空间中“线线平行”的常用证明方法

合集下载

线线平行的证明方法

线线平行的证明方法

线线平行的证明方法线线平行是几何学中的基本概念之一,它在几何证明中起着重要的作用。

在几何学中,我们经常需要证明两条线是否平行,这就需要运用一些特定的证明方法来完成。

本文将介绍几种线线平行的证明方法,帮助读者更好地理解和运用这一概念。

首先,我们来介绍平行线的定义。

在平面几何中,如果两条直线在同一平面内,且它们不相交,那么这两条直线就被称为平行线。

平行线之间的距离始终相等,且它们永远不会相交。

而证明两条线线平行的方法,主要包括以下几种:1. 同位角相等法。

同位角相等法是证明线线平行的常用方法之一。

当一条直线被一对平行线所截断时,同位角相等的性质可以被用来证明这两条直线是平行的。

在证明过程中,我们需要利用同位角的定义,即两条直线被一条横截线所截断,形成的内部角和外部角互为补角。

通过证明同位角相等,可以得出这两条直线是平行的结论。

2. 对顶角相等法。

对顶角相等法也是证明线线平行的常用方法之一。

当一条横截线穿过两条平行线时,它所形成的对顶角是相等的。

通过证明对顶角相等,可以得出这两条直线是平行的结论。

3. 轴心角相等法。

轴心角相等法是在圆的几何中常用的证明方法。

当两条直线被同一个圆所截断时,它们所形成的轴心角相等。

通过证明轴心角相等,可以得出这两条直线是平行的结论。

4. 平行线的性质法。

平行线的性质法是通过利用平行线的性质来证明线线平行的方法。

例如,平行线被一条横截线所截断,所形成的对应角相等;平行线被一条横截线所截断,所形成的内部角和外部角互为补角等。

通过利用这些性质,可以得出线线平行的结论。

在实际的几何证明中,我们经常需要灵活运用这些方法,根据具体的几何图形和问题来选择合适的证明方法。

在进行证明时,需要注意清晰地列出已知条件和待证结论,逐步运用几何知识和证明方法进行推导,最终得出结论。

总之,线线平行的证明方法是几何学中的重要内容,它在几何证明和问题求解中起着重要作用。

通过掌握不同的证明方法,可以帮助我们更好地理解和运用线线平行的概念,提高几何证明的能力和水平。

空间向量中证明线线平行的公式

空间向量中证明线线平行的公式

空间向量中证明线线平行的公式
在空间向量中,我们经常需要判断两条线是否平行。

判断两条
线是否平行的一种方法是使用向量的方法。

下面我们将介绍如何使
用向量来证明两条线是否平行的公式。

假设有两条线,分别用参数方程表示为:
L1: r1 = a + λv.
L2: r2 = b + μw.
其中a和b是两条线上的已知点,v和w是两条线的方向向量,λ和μ是参数。

要证明L1和L2平行,我们可以使用以下方法:
1. 首先,我们可以计算两条线的方向向量v和w。

2. 然后,我们可以计算v和w的向量积(叉乘)v × w。

3. 最后,我们可以判断v × w是否为零向量。

如果v × w为零向量,那么根据向量积的性质,我们可以得出结论,两条线平行。

证明过程如下:
v × w = 0。

⇒ |v × w| = 0。

⇒ |v| |w| sinθ = 0。

其中θ为v和w之间的夹角。

根据向量积的性质,v × w = 0 当且仅当v与w共线或其中一个为零向量。

因此,如果v × w = 0,则L1和L2平行。

通过这种方法,我们可以使用向量来证明两条线是否平行的公式。

这种方法简单直观,适用于空间向量中线线平行的判断。

希望这篇文章能对你有所帮助。

线线平行的证明方法

线线平行的证明方法

线线平行的证明方法
证明线线平行的方法有很多,以下列举几种常用的证明方法。

方法一:使用平行线的性质和判定定理。

1.笛卡尔定理:任意两条平行线在任何一点的等角对应线互相平行。

2.内角和定理:如果一条直线与两条直线分别成锐角和钝角,那么这两条直线平行。

3.外角定理:如果两条平行线被一条横穿线截断,那么截断线和被截线所构成的两组内外角互补。

以上定理中的推导过程可以使用数学归纳法证明。

方法二:使用等距变换。

等距变换是指通过平移、旋转或镜像等操作,使得图形在平面内发生变换但是其大小和形状保持不变。

如果一条直线通过等距变换后仍然是一条直线,那么这两条直线是平行的。

这个方法的证明过程主要是通过等距变换的性质和定义进行推导。

方法三:使用向量的理论。

向量法是指通过向量的线性组合、向量的平行关系和向量的数量积等性质来证明线线平行。

具体证明中,可以利用向量的线性组合使两个向量的方向相同,从而得出平行的结论。

方法四:使用代数法。

可以通过方程组的解得到平行线的证明。

如果两条直线的方程组有唯一解且斜率相同,那么这两条直线是平行的。

通过证明方程组有唯一解且斜率相同,可以得出线线平行的结论。

以上是几种常用的证明线线平行的方法,不同的方法可以根据具体的证明问题进行选择和应用。

在实际的推导过程中,根据具体问题的要求选择合适的证明方法,运用适当的数学理论和性质进行推导,最终得出线线平行的结论。

空间几何的基本定理和证明

空间几何的基本定理和证明

空间几何的基本定理和证明空间几何是研究空间中点、线、面和体之间的位置、形态、大小、相对位置等性质的数学分支。

在空间几何中,有一些基本定理是我们必须要了解和掌握的。

本文将介绍几个常见的空间几何基本定理,并给出相应的证明。

一、平行线定理:平行线是位于同一平面内且不相交的两条直线。

在空间几何中,平行线间的关系有着重要的应用。

平行线定理如下:定理1:如果两条直线与第三条直线相交,且与第三条直线分别平行,则这两条直线互相平行。

证明:设直线l和m与直线n相交,且l与n平行,m与n平行。

我们需证明直线l与m平行。

根据平行线的定义,我们可以得到以下两组对应角相等关系:∠1 = ∠2,∠1 = ∠3;∠4 = ∠5,∠4 = ∠6。

现在我们来证明∠2 = ∠3 = ∠5 = ∠6,这样就证明了直线l与m平行。

根据同位角定理,我们可以得到:∠2 + ∠4 = 180°,∠3 + ∠6 = 180°。

将上述两个等式相加并整理得:∠2 + ∠4 + ∠3 + ∠6 = 360°。

由于∠2 = ∠3,∠4 = ∠5,∠5 = ∠6,代入上式我们可以得到:2∠2 + 2∠5 = 360°。

化简得:∠2 + ∠5 = 180°。

根据同位角的定义,∠2 + ∠5是直线l与m的内错角。

据直线外角定理,直线l与m的内错角相等,即∠2 + ∠5 = 180°。

因此,我们证明了直线l与m平行。

二、垂直定理:在空间几何中,垂直是指两个直线或线段相交时,交点的四个周围角都是直角(90°)。

垂直定理如下:定理2:直线和平面垂直的等价条件是直线上的任意一条直线垂直于平面。

证明:我们设直线l与平面P相交于点A,我们需要证明l上的任意一条直线垂直于平面P。

取直线l上任意一点B,连接OB。

构造平面Q,使得平面Q 过直线l且垂直于平面P。

则由垂直平面的性质得知,直线l就在平面Q内。

总结证明线面平行的常用方法

总结证明线面平行的常用方法

BC DA 1B 1C 1D 1图2AFE GαabA图1总结证明线面平行的常用方法空间直线与平面平行问题是立体几何的一个重要内容,也是高考考查的重点,下面就常见的线面平行的判定方法介绍如下:方法一、反证法【例1】求证:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.(直线与平面平行的判定定理)已知:,,a b a αα⊄⊂∥b ,如图1.求证:a ∥α.【分析】要证明直线与平面平行,可以从直线与平面平行的定义入手,但从定义来看,必须说明直线与平面无公共点,这一点直接说明是困难的,但我们可以借助反正法来证明.【证明】假设直线a 与平面α不平行,又∵a α⊄,∴a A α=.下面只要说明aA α=不可能即可.∵a ∥b ,∴a ,b 可确定一平面,设为β. 又aA α=, ∴,A a A β∈∈.又b ,A αα⊂∈,∴平面α与平面β中含有相同的元素直线b ,以及不在直线b 上的点A, 由公理2的推论知,平面α与平面β重合. ∴a α⊂,这与已知a α⊄相矛盾. ∴a A α=不可能.故a ∥α.方法二、判定定理法【例2】正方体1AC 中,E、G 分别为BC 、11C D 的中点,求证:EG ∥平面11BDD B 【分析】要证明EG ∥平面11BDD B ,根据线面平行的判定定理,需在平面11BDD B 内找到一条与EG 平行的直线,充分借助E、G 为中点的条件.【证明】如图2,取BD 的中点为F,连结EF ,1D F . ∵E为BC 的中点, ∴ EF ∥CD 且12EF CD =又∵G 为11C D 的中点, ∴ 1D G ∥CD 且112D G CD =∴ EF ∥1D G ,且1EF D G =B C DA 1B 1C 1D 1ANME F图3故四边形1EFD G 为平行四边形.∴ 1D F ∥EG又1D F ⊂平面11BDD B ,且EG ⊄平面11BDD B , ∴ EG ∥平面11BDD B 【评注】根据直线与平面平行的判定定理证明直线和平面平行的关键是在平面内找到 一条直线和已知直线平行,常用到中位线定理 、平行四边形的性质、成比例线段、平行转移法、投影法等.具体应用时,应根据题目条件而定.方法三、运用面面平行的性质定理【例3】在正方体1111ABCD A B C D -中,点N 在BD 上,点M 在1B C 上,且CM DN =,求证:MN ∥平面11AA BB .【分析】若过MN 能作一个平面与平面11AA BB 平行,则由面面平行的性质定理,可得MN 与平面11AA BB 平行.【证明】如图3,作MP ∥1BB ,交BC 与点P,联结NP . ∵ MP ∥1BB ,∴1CM CPMB PB=. ∵1BD B C =,DN CM =,∴1B M BN =, ∵1CM DN MB NB =,∴DN CPNB PB= ∴NP ∥CD ∥AB , ∴面MNP ∥面11AA BB . ∴MN ∥平面11AA BB【评注】本题借助于成比例线段,证明一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行,得到这两个平面平行,进而得到线面平行,很好地体现了线面、线线、面面平行关系之间的转化思想.。

谈谈证明线面平行问题常用的几种方法

谈谈证明线面平行问题常用的几种方法

证明线面平行的问题侧重于考查同学们的空间想象能力与数学运算能力.根据直线与平面平行的定义可知,要判断直线与平面是否平行,只需判定直线与平面有没有公共点.但由于直线是无限延伸的,平面是无限延展的,因此利用定义法不易快速证明线面平行,需运用转化思想,把线面平行问题转化为线线平行问题、面面平行问题、空间向量之间的位置关系问题,利用线面平行的判定定理、面面平行的性质定理,通过空间向量运算来求解.下面谈一谈证明线面平行的三种方法.一、利用线面平行的判定定理进行证明线面平行的判定定理:如果平面外一条直线与平面内的一条直线平行,那么该直线与该平面平行.利用线面平行的判定定理,可由线线平行推出线面平行.在证明线面平行时,可根据题意和几何图形的特点,添加合适的辅助线,利用中位线的性质、平行四边形的性质寻找或作出平行线,以利用线面平行的判定定理证明线面平行.例1.如图1,在四棱锥P-ABCD中,底面ABCD为平行四边形,O为AC的中点,M为PD的中点,证明:PB//平面ACM.证明:如图1,连接MO,BD.在平行四边形ABCD中,O为AC的中点,∴O为BD的中点,∵M为PD的中点,∴MO为ΔPBD的中位线,∴PB//MO,又PB⊄平面ACM,MO⊂平面ACM,∴PB//平面ACM.想要证明PB//平面ACM,需在平面ACM内找到一条与直线PB平行的直线,于是添加辅助线,作出ΔPBD的中位线MO.由三角形中位线的性质可知MO//PB,即可利用线面平行的判定定理证明线面平行.例2.如图2,四棱锥P-ABCD的底面ABCD为直角梯形,侧棱AP⊥平面ABCD,AB⊥AD,AD=2BC.若点E为棱PD的中点.求证:CE//平面ABP.证明:如图2所示,取PA的中点F,连接BF,EF,在ΔPAD中,点F,E分别是PA,PD的中点,∴EF为ΔPAD的中位线,∴EF//AD,EF=12AD,∵ AD=2 BC,∴AD//BC,BC=12AD,∴EF//BC,EF=BC,∴四边形EFBC是平行四边形,∴CE//BF,∵CE⊄平面ABP,BF⊂平面ABP,∴CE//平面ABP.通过作辅助线构造出平行四边形EFBC,再利用中位线的性质和平四边形的性质即可证明EF//AD、CE//BF.而CE在平面ABP外,BF在平面ABP内,利用线面平行的判定定理,就能证明CE//平面ABP.例3.如图3,S是平行四边形ABCD外一点,M,N分别是SA、BD上的点,且AMSM=BN ND,求证:MN//平面SDC.证明:连接AN,并延长AN延长线交CD于点P,连接SP,∵四边形ABCD是平行四边形,∴AB//PD,∴ΔABN∽ΔPDN,∴BNND=AN NP,又AMMS=AN NP,∴AMAS=AN AP,∴MN//SP,∵MN⊄平面SDC,SP⊂平面SDC,∴MN//平面SDC.通过作辅助线,构造出两个相似三角形ΔABN与ΔPDN,再根据相似三角形的性质可证明MN//SP.而图1图2图346方法集锦图4三、利用空间向量进行证明若几何图形中有两两垂直的三条线,为坐标轴,建立空间直角坐标系,分别求出直线的方向向量和平面的法向量的方向向量与平面的法向量垂直,平面平行.。

证明线线平行的方法

证明线线平行的方法

证明线线平行的方法:1.垂直于同一平面的两条直线平行2.平行于同一直线的两条直线平行3.一个平面与另外两个平行平面相交,那么2条交线也平行4.两条直线的方向向量共线,则两条直线平行5.线面平行的性质定理:一条直线和一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。

证明线面平行的方法:1.直线与平面平行的判定性定理:如果不在一个平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。

2.平面与平面平行的性质定理:如果两个平面是平行,那么在其中一个平面内的直线和另一个平面平行。

证明面面平行的方法:1.如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。

2.面面平行的传递性:如果两个平面都和第三个平面平行,则这两个平面平行。

3.垂直与同一直线的两个平面平行。

4.利用向量法证明。

证明线线垂直的方法:1.定义法:两直线夹角90度2.三垂线定理:在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直3.直线与平面的定义:若1条直线垂直于一个平面,则它垂直于这个平面的所有直线4.法向量:在空间直角坐标系中,三点两向量确定一个平面,分别于这两个向量垂直的向量也就是分别与这两个向量乘积为0的向量垂直于这个平面,也就叫这个平面的法向量。

证明线面垂直的方法:1.直线垂直于平面内两条相交直线,则线与面垂直。

2.两条平行线一条垂直于平面,则另一条也垂直于这个平面。

3.如果两个面垂直,则其中一个面内垂直交线的线垂直另一个平面。

4.如果一条直线垂直于两个平行平面中的一个平面,那么它也垂直于另一个平面。

5.1来证。

6.证明面面垂直的方法:1.定义:两个平面相交,它们所成的二面角是直二面角。

2.如果一个平面经过另一个平面的一条垂线,那么这两个平面垂直。

12.设1A ,2A ,3A ,4A 是平面直角坐标系中两两不同的四点,若1312A A A A λ= (λ∈R),1412A A A A μ=(μ∈R),且112λμ+=,则称3A ,4A 调和分割1A ,2A ,已知点C(c ,o),D(d ,O) (c ,d∈R)调和分割点A(0,0),B(1,0),则下面说法正确的是(A)C 可能是线段AB 的中点(B)D 可能是线段AB 的中点(C)C ,D 可能同时在线段AB 上(D) C ,D 不可能同时在线段AB 的延长线上【答案】D【解析】由1312A A A A λ= (λ∈R),1412A A A A μ=(μ∈R)知:四点1A ,2A ,3A ,4A 在同一条直线上,因为C,D 调和分割点A,B,所以A,B,C,D 四点在同一直线上,且112c d+=, 故选D. 如图,在四棱台1111ABCD A B C D -中,1D D ⊥平面ABCD ,底面ABCD 是平行四边形,AB=2AD ,11AD=A B ,BAD=∠60°(Ⅰ)证明:1AA BD ⊥;(Ⅱ)证明:11CC A BD ∥平面.【解析】(Ⅰ)证明:因为AB=2AD ,所以设AD=a,则AB=2a,又因为BAD=∠60°,所以在ABD ∆中,由余弦定理得:2222(2)22cos 603BD a a a a a =+-⨯⨯=,所以BD=3a ,所以222AD BD AB +=,故BD ⊥AD,又因为1D D ⊥平面ABCD ,所以1D D ⊥BD,又因为1AD D D D ⋂=, 所以BD ⊥平面11ADD A ,故1AA BD ⊥.(2)连结AC,设AC ⋂BD=0, 连结1A O ,由底面ABCD 是平行四边形得:O 是AC 的中点,由四棱台1111ABCD A B C D -知:平面ABCD ∥平面1111A B C D ,因为这两个平面同时都和平面11ACA C 相交,交线分别为AC 、11A C ,故11AC AC ,又因为AB=2a,BC=a, ABC=120∠,所以可由余弦定理计算得,又因为A 1B 1=2a, B 1C 1=2a , 111A B C =120∠,所以可由余弦定理计算得A 1C 1=2a ,所以A 1C 1∥OC 且A 1C 1=OC ,故四边形OCC 1A 1是平行四边形,所以CC 1∥A 1O ,又CC 1⊄平面A 1BD ,A 1O ⊂平面A 1BD ,所以11CC A BD ∥平面.20.(本小题满分12分)等比数列{}n a 中,123,,a a a 分别是下表第一、二、三行中的某一个数,且123,,a a a 中的任何两个数不在下表的同一列.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列{}n b 满足:(1)ln n n n b a a =+-,求数列{}n b 的前2n 项和2n S .【解析】(Ⅰ)由题意知1232,6,18a a a ===,因为{}n a 是等比数列,所以公比为3,所以数列{}n a 的通项公式123n n a -=⋅.(Ⅱ)因为(1)ln n n n b a a =+-=123n -⋅+1(1)ln 23n --⋅, 所以12n n S b b b =+++=1212()(ln ln ln )n n a a a a a a +++-++=2(13)13n ---12ln n a a a =31n --121ln(21333)n n -⋅⨯⨯⨯⨯= 31n --(1)2ln(23)n n n -⋅,所以2n S =231n --2(21)22ln(23)n n n -⋅=91n --22ln 2(2)ln 3n n n --.15.(本小题满分14分)在平面直角坐标系xOy 中,点A(-1,-2)、B(2,3)、C(-2,-1).(1)求以线段AB 、AC 为邻边的平行四边形两条对角线的长;(2)设实数t 满足(OC t AB -)·OC =0,求t 的值.16. (本小题满分14分)如图,在四棱锥P-ABCD 中,PD ⊥平面ABCD ,PD=DC=BC=1,AB=2,AB ∥DC ,∠BCD=900.(1)求证:PC ⊥BC ;(2)求点A 到平面PBC 的距离.19.(本小题满分16分)设各项均为正数的数列{}n a 的前n 项和为n S ,已知3122a a a +=,数列{}nS 是公差为d 的等差数列.(1)求数列{}n a 的通项公式(用d n ,表示)(2)设c 为实数,对满足n m k n m ≠=+且3的任意正整数k n m ,,,不等式k n m cS S S >+都成立,求证:c 的最大值为29.10、已知→→21,e e 是夹角为π32的两个单位向量,,,22121→→→→→→+=-=e e k b e e a 若0=⋅→→b a ,则k 的值为13、设7211a a a ≤≤≤≤ ,其中7531,,,a a a a 成公比为q 的等比数列,642,,a a a 成公差为1的等差数列,则q 的最小值是________16、如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD ,AB=AD ,∠BAD=60°,E 、F 分别是AP 、AD 的中点求证:(1)直线E F ‖平面PCD ;(2)平面BEF ⊥平面PAD20、设M 为部分正整数组成的集合,数列}{n a 的首项11=a ,前n 项和为n S ,已知对任意整数k 属于M ,当n>k 时,)(2k n k n k n S S S S +=+-+都成立(1)设M={1},22=a ,求5a 的值;(2)设M={3,4},求数列}{n a 的通项公式 1. F E A D如图,在长方体1111ABCD A B C D -中,3AB AD cm ==,12AA cm =,则四棱锥11A BB D D -的体积为 ▲ 3cm . 答案:62. 在平面直角坐标系xOy 中,若双曲线22214x y m m -=+的离心率为5,则m 的值为 ▲ .答案:23. 如图,在矩形ABCD 中,2AB =,2BC =,点E 为BC 的中点,点F 在边CD 上,若2AB AF =,则AE BF 的值是 ▲ .答案:24. (本小题满分14分)在ABC ∆中,已知3AB AC BA BC =.A B C E F D (第7题)(1) 求证:tan 3tan B A =;(2) 若cos C =求A 的值. 解:(1)∵3AB AC BA BC = ∴3AB AC cos A BA BC cos B = ∴3AC cos A BC cos B = 由正弦定理得:AC BC sin B sin A =∴3sin B cos A sin A cos B =∴3tan B tan A =(2)∵cos C =0C π<<∴5sinC = ∴2tanC = ∴()2tan A B +=-又∵3tan B tan A =∴23421113tan A tan B tan A tan A tan A tan Atan B tan A tan B tan A++-===--- ∴1tan A =或13- ∵3tan B tan A =∴A ,B 必为锐角,否则A ,B 同时为钝角,这与三角形的内角和小于180矛盾 ∴0tan A >∴1tan A =∴4A π=5. (本小题满分14分)如图,在直三棱柱111ABC A B C -中,1111A B AC =,D E ,分别是棱1BC CC ,上的点(点D 不同于点C ),且AD DE F ⊥,为11B C 的中点. 求证:(1) 平面ADE ⊥平面11BCC B ;(2) 直线1//A F 平面ADE .证明:(1)∵三棱柱111ABC A B C -是直三棱柱 ∴1CC ABC ⊥平面∵AD ABC ⊂平面∴1CC AD ⊥∵AD DE ⊥,且1DE CC E = ∴11AD BCC B ⊥平面∵AD ABC ⊂平面∴11ADE BCC B ⊥平面平面(2)∵11AD BCC B ⊥平面, 11BC BCC B ⊂平面∴AD BC ⊥∵直三棱柱111ABC A B C -中,1111A B AC = ∴AB AC =∴D 是BC 的中点∵F 是11B C 的中点 ∴1DFAA ,且1DF AA =∴四边形1AA FD 是平行四边形 ∴1A FAD∵1D F A A E ⊄平面,1D F A A E ⊂平面 ∴1//A F 平面ADE 6. (本小题满分16分)已知各项均为正数的两个数列{}n a 和{}n b 满足:122n n n n n a n a b *+=∈+N .(1) 设11n n nb b n a *+=+∈N ,,求证:数列2nn b a ⎧⎫⎛⎫⎪⎪⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是等差数列;(2) 设12nn nb b n a *+=∈N ,,且{}n a 是等比数列,求1a 和1b 的值. 解: (1)∵()22222221221211n n n n*n n n n n n n n n nnn n a b a b bb b a b b n N a a b a a a ++⎛⎫+ ⎪⎛⎫⎛⎫⎛⎫⎛⎫⎪-=-=-=∈ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎪ ⎪⎝++⎭+ (2)∵0n a >,0n b >∴()()22222n n n n n n a b a b a b +≤+<+∴12212n n n n na ab +<=≤+∵{}n a 是各项都为正数的等比数列 ∴设其公比为q ,则0q >①当1q >时, ∵0n a >∴数列{}n a是单调递增的数列,必定存在一个自然数,使得1n a +> ②当01q <<时 ∵0n a >∴数列{}n a 是单调递减的数列,必定存在一个自然数,使得11n a +< 由①②得:1q = ∴()1*n a a n N =∈∵11n a +<=≤得:1a =,且11a <≤∴1n b =∵*11n n n n b b n N a +==∈, ∴数列{}n b是公比为1a 的等比数列∵11a <≤∴11a ≥ ①当11a >时 数列{}n b是单调递增的数列,这与1n b =矛盾 ②11=时数列{}n b 是常数数列,符合题意∴1a∴n b∴1b =1.如图,在三棱柱ABC C B A -111中,F E D ,,分别是1,,AA AC AB 的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V ▲ .解析:112211111334224ADE ABC V S h S h V ==⨯⨯=所以121:24V V =2.3. 设E D ,分别是ABC ∆的边BC AB ,上的点,AB AD 21=,BC BE 32=,若AC AB DE 21λλ+=(21,λλ为实数),则21λλ+的值为 ▲ .解析: 易知()121212232363DE AB BC AB AC AB AB AC =+=+-=-+ 所以1212λλ+=4.在正项等比数列{}n a 中,215=a ,376=+a a .则满足n n a a a a a a a a ......321321>++++的最大正整数n 的值为 ▲ . 解析:ABC1ADE F1B1C2252552667123123115521155223 (1),.222222011522360022n n n n n n n n n n a a a a a a a a a a q a q q a a n nq n q n q a -------=+=+-+=∴++++>∴->∴->>-∴-><<=>∴==n N +∈112,n n N +∴≤≤∈又12n =时符合题意,所以n 的最大值为12 15.(本小题满分14分)已知()cos sin a αα=,,()cos sin b ββ=,,0βαπ<<<. (1) 若2a b -=,求证:a b ⊥;(2) 设()01c ,=,若a b c +=,求α,β的值.解:(1)()()cos ,sin ,cos ,sin ,0a b ααβββαπ==<<<2a b -= 22a b ∴-=2222a b ab ∴+-= 1122a b +-⋅= 0a b ⋅= a b ∴⊥ (2)()()()0,1,cos cos ,sin sin 0,1cos cos 0sin sin 1c a b cαβαβαβαβ=+=∴++=∴+=∴+=①②22+①②得:()2+2cos 1αβ-= ()1cos 2αβ-=-0023βαπαβππαβ<<<∴<-<∴-=又cos cos 05,66αβαβπππαβ+=∴+=∴==16. (本小题满分14分)如图,在三棱锥S ABC -中,平面SAB ⊥平面SBC ,AB BC ⊥,AS AB =. 过A 作AF SB ⊥,垂足为F ,点E ,G 分别是侧棱SA ,SC 的中点.求证:(1) 平面EFG //平面ABC ; (2) BC SA ⊥. 解:(1),E G 分别是侧棱,SA SC 的中点EG AC ∴∥AC 在平面ABC 中,EG 在平面外EG ∴∥平面ABC,AS AB AF SB =⊥F ∴为SB 中点 EF AB ∴∥AB 在平面ABC 中,EF 在平面外EF ∴∥平面ABCEF 与EG 相交于E,EF EG 在平面EFG 中 ∴ 平面EFG //平面ABC(2)平面SAB ⊥平面SBCSB 为交线AF 在SAB 中,AF SB ⊥AF ∴⊥平面SBC AF BC ∴⊥BC AB ⊥AF 与AB 相交于A ,AF AB 在平面SAB 中 BC ∴⊥平面SAB BC SA ∴⊥ 19. (本小题满分16分)设{}n a 是首项为a ,公差为d 的等差数列()0d ≠,n S 是其前n 项和. 记2nn nS b n c=+,N n *∈,其中c 为实数.(1) 若0c =,且1b ,2b ,4b 成等比数列,证明:()2N nk k S n S k,n *=∈; (2) 若{}n b 是等差数列,证明:0c =. 解:(1)()()10n a a n d d =+-≠22n n nS na d -=+ 0c =时,nn S b n=112244122342S b a S db a S d b a ====+==+124,,b b b 成等比2142b b b ∴=222222222322202n nk k nk kd d a a a d ad d d aS n a S n k a n S n k a S n S ⎛⎫⎛⎫∴⋅+=+ ⎪ ⎪⎝⎭⎝⎭∴=≠∴=∴===∴=(2)由已知23222222n n nS n a n d n db nc n c+-==++n b 是等差数列∴设n b kn b =+(k,b 为常数)∴有()()32222220k d n b d a n ckn bc -++-++=对任意n N +∈恒成立202202020k d b d a ck bc -=⎧⎪+-=⎪∴⎨=⎪⎪=⎩0d ≠k c ∴≠∴=此时222dka d b=-=命题得证3.。

证明线线平行的六种方法

证明线线平行的六种方法

证明线线平行的六种方法
线线平行是几何学中的基本概念之一,可以通过多种方法来证明线线平行,本文将介绍六种常用的证明方法。

方法一:同位角定理法
同位角定理指的是:如果两条直线被一条截线分成两对同位角相等的角,那么这两条直线是平行的。

因此,要证明两条直线平行,只需证明它们的同位角相等即可。

方法二:平行线性质法
如果一条直线与两条平行直线相交,那么它所对应的两个内角互为补角。

因此,要证明两条直线平行,只需证明它们的内角互为补角即可。

方法三:转折法
转折法是通过反证法来证明线线平行的方法。

假设两条直线不平行,那么它们一定会相交,那么在相交点处一定存在一对同位角不相等的角,这与同位角定理相矛盾,因此假设不成立,两条直线必须平行。

方法四:等夹角法
如果两条直线被一条截线分成一对相等的内角,则这两条直线是平行的。

因此,要证明两条直线平行,只需证明它们被一条截线分成的内角相等即可。

方法五:延长线法
如果两条直线的一对相邻内角互为补角,那么这两条直线是平行的。

因此,要证明两条直线平行,只需找到这两条直线上的相邻内角,将它们延长成一条直线,然后证明这条直线与另一条直线是垂直的即可。

方法六:反向证明法
反向证明法是证明两条直线不平行的方法,只需证明这两条直线的内角不互为补角即可。

因为如果两条直线不平行,它们在相交处的内角一定不互为补角。

通过同位角定理法、平行线性质法、转折法、等夹角法、延长线法、反向证明法这六种方法,我们可以轻松地证明线线平行的问题。

对于几何学的学习来说,掌握这些方法是非常重要的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档