2014-2015年山东省济南市章丘市党家中学八年级上学期期中数学试卷及参考答案
2015初二上学期期中考试数学试卷(有答案)

2015初二上学期期中考试数学试卷(有答案)2014-2015学年山东省济南市章丘市党家中学八年级(上)期中数学试卷一、选择题:(每题3分,共45分) 1.的相反数是()A. B. C.�D.� 2.9的算术平方根是() A.±3 B. 3 C. D. 3.在(�2)0、、0、�、、、0.101001…(相邻两个1之间0的个数逐次加1)中,无理数的个数是()A. 2 B. 3 C. 4 D. 5 4.下列计算正确的是() A. B.÷ = C. =6 D. 5.估计58的立方根的大小在() A. 2与3之间 B. 3与4之间 C. 4与5之间 D. 5与6之间 6.如图,以数轴的单位长线段为边作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点A处,则点A表示的数是() A. B. 1.4C. D. 7.三角形各边长度如下,其中不是直角三角形的是()A. 3,4,5 B. 6,8,10 C. 5,11,12 D. 8,15,17 8.一个长方形在平面直角坐标系中三个顶点的坐标为(�1,�1),(�1,2),(3,�1),则第四个顶点的坐标为() A.(2,2) B.(3,2) C.(3,3) D.(2,3) 9.若一次函数y=kx�4的图象经过点(�2,4),则k等于() A.�4 B. 4 C.�2 D. 2 10.直角三角形两边长分别是3、4,第三边是() A. 5 B. C. 5或 D.无法确定 11.下列各点中,在函数y=�2x+5的图象上的是() A.(0,�5) B.(2,9) C.(�2,�9) D.(4,�3) 12.一次函数y=kx+6,y随x的增大而减小,则这个一次函数的图象不经过() A.第一象限 B.第二象限 C.第三象限 D.第四象限 13.△ABC中,AB=13cm,AC=15cm,高AD=12,则BC的长为() A. 14 B. 4 C. 14或4 D.以上都不对 14.直线y=kx+b经过一、三、四象限,则直线y=bx�k的图象只能是图中的() A. B. C. D. 15.如图,已知点A(�1,0)和点B(1,2),在坐标轴上确定点P,使得△ABP为直角三角形,则满足这样条件的点P共有() A. 2个 B. 4个 C. 6个 D. 7个二.填空题(每小题3分,共18分) 16.在△ABC中,∠C=90°,AB=5,则AB2+AC2+BC2= . 17. = . 18.若点P(x,y)的坐标满足xy>0,则点P(x,y)在第象限. 19.已知y=(m�3) +m+1是一次函数,则m= . 20.若点P(�2,y)与Q(x,3)关于y轴对称,则x= ,y= . 21.函数y=(m�2)x中,已知x1>x2时,y1<y2,则m的范围是.三、解答题(共7个小题,共57分) 22.计算题:(1)(�)× ;(2)�4. 23.在△ABC中,已知∠B=90°,∠A,∠B,∠C的对边分别是a,b,c,且a=6,b=8.(1)求c的长.(2)求斜边上的高. 24.已知一次函数y=(m�4)x+3�m,当m为何值时,(1)y随x值增大而减小;(2)直线过原点;(3)直线与直线y=�2x平行;(4)直线与x轴交于点(2,0)(5)直线与y轴交于点(0,�1) 25.如图,四边形AOCB是直角梯形,AB∥OC,OA=10,AB=9,∠OCB=45°,求点A,B,C的坐标及直角梯形AOCB的面积. 26.作出函数y= x�4的图象,并回答下面的问题:(1)求它的图象与x轴、y轴的交点.(2)求图象与坐标轴围成的三角形的面积. 27.如图,小将同学将一个直角三角形的纸片折叠,A与B重合,折痕为DE,若已知AC=10cm,BC=6cm,你能求出CE的长吗? 28.直线y=kx+2与两坐标轴所围成的三角形面积为4,求直线解析式.若k>0时直线与x轴交点为A与y轴交点为B解答下列问题:(1)在x轴上是否存在一点P,使S△PAB=3?若存在,请求出P点坐标,若不存在,请说明理由.(2)求直线AB上是否存在一点E,使点E到x轴的距离等于1.5,若存在求出点E的坐标,若不存在,请说明理由.(3)在x轴上是否存在一点G,使S△BOG= S△AOB?若存在,请求出G点坐标,若不存在,请说明理由.2014-2015学年山东省济南市章丘市党家中学八年级(上)期中数学试卷参考答案与试题解析一、选择题:(每题3分,共45分)1.的相反数是() A. B. C.� D.�考点:实数的性质.分析:由于互为相反数的两个数和为0,由此即可求解.解答:解:的相反数为:�.故选:C.点评:此题主要考查了求无理数的相反数,无理数的相反数和有理数的相反数的意义相同,无理数的相反数是各地中考的重点. 2.9的算术平方根是() A.±3 B. 3 C. D.考点:算术平方根.分析:根据开方运算,可得算术平方根.解答:解:9的算术平方根是3,故选:B.点评:本题考查了算术平方根,注意一个正数只有一个算术平方根. 3.在(�2)0、、0、�、、、0.101001…(相邻两个1之间0的个数逐次加1)中,无理数的个数是() A. 2 B. 3 C. 4 D. 5考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:无理数有:,,0.101001…(相邻两个1之间0的个数逐次加1)共3个.故选B.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数. 4.下列计算正确的是() A. B.÷ = C. =6 D.考点:实数的运算.专题:计算题.分析:根据同类二次根式的定义对A进行判断;根据二次根式的除法对B进行判断;根据积的乘方对C进行判断;计算根号内的平方和即可对D进行判断.解答:解:A、和不是同类二次根式,不能合并,所以A选项错误; B、÷ = = ,所以B选项正确; C、(2 )2=4×3=12,所以C选项错误; D、= ,所以D选项错误.故选B.点评:本题考查了实数的运算:先进行乘方或开方运算,再进行乘除运算,然后进行加减运算. 5.估计58的立方根的大小在() A. 2与3之间B. 3与4之间 C. 4与5之间 D. 5与6之间考点:估算无理数的大小.分析:应先找到所求的无理数在哪两个和它接近的整数之间,然后判断出所求的无理数的范围即可求解.解答:解:∵33=27,43=64,∴3<<4.故选B.点评:此题主要考查了估算无理数的能力,现实生活中经常需要估算,“夹逼法”是估算的一般方法,也是常用方法. 6.如图,以数轴的单位长线段为边作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点A处,则点A表示的数是() A. B. 1.4 C. D.考点:实数与数轴;勾股定理.分析:先根据勾股定理求出正方形的对角线长,再根据两点间的距离公式即可求出A点的坐标.解答:解:数轴上正方形的对角线长为: = ,由图中可知0 和A之间的距离为.∴点A表示的数是.故选D.点评:本题考查的是勾股定理及两点间的距离公式,解答此题时要注意,确定点A的符号后,点A所表示的数是距离原点的距离. 7.三角形各边长度如下,其中不是直角三角形的是() A. 3,4,5 B. 6,8,10 C. 5,11,12 D. 8,15,17考点:勾股定理的逆定理.专题:应用题.分析:分别把选项中的三边平方后,根据勾股定理逆定理即可判断能否构成直角三角形.解答:解:A、∵32+42=52,∴5,4,3能构成直角三角形; B、∵62+82=102,∴6,8,10能构成直角三角形; C、∵52+112≠122,∴5,11,12不能构成直角三角形; D、∵82+52=172,∴8,15,17能构成直角三角形.故选C.点评:主要考查了利用勾股定理逆定理判定直角三角形的方法.在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断. 8.一个长方形在平面直角坐标系中三个顶点的坐标为(�1,�1),(�1,2),(3,�1),则第四个顶点的坐标为() A.(2,2) B.(3,2) C.(3,3) D.(2,3)考点:坐标与图形性质;矩形的性质.分析:本题可在画出图后,根据矩形的性质,得知第四个顶点的横坐标应为3,纵坐标应为2.解答:解:如图可知第四个顶点为:即:(3,2).故选:B.点评:本题考查学生的动手能力,画出图后可很快得到答案. 9.若一次函数y=kx�4的图象经过点(�2,4),则k等于() A.�4 B. 4 C.�2 D. 2考点:待定系数法求一次函数解析式.专题:计算题.分析:将点(�2,4)代入函数解析式可得出关于k的方程,解出即可得出k 的值.解答:解:将点(�2,4)代入得:4=�2k�4,解得:k=�4.故选A.点评:本题考查待定系数求函数的解析式,属于基础性,注意在代入点的坐标时要细心求解. 10.直角三角形两边长分别是3、4,第三边是() A. 5 B. C. 5或 D.无法确定考点:勾股定理.分析:此题要考虑两种情况:当第三边是斜边时;当第三边是直角边时.解答:解:当第三边是斜边时,则第三边= =5;当第三边是直角边时,则第三边= = .故选C.点评:熟练运用勾股定理,注意此题的两种情况. 11.下列各点中,在函数y=�2x+5的图象上的是() A.(0,�5) B.(2,9)C.(�2,�9) D.(4,�3)考点:一次函数图象上点的坐标特征.分析:把选项中的各点代入解析式,通过等式左右两边是否相等来判断点是否在函数图象上.解答:解:∵一次函数y=�2x+5图象上的点都在函数图象上,∴函数图象上的点都满足函数的解析式y=�2x+5; A、当x=0时,y=5≠�5,即点(0,�5)不在该函数图象上;故本选项错误; B、当x=2时,y=1≠9,即点(2,9)不在该函数图象上;故本选项错误;C、当x=�2时,y=9≠�9,即点(�2,�9)不在该函数图象上;故本选项错误;D、当x=4时,y=�3,即点(4,�3)在该函数图象上;故本选项正确;故选D.点评:本题考查了一次函数图象上点的坐标特征.用到的知识点是:在这条直线上的各点的坐标一定适合这条直线的解析式. 12.一次函数y=kx+6,y随x的增大而减小,则这个一次函数的图象不经过() A.第一象限 B.第二象限 C.第三象限 D.第四象限考点:一次函数图象与系数的关系.分析:先根据一次函数的性质判断出k的取值范围,再根据一次函数的图象与系数的关系即可得出结论.解答:解:∵一次函数y=kx+6,y随x的增大而减小,∴k <0,∵b=6>0,∴此函数的图象经过一、二、四象限,不经过第三象限.故选C.点评:本题考查的是一次函数的图象与系数的关系,熟知一次函数y=kx+b(k≠0)中,k<0,b>0时函数的图象在一、二、四象限是解答此题的关键. 13.△ABC中,AB=13cm,AC=15cm,高AD=12,则BC的长为() A. 14 B. 4 C. 14或4 D.以上都不对考点:勾股定理.专题:分类讨论.分析:分两种情况讨论:锐角三角形和钝角三角形,根据勾股定理求得BD,CD,再由图形求出BC,在锐角三角形中,BC=BD+CD,在钝角三角形中,BC=CD�BD.解答:解:(1)如图,锐角△ABC中,AB=13,AC=15,BC边上高AD=12,在Rt△ABD中AB=13,AD=12,由勾股定理得BD2=AB2�AD2=132�122=25,则BD=5,在Rt△ABD中AC=15,AD=12,由勾股定理得 CD2=AC2�AD2=152�122=81,则CD=9,故BC=BD+DC=9+5=14;(2)钝角△ABC中,AB=13,AC=15,BC边上高AD=12,在Rt△ABD中AB=13,AD=12,由勾股定理得BD2=AB2�AD2=132�122=25,则BD=5,在Rt△ACD中AC=15,AD=12,由勾股定理得 CD2=AC2�AD2=152�122=81,则CD=9,故BC的长为DC�BD=9�5=4.故选:C.点评:本题考查了勾股定理,把三角形边的问题转化到直角三角形中用勾股定理解答. 14.直线y=kx+b经过一、三、四象限,则直线y=bx�k的图象只能是图中的() A. B. C. D.考点:一次函数的图象.分析:根据直线y=kx+b经过第一、三、四象限可以确定k、b的符号,则易求�b的符号,由�b,k的符号来求直线y=bx�k所经过的象限.解答:解:∵直线y=kx+b经过第一、三、四象限,∴k>0,b<0,∴�k<0,∴直线y=bx�k 经过第二、三、四象限.故选C.点评:本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交. 15.如图,已知点A(�1,0)和点B(1,2),在坐标轴上确定点P,使得△ABP为直角三角形,则满足这样条件的点P共有() A. 2个 B. 4个 C. 6个 D. 7个考点:直角三角形的性质;坐标与图形性质.专题:压轴题.分析:当∠PBA=90°时,即点P的位置有2个;当∠BPA=90°时,点P的位置有3个;当∠BAP=90°时,在y轴上共有1个交点.解答:解:①以A为直角顶点,可过A作直线垂直于AB,与坐标轴交于一点,这一点符合点P的要求;②以B为直角顶点,可过B作直线垂直于AB,与坐标轴交于两点,这两点也符合P点的要求;③以P为直角顶点,可以AB为直径画圆,与坐标轴共有3个交点.所以满足条件的点P共有6个.故选C.点评:主要考查了坐标与图形的性质和直角三角形的判定.要把所有的情况都考虑进去,不要漏掉某种情况.二.填空题(每小题3分,共18分) 16.在△ABC中,∠C=90°,AB=5,则AB2+AC 2+BC2= 50 .考点:勾股定理.分析:根据勾股定理可得AB2=AC2+BC2,然后代入数据计算即可得解.解答:解:∵∠C=90°,∴AB2=AC2+BC2,∴AB2+AC2+BC2=2AB2=2×52=2×25=50.故答案为:50.点评:本题考查了勾股定理,是基础题,熟记定理是解题的关键. 17. = 4 .考点:算术平方根.分析:根据二次根式的性质,可得答案.解答:解:原式= =4,故答案为:4.点评:本题好查了算术平方根, =a (a≥0)是解题关键. 18.若点P(x,y)的坐标满足xy>0,则点P(x,y)在第一、三象限.考点:点的坐标.专题:计算题.分析:根据xy>0,可判断xy的符号,即可确定点P所在的象限.解答:解:∵xy>0,∴xy 为同号即为同正或同负,∴点P(x,y)在第一或第三象限.故答案为:一、三.点评:本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,四个象限的符号特点分别是:第一象限(+,+);第二象限(�,+);第三象限(�,�);第四象限(+,�). 19.已知y=(m�3) +m+1是一次函数,则m= �3 .考点:一次函数的定义.分析:根据一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1,可得答案.解答:解;由y=(m�3) +m+1是一次函数,得,解得m=�3,m=3(不符合题意的要舍去).故答案为:�3.点评:本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1. 20.若点P(�2,y)与Q(x,3)关于y轴对称,则x= 2 ,y= 3 .考点:关于x轴、y轴对称的点的坐标.分析:让纵坐标相等,横坐标互为相反数列式求值即可.解答:解:∵P(�2,y)与Q(x,3)关于y轴对称,∴�2+x=0,y=3,解得x=2,y=3.点评:用到的知识点为:两点关于y轴对称,纵坐标相等,横坐标互为相反数. 21.函数y=(m�2)x中,已知x1>x2时,y1<y2,则m 的范围是m<2 .考点:一次函数图象上点的坐标特征.专题:计算题.分析:根据一次函数的性质得到m�2<0,然后解不等式即可.解答:解:∵x1>x2时,y1<y2,∴m�2<0,∴m<2.故答案为m<2.点评:本题考查了一次函数图象上点的坐标特征:一次函数图象上的点满足其解析式.也考查了一次函数的性质.三、解答题(共7个小题,共57分) 22.计算题:(1)(�)× ;(2)�4.考点:二次根式的混合运算.分析:(1)利用二次根式的乘法法则即可求解;(2)首先把二次根式化简,然后计算二次根式的除法,求解即可.解答:解:(1)原式= �=9�12 =�3;(2)原式= �4 = �4 = .点评:本题考查的是二次根式的混合运算,在进行此类运算时,一般先把二次根式化为最简二次根式的形式后再运算. 23.在△ABC中,已知∠B=90°,∠A,∠B,∠C的对边分别是a,b,c,且a=6,b=8.(1)求c的长.(2)求斜边上的高.考点:勾股定理.分析:(1)直接根据勾股定理即可得出结论;(2)设斜边上的高为h,再根据三角形的面积公式即可得出结论.解答:解:(1)∵在△ABC中,已知∠B=90°,∠A,∠B,∠C的对边分别是a,b,c,且a=6,b=8,∴c= =2 ;(2)设斜边上的高为h,则8h=6×2 ,解得h= .点评:本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键. 24.已知一次函数y=(m�4)x+3�m,当m为何值时,(1)y随x值增大而减小;(2)直线过原点;(3)直线与直线y=�2x平行;(4)直线与x 轴交于点(2,0)(5)直线与y轴交于点(0,�1)考点:一次函数图象与系数的关系;两条直线相交或平行问题.分析:(1)根据一次函数的性质得出m�4<0,解不等式即可;(2)把原点的坐标(0,0)代入y=(m�4)x+3�m,得到关于m的方程,解方程即可;(3)根据两条直线平行的条件得出m�4=�2,3�m≠0,求出即可;(4)把点(2,0)代入y=(m�4)x+3�m,得到关于m 的方程,解方程即可;(5)把点(0,�1)代入y=(m�4)x+3�m,得到关于m的方程,解方程即可.解答:解:(1)由题意,得m�4<0,解得m<4;(2)把原点的坐标(0,0)代入y=(m�4)x+3�m,得3�m=0,解得m=3;(3)由题意,得m�4=�2,3�m≠0,解得m=2;(4)把点(2,0)代入y=(m�4)x+3�m,得2(m�4)+3�m=0,解得m=5;(5)把点(0,�1)代入y=(m�4)x+3�m,得3�m=�1,解得m=4.点评:本题考查了一次函数的性质,一次函数图象上点的坐标特征,两条直线平行的条件,是基础知识,需熟练掌握. 25.如图,四边形AOCB是直角梯形,AB∥OC,OA=10,AB=9,∠OCB=45°,求点A,B,C的坐标及直角梯形AOCB的面积.考点:直角梯形.分析:根据题意首先求出CO的长,进而得出A,B,C的坐标,进而求出梯形面积.解答:解:过点B作BD⊥CO于点D,∵∠OCB=45°,AB∥OC,OA=10,AB=9,∴BD=CD=10,OD=9,∴CO=OD+DC=9+10=19,故A点坐标为:(0,10), B点坐标为:(9,10), C点坐标为:(19,0),直角梯形AOCB的面积为:(AB+OC)×OA= ×(9+19)×10=140.点评:此题主要考查了直角梯形的性质以及等腰直角三角形的性质,得出CO的长是解题关键. 26.作出函数y= x�4的图象,并回答下面的问题:(1)求它的图象与x 轴、y轴的交点.(2)求图象与坐标轴围成的三角形的面积.考点:一次函数的图象;一次函数图象上点的坐标特征.分析:(1)分别把x=0和y=0代入函数的解析式,即可求出答案;(2)求出OA和OB,根据三角形的面积公式求出即可.解答:解:(1)如图所示:把x=0代入y= x�4得:y=�4,把y=0代入y= x�4得:0= x�4,解得:x=3,所以与x轴的交点为(3,0),与y轴的交点为(0,�4);( 2)∵OA=3,OB=4,∴S△AOB= ×OA×OB= ×3×4=6,即图象与坐标轴围成的三角形的面积是6.点评:本题考查了一次函数的图象和性质的应用,解此题的关键是求出函数的图象和两坐标轴的交点坐标. 27.如图,小将同学将一个直角三角形的纸片折叠,A与B重合,折痕为DE,若已知AC=10cm,BC=6cm,你能求出CE的长吗?考点:翻折变换(折叠问题).分析:连接BE,设CE=x,由折叠可知,AE=BE=10�x,把问题转化到Rt△BCE中,使用勾股定理.解答:解:连接BE,设CE=x ∵将直角三角形的纸片折叠,A与B重合,折痕为DE ∴DE是AB的垂直平分线∴AE=BE=10�x 在Rt△BCE 中 BE2=CE2+BC2 即(10�x)2=x2+62 解之得x= ,即CE= cm.点评:本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后对应线段相等. 28.直线y=kx+2与两坐标轴所围成的三角形面积为4,求直线解析式.若k>0时直线与x轴交点为A与y轴交点为B解答下列问题:(1)在x轴上是否存在一点P,使S△PAB=3?若存在,请求出P点坐标,若不存在,请说明理由.(2)求直线AB上是否存在一点E,使点E到x轴的距离等于1.5,若存在求出点E的坐标,若不存在,请说明理由.(3)在x轴上是否存在一点G,使S△BOG= S△AO B?若存在,请求出G点坐标,若不存在,请说明理由.考点:一次函数综合题.专题:综合题.分析:当k>0时,设直线与x轴交点为A,与y轴交点为B,如图1,则有OB=2,然后由S△AOB=4可得OA,从而可得点A的坐标,代入y=kx+2就可求出该直线的解析式;当k<0时,设直线与x轴交点为C,与y轴交点为B,如图2,则有OB=2,然后由S△COB=4可得OC,从而可得点C的坐标,代入y=kx+2就可求出该直线的解析式.(1)由条件可求出AP的长,就可得到点P的坐标;(2)由条件可得到点E的纵坐标,代入y=kx+2,就可得到点E的横坐标,从而解决问题;(3)由条件可求出OG的长,从而可得到点G的坐标.解答:解:当k>0时,设直线与x 轴交点为A,与y轴交点为B,如图1,则点B的坐标为(0,2),OB=2,S△AOB= OA•OB=4,解得:OA=4,∴点A的坐标为(�4,0),∴�4k+2=0,解得:k= ,∴直线的解析式为y= x+2.当k<0时,设直线与x轴交点为C,与y轴交点为B,如图2,则点B的坐标为实用精品文献资料分享(0,2),OB=2,S△COB= OC•OB=4,解得:OC=4,∴点C的坐标为(4,0),∴4k+2=0,解得:k=�,∴直线的解析式为y=�x+2.综上所述:所求直线解析式为y= x+2或y=� x+2.(1)若在x轴上存在一点P,使S△PAB=3,则S△PAB= AP•OB= AP×2=AP=3,∵点A的坐标为(�4,0),∴点P的坐标为(�1,0)或(�7,0).(2)若直线AB上存在一点E,使点E到x轴的距离等于1.5,则|yE|=1.5,∴yE=±1.5.当yE=1.5时, xE+2=1.5,解得:xE=�1,此时点E的坐标为(�1,1.5).当yE=�1.5时, xE+2=�1.5,解得:xE=�7,此时点E的坐标为(�7,�1.5).综上所述:点E 的坐标为(�1,1.5)或(�7,�1.5).(3)若在x轴上存在一点G,使S△BOG= S△AOB,则有OG×2= ×4,解得:OG=2,∴点G的坐标为(�2,0)或(2,0).点评:本题主要考查了直线上点的坐标特征、用待定系数法求直线的解析式、线段长度与坐标之间的关系、三角形的面积等知识,需要注意的是:线段的长度确定,所对应的点的坐标可能并不唯一,要考虑全面.。
八年级上学期八年级数学期中试卷(含参考答案)

10. 如图5,圆柱形开口杯底部固定在长方体水池底,向水池匀速注入水(倒在杯外),注满为止,水池中水面高度是h 注水时间为t ,则h 与t 之间的关系大致为下图中的 ( )二. 填空题(本大题共10小题,每小题3分,共30分) 11. 在下列数中:39-,1211,4.0,25,31-,-88,14.3-π,0,.1.0,2)3(-,225。
其中无理数的个数有 个。
12. 函数x y -=4中,自变量x 的取值范围是 。
13. 若函数m x m y m +-+=32)2(是一次函数,则m= 。
14. 已知函数⎩⎨⎧>-≤+=0,20,12x x x x y 若10=y ,则x = 。
15. 若一次函数的图象k x k y +--=1)3(不经过第二象限,则k的取值范围是 。
16. 已知点P(x,2x-6)在x 17. 如图,已知A 、B 两点的坐标分别是(-3,6)、(3,6)则直线AC 与y 轴相交的点的y 坐标为 。
18. 把直线4+-=x y 向右平移3个单位长度,所得直线与y 轴交点的y 坐标为 19. 设119-的整数部分是a,小数部分是b ,则()()a b ++191=20. 已知一条直线y= -3x+8与x 轴、y 轴分别交于A 、B 两点,将这条直线向左平移后与x 轴、y 轴分别交于C 、D 两点,若AB=AD ,则直线CD 的函数关系式为 。
三. 解答题(本大题共8小题,21~25题每题6分, 26、27两题每题9分,28题12分,共60分) 21. 计算:(1) (3分)30)21()14.3()25)(25(--+---+π(2) (3分)52)5(832402---++22. 已知y-3与x 成正比例,且当x=1时,y=5。
(1) (3分)求y 与x 的函数关系式;(2) (3分)求当x=-2时的函数值;23. 已知一次函数y=mx+n (m 、n 是常数)的图象经过第一、二、四象限,化简:122++--m n n m24. 如图,甲轮船以16海里/时的速度离开港口O 沿北偏东57°的方向航行,乙轮船同时从港口O 出发沿北偏西33°的方向航行,已知它们离开港口1.5小时后分别到达B 、A 两地,且AB=30海里,问乙轮船每小时航行多少海里?25.变量?哪个是函数?(2) (3分)如果用x(min)表示时间,用y (元)表示电话费,那么随着x 的变化,y 的变化趋势是怎样的?请写出它们的函数表达式。
山东省济南市八年级(上)期中数学试卷

八年级(上)期中数学试卷题号一二三总分得分一、选择题(本大题共12小题,共48.0分)1. 下列各数中,是无理数的是()A.16B.227C.0D.−π2. 3.在平面直角坐标系中,点(3,-4)在()A.第一象限 B.第二象限 C.第三象限在下列长度的各组线段中,能组成直角三角形的是()D.第四象限A.13,14,15 B.5、12、13 C.32、42、52 D.4、6、84.函数y=3x+1的图象一定经过点()A.(3,5)B.(−2,3)C.(2,7)D.(4,10)5. 6.估计6+1的值在()A.2到3之间 B.3到4之间 C.4到5之间如图,正方形ABCD的面积为100cm2△,ABP为直D.5到6之间角三角形,∠P=90°,且PB=6cm,则AP的长为()A.B.C.D.10cm6cm8cm无法确定7.点P(-3,5)关于y轴的对称点P'的坐标是()A.(3,5)B.(5,−3)C.(3,−5)D.(−3,−5)8.下列各式中计算正确的是()A.(−9)2=−9B.25=±5C.3(−1)3=−1D.(−2)2=−29.如图,等边三角形ABC,B点在坐标原点,C点的坐标为(4,0),则点A的坐标为()A. B. C. D.(2,3) (2,23) (23,2) (2,22)10. 正比例函数y=2kx的图象如图所示,则y=(k-2)x+1-k图象大致是()A.B.C.D.11. 一辆汽车和一辆摩托车分别从A,B两地去同一个城市,它们离A地的路程随时间变化的图象如图所示.则下列结论:①摩托车比汽车晚到lh;②A、B两地的路程为20km;③摩托车的速度为45km/h,汽车的速度为60km/h;④汽车出发1h后与摩托车相遇,此时距B地40km.其中正确结论的个数是()A.1个B.2个C.3个D.4个12. 如图,△R t ABC中,AB=9,BC=6,∠B=90°,△将ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()A. B. C. D.4 5 53 52二、填空题(本大题共6小题,共24.0分)13.36 的算术平方根是______.14.如图是小刚画的一张脸,他对妹妹说“如果我用(1,3)表示左眼,用(3,3)表示右眼,那么嘴的位置可以表示成______.15. 如图,直线 l 上有三个正方形 a ,b ,c ,若 a ,c 的面积分别为 7 和 9,则 b 的面积 为______.16. 在平面直角坐标系中,已知一次函数 y =-2x +1 的图象经过 P y )两点,若 x <x ,则 y ______y .(填“>”“<”“=”)(x ,y )、P (x , 1 1 1 2 217. 若一次函数 y =k (x -1)的图象经过点 M (-1,-2),则其图象与 y 轴的交点坐标是______. 18. 如图,已知圆柱底面的周长为 4dm ,圆柱高为 2dm ,在圆柱的侧面上,过点 A 和点 C 嵌有一圈金属丝,则这圈金属丝的周长最小 为______.三、解答题(本大题共 8 小题,共 78.0 分) 19. 计算:(1)8+32-2;(2)(6-25)×3-612; (3)(6-7)(6+7)+2.20. 如图,在平面直角坐标系中,A (1,2),B (3,1),C (-2,-1). (1)在图中作 △出ABC 关于 y 轴对称 △的A B C .(2)写出 A ,B ,C 的坐标(直接写出答案),1 1 1A ______;B ______;C ______. 1 1 1(3 △)A B C 的面积为______.2 1 2 1 21 1 11 1 121. 已知x-9的平方根是±3,x+y的立方根是3.①求x,y的值;②x-y的平方根是多少?22. 如图,在四边形ABDC中,∠A=90°,AB=9,AC=12,BD=8,CD=17.求:(1)BC的长;(2)四边形ABDC的面积.23. 在弹性限度内,弹簧的长度y(cm)是所挂物体质量x(kg)的一次函数,某弹簧不挂物体时长14.5cm;当所挂物体的质量为3kg时,弹费长16cm.(1)写出y与x之间的关系式;(2)求当所挂物体的质量为4kg时弹簧的长度;(3)求弹簧长度为18cm时所挂物体的质量.24. 已如两直线:l1的关系式为y=k x+b,l112的关系式为y=k x+b,实事上,如果l∥l2212,则有k=k;如果l⊥l,则有k•k=-1.应用:121212(1)已知直线a、b的关系式分别为y=2x+1,y=mx-1,①如果直线a∥b,则m=______;②如果直线a⊥b,则m=______.(2)有一直线c经过A(2,3),且与y=-13x+3垂直,求直线c的关系式.25. 如图1是用硬纸片做成的两个全等的直角三角形,两条直角边长分别为a和b,斜边为c;图2是以c为直角边的等腰直角三角形.请你开动脑筋,将它们拼成一个能验证勾股定理的图形.(1)画出拼成的这个图形的示意图,并用它验证勾股定理;(2)假设图3中的直角三角形有若干个,你能运用图中所给的直角三角形拼出另一种能够验证勾股定理的图形吗?画出拼成图形的示意图(不写验证过程).1226. 根据题意,解答问题:(1)如图1,已知直线y=2x+4与x轴、y轴分别交于A、B两点,求线段AB的长.(2)如图2,类比(1)的解题过程,请你通过构造直角三角形的方法,求出点M(3,4)与点N(-2,-1)之间的距离.(3)在(2)的基础上,若有一点D在x轴上运动,当满足DM=DN时,请求出此时点D的坐标.答案和解析1.【答案】D【解析】解:A .=4,是整数,属于有理数;B .是分数,属于有理数;C .0 是整数,属于有理数;D .-π 是无理数;故选:D .分别根据无理数、有理数的定义即可判定选择项.此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如 π,,0.8080080008…(每两个 8 之间依次多 1 个 0)等形式. 2.【答案】D【解析】解:点(3,-4)在第四象限.故选:D .根据各象限内点的坐标特征解答即可.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+); 第三象限(-,-);第四象限(+,-). 3.【答案】B【解析】解:A 、( ) +( ) ≠( ) ,不是能够成三角形,故此选项错误;B 、5 +12 =13 ,能构成直角三角形,是正整数,故此选项正确;C 、9 +16 ≠25,不能构成直角三角形,故此选项错误;D 、4 +6 ≠8 ,能构成直角三角形,故此选项错误.故选:B .欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平 方和是否等于最长边的平方.2 2 22 2 2 2 2 2 2 2 2此题主要考查了勾股定理的逆定理,解答此题要用到勾股定理的逆定理:已△知ABC的三边满足a+b=c,则△ABC是直角三角形.4.【答案】C【解析】【分析】本题主要考查一次函数图象上点的坐标特征,只要点在函数的图象上,则一定满足函数的解析式.反之,只要满足函数解析式就一定在函数的图象上,将各点坐标代入一次函数表达式,验证是解本题的关键.【解答】解:A.把x=3代入y=3x+1,解得y=10,所以图象不经过点(3,5),B.把x=-2代入y=3x+1,解得y=-5,所以图象不经过点(-2,3),C.把x=2代入y=3x+1,解得y=7,所以图象经过点(2,7),D.把x=4代入y=3x+1,解得y=13,所以图象不经过点(4,10).故选C.5.【答案】B【解析】解:∵2∴3<<3,+1<4,故选:B.首先确定在整数2和3之间,然后可得+1的值在3到4之间.此题主要考查了估算无理数,关键是掌握用有理数逼近无理数,求无理数的近似值.6.【答案】C【解析】解:∵正方形ABCD的面积为100cm,∴AB=10cm,∵△ABP为直角三角形,∠P=90°,且PB=6cm,∴AP=故选:C.==8cm.2222先根据正方形面积求出边长,然后根据勾股定理求出 AP 的长度.本题主要考查了勾股定理的知识,解题的关键是熟练掌握正方形的面积公式 以及勾股定理的知识,此题难度不大.7.【答案】A【解析】解:点 P (-3,5)关于 y 轴的对称点 P ′的坐标是(3,5).故选:A .根据“关于 y 轴对称的点,纵坐标相同,横坐标互为相反数”解答.本题考查了关于 x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于 x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关 于 y 轴对称的点,纵坐标相同,横坐标互为相反数.8.【答案】C【解析】解:A 、B 、C 、D 、(-=9,故选项错误; =5,故选项错误;=-1,故选项正确;) =2,故选项错误.故选:C .根据算术平方根和立方根的概念计算即可求解.本题考查了算术平方根和立方根的概念.算术平方根的概念:一般地,如果一个正数 x 的平方等于 a ,即 x =a ,那么这个正数 x 叫做 a 的算术平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0 的立方根 式 0.9.【答案】B【解析】2 2解:如图,作AH⊥OC于H.∴C(4,0),∴OC=4,∵△ABC是等边三角形,∴AB=AC=BC=4,∵AH⊥B C,∴OH=HC=2,∴AH=∴A(2,2=2),,故选:B.如图,作AH⊥OC于H.根据等边三角形的性质以及勾股定理求出OH,AH即可;本题考查等边三角形的性质,勾股定理,坐标与图形的性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.10.【答案】B【解析】解:由图象可知,正比函数y=2kx的图象经过二、四象限,∴2k<0,得k<0,∴k-2<0,1-k>0,∴函数y=(k-2)x+1-k图象经过一、二、四象限.故选:B.根据正比例函数t=2kx的图象可以判断k的正负,从而可以判断k-2与1-k的正负,从而可以得到y=(k-2)x+1-k图象经过哪几个象限,从而可以解答本题.本题考查一次函数的图象、正比例函数的图象,解题的关键是明确正比函数和一次函数图象的特点,根据k、b的正负情况可以判断出函数图象经过哪几个象限.11.【答案】C【解析】解:摩托车比汽车晚到:4-3=1h,故①正确,A、B两地的路程为20km,故②正确,摩托车的速度为(180-20)÷4=40km/h,汽车的速度为180÷3=60km/h,故③错误,设汽车出x小时与摩托车相遇,则60x=20+40x,得x=1,此时距离B地40×1=40km,故④正确,故选:C.根据题意和图象中的数据,可以判断各个小题是否正确,本题得以解决.本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.12.【答案】A【解析】【分析】此题考查了翻折变换(折叠问题),折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强.设BN=x,则由折叠的性质可得DN=AN=9-x,根据中点的定义可得BD=3,在Rt△BND中,根据勾股定理可得关于x的方程,解方程即可求解.【解答】解:设BN=x,由折叠的性质可得DN=AN=9-x,∵D是BC的中点,∴BD=3,在Rt△NBD中,x +3=(9-x),解得x=4.即BN=4.故选A.13.【答案】6【解析】解:∵故填=6,故.的算术平方根是.222根据算术平方根的意义知.=6,故可以得到的算术平方根.此题主要考查了算术平方根的意义,不要忘记计算=6.14.【答案】(2,1)【解析】解:根据(1,3)表示左眼,用(3,3)表示右眼,可得嘴的坐标是(2,1),故答案为(2,1).由(1,3)表示左眼,用(3,3)表示右眼可以确定平面直角坐标系中x轴与y轴的位置,从而可以确定嘴的位置.此题考查了坐标确定位置,由已知条件正确确定坐标轴的位置是解决本题的关键.15.【答案】16【解析】解:由于a、b、c都是正方形,所以AC=CD,∠ACD=90°;∵∠ACB+∠DCE=∠ACB+∠BAC=90°,即∠BAC=∠DCE,△在ABC和△CED中,∴△ACB≌△CDE(AAS),∴AB=CE,BC=DE;22222在Rt△ABC中,由勾股定理得:AC=AB +BC=AB +DE=7+9=16,即S=16,b则b的面积为16,故答案为16运用正方形边长相等,再根据同角的余角相等可得∠BAC=∠DCE,然后证明△ACB≌△DCE,再结合全等三角形的性质和勾股定理来求解即可.本题主要考查对全等三角形和勾股定理的综合运用,关键是证明△ACB≌△DCE.16.【答案】>【解析】解:∵一次函数y=-2x+1中k=-2<0,∴y随x的增大而减小,∵x<x,12∴y>y.12故答案为:>.根据一次函数的性质,当k<0时,y随x的增大而减小.此题主要考查了一次函数的性质,关键是掌握一次函数y=kx+b,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小.17.【答案】(0,-1)【解析】解:∵一次函数y=k(x-1)的图象经过点M(-1,-2),则有k(-1-1)=-2,解得k=1.所以函数解析式为y=x-1.令x=0代入得y=-1.故其图象与y轴的交点是(0,-1).故答案为(0,-1).由待定系数法求得解析式,然后令x=0即可得出图象与y轴的交点坐标.本题考查待定系数法求函数解析式一次函数图象上点的坐标特征,难度不大.18.【答案】42dm【解析】解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.∵圆柱底面的周长为4dm,圆柱高为2dm,∴AB=2dm,BC=BC′=2dm,∴AC =2 +2 =8,∴AC=2dm.∴这圈金属丝的周长最小为2AC=4故答案为:4dm dm.222要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结 果,在求线段长时,根据勾股定理计算即可.本题考查了平面展开-最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题把圆柱的侧面展开成矩形, “化曲面为平面”是解题的关键.19.【答案】解:(1)原式=22+42-2=52;(2)原式=6×3-25×3-32=32-215-32=-215;(3)原式=6-7+2=1.【解析】(1)先把各二次根式化简为最简二次根式,然后合并即可;(2)先进行二次根式的乘法法则运算,然后化简后合并即可;(3)利用平方差公式计算.本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事 半功倍.20.【答案】(-1,2) (-3,1) (2,-1) 4.5【解析】解:(1)△A △ B C 如图所示;(2)△A △ (-1,2),B (-3,1),C (2,-1);(3)△A △ B C 的面积=5×3- ×1×2- ×2×5- ×3×3,=15-1-5-4.5,=15-10.5,=4.5.故答案为:(2)(-1,2),(-3,1),(2,-1);(3)4.5.1 1 11 1 11 1 1(1)根据网格结构找出点 A 、B 、C 的对应点 A 、B 、C 的位置,然后顺次连接 1 1 1 即可;(2)根据平面直角坐标系写出各点的坐标;(3)利用三角形所在的矩形的面积减去四周三个小直角三角形的面积列式计 算即可得解.本题考查了利用轴对称变换作图,三角形的面积,熟练掌握网格结构准确找 出对应点的位置是解题的关键.21.【答案】解:①∵9 的平方根是±3,∴x -9=9,解得,x =18,∵27 的立方根是 3,∴x +y =27,∴y=9;②由①得,x -y =9,9 的平方根是±3,∴x -y 的平方根是±3.【解析】①根据平方根和立方根的概念列出方程,解方程求出 x ,y 的值;②根据平方根的概念解答即可.本题考查的是平方根和立方根的概念,如果一个数的平方等于 a ,这个数就叫做 a 的平方根、如果一个数的平方等于 a ,这个数就叫做 a 的平方根. 22.【答案】解:(1)连接 BC ,∵∠A =90°,AB =9,AC=12∴BC =15,(2)∵BC =15,BD =8,CD =17∴BC +BD =CD ∴△BCD 是直角三角形∴S 【解析】=S +S =12×15×8+12×9×12=114 (1)连接 BC ,根据勾股定理可求得 BC 的长.(2)根据勾股定理的逆定理可得到△BCD 也是直角三角形,从而求得△ABC 与 △BCD 的面积和即得到了四边形 ABDC 的面积.此题主要考查学生对勾股定理及三角形的面积公式的理解及运用.2 2 2四边形 ABCD △BCD △ABC23.【答案】解:(1)设y与x的函数关系式为y=kx+b,b=14.53k+b=16,得k=0.5b=14.5,即y与x之间的关系式是y=0.5x+14.5;(2)当x=4时,y=0.5×4+14.5=16.5,即当所挂物体的质量为4kg时弹簧的长度是16.5cm;(3)当y=18时,18=0.5x+14.5,得x=7,即弹簧长度为18cm时所挂物体的质量是7kg.【解析】(1)根据题意和题目中的数据可以求得y与x之间的关系式;(2)根据(1)中的关系式,将x=4代入求出相应的y的值,即可解答本题;(3)根据(1)中的关系式,将y=18代入求出相应的x的值,即可解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.24.【答案】2-12【解析】解:(1直线a、b的关系式分别为y=2x+1,y=mx-1,12①如果直线a∥b,则m=2;②如果直线a⊥b,则2m=-1,m=-故答案为2,- .(2)∵过点A直线与y=-x+3垂直,∴设过点A直线的直线解析式为y=3x+b,把A(2,3)代入得,b=-3,∴解析式为y=3x-3.(1)根据平行或垂直的条件,分别构建方程即可解决问题;(2)根据直线互相垂直,则k k =-1,可得出过点A直线的k等于3,得出所求12的解析式即可.本题考查了两直线相交或平行问题,是基础题,当两直线垂直时,两个k值的乘积为-1.25.【答案】解:(1)如图所示,是梯形;由上图我们根据梯形的面积公式可知,梯形的面积=12(a +b )(a +b ). 从上图我们还发现梯形的面积=三个三角形的面积,即 12ab +12ab +12c . 两者列成等式化简即可得:a +b =c ;(2)画边长为(a +b )的正方形,如图,其中 a 、b 为直角边,c 为斜边.【解析】(1)此题要由图中给出的三个三角形组成一个梯形,而且上底和下底分别为 a ,b ,高为 a +b ;此题主要是利用梯形的面积和三角形的面积公式进行计算,根据 图中可知,由此列出等式即可求出勾股定理;(2)此题的方法很多,这里只举一种例子,即把四个直角三角形组成一个正方 形.考查了勾股定理的证明,此题的关键是找等量关系,由等量关系求证勾股定 理.26.【答案】解:(1)令 x =0,得 y =4,即 A (0,4).令 y =0,得 x =-2,即 B (-2,0).在 △R t AOB 中,根据勾股定理有:AB=BO2+AO2=(−2)2+42=25;(2)如图 2,过 M 点作 x 轴的垂线 MF ,过 N作 y 轴的垂线 NE ,MF 和 NE 交于点 C .根据题意:MC =4-(-1)=5,NC =3-(-2)=5.则在 △R t MCN 中,根据勾股定理有:2 2 2 2MN=MC2+NC2=52+52=52;(3)如图 3,设点 D 坐标为(m ,0),连结 ND ,MD ,过 N 作 NG 垂直 x 轴于 G ,过 M 作 MH 垂直 x 轴于 H .则 GD =|m -(-2)|,GN =1,DN =GN +GD =1 + (m +2) 2MH =4,DH =|3-m |,DM 2 =MH 2 +DH 2 =4+(3-m ) 2∵DM =DN ,∴DM=DN 即 1 +(m +2)=4 +(3-m ) 整理得:10m =20 得 m =2∴点 D 的坐标为(2,0).【解析】(1)由一次函数解析式求得点 A 、B 的坐标,则易求直角△AOB 的两直角边 OB 、OA 的长度,所以在该直角三角形中利用勾股定理即可求线段 AB 的长度;(2)如图 2,过 M 点作 x 轴的垂线 MF ,过 N 作 y 轴的垂线 NE ,MF 和 NE 交于点 C ,构造直 △角MNC ,则在该直角三角形中利用勾股定理来求求点 M 与点 N 间的距离;(3)如图 3,设点 D 坐标为(m ,0),连结 ND ,MD ,过 N 作 NG 垂直 x 轴于 G ,过 M 作 MH 垂直 x 轴于 H .在直 △角DGN 和直角△MDH 中,利用勾股定理得到关于 m 的方程 1 +(m+2)=4 +(3-m )通过解方程即可求得 m 的值,则易求点 D 的坐标.本题考查了勾股定理、一次函数图象上点的坐标特征.注意:突破此题的难点 的方法是辅助线的作法.2 2 2 2 2 2 2 2 2 2 2 2 2。
章丘期中八年级数学试卷

一、选择题(每题3分,共30分)1. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 22. 下列等式中,正确的是()A. a + b = b + aB. ab = baC. a² = b²D. a³ = b³3. 若 a = -2,则a² + a 的值为()A. 0B. 1C. -1D. -24. 下列各数中,有理数是()A. πB. √2C. √-1D. -√35. 下列各图中,轴对称图形是()A. ①B. ②C. ③D. ④6. 下列函数中,是反比例函数的是()A. y = x²B. y = 2xC. y = 2/xD. y = 3x + 27. 若 m + n = 5,m - n = 3,则 m 的值为()A. 4B. 3C. 2D. 18. 下列各数中,最接近 1 的是()A. 0.9B. 0.99C. 0.999D. 0.99999. 若 a、b 是方程x² - 3x + 2 = 0 的两个根,则 a + b 的值为()A. 2B. 3C. 4D. 510. 下列各式中,正确的是()A. 3a + 2b = 2a + 3bB. 3a - 2b = 2a - 3bC. 3a + 2b = 2a + 3bD. 3a - 2b = 2a - 3b二、填空题(每题5分,共25分)11. 若 a = -3,则a² - a 的值为 ________。
12. 若 a + b = 5,a - b = 3,则 ab 的值为 ________。
13. 下列函数中,是正比例函数的是 ________。
14. 若 m + n = 4,m - n = 2,则 mn 的值为 ________。
15. 下列各数中,无理数是 ________。
三、解答题(共75分)16. (15分)已知 a、b 是方程x² - 5x + 6 = 0 的两个根,求 a + b 和 ab 的值。
2015秋期八年级上册数学期中试卷(有答案)

2015秋期八年级上册数学期中试卷(有答案)2014-2015学年山东省济南市章丘市枣园中学八年级(上)期中数学试卷一、选择(3*15=45分) 1.已知油箱中有油25升,每小时耗油5升,则剩油量P(升)与耗油时间t(小时)之间的函数关系式为() A. P=25+5t B. P=25�5t C. P= D. P=5t�25 2.下列运算正确的是() A. B. C. D. 3.已知 =�x ,则() A.x≤0 B.x≤�3 C.x≥�3 D.�3≤x≤0 4.如图,矩形ABCD中,AB=3,AD=1,AB 在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M的坐标为()A.(2,0) B.() C.() D.() 5.一根蜡烛长20cm,点燃后每小时燃烧5cm,燃烧时剩下的长度为y(cm)与燃烧时间x(小时)的函数关系用图象表示为下图中的()A. B. C. D. 6.等腰三角形的底边长为6,底边上的中线长为4,它的腰长为() A. 7 B. 6 C. 5 D. 4 7.化简的结果为() A. B.�C.�D. 8.若函数y=2x+3与y=3x�2b的图象交x轴于同一点,则b的值为() A.�3 B.�C. 9 D.� 9.在平面直角坐标系中,把直线y=x向左平移一个单位长度后,其直线解析式为() A. y=x+1 B. y=x�1 C. y=x D. y=x�2 10.两直线l1:y=2x�1,l2:y=x+1的交点坐标为() A.(�2,3) B.(2,�3) C.(�2,�3) D.(2,3) 11.实数a在数轴上的位置如图所示,则化简后为() A. 7 B.�7 C. 2a�15 D.无法确定 12.如图所示,函数y1=|x |和的图象相交于(�1,1),(2,2)两点.当y1>y2时,x的取值范围是() A. x<�1 B.�1<x<2 C. x>2 D. x<�1或x>2 13.小明从家骑车上学,先上坡到达A地后再下坡到达学校,所用的时间与路程如图所示.如果返回时,上、下坡速度仍然保持不变,那么他从学校回到家需要的时间是() A. 8.6分钟 B. 9分钟 C. 12分钟 D. 16分钟14.如图,△ABC是等边三角形,P是∠ABC的平分线BD上一点,PE⊥AB 于点E,线段BP的垂直平分线交BC于点F,垂足为点Q.若BF=2,则PE的长为() A. 2 B. 2 C. D. 3 15.在直角坐标系中,我们把横、纵坐标都是整数的点叫做整点,且规定:正方形内部不包含边界上的点.观察如图所示的中心在原点、一边平行于x 轴的正方形:边长为1的正方形内部有1个整点,边长为2的正方形内部有1个整点,边长为3的正方形内部有9个整点,…,则边长为9的正方形内的整点个数为() A. 64 B. 49 C. 36 D. 81 二、填空(3*6=18分) 16.点A(3,�4)到y轴的距离为,到x轴的距离为,到原点距离为. 17.与点A(3,4)关于x轴对称的点的坐标为,关于y轴对称的点的坐标为,关于原点对称的点的坐标为. 18.计算2 �6 += . 19.直角三角形两条直角边的长分别为8,15,则斜边上的高为. 20.如图,在平面直角坐标系中,等边三角形OAB的边长为4,把△OAB沿AB所在的直线翻折.点O落在点C处,则点C的坐标为. 21.一次函数y=�x+2的图象上有两点A、B,A点的横坐标为2,B点的横坐标为a(0<a<4且a≠2),过点A、B分别作x的垂线,垂足为C、D,△AOC、△BOD 的面积分别为S1、S2,则S1、S2的大小关系是.三、解答 22.(计算时不能使用计算器)计算:. 23.. 24.直线y= 2x�8与x轴、y轴分别交于A、B,坐标原点为O,求△OAB的面积. 25.已知一次函数的图象经过(3,5)和(�4,�9)两点.(1)求这个一次函数的解析式;(2)若点(a,2)在这个函数图象上,求a的值. 26.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(�4,5),(�1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A′B′C′;(3)写出点B′的坐标. 27.某住宅小区有一块草坪如图所示.已知AB=3米,BC=4米,CD=12米,DA=13米,且AB⊥BC,求这块草坪的面积. 28.如图,一架25分米的梯子,斜立在一竖直的墙上,这时梯的底部距墙底端7分米,如果梯子的顶端沿墙下滑4分米,那么梯的底部将平滑多少? 29.某蒜薹生产基地喜获丰收,收获蒜薹200吨.经市场调查,可采用批发、零售、冷库储藏后销售三种方式,并按这三种方式销售,计划平均每吨的售价及成本如下表:销售方式批发零售储藏后销售售价(元/吨) 3000 4500 5500 成本(元/吨) 700 1000 1200 若经过一段时间,蒜薹按计划全部售出获得的总利润为y(元),蒜薹零售x(吨),且零售量是批发量的.(1)求y与x之间的函数关系式;(2)由于受条件限制,经冷库储藏售出的蒜薹最多80吨,求该生产基地按计划全部售完蒜薹获得的最大利润.2014-2015学年山东省济南市章丘市枣园中学八年级(上)期中数学试卷参考答案与试题解析一、选择(3*15=45分) 1.已知油箱中有油25升,每小时耗油5升,则剩油量P(升)与耗油时间t (小时)之间的函数关系式为() A. P=25+5t B. P=25�5t C. P= D. P=5t�25考点:根据实际问题列一次函数关系式.分析:根据油箱内余油量=原有的油量�t小时消耗的油量,可列出函数关系式.解答:解:依题意得,油箱内余油量P(升)与行驶时间t(小时)的关系式为:P=25�5t.故选:B.点评:本题考查了根据实际问题列一次函数关系式.关键是明确油箱内余油量,原有的油量,t小时消耗的油量,三者之间的数量关系. 2.下列运算正确的是()A. B. C. D.考点:二次根式的混合运算.专题:计算题.分析:根据二次根式运算的法则,分别计算得出各答案的值,即可得出正确答案.解答:解:A.∵ =5,故此选项错误; B.∵4 � =4 �3 = ,故此选项错误;C. ÷ = =3,故此选项错误; D.∵ • = =6,故此选项正确.故选:D.点评:此题主要考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待. 3.已知 =�x ,则()A.x≤0 B.x≤�3 C.x≥�3 D.�3≤x≤0考点:二次根式的性质与化简.专题:计算题.分析:根据二次根式的非负性进行求解.解答:解:∵ =�x ≥0,∴x≤0,x+3≥0,∴�3≤x≤0,故选D.点评:本题考查积的算术平方根性质成立的条件,(A)、(C)不正确是因为只考虑了其中一个算术平方根的意义. 4.如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M 的坐标为() A.(2,0) B.() C.() D.()考点:勾股定理;实数与数轴;矩形的性质.专题:数形结合.分析:在RT△ABC中利用勾股定理求出AC,继而得出AM的长,结合数轴的知识可得出点M的坐标.解答:解:由题意得,AC= = = ,故可得AM= ,BM=AM�AB= �3,又∵点B的坐标为(2,0),∴点M的坐标为(�1,0).故选C.点评:此题考查了勾股定理及坐标轴的知识,属于基础题,利用勾股定理求出AC的长度是解答本题的关键,难度一般. 5.一根蜡烛长20cm,点燃后每小时燃烧5cm,燃烧时剩下的长度为y(cm)与燃烧时间x(小时)的函数关系用图象表示为下图中的() A. B. C. D.考点:一次函数的应用;一次函数的图象.专题:压轴题.分析:根据实际情况即可解答.解答:解:蜡烛剩下的长度随时间增长而缩短,根据实际意义不可能是D,更不可能是A、C.故选B.点评:解答一次函数的应用题时,必须考虑自变量的取值范围要使实际问题有意义. 6.等腰三角形的底边长为6,底边上的中线长为4,它的腰长为() A. 7 B. 6 C. 5 D. 4考点:勾股定理;等腰三角形的性质.专题:压轴题.分析:根据等腰三角形的性质可知BC上的中线AD同时是BC上的高线,根据勾股定理求出AB的长即可.解答:解:∵等腰三角形ABC中,AB=AC,AD是BC上的中线,∴BD=CD= BC=3,AD同时是BC上的高线,∴AB= =5,故选C.点评:本题考查勾股定理及等腰三角形的性质.解题关键是得出中线AD是BC上的高线,难度适中. 7.化简的结果为() A. B.� C.� D.考点:二次根式的性质与化简.分析:根据二次根式乘法,可化简二次根式.解答:解:原式= =�,故选:C.点评:本题考查了二次根式的性质与化简,利用了二次根式的乘法. 8.若函数y=2x+3与y=3x�2b的图象交x轴于同一点,则b的值为()A.�3 B.� C. 9 D.�考点:两条直线相交或平行问题.专题:计算题.分析:本题可先求函数y=2x+3与x轴的交点,再把交点坐标代入函数y=3x�2b,即可求得b的值.解答:解:在函数y=2x+3中,当y=0时,x=�,即交点(�,0),把交点(�,0)代入函数y=3x�2b,求得:b=�.故选D.点评:注意先求函数y=2x+3与x轴的交点是解决本题的关键. 9.在平面直角坐标系中,把直线y=x向左平移一个单位长度后,其直线解析式为() A. y=x+1 B. y=x�1 C. y=x D. y=x�2考点:一次函数图象与几何变换.专题:压轴题;探究型.分析:根据“左加右减”的原则进行解答即可.解答:解:由“左加右减”的原则可知,在平面直角坐标系中,把直线y=x向左平移一个单位长度后,其直线解析式为y=x+1.故选A.点评:本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键. 10.两直线l1:y=2x�1,l2:y=x+1的交点坐标为()A.(�2,3) B.(2,�3) C.(�2,�3) D.(2,3)考点:两条直线相交或平行问题.专题:计算题.分析:根据题意知,两直线有交点,所以列出方程组,解方程组即可.解答:解:根据题意得:,解得:,∴两直线l1:y=2x�1,l2:y=x+1的交点坐标为(2,3),故选:D.点评:方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式. 11.实数a在数轴上的位置如图所示,则化简后为() A. 7 B.�7 C. 2a�15 D.无法确定考点:二次根式的性质与化简;实数与数轴.分析:先从实数a 在数轴上的位置,得出a的取值范围,然后求出(a�4)和(a�11)的取值范围,再开方化简.解答:解:从实数a在数轴上的位置可得, 5<a<10,所以a�4>0, a�11<0,则, =a�4+11�a,=7.故选A.点评:本题主要考查了二次根式的化简,正确理解二次根式的算术平方根等概念. 12.如图所示,函数y1=|x|和的图象相交于(�1,1),(2,2)两点.当y1>y2时,x的取值范围是() A. x<�1 B.�1<x<2 C. x>2 D. x<�1或x>2考点:两条直线相交或平行问题.专题:函数思想.分析:首先由已知得出y1=x或y1=�x又相交于(�1,1),(2,2)两点,根据y1>y2列出不等式求出x的取值范围.解答:解:当x≥0时,y1=x,又,∵两直线的交点为(2,2),∴当x<0时,y1=�x,又,∵两直线的交点为(�1,1),由图象可知:当y1>y2时x 的取值范围为:x<�1或x>2.故选D.点评:此题考查的是两条直线相交问题,关键要由已知列出不等式,注意象限和符号. 13.小明从家骑车上学,先上坡到达A地后再下坡到达学校,所用的时间与路程如图所示.如果返回时,上、下坡速度仍然保持不变,那么他从学校回到家需要的时间是() A. 8.6分钟 B. 9分钟 C. 12分钟 D. 16分钟考点:函数的图象.专题:压轴题.分析:根据图象可知:小明从家骑车上学,上坡的路程是1千米,用5分钟,则上坡速度是0.2千米/分钟;下坡路长是2千米,用4分钟,因而速度是0.5千米/分钟,由此即可求出答案.解答:解:他从学校回到家需要的时间是 =12分钟.故选C.点评:读函数的图象时首先要理解横纵坐标表示的含义,理解问题叙述的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小. 14.如图,△ABC 是等边三角形,P是∠ABC的平分线BD上一点,PE⊥AB于点E,线段BP的垂直平分线交BC于点F,垂足为点Q.若BF=2,则PE的长为()A. 2 B. 2 C. D. 3考点:等边三角形的性质;线段垂直平分线的性质;含30度角的直角三角形;勾股定理.专题:压轴题;探究型.分析:先根据△ABC 是等边三角形P是∠ABC的平分线可知∠EBP=∠QBF=30°,再根据BF=2,FQ⊥BP可得出BQ的长,再由BP=2BQ可求出BP的长,在Rt△BEF 中,根据∠EBP=30°即可求出PE的长.解答:解:∵△ABC是等边三角形P是∠ABC的平分线,∴∠EBP=∠QBF=30°,∵BF=2,QF 为线段BP的垂直平分线,∴∠FQB=90°,∴BQ=BF•cos30°=2× = ,∴BP=2BQ=2 ,在Rt△BEP中,∵∠EBP=30°,∴PE= BP= .故选:C.点评:本题考查的是等边三角形的性质、角平分线的性质及直角三角形的性质,熟知等边三角形的三个内角都是60°是解答此题的关键. 15.在直角坐标系中,我们把横、纵坐标都是整数的点叫做整点,且规定:正方形内部不包含边界上的点.观察如图所示的中心在原点、一边平行于x轴的正方形:边长为1的正方形内部有1个整点,边长为2的正方形内部有1个整点,边长为3的正方形内部有9个整点,…,则边长为9的正方形内的整点个数为()A. 64 B. 49 C. 36 D. 81考点:规律型:点的坐标.分析:求出边长为1、2、3、4、5、6、7、的正方形的整点的个数,得到边长为1和2的正方形内部有1个整点,边长为3和4的正方形内部有9个整点,边长为5和6的正方形内部有25个整点,边长为7和8的正方形内部有49个整点,推出边长为9的正方形内部有81个整点,即可得出答案.解答:解:设边长为9的正方形内部的整点的坐标为(x,y),x,y都为整数.则�5<x<5,�5<y<5,故x只可取�4,�3,�2,�1,0,1,2,3,4共9个,y只可取�4,�3,�2,�1,0,1,2,3,4共9个,它们共可组成点(x,y)的数目为9×9=81(个)故答案为D.点评:本题主要考查对正方形的性质,坐标与图形的性质等知识点的理解和掌握,根据已知总结出规律是解此题的关键.二、填空(3*6=18分) 16.点A(3,�4)到y轴的距离为 3 ,到x轴的距离为 4 ,到原点距离为 5 .考点:点的坐标.分析:根据点的坐标的几何意义解答即可.解答:解:根据点的坐标的几何意义可知:点A(3,�4)到y轴的距离为3,到x轴的距离为4,到原点距离为 =5.故填3、4、5.点评:本题主要考查了点的坐标的几何意义,横坐标的绝对值就是到y轴的距离,纵坐标的绝对值就是到x轴的距离. 17.与点A(3,4)关于x轴对称的点的坐标为(3,�4),关于y轴对称的点的坐标为(�3,4),关于原点对称的点的坐标为(�3,�4).考点:关于原点对称的点的坐标;关于x轴、y轴对称的点的坐标.分析:根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点解答.解答:解:根据平面直角坐标系中对称点的规律可知,与点A(3,4)关于x轴对称的点的坐标为(3,�4),关于y轴对称的点的坐标为(�3,4),关于原点对称的点的坐标为(�3,�4).点评:主要考查了平面直角坐标系中对称点的规律,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数. 18.计算2 �6 + = 3 �2 .考点:二次根式的加减法.分析:根据二次根式的加减运算的方法:先化为最简二次根式,再将被开方数相同的二次根式进行合并即可求得答案.解答:解:2 �6 + = �2 +2 =3 �2 .故答案为:3 �2 .点评:此题考查了二次根式的加减运算.此题比较简单,注意解题的关键是首先将各二次根式化为最简二次根式,然后再合并. 19.直角三角形两条直角边的长分别为8,15,则斜边上的高为.考点:勾股定理.分析:设斜边上的高为h,先根据勾股定理求出斜边的长,再由三角形的面积公式即可得出结论.解答:解:设斜边上的高为h,∵直角三角形两条直角边的长分别为8,15,∴斜边的长= =17,∴8×15=17h,解得h= .故答案为:.点评:本题考查了利用勾股定理及利用面积法求直角三角形的高,是解此类题目常用的方法. 20.如图,在平面直角坐标系中,等边三角形OAB的边长为4,把△OAB沿AB所在的直线翻折.点O落在点C处,则点C的坐标为(6,2 ).考点:翻折变换(折叠问题);坐标与图形性质;等边三角形的性质.专题:压轴题.分析:由折叠的性质知OA=BC,可先求出B 点坐标,然后将B点坐标向右平移4个单位即可得到C点的坐标.解答:解:过B作BD⊥x轴于D;在Rt△OBD中,OB=4,∠BOD=60°,则: OD=2,BD=2 ;∴B(2,2 );由折叠的性质知:BC=OB=4,∴C (6,2 ).故答案为:(6,2 ).点评:此题主要考查了等边三角形的性质、解直角三角形以及图象的翻折变换,能够根据折叠的性质得到BC的长是解答此题的关键. 21.一次函数y=�x+2的图象上有两点A、B,A点的横坐标为2,B点的横坐标为a(0<a<4且a≠2),过点A、B分别作x的垂线,垂足为C、D,△AOC、△BOD的面积分别为S1、S2,则S1、S2的大小关系是S1>S2 .考点:一次函数图象上点的坐标特征.分析:△AOC的面积S1已知,△BOD的面积S2可由关于a的函数表示,求出S2的取值范围,跟S1比较即可.解答:解:把x=2代入y=�x+2,得y=�×2+2=1,即A(2,1),则S1= ×2×1=1,S2= a×(� a+2)=�(a�2)2+1,又0<a<4且a≠2,所以S2<1=S1,即S1>S2,故答案为S1>S2.点评:本题考查的是一次函数图象上点的坐标特征,由一次函数确定坐标,根据坐标表示出面积并比较大小,另外还考查了二次函数的性质.三、解答 22.(计算时不能使用计算器)计算:.考点:二次根式的混合运算;零指数幂;负整数指数幂.专题:计算题.分析:根据零指数幂和负整数指数幂得原式= �3+1�3 +2�,然后合并同类二次根式.解答:解:原式= �3+1�3 +2�=�3 .点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂和负整数指数幂. 23..考点:二次根式的混合运算.专题:计算题.分析:根据二次根式的除法法则进行计算.解答:解:原式= �� + = �1� +1 = �.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式. 24.直线y=2x�8与x轴、y轴分别交于A、B,坐标原点为O,求△OAB的面积.考点:一次函数图象上点的坐标特征.分析:先令x=0求出y的值,再令y=0求出x的值,根据三角形的面积公式即可得出结论.解答:解:∵令x=0,则y=�8,令y=0,则x=4,∴A(4,0),B(0,�8),∴S△AOB= ×4×8=16.点评:本题考查的是一次函数图象上点的坐标特点,熟知两坐标轴上点的坐标特点是解答此题的关键. 25.已知一次函数的图象经过(3,5)和(�4,�9)两点.(1)求这个一次函数的解析式;(2)若点(a,2)在这个函数图象上,求a的值.考点:待定系数法求一次函数解析式;一次函数图象上点的坐标特征.专题:待定系数法.分析:(1)设函数解析式为y=kx+b,将两点代入可求出k和b的值,进而可得出答案.(2)将点(a,2)代入可得关于a的方程,解出即可.解答:解:(1)设一次函数的解析式y=ax+b,∵图象过点(3,5)和(�4,�9),将这两点代入得:,解得:k=2,b=�1,∴函数解析式为:y=2x�1;(2)将点(a,2)代入得:2a�1=2,解得:a= .点评:本题考查待定系数法求一次函数解析式,属于比较基础的题,注意待定系数法的掌握,待定系数法是中学数学一种很重要的解题方法. 26.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(�4,5),(�1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A′B′C′;(3)写出点B′的坐标.考点:作图-轴对称变换;坐标与图形变化-对称.专题:作图题.分析:(1)易得y轴在C的右边一个单位,x轴在C的下方3个单位;(2)作出A,B,C三点关于y轴对称的三点,顺次连接即可;(3)根据所在象限及距离坐标轴的距离可得相应坐标.解答:解:(1)(2)如图;(3)点B′的坐标为(2,1).点评:本题考查轴对称作图问题.用到的知识点:图象的变换,看关键点的变换即可. 27.某住宅小区有一块草坪如图所示.已知AB=3米,BC=4米,CD=12米,DA=13米,且AB⊥BC,求这块草坪的面积.考点:勾股定理的应用.分析:连接AC,根据勾股定理,求得AC,再根据勾股定理的逆定理,判断三角形ACD是直角三角形.这块草坪的面积等于两个直角三角形的面积之和.解答:解:连接AC,如图,∵AB⊥BC,∴∠ABC=90°,∵AB=3米,BC=4米,∴AC=5米,∵CD=12米,DA=13米,∴△ACD为直角三角形,∴草坪的面积等于=S△ABC+S△ACD=3×4÷2+5×12÷2=6+30=36米2.点评:本题考查了勾股定理和勾股定理的逆定理. 28.如图,一架25分米的梯子,斜立在一竖直的墙上,这时梯的底部距墙底端7分米,如果梯子的顶端沿墙下滑4分米,那么梯的底部将平滑多少?考点:勾股定理的应用.分析:先利用勾股定理计算出墙高,当梯子的顶端沿墙下滑4分米后,也形成一直角三角形,解此三角形可实用精品文献资料分享计算梯的底部距墙底端的距离,则可计算梯子的底部平滑的距离.解答:解:墙高为: =24分米当梯子的顶端沿墙下滑4分米时:则梯子的顶部距离墙底端:24�4=20分米梯子的底部距离墙底端: =15分米,则梯的底部将平滑:15�7=8分米.故梯的底部将平滑8分米.点评:本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键. 29.某蒜薹生产基地喜获丰收,收获蒜薹200吨.经市场调查,可采用批发、零售、冷库储藏后销售三种方式,并按这三种方式销售,计划平均每吨的售价及成本如下表:销售方式批发零售储藏后销售售价(元/吨) 3000 4500 5500 成本(元/吨) 700 1000 1200 若经过一段时间,蒜薹按计划全部售出获得的总利润为y(元),蒜薹零售x(吨),且零售量是批发量的.(1)求y与x之间的函数关系式;(2)由于受条件限制,经冷库储藏售出的蒜薹最多80吨,求该生产基地按计划全部售完蒜薹获得的最大利润.考点:一次函数的应用.专题:经济问题.分析:(1)利润=批发数量×(批发售价�批发成本)+零售数量×(零售售价�零售成本)+储藏数量×(储藏售价�储藏成本);(2)由库储藏的蒜薹最多80吨,则得200�4x≤80.再由y与x之间的函数关系式可求得y的最大值.解答:解:(1)由题意,批发蒜薹3x吨,储藏后销售(200�4x)吨,则y=3x(3000�700)+x(4500�1000)+(200�4x)(5500�1200), =�6800x+860000(0<x≤50).(2)由题意得200�4x≤80解之得x≥30,∵y=�6800x+860000且�6800x<0,∴y的值随x的值增大而减小,当x=30时,y最大值=�6800×30+860000=656000(元);答:该生产基地按计划全部售完蒜薹获得的最大利润为656000元.点评:本题主要考查了一次函数在实际问题中的应用,解答一次函数的应用问题中,要注意自变量的取值范围还必须使实际问题有意义.。
山东省济南市八年级上学期期中数学试卷

山东省济南市八年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题. (共10题;共20分)1. (2分)下列说法正确的是()A . 三角形的三条高都在三角形的内部B . 等边三角形一角的平分线是一条射线C . 三个角对应相等的三角形全等D . 两直角边对应相等的两个直角三角形全等【考点】2. (2分)如图,两棵大树间相距13m,小华从点B沿BC走向点C,行走一段时间后他到达点E,此时他仰望两棵大树的顶点A和D,两条视线的夹角正好为90°,且EA=ED.已知大树AB的高为5m,小华行走的速度为lm/s,小华走的时间是()A . 13B . 8C . 6D . 5【考点】3. (2分)(2014·成都) 下列图形中,不是轴对称图形的是()A .B .C .D .【考点】4. (2分) (2019八上·洛川期中) 点与点关于y轴对称,则的值为()A . 4B . 6C . 8D . 12【考点】5. (2分) (2020·濠江模拟) 下列计算正确的是()A .B .C .D . a2•a=a3【考点】6. (2分) (2018八上·无锡期中) 如图,等腰△ABC中,AB=AC,∠A=20°.线段AB的垂直平分线交AB于D,交AC于E,连接BE,则∠CBE等于()A . 80°B . 70°C . 60°D . 50°【考点】7. (2分) (2015八下·成华期中) 如图,在以BC为底边的等腰△ABC中,∠A=30°,AC=8,则AC边上的高BD的长是()A . 4B . 8C . 2D . 4【考点】8. (2分)当a=时,代数式(16a3﹣16a2+4a)÷4a的值为()A .B . ﹣4C . ﹣D .【考点】9. (2分) (2018八上·泰州期中) 请仔细观察用直尺和圆规作一个角等于已知角的示意图,请你根据所学的三角形全等有关的知识,说明画出∠A′O′B′=∠AOB的依据是()A . SASB . ASAC . AASD . SSS【考点】10. (2分) (2015九上·南山期末) 下列命题中,①有一组邻边互相垂直的菱形是正方形②若2x=3y,则 =③若(﹣1,a)、(2,b)是双曲线y= 上的两点,则a>b正确的有()个.A . 1B . 2C . 3D . 0【考点】二、填空题. (共10题;共10分)11. (1分) (2020七下·江苏月考) 如图,三角形纸片ABC中∠A=63°,∠B=77°,将纸片一角折叠,使点C落在△ABC的内部,若∠2=50°,则∠1=________.【考点】12. (1分) (2019八上·哈尔滨月考) 如图,△ABC中,AC=BC,∠BAC的外角平分线交BC的延长线于点D,若∠ADC= ∠CAD,则∠ABC=________度.【考点】13. (1分) (2020八上·北京期中) 如图,在△ABC中,点D在BC上,将点D分别以AB、AC为对称轴,画出对称点E、F,并连接AE、AF.根据图中标示的角度,则∠EAF=________°.【考点】14. (1分) (2020八上·渝北月考) 如图,在△ABC中,tan∠ABC=,BC=5,∠CAB<90°,D为边AB 上一动点,以CD为一边作等腰Rt△CDE,且∠EDC=90°,连接BE,当S△BDE=时,则BD的长度为________.【考点】15. (1分) (2019八上·北京期中) 如图△ABC 中,AC=BC,∠ACB=120°,点 D 在线段 AB 上运动(D 不与 A、B 重合),连接 CD,作∠CDE=30°,DE 交 BC 于点 E,若△CDE 是等腰三角形,则∠ADC 的度数是________.【考点】16. (1分) (2020八上·勃利期中) 计算: ________; = ________;a(a -3)+(2-a)(2+a) =________;【考点】17. (1分) (2019七上·泰山月考) 如图,在△ABC中,AB=6,AC=5,BC边上的垂直平分线DE交BC、AB分别于点D、E,则△AEC的周长等于________【考点】18. (1分) (2020八上·富锦期末) 等腰三角形的一个内角是50°,则这个等腰三角形的顶角的度数为________【考点】19. (1分) (2019七下·江苏月考) 计算的结果为________.【考点】20. (1分) (2019八上·大连期末) 若则的值为 ________.【考点】三、解答题 (共9题;共66分)21. (11分) (2018八上·龙岗期中) 如图,已知A(0,4),B(-2,2),C(3,0).(1)作△ABC关于x轴对称的△A1B1C1;(2)写出点A1 , B1 , C1的坐标;(3)△A1B1C1的面积S△A1B1C1=________.【考点】22. (10分)(2014·宁波) 计算下列各题.(1)化简:(a+b)2+(a﹣b)(a+b)﹣2ab;(2)解不等式:5(x﹣2)﹣2(x+1)>3.【考点】23. (5分)有这样一道题:“计算的值,其中”甲同学把“ ”错抄成了“ ”但他计算的结果也是正确的,请你通过计算说明为什么?【考点】24. (5分)在△ABC中∠C=90°,DE垂直平分斜边AB,分别交AB,BC于D,E;①若AC=1cm,BC= cm(其中≈1.732),求△ACE的周长;②若∠CAB=∠B+30°,求∠AEB的度数.【考点】25. (10分)(2016·重庆B) 计算:(1)(x﹣y)2﹣(x﹣2y)(x+y)(2)÷(2x﹣)【考点】26. (5分) (2019七上·静安期末) 已知关于的多项式与的积不含二次项和三次项,求常数、的值.【考点】27. (10分) (2016八下·大石桥期中) 如图所示,直线a经过正方形ABCD的顶点A,分别过正方形的顶点B、D作BF⊥a于点F,DE⊥a于点E,若DE=8,BF=5,(1)求EF的长.(2)求正方形ABCD的面积.【考点】28. (5分) (2017八上·双城月考) 已知:如图,OD⊥AD,OH⊥AE,DE交GH于O,,求证:OG=OE【考点】29. (5分) (2017七下·林甸期末) 如图,△ABC中,AB=AC,∠A=90°,D为BC中点,E、F分别为AB、AC上的点,且满足AE=CF.求证:DE=DF.【考点】四、作图题 (共1题;共5分)30. (5分) (2020八上·农安月考) 如图,已知点A、B和直线m,在直线m上求作一点P,使PA=PB.【考点】参考答案一、选择题. (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题. (共10题;共10分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、略考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、考点:解析:三、解答题 (共9题;共66分)答案:21-1、答案:21-2、答案:21-3、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、考点:解析:答案:24-1、考点:解析:答案:25-1、答案:25-2、考点:解析:答案:26-1、考点:解析:答案:27-1、答案:27-2、考点:解析:答案:28-1、考点:解析:答案:29-1、考点:解析:四、作图题 (共1题;共5分)答案:30-1、考点:解析:。
2014-2015学年八年级上学期期中联考数学试题(含答案)

2014-2015学年八年级上学期期中联考数学试题(含答案)(时间:100分钟,满分:100分)一、选择题(每题3分,共30分)1、下面各组线段中,能组成三角形的是( )A .5,11,6B .8,8,16C .10,5,4D .6,9,14 2、下列命题中:⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等.其中真命题的个数有( )A.3个B.2个C.1个D.0个 3、一个多边形内角和是10800,则这个多边形的边数为 ( ) A 、 6 B 、 7 C 、 8 D 、 9 4、等腰三角形的一个角是50,则它的底角是( ) A. 50 B. 50或65 C 、80 D 、65 5、和点P (2,5-)关于x 轴对称的点是( )A (-2,5-)B (2,5-)C (2,5)D (-2,5) 6、已知直角三角形中30°角所对的直角边为2 cm ,则斜边的长为( ). A .2 cm B .4 cm C .6 cm D .8 cm7、如图,已知12=∠∠,AC AD =,增加下列条件:①AB AE =;②BC ED =;③C D =∠∠;④B E =∠∠.其中能使ABC AED △≌△的条件有( ) A.4个 B.3个C.2个 D.个8、如图,先将正方形纸片对折,折痕为MN ,再把B 点折叠在折痕MN 上,折痕为AE ,点B 在MN 上的对应点为H ,沿AH 和DH 剪下,这样剪得的三角形中 ( ) A .AD DH AH ≠= B .AD DH AH == C .DH AD AH ≠= D .AD DH AH ≠≠9、如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,∠A 与∠1+∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是( )A .∠A=∠1+∠2B .2∠A=∠1+∠2C .3∠A=2∠1+∠2D .3∠A=2(∠1+∠2)10、把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是( ) A .对应点连线与对称轴垂直 B .对应点连线被对称轴平分 C .对应点连线被对称轴垂直平分 D .对应点连线互相平行 二、填空题(每题3分,共24分)11、为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条这样做的道理是_________ ______。
初中数学八年级2014—2015第一学期期中学业水平测试卷附参考答案

2014—2015 第一学期初二数学期中学业水平测试、选一选,牛刀初试露锋芒!(每小题3分,共42分)1.下列图形中,轴对称图形的个数是()A. 4个2 .下列说法正确的是()A .三角形的角平分线是射线。
B.三角形三条高都在三角形内。
C. 三角形的三条角平分线有可能在三角形内,也可能在三角形外。
D. 三角形三条中线相交于一点。
3 .两根木棒长分别为5cm和7cm,要选择第三根,将它们钉成一个三角形,?如果第三根木棒长为偶数, 则组成方法有b5E2RGbCAPA. 3种B. 4种C. 5种D. 6种4. 下列各组条件中,不能判定△AB4A A/B/C/的一组是()/ / / / / //—”//A、/ A=Z A,/B=Z B ,AB= A BB、/ A=Z A , AB= A B , AC=A C/ / / J / / / / / / /C、/ A=/ A , AB= A B , BC= B CD、AB= A B , AC=A C ,BC= B C5. 如图,已知△ ABC的六个元素,则下面甲、乙、丙三个三角形中和△ ABC全等的图形是(D.只有丙6.如图1,将长方形ABCD纸片沿对角线BD折叠,使点C落在C •处,BC交AD于丘,若• DBC =22.5 °,贝恠不添加任何辅助线的情况下, 则图中45的角(虚线也视为角的边)的个数是()A. 5个E 22.12.如图5,△ ABC 的三边 AB 、BC CA 长分别是 20、30、40,其三条 角平分线将△ ABC 分为三个三角形,则 S A ABO : S A BCO:CAO 等于( )A . 1 : 1 : 1B . 1 : 2 : 3C . 2 : 3 : 4D . 3 : 4 : 513.如图6, 一圆柱高8cm,底面半径2cm,—只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程 (二 取 3)是() DXDiTa9E3dA.20cm;B.10cm;C.14cm;D. 无法确定.7•如图2,有一张直角三角形纸片,两直角边 △ ABC 折叠,使点B 与点A 重合,折痕为DE 为( )A. 10 cm B . 12cmC8、若等腰三角形的腰长为10,底边长为12,A 、6B 、7C 、8AC=5cm BC=10cm则厶ACD 的周长盒命 图2 E.15cmD . 20cm则底边上的高为()D 、99.如图3,小明把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事 的办法是()p1EanqFDPwA.带①去B.带②去C.带③去D.带①和②去10、下列条件中,不能确定三角形是直角三角形的是(A.三角形中有两个角是互为余角; B.三角形三个内角之比为3 : 2 : 1; C.三角形的三边之比为3 : 2 : 1 ; D.三角形中有两个内角的差等于第三个内角 11.把两个都有一个锐角为30°的一样大小的直角三角形拼成如图 4所示的图形,两条直角边在同一直线上.则图中等腰三角形有( )个. A. 1个B . 2个C.3 个D.4 个F C D图4图5A图614.如图7所示,已知△ ABC和厶BDE都是等边三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014-2015学年山东省济南市章丘市党家中学八年级(上)期中数学试卷一、选择题:(每题3分,共45分)1.(3分)的相反数是()A.B.C.﹣D.﹣2.(3分)9的算术平方根是()A.±3 B.3 C.D.3.(3分)在(﹣2)0、、0、﹣、、、0.101001…(相邻两个1之间0的个数逐次加1)中,无理数的个数是()A.2 B.3 C.4 D.54.(3分)下列计算正确的是()A.B.÷=C.=6 D.5.(3分)估计58的立方根的大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间6.(3分)如图,以数轴的单位长线段为边作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点A处,则点A表示的数是()A.B.1.4 C.D.7.(3分)三角形各边长度如下,其中不是直角三角形的是()A.3,4,5 B.6,8,10 C.5,11,12 D.8,15,178.(3分)一个长方形在平面直角坐标系中三个顶点的坐标为(﹣1,﹣1),(﹣1,2),(3,﹣1),则第四个顶点的坐标为()A.(2,2) B.(3,2) C.(3,3) D.(2,3)9.(3分)若一次函数y=kx﹣4的图象经过点(﹣2,4),则k等于()A.﹣4 B.4 C.﹣2 D.210.(3分)直角三角形两边长分别是3、4,第三边是()A.5 B.C.5或D.无法确定11.(3分)下列各点中,在函数y=﹣2x+5的图象上的是()A.(0,﹣5)B.(2,9) C.(﹣2,﹣9)D.(4,﹣3)12.(3分)一次函数y=kx+6,y随x的增大而减小,则这个一次函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限13.(3分)△ABC中,AB=13cm,AC=15cm,高AD=12,则BC的长为()A.14 B.4 C.14或4 D.以上都不对14.(3分)直线y=kx+b经过一、三、四象限,则直线y=bx﹣k的图象只能是图中的()A.B.C.D.15.(3分)如图,已知点A(﹣1,0)和点B(1,2),在坐标轴上确定点P,使得△ABP为直角三角形,则满足这样条件的点P共有()A.2个 B.4个 C.6个 D.7个二.填空题(每小题3分,共18分)16.(3分)在△ABC中,∠C=90°,AB=5,则AB2+AC2+BC2=.17.(3分)=.18.(3分)若点P(x,y)的坐标满足xy>0,则点P(x,y)在第象限.19.(3分)已知y=(m﹣3)+m+1是一次函数,则m=.20.(3分)若点P(﹣2,y)与Q(x,3)关于y轴对称,则x=,y=.21.(3分)函数y=(m﹣2)x中,已知x1>x2时,y1<y2,则m的范围是.三、解答题(共7个小题,共57分)22.(8分)计算题:(1)(﹣)×;(2)﹣4.23.(8分)在△ABC中,已知∠B=90°,∠A,∠B,∠C的对边分别是a,b,c,且a=6,b=8.(1)求c的长.(2)求斜边上的高.24.(8分)已知一次函数y=(m﹣4)x+3﹣m,当m为何值时,(1)y随x值增大而减小;(2)直线过原点;(3)直线与直线y=﹣2x平行;(4)直线与x轴交于点(2,0)(5)直线与y轴交于点(0,﹣1)25.(8分)如图,四边形AOCB是直角梯形,AB∥OC,OA=10,AB=9,∠OCB=45°,求点A,B,C的坐标及直角梯形AOCB的面积.26.(8分)作出函数y=x﹣4的图象,并回答下面的问题:(1)求它的图象与x轴、y轴的交点.(2)求图象与坐标轴围成的三角形的面积.27.(8分)如图,小将同学将一个直角三角形的纸片折叠,A与B重合,折痕为DE,若已知AC=10cm,BC=6cm,你能求出CE的长吗?28.(9分)直线y=kx+2与两坐标轴所围成的三角形面积为4,求直线解析式.若k>0时直线与x轴交点为A与y轴交点为B解答下列问题:=3?若存在,请求出P点坐标,若不存(1)在x轴上是否存在一点P,使S△PAB在,请说明理由.(2)求直线AB上是否存在一点E,使点E到x轴的距离等于1.5,若存在求出点E的坐标,若不存在,请说明理由.=S△AOB?若存在,请求出G点坐标,(3)在x轴上是否存在一点G,使S△BOG若不存在,请说明理由.2014-2015学年山东省济南市章丘市党家中学八年级(上)期中数学试卷参考答案与试题解析一、选择题:(每题3分,共45分)1.(3分)的相反数是()A.B.C.﹣D.﹣【解答】解:的相反数为:﹣.故选:C.2.(3分)9的算术平方根是()A.±3 B.3 C.D.【解答】解:9的算术平方根是3,故选:B.3.(3分)在(﹣2)0、、0、﹣、、、0.101001…(相邻两个1之间0的个数逐次加1)中,无理数的个数是()A.2 B.3 C.4 D.5【解答】解:无理数有:,,0.101001…(相邻两个1之间0的个数逐次加1)共3个.故选:B.4.(3分)下列计算正确的是()A.B.÷=C.=6 D.【解答】解:A、和不是同类二次根式,不能合并,所以A选项错误;B、÷==,所以B选项正确;C、(2)2=4×3=12,所以C选项错误;D、=,所以D选项错误.故选:B.5.(3分)估计58的立方根的大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间【解答】解:∵33=27,43=64,∴3<<4.故选:B.6.(3分)如图,以数轴的单位长线段为边作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点A处,则点A表示的数是()A.B.1.4 C.D.【解答】解:数轴上正方形的对角线长为:=,由图中可知0和A之间的距离为.∴点A表示的数是.故选:D.7.(3分)三角形各边长度如下,其中不是直角三角形的是()A.3,4,5 B.6,8,10 C.5,11,12 D.8,15,17【解答】解:A、∵32+42=52,∴5,4,3能构成直角三角形;B、∵62+82=102,∴6,8,10能构成直角三角形;C、∵52+112≠122,∴5,11,12不能构成直角三角形;D、∵82+52=172,∴8,15,17能构成直角三角形.故选:C.8.(3分)一个长方形在平面直角坐标系中三个顶点的坐标为(﹣1,﹣1),(﹣1,2),(3,﹣1),则第四个顶点的坐标为()A.(2,2) B.(3,2) C.(3,3) D.(2,3)【解答】解:如图可知第四个顶点为:即:(3,2).故选:B.9.(3分)若一次函数y=kx﹣4的图象经过点(﹣2,4),则k等于()A.﹣4 B.4 C.﹣2 D.2【解答】解:将点(﹣2,4)代入得:4=﹣2k﹣4,解得:k=﹣4.故选:A.10.(3分)直角三角形两边长分别是3、4,第三边是()A.5 B.C.5或D.无法确定【解答】解:当第三边是斜边时,则第三边==5;当第三边是直角边时,则第三边==.故选:C.11.(3分)下列各点中,在函数y=﹣2x+5的图象上的是()A.(0,﹣5)B.(2,9) C.(﹣2,﹣9)D.(4,﹣3)【解答】解:∵一次函数y=﹣2x+5图象上的点都在函数图象上,∴函数图象上的点都满足函数的解析式y=﹣2x+5;A、当x=0时,y=5≠﹣5,即点(0,﹣5)不在该函数图象上;故本选项错误;B、当x=2时,y=1≠9,即点(2,9)不在该函数图象上;故本选项错误;C、当x=﹣2时,y=9≠﹣9,即点(﹣2,﹣9)不在该函数图象上;故本选项错误;D、当x=4时,y=﹣3,即点(4,﹣3)在该函数图象上;故本选项正确;故选:D.12.(3分)一次函数y=kx+6,y随x的增大而减小,则这个一次函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵一次函数y=kx+6,y随x的增大而减小,∴k<0,∵b=6>0,∴此函数的图象经过一、二、四象限,不经过第三象限.故选:C.13.(3分)△ABC中,AB=13cm,AC=15cm,高AD=12,则BC的长为()A.14 B.4 C.14或4 D.以上都不对【解答】解:(1)如图,锐角△ABC中,AB=13,AC=15,BC边上高AD=12,在Rt△ABD中AB=13,AD=12,由勾股定理得BD2=AB2﹣AD2=132﹣122=25,则BD=5,在Rt△ABD中AC=15,AD=12,由勾股定理得CD2=AC2﹣AD2=152﹣122=81,则CD=9,故BC=BD+DC=9+5=14;(2)钝角△ABC中,AB=13,AC=15,BC边上高AD=12,在Rt△ABD中AB=13,AD=12,由勾股定理得BD2=AB2﹣AD2=132﹣122=25,则BD=5,在Rt△ACD中AC=15,AD=12,由勾股定理得CD2=AC2﹣AD2=152﹣122=81,则CD=9,故BC的长为DC﹣BD=9﹣5=4.故选:C.14.(3分)直线y=kx+b经过一、三、四象限,则直线y=bx﹣k的图象只能是图中的()A.B.C.D.【解答】解:∵直线y=kx+b经过第一、三、四象限,∴k>0,b<0,∴﹣k<0,∴直线y=bx﹣k经过第二、三、四象限.故选:C.15.(3分)如图,已知点A(﹣1,0)和点B(1,2),在坐标轴上确定点P,使得△ABP为直角三角形,则满足这样条件的点P共有()A.2个 B.4个 C.6个 D.7个【解答】解:①以A为直角顶点,可过A作直线垂直于AB,与坐标轴交于一点,这一点符合点P的要求;②以B为直角顶点,可过B作直线垂直于AB,与坐标轴交于两点,这两点也符合P点的要求;③以P为直角顶点,可以AB为直径画圆,与坐标轴共有3个交点.所以满足条件的点P共有6个.故选:C.二.填空题(每小题3分,共18分)16.(3分)在△ABC中,∠C=90°,AB=5,则AB2+AC2+BC2=50.【解答】解:∵∠C=90°,∴AB2=AC2+BC2,∴AB2+AC2+BC2=2AB2=2×52=2×25=50.故答案为:50.17.(3分)=4.【解答】解:原式==4,故答案为:4.18.(3分)若点P(x,y)的坐标满足xy>0,则点P(x,y)在第一、三象限.【解答】解:∵xy>0,∴xy为同号即为同正或同负,∴点P(x,y)在第一或第三象限.故答案为:一、三.19.(3分)已知y=(m﹣3)+m+1是一次函数,则m=﹣3.【解答】解;由y=(m﹣3)+m+1是一次函数,得,解得m=﹣3,m=3(不符合题意的要舍去).故答案为:﹣3.20.(3分)若点P(﹣2,y)与Q(x,3)关于y轴对称,则x=2,y=3.【解答】解:∵P(﹣2,y)与Q(x,3)关于y轴对称,∴﹣2+x=0,y=3,解得x=2,y=3.21.(3分)函数y=(m﹣2)x中,已知x1>x2时,y1<y2,则m的范围是m <2.【解答】解:∵x1>x2时,y1<y2,∴m﹣2<0,∴m<2.故答案为m<2.三、解答题(共7个小题,共57分)22.(8分)计算题:(1)(﹣)×;(2)﹣4.【解答】解:(1)原式=﹣=9﹣12=﹣3;(2)原式=﹣4=﹣4=.23.(8分)在△ABC中,已知∠B=90°,∠A,∠B,∠C的对边分别是a,b,c,且a=6,b=8.(1)求c的长.(2)求斜边上的高.【解答】解:(1)∵在△ABC中,已知∠B=90°,∠A,∠B,∠C的对边分别是a,b,c,且a=6,b=8,∴c==2;(2)设斜边上的高为h,则8h=6×2,解得h=.24.(8分)已知一次函数y=(m﹣4)x+3﹣m,当m为何值时,(1)y随x值增大而减小;(2)直线过原点;(3)直线与直线y=﹣2x平行;(4)直线与x轴交于点(2,0)(5)直线与y轴交于点(0,﹣1)【解答】解:(1)由题意,得m﹣4<0,解得m<4;(2)把原点的坐标(0,0)代入y=(m﹣4)x+3﹣m,得3﹣m=0,解得m=3;(3)由题意,得m﹣4=﹣2,3﹣m≠0,解得m=2;(4)把点(2,0)代入y=(m﹣4)x+3﹣m,得2(m﹣4)+3﹣m=0,解得m=5;(5)把点(0,﹣1)代入y=(m﹣4)x+3﹣m,得3﹣m=﹣1,解得m=4.25.(8分)如图,四边形AOCB是直角梯形,AB∥OC,OA=10,AB=9,∠OCB=45°,求点A,B,C的坐标及直角梯形AOCB的面积.【解答】解:过点B作BD⊥CO于点D,∵∠OCB=45°,AB∥OC,OA=10,AB=9,∴BD=CD=10,OD=9,∴CO=OD+DC=9+10=19,故A点坐标为:(0,10),B点坐标为:(9,10),C点坐标为:(19,0),直角梯形AOCB的面积为:(AB+OC)×OA=×(9+19)×10=140.26.(8分)作出函数y=x﹣4的图象,并回答下面的问题:(1)求它的图象与x轴、y轴的交点.(2)求图象与坐标轴围成的三角形的面积.【解答】解:(1)如图所示:把x=0代入y=x﹣4得:y=﹣4,把y=0代入y=x﹣4得:0=x﹣4,解得:x=3,所以与x轴的交点为(3,0),与y轴的交点为(0,﹣4);(2)∵OA=3,OB=4,=×OA×OB=×3×4=6,∴S△AOB即图象与坐标轴围成的三角形的面积是6.27.(8分)如图,小将同学将一个直角三角形的纸片折叠,A与B重合,折痕为DE,若已知AC=10cm,BC=6cm,你能求出CE的长吗?【解答】解:连接BE,设CE=x∵将直角三角形的纸片折叠,A与B重合,折痕为DE∴DE是AB的垂直平分线∴AE=BE=10﹣x在Rt△BCE中BE2=CE2+BC2即(10﹣x)2=x2+62解之得x=,即CE=cm.28.(9分)直线y=kx+2与两坐标轴所围成的三角形面积为4,求直线解析式.若k>0时直线与x轴交点为A与y轴交点为B解答下列问题:(1)在x轴上是否存在一点P,使S=3?若存在,请求出P点坐标,若不存△PAB在,请说明理由.(2)求直线AB上是否存在一点E,使点E到x轴的距离等于1.5,若存在求出点E的坐标,若不存在,请说明理由.(3)在x轴上是否存在一点G,使S=S△AOB?若存在,请求出G点坐标,△BOG若不存在,请说明理由.【解答】解:当k>0时,设直线与x轴交点为A,与y轴交点为B,如图1,则点B的坐标为(0,2),OB=2,S=OA•OB=4,△AOB解得:OA=4,∴点A的坐标为(﹣4,0),∴﹣4k+2=0,解得:k=,∴直线的解析式为y=x+2.当k<0时,设直线与x轴交点为C,与y轴交点为B,如图2,则点B的坐标为(0,2),OB=2,S=OC•OB=4,△COB解得:OC=4,∴点C的坐标为(4,0),∴4k+2=0,解得:k=﹣,∴直线的解析式为y=﹣x+2.综上所述:所求直线解析式为y=x+2或y=﹣x+2.=3,(1)若在x轴上存在一点P,使S△PAB=AP•OB=AP×2=AP=3,则S△PAB∵点A的坐标为(﹣4,0),∴点P的坐标为(﹣1,0)或(﹣7,0).(2)若直线AB上存在一点E,使点E到x轴的距离等于1.5,则|y E|=1.5,∴y E=±1.5.当y E=1.5时,x E+2=1.5,解得:x E=﹣1,此时点E的坐标为(﹣1,1.5).当y E=﹣1.5时,x E+2=﹣1.5,解得:x E=﹣7,此时点E的坐标为(﹣7,﹣1.5).综上所述:点E的坐标为(﹣1,1.5)或(﹣7,﹣1.5).=S△AOB,(3)若在x轴上存在一点G,使S△BOG则有OG×2=×4,解得:OG=2,∴点G的坐标为(﹣2,0)或(2,0).赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.O DAB CEAOD CB2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。