和三角形木块相对静止,故可以看成一个不规则的整体,以这一整体为研究对象,显然在竖直平面上只受重力和支持力作用,在水平方向上没有外力。
2.整体法和隔离法的综合应用不计物体间相互作用的内力,一般首先考虑整体法。
利用整体法,涉及的研究对象少,未知量少,方程少,求解简便;对于大多数动力学问题,单纯采用整体法并不一定能解决,通常采用整体法与隔离法相结合的方法。
举例说明(1),如下图,质量均为1kg 的10块相同的砖,平行紧靠成一直线放在光滑的地面上,第1块砖受到10N 的水平力作用,讨论第7块砖对第8块砖的压力的大小。
本题需要灵活选用整体和隔离思想求解,首先由整体法求出加速度,再将后3块和前7块作为两个整体来考虑,再用隔离求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平衡问题是指当物体处于平衡状态时, 利用平衡条件求解力的大小或方向的 问题. 处理方法常有力的合成法、 正交 分解法、三角形法则.
【例 2】如图 9 所示,在倾角为 α 的斜面上,放一质量为 m 的小球, 小球被竖直的木板挡住, 不计摩擦, 则球对挡板的压力是 ( ) A.mgcos α B.mgtan α mg C. cos α D.mg
4.如图 4 所示,质量为 m 的物体在与斜面平行向上的拉力 F 作用 下,沿着水平地面上质量为 M 的粗糙斜面匀速上滑,在此过程 中斜面保持静止,则地面对斜面 A.无摩擦力 B.支持力等于(m+M)g C.支持力为(M+m)g-Fsin θ D.有水平向左的摩擦力,大小为 Fcos θ 图4 ( )
1.整体法与隔离法 当物理情景中涉及物体较多时,就要考虑采用整体法和隔离法. 研究外力对系统的作用 (1)整体法 各物体运动状态相同 同时满足上述两个条件即可采用整体法.
分析系统内各物体各部分间相互作用 (2)隔离法 各物体运动状态可不相同 物体必须从系统中隔离出来,独立地进行受力分析,列出方程.
图9
方法总结:(1)如果物体处于三力 平衡状态下,且明确三力方向之间的 夹角,一般情况下采用力的合成法或 力的三角形法;当然也可采用正交反 解法。 (2)如果物体处于多力 (多于三个力)平衡状态,普遍情况 下采用正交分解法。