山东省诸城市2017届九年级第一次模拟考试数学试题(图片版)
2017-2018年山东省潍坊市诸城市龙源中学九年级上学期期中数学模拟试卷及答案

2017-2018学年山东省潍坊市诸城市龙源中学九年级(上)期中数学模拟试卷一、选择题(每题3分,共36分)1.(3分)在0,﹣2,5,,﹣0.3中,负数的个数是()A.1 B.2 C.3 D.42.(3分)下列方程一定是一元二次方程的是()A.2x2﹣1=3x B.2x2﹣y=1 C.ax2+bx+c=0 D.2x2+=13.(3分)下列计算正确的是()A.2a6÷a2=2a3B.=x2﹣C.(x3)3+x6=2x6D.﹣(a﹣1)=﹣a+1 4.(3分)已知二次函数y=a(x+1)2﹣b(a≠0)有最小值1,则a,b的大小关系为()A.a>b B.a<b C.a=b D.不能确定5.(3分)如图,在正方形ABCD中,△ABE经旋转,可与△CBF重合,AE的延长线交FC于点M,以下结论正确的是()A.BE=CE B.FM=MC C.AM⊥FC D.BF⊥CF6.(3分)已知关于x的方程x2﹣(m﹣3)x+m2=0有两个不相等的实数根,那么m的最大整数值是()A.2 B.1 C.0 D.﹣17.(3分)抛物线的一部分如图,对称轴为直线x=﹣1,该抛物线在y轴右侧部分与x轴交点的坐标是()A.(,0)B.(1,0) C.(2,0) D.(3,0)8.(3分)如图,是由相同的花盆按一定的规律组成的形如正多边形的图案,其中第1个图形一共有6个花盆,第2个图形一共有12个花盆,第3个图形一共有20个花盆,…则第8个图形中花盆的个数为()A.56 B.64 C.72 D.909.(3分)童童从家出发前往奥体中心观看某演出,先匀速步行至轻轨车站,等了一会儿,童童搭乘轻轨至奥体中心观看演出,演出结束后,童童搭乘邻居刘叔叔的车顺利到家.其中x表示童童从家出发后所用时间,y表示童童离家的距离.如图能反映y与x的函数关系式的大致图象是()A.B.C.D.10.(3分)已知﹣1是关于x的方程x2+4x﹣m=0的一个根,则这个方程的另一个根是()A.﹣3 B.﹣2 C.﹣1 D.311.(3分)二次函数y=ax2+bx+c与一次函数y=ax+c在同一直角坐标系内的大致图象是()A.B.C.D.12.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法错误的是()A.二次函数的图象关于直线x=1对称B.当x>1时,y随x的增大而减小C.﹣1和3是方程ax2+bx+c=0(a≠0)的两个根D.函数y=ax2+bx+c(a≠0)的最小值是﹣4二、填空题(本大题共6小题,每空4分,共24分)13.(4分)函数y=中,自变量x的取值范围是.14.(4分)在函数y=﹣x2+2x﹣2中,若2≤x≤5,那么函数y的最大值是.15.(4分)某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,则该药品平均每次降价的百分率是.16.(4分)若|b﹣1|+=0,且一元二次方程kx2+ax+b=0有实数根,则k的取值范围是.17.(4分)设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+a 上的三点,则y1,y2,y3的大小关系为.18.(4分)如图,正方形ABCD的边长为3a,两动点E、F分别从顶点B、C同时开始以相同速度沿BC、CD运动,与△BCF相应的△EGH在运动过程中始终保持△EGH≌△BCF,B、E、C、G在一直线上,△DHE的面积的最小值是.三、解答题(本大题共3小题,共34分)19.(12分)解方程:(1)x2﹣8x﹣1=0(2)(3x﹣1)2=(x+1)2.20.(10分)计算:(1)(x+3)2+x(x﹣6)(2)÷(y+2﹣)21.(10分)我校初2016级举行了初三体育测试,现随机抽取了部分学生的成绩为样本,按A(优秀)、B(良好)、C(及格)、D(不及格)四个等级进行统计,并将统计结果制成如下统计图.如图,请你结合图表所给信息解答下列问题:(1)本次调查共随机抽取了名学生,其中∠1=;(2)将条形统计图在图中补充完整;(3)初2016级目前举行了四次体育测试.小新同学第一次成绩为25分,第三次测试成绩为36分,若每次体育期末考试小欣体育成绩的增长率相同,求出这个增长率.四.解答题(本大题共2小题,共24分)22.(12分)如图所示,有一座拱桥圆弧形,它的跨度AB为60米,拱高PM为18米,当洪水泛滥到跨度只有30米时,就要采取紧急措施,若拱顶离水面只有4米,即PN=4米时,是否采取紧急措施?(=1.414)23.(12分)某水渠的横截面呈抛物线,水面的宽度为AB(单位:米),现以AB 所在直线为x轴,以抛物线的对称轴为y轴建立如图所示的平面直角坐标系,设坐标原点为O.已知AB=8米,设抛物线解析式为y=ax2﹣4.(1)求a的值;(2)点C(﹣1,m)是抛物线上一点,点C关于原点O的对称点为点D,连接CD,BC,BD,求△BCD的面积.五.解答题(本大题共3小题,共24分)24.(10分)某商场以每件20元的价格购进一批衬衫,若以每件40元出售,则每天可售出60件,经调查发现,如果每件衬衫每涨价1元,商场平均每天可少售出2件,若设每件衬衫涨价x元,所获得的利润为y元.(1)求y与x的函数关系式;(2)求每件衬衫涨价多少元时,商场所获得的利润最多,最多是多少元?25.(12分)如图,在菱形ABCD中,∠ABC=60°,E是对角线AC上任意一点,F 是线段BC延长线上一点,且CF=AE,连接BE、EF.(1)如图1,当E是线段AC的中点,且AB=2时,求△ABC的面积;(2)如图2,当点E不是线段AC的中点时,求证:BE=EF;(3)如图3,当点E是线段AC延长线上的任意一点时,(2)中的结论是否成立?若成立,请给予证明;若不成立,请说明理由.26.(12分)如图1,抛物线y=ax2+bx﹣4a经过A(﹣1,0)、C(0,4)两点,与x轴交于另一点B.(1)求抛物线和直线BC的解析式;(2)如图2,点P为第一象限抛物线上一点,是否存在使△PBC面积最大的点P?若存在,求出点P的坐标;若不存在,请说明理由;(3)如图3,若抛物线的对称轴EF(E为抛物线顶点)与直线BC相交于点F,M为直线BC上的任意一点,过点M作MN∥EF交抛物线于点N,以E,F,M,N为顶点的四边形能否为平行四边形?若能,求点N的坐标;若不能,请说明理由.2017-2018学年山东省潍坊市诸城市龙源中学九年级(上)期中数学模拟试卷参考答案与试题解析一、选择题(每题3分,共36分)1.(3分)在0,﹣2,5,,﹣0.3中,负数的个数是()A.1 B.2 C.3 D.4【解答】解:在0,﹣2,5,,﹣0.3中,﹣2,﹣0.3是负数,共有两个负数,故选:B.2.(3分)下列方程一定是一元二次方程的是()A.2x2﹣1=3x B.2x2﹣y=1 C.ax2+bx+c=0 D.2x2+=1【解答】解:A、符合一元二次方程的定义,正确;B、方程含有两个未知数,故错误;C、方程二次项系数可能为0,故错误;D、不是整式方程,故错误.故选:A.3.(3分)下列计算正确的是()A.2a6÷a2=2a3B.=x2﹣C.(x3)3+x6=2x6D.﹣(a﹣1)=﹣a+1【解答】解:A、结果是2a4,故本选项错误;B、结果是x2﹣x+,故本选项错误;C、结果是x9+x6,故本选项错误;D、结果是﹣a+1,故本选项正确;故选:D.4.(3分)已知二次函数y=a(x+1)2﹣b(a≠0)有最小值1,则a,b的大小关系为()A.a>b B.a<b C.a=b D.不能确定【解答】解:∵二次函数y=a(x+1)2﹣b(a≠0)有最小值,∴抛物线开口方向向上,即a>0;又最小值为1,即﹣b=1,∴b=﹣1,∴a>b.故选:A.5.(3分)如图,在正方形ABCD中,△ABE经旋转,可与△CBF重合,AE的延长线交FC于点M,以下结论正确的是()A.BE=CE B.FM=MC C.AM⊥FC D.BF⊥CF【解答】解:因为E是BC上任意一点,E不一定是BC的中点,故选项A错误;根据旋转的性质可得△ABE≌△CBF,则∠AEB=∠F,又∵直角△ABE中,∠BAE+∠AEB=90°,∴∠BAE+∠F=90°,∴∠AMF=90°,∴AM⊥FC,故C正确;E是BC上任意一点,BF=BE,则AC和AF不一定相等,则M不一定是FC的中点,则B错误;∵BF⊥BC,∴BF⊥CF一定错误,故D错误.故选:C.6.(3分)已知关于x的方程x2﹣(m﹣3)x+m2=0有两个不相等的实数根,那么m的最大整数值是()A.2 B.1 C.0 D.﹣1【解答】解:∵方程有两个不相等的实数根,∴△=b2﹣4ac=[﹣(m﹣3)]2﹣4×m2=9﹣6m>0,解得:m<,∴m的最大整数值是1.故选:B.7.(3分)抛物线的一部分如图,对称轴为直线x=﹣1,该抛物线在y轴右侧部分与x轴交点的坐标是()A.(,0)B.(1,0) C.(2,0) D.(3,0)【解答】解:设抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点∵对称轴为直线x=﹣1,∴A、B两点关于直线x=﹣1对称,∵点A的坐标为(﹣3,0),∴点B的坐标为(1,0);故选:B.8.(3分)如图,是由相同的花盆按一定的规律组成的形如正多边形的图案,其中第1个图形一共有6个花盆,第2个图形一共有12个花盆,第3个图形一共有20个花盆,…则第8个图形中花盆的个数为()A.56 B.64 C.72 D.90【解答】解:∵第一个图形:三角形每条边上有3盆花,共计32﹣3盆花,第二个图形:正四边形每条边上有4盆花,共计42﹣4盆花,第三个图形:正五边形每条边上有5盆花,共计52﹣5盆花,…第n个图形:正n+2边形每条边上有n盆花,共计(n+2)2﹣(n+2)盆花,则第8个图形中花盆的个数为(8+2)2﹣(8+2)=90盆.故选:D.9.(3分)童童从家出发前往奥体中心观看某演出,先匀速步行至轻轨车站,等了一会儿,童童搭乘轻轨至奥体中心观看演出,演出结束后,童童搭乘邻居刘叔叔的车顺利到家.其中x表示童童从家出发后所用时间,y表示童童离家的距离.如图能反映y与x的函数关系式的大致图象是()A.B.C.D.【解答】解:先不行驶速度较慢;等车时距离不变;乘车时速度快,距离迅速增加;返回时距离迅速减少,故选:A.10.(3分)已知﹣1是关于x的方程x2+4x﹣m=0的一个根,则这个方程的另一个根是()A.﹣3 B.﹣2 C.﹣1 D.3【解答】解:设方程x2+4x﹣m=0的另一个根为:x1,由根与系数的关系得:﹣1+x1=﹣4,解得:x1=﹣3,故选:A.11.(3分)二次函数y=ax2+bx+c与一次函数y=ax+c在同一直角坐标系内的大致图象是()A.B.C.D.【解答】解:A、由抛物线知,a<0,c>0;由直线知a>0,c<0,a的值矛盾,故本选项错误;B、由抛物线知,a>0,c<0;由直线知a>0,c>0,c的值矛盾,故本选项错误;C、由抛物线知,a>0,c>0;由直线知a<0,c>0,a的值矛盾,故本选项错误;D、由抛物线知,a<0,c>0;由直线知a<0,c>0,两结论一致,故本选项正确.故选:D.12.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法错误的是()A.二次函数的图象关于直线x=1对称B.当x>1时,y随x的增大而减小C.﹣1和3是方程ax2+bx+c=0(a≠0)的两个根D.函数y=ax2+bx+c(a≠0)的最小值是﹣4【解答】解:A、因为抛物线的对称轴为直线x=1,所以二次函数的图象关于直线x=1对称,所以A选项的说法正确;B、当x>1时,y随x的增大而增大,所以B选项的说法错误;C、因为抛物线与x轴的一个交点为(﹣1,0),而抛物线的对称轴为直线x=1,则抛物线与x轴的另一个交点坐标为(3,0),即x=﹣1或3时,y=ax2+bx+c=0,所以C选项的说法正确;D、因为抛物线顶点坐标为(1,﹣4),则x=1时,二次函数有最小值4,所以D 选项的说法正确.故选:B.二、填空题(本大题共6小题,每空4分,共24分)13.(4分)函数y=中,自变量x的取值范围是x≠﹣3.【解答】解:由题意得,x+3≠0,解得x≠﹣3.故答案为:x≠﹣3.14.(4分)在函数y=﹣x2+2x﹣2中,若2≤x≤5,那么函数y的最大值是﹣2.【解答】解:由原方程配方,得y=﹣(x﹣1)2﹣1.∵2≤x≤5,=﹣2.∴当x=2时,y最大故答案为:﹣2.15.(4分)某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,则该药品平均每次降价的百分率是20%.【解答】解:设该药品平均每次降价的百分率为x,由题意可知经过连续两次降价,现在售价每盒16元,故25(1﹣x)2=16,解得x=0.2或1.8(不合题意,舍去),故该药品平均每次降价的百分率为20%.16.(4分)若|b﹣1|+=0,且一元二次方程kx2+ax+b=0有实数根,则k的取值范围是k≤4且k≠0.【解答】解:∵|b﹣1|+=0,∴b=1,a=4,∴原方程为kx2+4x+1=0,∵该一元二次方程有实数根,∴△=16﹣4k≥0,解得:k≤4,∵方程kx2+ax+b=0是一元二次方程,∴k≠0,k的取值范围是:k≤4且k≠0,故答案为:k≤4且k≠0.17.(4分)设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+a 上的三点,则y1,y2,y3的大小关系为y1>y2>y3.【解答】解:如图:y1>y2>y3.故答案为y1>y2>y3.18.(4分)如图,正方形ABCD的边长为3a,两动点E、F分别从顶点B、C同时开始以相同速度沿BC、CD运动,与△BCF相应的△EGH在运动过程中始终保持△EGH≌△BCF,B、E、C、G在一直线上,△DHE的面积的最小值是a2.【解答】解:设BE=x,△DHE的面积为y,依题意y=S△CDE +S梯形CDHG﹣S△EGH,=×3a×(3a﹣x)+×(3a+x)×x﹣×3a×x,=x2﹣ax+a2,y=x2﹣ax+a2=(x﹣1.5a)2+a2,当x=1.5a,即BE=BC,E是BC的中点时,y取最小值,△DHE的面积y的最小值为a2.故答案为:a2.三、解答题(本大题共3小题,共34分)19.(12分)解方程:(1)x2﹣8x﹣1=0(2)(3x﹣1)2=(x+1)2.【解答】解:(1)x2﹣8x﹣1=0,x2﹣8x+16=1+16,(x﹣4)2=17,x﹣4=±,x1=4+,x2=4﹣;(2)(3x﹣1)2=(x+1)2,(3x﹣1)2﹣(x+1)2=0,(3x﹣1+x+1)(3x﹣1﹣x﹣1)=0,4x(2x﹣2)=0,x1=0,x2=1.20.(10分)计算:(1)(x+3)2+x(x﹣6)(2)÷(y+2﹣)【解答】解:(1)(x+3)2+x(x﹣6)=x2+6x+9+x2﹣6x=2x2+9;(2)÷(y+2﹣)===.21.(10分)我校初2016级举行了初三体育测试,现随机抽取了部分学生的成绩为样本,按A(优秀)、B(良好)、C(及格)、D(不及格)四个等级进行统计,并将统计结果制成如下统计图.如图,请你结合图表所给信息解答下列问题:(1)本次调查共随机抽取了100名学生,其中∠1=72°;(2)将条形统计图在图中补充完整;(3)初2016级目前举行了四次体育测试.小新同学第一次成绩为25分,第三次测试成绩为36分,若每次体育期末考试小欣体育成绩的增长率相同,求出这个增长率.【解答】解:(1)本次调查共随机抽取了:40÷40%=100(名),∠1=(100﹣40﹣30﹣10)÷100×360°=72°,故答案为:100,72°;(2)A部分的人数为:100﹣40﹣30﹣10=20(人),如图所示:(3)令增长率为x,根据题意可得:25(1+x)2=36,解得:x1=0.2,x2=﹣2.2(舍).答:增长率为20%.四.解答题(本大题共2小题,共24分)22.(12分)如图所示,有一座拱桥圆弧形,它的跨度AB为60米,拱高PM为18米,当洪水泛滥到跨度只有30米时,就要采取紧急措施,若拱顶离水面只有4米,即PN=4米时,是否采取紧急措施?(=1.414)【解答】解:设圆弧所在圆的圆心为O,连接OA、OA′,设半径为x米,则OA=OA′=OP′,由垂径定理可知AM=BM,A′N=B′N,∵AB=60米,∴AM=30米,且OM=OP﹣PM=(x﹣18)米,在Rt△AOM中,由勾股定理可得AO2=OM2+AM2,即x2=(x﹣18)2+302,解得x=34,∴ON=OP﹣PN=34﹣4=30(米),在Rt△A′ON中,由勾股定理可得A′N===16(米),∴A′B′=32米>30米,∴不需要采取紧急措施.23.(12分)某水渠的横截面呈抛物线,水面的宽度为AB(单位:米),现以AB 所在直线为x轴,以抛物线的对称轴为y轴建立如图所示的平面直角坐标系,设坐标原点为O.已知AB=8米,设抛物线解析式为y=ax2﹣4.(1)求a的值;(2)点C(﹣1,m)是抛物线上一点,点C关于原点O的对称点为点D,连接CD,BC,BD,求△BCD的面积.【解答】解:(1)∵AB=8,由抛物线的性质可知OB=4,∴B(4,0),把B点坐标代入解析式得:16a﹣4=0,解得:a=;(2)过点C作CE⊥AB于E,过点D作DF⊥AB于F,∵a=,∴y=x2﹣4,令x=﹣1,∴m=×(﹣1)2﹣4=﹣,∴C(﹣1,﹣),∵C关于原点对称点为D,∴D的坐标为(1,),则CE=DF=,S△BCD=S△BOD+S△BOC=OB•DF+OB•CE=×4×+×4×=15,∴△BCD的面积为15平方米.五.解答题(本大题共3小题,共24分)24.(10分)某商场以每件20元的价格购进一批衬衫,若以每件40元出售,则每天可售出60件,经调查发现,如果每件衬衫每涨价1元,商场平均每天可少售出2件,若设每件衬衫涨价x元,所获得的利润为y元.(1)求y与x的函数关系式;(2)求每件衬衫涨价多少元时,商场所获得的利润最多,最多是多少元?【解答】解:(1)由题意可得:y=(40﹣20+x)(60﹣2x)=﹣2x2+20x+1200;(2)y=﹣2x2+20x+1200=﹣2(x﹣5)2+1250,即每件衬衫涨价5元时,商场所获得的利润最多,最多是1250元.25.(12分)如图,在菱形ABCD中,∠ABC=60°,E是对角线AC上任意一点,F 是线段BC延长线上一点,且CF=AE,连接BE、EF.(1)如图1,当E是线段AC的中点,且AB=2时,求△ABC的面积;(2)如图2,当点E不是线段AC的中点时,求证:BE=EF;(3)如图3,当点E是线段AC延长线上的任意一点时,(2)中的结论是否成立?若成立,请给予证明;若不成立,请说明理由.【解答】解:(1)∵四边形ABCD是菱形,∠ABC=60°,∴△ABC是等边三角形,又E是线段AC的中点,∴BE⊥AC,AE=AB=1,∴BE=,∴△ABC的面积=×AC×BE=;(2)如图2,作EG∥BC交AB于G,∵△ABC是等边三角形,∴△AGE是等边三角形,∴BG=CE,∵EG∥BC,∠ABC=60°,∴∠BGE=120°,∵∠ACB=60°,∴∠ECF=120°,∴∠BGE=∠ECF,在△BGE和△ECF中,,∴△BGE≌△ECF,∴EB=EF;(3)成立,如图3,作EH∥BC交AB的延长线于H,∵△ABC是等边三角形,∴△AHE是等边三角形,∴BH=CE,在△BHE和△ECF中,,∴△BHE≌△ECF,∴EB=EF.26.(12分)如图1,抛物线y=ax2+bx﹣4a经过A(﹣1,0)、C(0,4)两点,与x轴交于另一点B.(1)求抛物线和直线BC的解析式;(2)如图2,点P为第一象限抛物线上一点,是否存在使△PBC面积最大的点P?若存在,求出点P的坐标;若不存在,请说明理由;(3)如图3,若抛物线的对称轴EF(E为抛物线顶点)与直线BC相交于点F,M为直线BC上的任意一点,过点M作MN∥EF交抛物线于点N,以E,F,M,N为顶点的四边形能否为平行四边形?若能,求点N的坐标;若不能,请说明理由.【解答】解:(1)依题意,有:,解得.∴抛物线的解析式:y=﹣x2+3x+4.∴由B(4,0)、C(0,4)可知,直线BC:y=﹣x+4;(2)由B(4,0)、C(0,4)可知,直线BC:y=﹣x+4;如图1,过点P作PQ∥y轴,交直线BC于Q,设P(x,﹣x2+3x+4),则Q(x,﹣x+4);∴PQ=(﹣x2+3x+4)﹣(﹣x+4)=﹣x2+4x;S△PCB=PQ•OB=×(﹣x2+4x)×4=﹣2(x﹣2)2+8;∴当P(2,6)时,△PCB的面积最大;(3)存在.抛物线y=﹣x2+3x+4的顶点坐标E(,),直线BC:y=﹣x+4;当x=时,F(,),∴EF=.如图2,过点M作MN∥EF,交直线BC于M,设N(x,﹣x2+3x+4),则M(x,﹣x+4);∴MN=|(﹣x2+3x+4)﹣(﹣x+4)|=|﹣x2+4x|;当EF与NM平行且相等时,四边形EFMN是平行四边形,∴|﹣x2+4x|=;由﹣x2+4x=时,解得x1=,x2=(不合题意,舍去).当x=时,y=﹣()2+3×+4=,∴N1(,).当﹣x2+4x=﹣时,解得x=,当x=时,y=,∴N2(,),当x=时,y=,即N3(,),综上所述,点N坐标为(,)、(,),(,).。
山东省潍坊市诸城市2017届九年级上学期期中考试数学(解析版)

一、选择题(共12小题,每小题3分,满分36分)1.如图,在△ABC 中,DE ∥BC ,且AE=CE ,则△ADE 与四边形DBCE 的面积之比等于( ).A .1B .12 C .13 D .14【答案】C .考点:相似三角形的判定与性质.2.如图,某水库堤坝横断面迎水坡AB 的坡比是BC=50m ,则迎水坡面AB 的长度是( ).A .100mB .mC .150mD .【答案】A . 【解析】试题分析:根据题意可得BC AC =,把BC=50m ,代入即可算出AC 的长,再利用勾股定理算出AB 的长即可.∵堤坝横断面迎水坡AB 的坡比是1:,∴BC AC =BC=50m ,∴m ,∴,故选:A .考点:解直角三角形的应用-坡度坡角问题.3.若一元二次方程x2+bx+5=0配方后为(x﹣3)2=k,则b,k的值分别为().A.0,4 B.0,5 C.﹣6,5 D.﹣6,4【答案】D.【解析】试题分析:先把(x﹣3)2=k化成x2﹣6x+9﹣k=0,再根据一元二次方程x2+bx+5=0得出b=﹣6,9﹣k=5,然后求解即可.∵(x﹣3)2=k,∴x2﹣6x+9﹣k=0,∵一元二次方程x2+bx+5=0配方后为(x﹣3)2=k,∴b=﹣6,9﹣k=5,∴k=4,∴b,k的值分别为﹣6、4;故选D.考点:解一元二次方程-配方法.4.如图,要使△ABC∽△CBD,则下列选项中不能作为条件添加的是().A.BC2=BD∙BA B.∠A=∠BCD C.AC2=AD∙AB D.∠BDC=∠ACB【答案】C.【解析】试题分析:图中已知条件是∠ABC=∠CBD,所以根据“两角法”、“两边及其夹角法”进行添加条件即可.如图,∠ABC=∠CBD.A、若添加BC2=BD∙BA即BC BABD CB=时,可以判定△ABC∽△CBD,故本选项错误;B、若添加∠A=∠BCD时,可以判定△ABC∽△CBD,故本选项错误;C、若添加AC2=AD∙AB即AC ABAD AC=时,可以判定△ABC∽△ACD,故本选项正确;D、若添加∠BDC=∠ACB时,可以判定△ABC∽△CBD,故本选项错误;故选:C.考点:相似三角形的判定.5.如图,在Rt△ABC中,∠C=90°,AB=6,cosB=23,则BC的长为().A.4 B.C D 【答案】A.【解析】试题分析:根据cosB=23,可得CBAB=23,再把AB的长代入可以计算出CB的长.∵cosB=23,∴CBAB=23,∵AB=6,∴CB=23×6=4,故选:A.考点:锐角三角函数的定义.6.关于x的一元二次方程x2﹣5x+p2﹣2p+5=0的一个根为1,则实数p的值是().A.4 B.0或2 C.1 D.﹣1【答案】C.【解析】试题分析:本题根据一元二次方程的根的定义、一元二次方程的定义求解.∵x=1是方程的根,由一元二次方程的根的定义,可得p2﹣2p+1=0,解此方程得到p=1.故本题选C.考点:一元二次方程的解.7.轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,在C处观测灯塔A位于北偏东60°方向上,则C处与灯塔A的距离是()海里.A.B.C.50 D.25【答案】D.【解析】试题分析:根据题中所给信息,求出∠BCA=90°,再求出∠CBA=45°,从而得到△ABC为等腰直角三角形,然后根据解直角三角形的知识解答.如图:根据题意,∠1=∠2=30°,∵∠ACD=60°,∴∠ACB=30°+60°=90°,∴∠CBA=75°﹣30°=45°,∴△ABC为等腰直角三角形,∵BC=50×0.5=25,∴AC=BC=25(海里).故选D.考点:1.等腰直角三角形;2.方向角.8.如果关于x的一元二次方程kx2x+1=0有两个不相等的实数根,那么k的取值范围是().A.k<12B.k<12且k≠0 C.﹣12≤k<12D.﹣12≤k<12且k≠0【答案】D.【解析】试题分析:根据方程有两个不相等的实数根,则△>0,由此建立关于k的不等式,然后就可以求出k的取值范围.由题意知:2k+1≥0,k≠0,△=2k+1﹣4k>0,综合k的取值范围是-12≤k<12,且k≠0.故选:D.考点:根的判别式.9.为了测量被池塘隔开的A,B两点之间的距离,根据实际情况,作出如图图形,其中AB⊥BE,EF⊥BE,AF 交BE于D,C在BD上.有四位同学分别测量出以下四组数据:①BC,∠ACB;②CD,∠ACB,∠ADB;③EF,DE,BD;④DE,DC,BC.能根据所测数据,求出A,B间距离的有().A.1组 B.2组 C.3组 D.4组【答案】C.考点:1.相似三角形的应用;2.解直角三角形的应用.10.如图,正方形ABCD的两边BC,AB分别在平面直角坐标系的x轴、y轴的正半轴上,正方形A′B′C′D′与正方形ABCD是以AC的中点O′为中心的位似图形,已知,若点A′的坐标为(1,2),则正方形A′B′C′D′与正方形ABCD的相似比是().A.16B.13C.12D.23【答案】B.【解析】试题分析:延长A′B′交BC于点E,根据大正方形的对角线长求得其边长,然后求得小正方形的边长后即可求两个正方形的相似比.∵在正方形ABCD中,BC=AB=3,延长A′B′交BC于点E,∵点A′的坐标为(1,2),∴OE=1,EC=A′E=3﹣1=2,∴OE:BC=1:3,∴AA′:AC=1:3,∵AA′=CC′,∴AA′=CC′=A′C′,∴A′C′:AC=1:3,∴正方形A′B′C′D′与正方形ABCD的相似比是13.故选B.考点:1.位似变换;2.坐标与图形性质.11.如图,边长为1的正方形ABCD 绕点A 逆时针旋转30°到正方形AB ′C ′D ′,图中阴影部分的面积为( ).A .12 B .1 D .1 【答案】C . 【解析】试题分析:设B ′C ′与CD 的交点为E ,连接AE ,利用“HL ”证明Rt △AB ′E 和Rt △ADE 全等,根据全等三角形对应角相等∠DAE=∠B ′AE ,再根据旋转角求出∠DAB ′=60°,然后求出∠DAE=30°,再解直角三角形求出DE ,然后根据阴影部分的面积=正方形ABCD 的面积﹣四边形ADEB ′的面积,列式计算即可得解.如图,设B ′C ′与CD 的交点为E ,连接AE ,在Rt △AB ′E 和Rt △ADE 中,'AE AE AB AD⎧=⎨=⎩,∴Rt △AB ′E ≌Rt △ADE(HL ),∴∠DAE=∠B ′AE ,∵旋转角为30°,∴∠DAB ′=60°,∴∠DAE=12×60°=30°,∴DE=1,∴阴影部分的面积=1×1﹣2×(12×1)=1.故选:C .考点:1.旋转的性质;2.正方形的性质.12.如图,Rt △ABC 中,AB ⊥AC ,AB=3,AC=4,P 是BC 边上一点,作PE ⊥AB 于E ,PD ⊥AC 于D ,设BP=x ,则PD+PE=( ).A .5x +3B .4-5xC .72D .21212525x x -【答案】A . 【解析】试题分析:先根据勾股定理求得BC 的长,再根据相似三角形的判定得到△CDP ∽△CAB ,△BPE ∽△BCA ,利用相似三角形的边对应成比例就不难求得PD+PE 了.∵在Rt △ABC 中,AB ⊥AC ,AB=3,AC=4,∴由勾股定理得BC=5,∵AB ⊥AC ,PE ⊥AB ,PD ⊥AC ,∴PE ∥AC ,PD ∥AB ,∴△CDP ∽△CAB ,△BPE ∽△BCA ,∴PD PC AB BC =,PE BP AC BC =,∴PD=3(5)5x -,PE=45x ,∴PD+PE=3(5)5x -+45x =5x+3.故选A . 考点:1.相似三角形的判定与性质;2.勾股定理.二、填空题(共6小题,每小题3分,满分18分)13.观察下列等式 ①sin30°=12 cos60°=12②sin45° cos45°③sin60° cos30° …根据上述规律,计算sin2a+sin2(90°﹣a)= .【答案】1.【解析】试题分析:根据①②③可得出规律,即sin2a+sin2(90°﹣a)=1,继而可得出答案.由题意得,sin230°+sin2(90°﹣30°)=1;sin245°+sin2(90°﹣45°)=1;sin260°+sin2(90°﹣60°)=1;故可得sin2a+sin2(90°﹣a)=1.故答案为:1.考点:互余两角三角函数的关系.14.如图,在一块长为22米、宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米.若设道路宽为x米,则根据题意可列出方程为.【答案】(22﹣x)(17﹣x)=300.【解析】试题分析:把所修的两条道路分别平移到矩形的最上边和最左边,则剩下的草坪是一个长方形,根据长方形的面积公式列方程.设道路的宽应为x米,由题意有(22﹣x)(17﹣x)=300,故答案为:(22﹣x)(17﹣x)=300.考点:由实际问题抽象出一元二次方程.15.如图,△ABC中,DE∥FG∥BC,且S△ADE=S梯形DFGE=S梯形FBCG,DE:FG:BC= .【答案】1.【解析】试题分析:由平行线可得△ADE ∽△AFG ∽△ABC ,进而利用相似三角形面积比等于对应边的平方比,即可得出结论.∵S △ADE =S 梯形DFGE =S 梯形FBCG ,∵DE ∥FG ∥BC ,∴△ADE ∽△AFG ∽△ABC ,∴ADE AFGS S∆∆=12,ADE ABCS S∆∆ =13,由于相似三角形的面积比等于对应边长的平方比,∴DE :FG :BC=11. 考点:相似三角形的判定与性质.16.已知线段AB 的长为2,以AB 为边在AB 的下方作正方形ACDB .取AB 边上一点E ,以AE 为边在AB 的上方作正方形AENM .过E 作EF ⊥CD ,垂足为F 点,如图.若正方形AENM 与四边形EFDB 的面积相等,则AE 的长为 .1. 【解析】试题分析:设AE=x ,则BE=2﹣x ,就有EFDB 的面积为2(2﹣x ),正方形AENM 的面积=x 2,根据正方形AENM 与四边形EFDB 的面积相等建立方程求出其解即可.设AE=x ,则BE=2﹣x ,由图形得x 2=2(2﹣x ),解得:x 11,x 2=1(舍去)﹣1. 考点:一元二次方程的应用.17.如图,将45°的∠AOB 按下面的方式放置在一把刻度尺上:顶点O 与尺下沿的端点重合,OA 与尺下沿重合,OB 与尺上沿的交点B 在尺上的读数恰为2cm .若按相同的方式将37°的∠AOC 放置在该刻度尺上,则OC 与尺上沿的交点C 在尺上的读数约为 cm .(结果精确到0.1cm ,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【答案】2.7. 【解析】试题分析:过点B 作BD ⊥OA 于D ,过点C 作CE ⊥OA 于E .首先在等腰直角△BOD 中,得到BD=OD=2cm ,则CE=2cm ,然后在直角△COE 中,根据正切函数的定义即可求出OE 的长度.过点B 作BD ⊥OA 于D ,过点C 作CE ⊥OA 于E .在△BOD 中,∠BDO=90°,∠DOB=45°,∴BD=OD=2cm ,∴CE=BD=2cm .在△COE 中,∠CEO=90°,∠COE=37°,∵tan37°=CEOE≈0.75,∴OE ≈2.7cm .∴OC 与尺上沿的交点C 在尺上的读数约为2.7cm .故答案为2.7.考点:解直角三角形的应用.18.已知a ≠b ,且a 、b 满足a 2﹣3a ﹣4=0,b 2﹣3b ﹣4=0,那么a b +ba的值等于 . 【答案】﹣174. 【解析】试题分析:由a 、b 满足a 2﹣3a ﹣4=0、b 2﹣3b ﹣4=0,可得出a 、b 是方程x 2﹣3x ﹣4=0的两个根,利用根与系数的关系即可得出a+b=3、ab=﹣4,将a b +b a 变形成22()ababa b -+,代入数据即可得出结论.∵a 、b满足a 2﹣3a ﹣4=0,b 2﹣3b ﹣4=0,∴a 、b 是方程x 2﹣3x ﹣4=0的两个根,∴a+b=3,ab=﹣4,∴a b +b a =22ab a b +=22()ab aba b -+=22(4)43-⨯--=﹣174.故答案为:﹣174. 考点:1.根与系数的关系;2.分式的值.三、解答题(共6小题,满分66分)19.解关于x 的方程: (1)(2x ﹣5)2=(x ﹣2)2 (2)(1+x )2+(1+x )=12(3)x2+ax+b=0(配方法)【答案】(1)x1=3,x2=73.(2)x1=2,x2=﹣5.(3)当a2﹣4b<0时,方程无解.当a2﹣4b≥0时,x=﹣2a±.【解析】试题分析:(1)利用直接开方法解即可.(2)移项,利用因式分解法解即可.(3)根据配方法的步骤解即可.试题解析:(1)∵(2x﹣5)2=(x﹣2)2,∴2x﹣5=±(x﹣2),∴x1=3,x2=73.(2)∵(1+x)2+(1+x)=12,∴(1+x)2+(1+x)﹣12=0∴(1+x+4)(1+x﹣3)=0,∴1+x+4=0或1+x﹣3=0,∴x1=2,x2=﹣5.(3)∵x2+ax+b=0,∴x2+ax=﹣b,∴x2+ax+(2a)2=(2a)2﹣b,∴(x+2a)2=244ba-,当a2﹣4b<0时,方程无解.当a2﹣4b≥0时,x=﹣2a.考点:1. 直接开方法解一元二次方程;2.解一元二次方程-配方法;3.解一元二次方程-因式分解法.20.如图,在正方形ABCD中,E、F分别是边BC、CD上的点,CEBE=13,CF=DF,连接AE、AF、EF,并延长FE交AB的延长线于点G.(1)若正方形的边长为4,则EG等于;(2)求证:△ECF∽△FDA;(3)比较∠EAB与∠EAF的大小.【答案】(1);(2)证明参见解析;(3)∠EAF<∠EAB.【解析】试题分析:(1)先根据正方形边长得CF=2,由平行相似得:△FCE ∽△GBE ,则FC CE BG BE=,代入求得BG=6,根据勾股定理得:;(2)根据已知边的长度分别求EC FD =12,CF AD =24=12,则EC FD =CF AD,再由正方形性质得:∠C=∠D=90°,则△ECF ∽△FDA ;(3)先根据(2)中的△ECF ∽△FDA ,得∠CFE=∠DAF ,EF FA =CE DF =12,证明∠EFA=90°,分别计算∠EAB 与∠EAF 的正切值,根据两锐角正切大的角大,得出结论.试题解析:(1)∵四边形ABCD 是正方形,∴AB=CD=BC=4,∠ABC=90°,DC ∥AB ,∵CF=DF ,∴CF=12CD=2, ∵DC ∥AG ,∴△FCE ∽△GBE ,∴FC CE BG BE =,∵CE BE =13,∴FC BG =13,BE=34BC=34×4=3,∴2BG =13,∴BG=6,在Rt △BEG 中,=;故答案为:;(2)∵四边形ABCD 是正方形,∴BC=AD=DC=4,∠C=∠D=90°,∵DF=FC=2,CE=1,∴EC FD =12,CF AD =24=12,∴EC FD =CF AD,∴△ECF ∽△FDA ;(3)∵△ECF ∽△FDA ,∴∠CFE=∠DAF ,EF FA =CE DF =12,∵∠DFA+∠DAF=90°,∴∠CFE+∠DFA=90°,∴∠EFA=90°,∴tan ∠EAF=EF FA =12,∵CE BC =14,∴tan ∠EAB=EB AB =34,∵12<34,∴∠EAF <∠EAB .考点:相似形综合题.21.已知一元二次方程x 2﹣2x+m ﹣1=0. (1)当m 取何值时,方程有两个不相等的实数根?(2)设x 1,x 2是方程的两个实数根,且满足x 12+x 1x 2=1,求m 的值.【答案】(1)m <2;(2)m=74. 【解析】试题分析:(1)若一元二次方程有两不等实数根,则根的判别式△=b 2﹣4ac >0,建立关于m 的不等式,即可求出m 的取值范围.(2)x 1是方程的实数根,就适合原方程,可得到关于x 1与m 的等式.再根据根与系数的关系知,x 1x 2=m ﹣1,故可求得x 1和m 的值.试题解析:(1)根据题意得△=b2﹣4ac=4﹣4×(m﹣1)>0,解得m<2;(2)∵x1是方程的实数根,∴x12﹣2x1+m﹣1=0 ①,∵x1,x2是方程的两个实数根,∴x1•x2=m﹣1,∵x12+x1x2=1,∴x12+m﹣1=1 ②,由①②得x1=0.5,把x=0.5代入原方程得,m=74.考点:1.根与系数的关系;2.一元二次方程的解;3.根的判别式.22.今年“五一“假期.某数学活动小组组织一次登山活动.他们从山脚下A点出发沿斜坡AB到达B点.再从B点沿斜坡BC到达山顶C点,路线如图所示.斜坡AB的长为1040米,斜坡BC的长为400米,在C点测得B点的俯角为30°.已知A点海拔121米.C点海拔721米.(1)求B点的海拔;(2)求斜坡AB的坡度.【答案】(1)521米.(2)1:2.4.【解析】试题分析:(1)过C作CF⊥AM,F为垂足,过B点作BE⊥AM,BD⊥CF,E、D为垂足,构造直角三角形ABE 和直角三角形CBD,然后解直角三角形.(2)求出BE的长,根据坡度的概念解答.试题解析:如图,过C作CF⊥AM,F为垂足,过B点作BE⊥AM,BD⊥CF,E、D为垂足.在C点测得B点的俯角为30°,∴∠CBD=30°,又BC=400米,∴CD=400×sin30°=400×12=200(米).∴B点的海拔为721﹣200=521(米).(2)∵BE=DF=521﹣121=400米,又∵AB=1040米,米,∴AB的坡度i AB=BEAE=400960=512.故斜坡AB的坡度为1:2.4.考点:1.解直角三角形的应用-坡度坡角问题;2.解直角三角形的应用-仰角俯角问题.23.某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产76件,每件利润10元.每提高一个档次,每件利润增加2元.(1)每件利润为14元时,此产品质量在第几档次?(2)由于生产工序不同,产品每提高1个档次,一天产量减少4件.若生产第x档的产品一天的总利润为y元(其中x为正整数,且1≤x≤10),求出y关于x的函数关系式;若生产某档次产品一天的总利润为1080元,该工程生产的是第几档次的产品?【答案】(1)第3档次;(2)y=﹣8x2+128x+640;第5档次.【解析】试题分析:(1)由每提高一个档次,每件利润增加2元,14﹣10=4,需要提高2个档次,由此即可解决问题.(2)根据一天的利润=生产的件数×每件的利润,即可求出y与x的关系,再列出方程即可解决问题.试题解析:(1)由每提高一个档次,每件利润增加2元,每件利润为14元时,14﹣10=4,4÷2=2,需要提高2个档次,所以此产品质量在第3档次.(2)由题意y=[10+2(x﹣1)][76﹣4(x﹣1)]=﹣8x2+128x+640.(1≤x≤10).当y=1080时,﹣8x2+128x+640=1080,解得x=5或11(舍弃).所以工程生产的是第5档次的产品时,一天的总利润为1080元.考点:1.二次函数的应用;2.一元二次方程的应用.24.如图1,小红家阳台上放置了一个晒衣架.如图2是晒衣架的侧面示意图,立杆AB、CD相交于点O,B、D两点立于地面,经测量:AB=CD=136cm,OA=OC=51cm,OE=OF=34cm,现将晒衣架完全稳固张开,扣链EF成一条直线,且EF=32cm.(1)求证:AC∥BD;(2)求扣链EF与立杆AB的夹角∠OEF的度数(精确到0.1°);(3)小红的连衣裙穿在衣架后的总长度达到122cm,垂挂在晒衣架上是否会拖落到地面?请通过计算说明理由.(参考数据:sin61.9°≈0.882,cos61.9°≈0.471,tan61.9°≈0.553;可使用科学计算器)【答案】(1)证明参见解析;(2) 61.9°;(3) 小红的连衣裙会拖落到地面.理由参见解析.【解析】试题分析:(1)根据等角对等边和对顶角相等得出∠OAC=∠OCA=12(180º-∠AOC )和∠OBD=∠ODB=12(180º-∠BOD ),∠AOC=∠BOD 进而利用平行线的判定得出即可;或利用三角形相似和平行线判定可得出结论;(2)首先过点O 作OM ⊥EF 于点M ,则EM=16cm ,利用cos ∠OEF=1683417EM OE ==≈0.471,即可得出∠OEF 的度数;(3)首先证明Rt △OEM ∽Rt △ABH ,进而得出AH 的长即可.试题解析:(1)方法一:∵AB 、CD 相交于点O ,∴∠AOC=∠BOD ,∵OA=OC ,∴∠OAC=∠OCA=12(180º-∠AOC ),同理可证:∠OBD=∠ODB=12(180º-∠BOD ),∴∠OAC=∠OBD ,∴AC ∥BD ;方法二:AB=CD=136cm ,OA=OC=51cm ,∴OB=OD=85cm ,∴35OA OC OB OD ==,又∵∠AOC=∠BOD ,∴△AOC ∽△BOD , ∴∠OAC=∠OBD ;∴AC ∥BD ;(2)在△OEF 中,OE=OF=34cm ,EF=32cm ;过点O 作OM ⊥EF 于点M ,则EM=16cm ;∴cos ∠OEF=1683417EM OE ==≈0.471,用科学计算器求得∠OEF=61.9°;(3)方法一:小红的连衣裙会拖落到地面;在Rt △OEM 中, =30cm ,过点A 作AH ⊥BD 于点H ,同(1)可证:EF ∥BD ,∴∠ABH=∠OEM ,则Rt △OEM ∽Rt △ABH ,∴OE OM AB AH =,AH=3013612034OM AB OE ⨯== cm ,因为小红的连衣裙垂挂在衣架后的总长度122cm >晒衣架的高度AH=120cm .所以小红的连衣裙会拖落到地面.方法二:小红的连衣裙会拖落到地面;同(1)可证:EF ∥BD ,∴∠ABD=∠OEF=61.9°;过点A 作AH ⊥BD 于点H,在Rt△ABH中sin∠ABD=AHAB,AH=AB×sin∠ABD=136×sin61.9°=136×0.882≈120.0cm,因为小红的连衣裙垂挂在衣架后的总长度122cm>晒衣架的高度AH=120cm.所以小红的连衣裙会拖落到地面.考点:1.相似三角形的应用;2.解直角三角形的应用.。
(完整版)潍坊市2017年初中数学一模试题

2017年潍坊市初中学业水平模拟考试(一)数 学 试 题 2017.4注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.共120分.考试时间为120分钟.2.答卷前务必将试题密封线内及答题卡上面的项目填涂清楚.所有答案都必须涂、写在答题卡相应位置,答在本试卷上一律无效.第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,只有一项是正确的,每小题选对得3分.)1. 中华文化底蕴深厚,地方文化活动丰富多彩,下面的四副简笔画是从我国地方文化活动中抽象出来的,其中是轴对称图形的是( )2. 下列运算错误的是( ) A .347x x x ⋅= B . ()65623xx x-÷= C .22223x x x -=- D .()236239x yx y =3. 由五个相同的正方体搭成的几何体如图所示,则它的俯视图是( )4. 矩形的面积为6,它的长y 与宽x 之间的函数关系用图象大致可表示为( )5. “中华人民共和国全国人民代表大会”和“中国人民政治协商会议”于2017年3月3日在北京胜利召开,截止到2017年3月13日,在百度上搜索关键词“两会”显示的搜索结果约为96 500 000条,将96 500 000用科学记数法表示为( ) A. 796.510⨯ B. 79.6510⨯ C. 89.6510⨯ D. 90.96510⨯6. 某射击队要从甲、乙、丙、丁四人中选拔一名选手参赛,在选拔赛中,每人射击10次,然后从他们的成绩平均数(环)及方差两个因素进行分析,甲、乙、丙的成绩分析如表所示,丁的成绩如图所示.根据以上图表信息,参赛选手应选( )A.甲B.乙C.丙D.丁7. 若分式211x x -- 的值为零,则x 的值为( )A. 0B. 1C. -1D. 1±8. 用直尺和圆规作Rt △ABC 斜边AB 上的高CD ,以下四个作图中,做法错误的是( )9. 如图,在平面直角坐标系xoy 中,正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为13,点A , B , E 在x 轴上,若正方形BEFG 的边长为6,则C 点坐标为( ) A. ()3,2 B. ()3,1 C. ()2,2 D. ()4,2 10. 反比例函数16my x-=的图象与直线2y x =-+ 有两个交点,且两交点横坐标的积为负数,则m 的取值范围是( )A. 16m <B. 16m >C. 16m ≤D. 16m ≥ 11. 如图,在△ABC 中,36B C ∠=∠=︒ , AB 的垂直平分线交BC 于点D ,交AB 于点H ,AC 的垂直平分线交BC 于点E ,交AC 于点G ,连接AD ,AE ,则下列结论错误的是( ) A.512BD BC -= B. AD ,AE 将∠BAC 三等分 C. △ABE ≌△ACD D. S △ADH =S △CEG12. 从-3,-1,21,1,3 这五个数中,随机抽取一个数记为a ,使关于x 的不等式组()127330x x a ⎧+≥⎪⎨⎪-<⎩无解,且使关于x 的分式方程2133x a x x--=--- 有整数解,那么这五个数中所有满足条件的a 的值之和是( )A. 3-B. 2-C.32-D.12第Ⅱ卷(非选择题 共84分)二、填空题(本大题共6小题,共18分,只填写最后结果,每小题填对得3分)13. 因式分解23912ax ax a +- = .14. 如图,四个小正方形的边长都是1,若以O 为圆心,以OG 为半径作弧分别交AB 、DC 于点E 、F ,则图中阴影部分的面积为 . 15. 已知220x y x y -+++-= ,则22x y - 的值为 . 16. 如图,点C 为线段AB 上一点,将线段CB 绕点C 旋转,得到线段CD ,若DA ⊥AB ,AD=1,17BD = ,则BC 的长为 . 17. 某地中国移动“全球通”与“神州行”收费标准如下表:品牌 月租费 本地话费(元/分钟) 长途话费(元/分钟)全球通 13元 0.35 0.15 神州行0元0.600.30如果小明每月拨打本地电话时间是长途电话时间的2倍,且每月总通话时间在63—69分钟之间,那么他选择 较为省钱(填“全球通”或“神州行”). 18.在求2345678133333333++++++++的值时,李敏发现,从第二个加数起每一个加数都是前一个加数的3倍,于是她假设:2345678133333333S =++++++++①, 然后在①式的两边都乘以3,得234567893333333333S =++++++++②.②-①得,9331S S -=- ,即得9231S =- ,所以9312S -= .得出答案后,爱动脑筋的李敏想,如果把“3”换成字母()01a a a ≠≠且 ,能否求出2017321a a a a +⋯++++的值?若求出,其正确答案是 .三、 解答题(本大题共7小题,共66分.解答要写出文字说明、证明过程或演算步骤)19. (本题满分5分)计算:()012124sin 603π-+-︒--+20.(本题满分8分)网上购物已经成为人们常用的一种购物方式,售后评价特别引人关注,消费者在网店购买某种商品后,对其有“好评”、“中评”、“差评”三种评价,假设这三种评价是等可能的.(1)明明对一家网店销售某种商品显示的评价信息进行了统计,并列出了两幅不完整的统计图,利用图中所提供的信息解决以下问题:①明明一共统计了 个评价;②请将图1补充完整,并标注“好评”的个数;③图2中“差评”所占的百分比是 (精确到0.001).(2)若甲、乙两名消费者在该网店购买了同一商品,请你用列表格或画树状图的方法帮助店主求一下两人中至少有一个给“好评”的概率.21.(本题满分8分)如图,△ABC 中,90ACB ∠=︒,D 为AB 上一点,以CD 为直径的圆O 交BC 于点E ,连接AE 交CD 于点P ,交圆O 于点F ,连接DF ,CAE ADF ∠=∠.(1)判断AB 与圆O 的位置关系,并说明理由;(2)若:1:2,5PF PC AF == ,求CP 的长.22.(本题满分8分)放风筝是大家喜爱的一项体育活动,星期天的上午小刚在市政府广场上放风筝,如图,他在A 处不小心让风筝挂在了一棵树梢上,风筝固定在了D 处,此时风筝线AD 与水平线的夹角为30°,为了便于观察,小刚迅速边收线边向前移动,到达了离A 处10米的B 处,此时风筝线BD 与水平线的夹角为45°.已知点A ,B ,C 在同一水平直线上,请你求出小刚此时所收回的风筝线的长度是多少米?(风筝线AD ,BD 均为线段,2 1.414≈ ,3 1.732≈ ,最后结果精确到1米).23.(本题满分12分)九年级(1)班数学兴趣小组经过市场调查整理出某种商品在第x 天(190,x ≤≤ 且x 为整数)的售价与销售的相关信息如下,已知商品的进价为30元/件,设该商品的售价为y (单位:元/件),每天的销售量为p (单位:件),每天的销售利润为W (单位:元)(1)售价y (元)与时间x (天)之间的函数关系式是 ; (2)求W 与x 的函数关系式;(3)销售该商品第几天时,当天的销售利润最大?并求出最大利润 .24. (本题满分12分)在△ABC 中,AB =AC =5,3cos 5ABC ∠=,将△ABC 绕点C 顺时针旋转,得到△C B A 11,且点1B 在线段BA 延长线上(如图).(1)求证:11//BB CA ; (2)求△C B A 11的面积.25. (本题满分13分)如图,在矩形OABC 纸片中,OA =7,OC =5,D 为BC 边上动点,将△OCD 沿OD 折叠,当点C 的对应点落在直线:7l y x =-+ 上时,记为点E ,F ,当点C 的对应点落在边OA 上时,记为点G .(1)求点E 、F 的坐标;(2)求经过E 、F 、G 三点的抛物线的解析式;(3)当点C 的对应点落在直线l 上时,求CD 的长.2017年潍坊市初中学业水平模拟考试(一)数学试题参考答案及评分标准一、选择题(本大题共12小题,共36分.每小题选对得3分. 错选、不选或多选均记0分.) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CBADBDCDABAB二、填空题(本大题共6小题,共18分. 只要求填写最后结果,每小题填对得3分.)13.()()314a x x -+; 14.23π ; 15. -4; 16.178; 17.全球通; 18.201811a a --三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤) 19.(本题满分5分)解:原式=12-----------------5分 20.(本题满分8分)解:(1)①150----------------1分②如图:----------------3分(画图、标注各1分)③由图2中,“差评”:20100%13.3%150⨯= ----------------4分 (2)列表如下:由表可知,一共有9种等可能结果,其中至少有一个给“好评”的有5种, ∴两人中至少有一个给“好评”的概率是59----------------8分 21. 解(1)AB 是⊙O 切线.∵CDF AEC ∠=∠ ,ADF CAE ∠=∠ ∴ADF CDF CAE AEC ∠+∠=∠+∠ 又∵︒=∠90ACB ∴︒=∠+∠=∠+∠90ADF CDF CAE AEC即AB CD ⊥又∵CD 是⊙O 的直径 ∴AB 是⊙O 切线. ---------------4分 (2)连接CF∵CD 是⊙O 的直径 ∴∠CDF+∠DCF=90°好 中 差好 好,好 好,中 好,差中 中,好 中,中 中,差差 差,好 差,中 差,差又∵∠CDF+∠ADF=90° ∴∠DCF=∠ADF 而∠ADF=∠CAE ∴∠CAE=∠DCF又∠CPF=∠APC ∴△PCF ∽△P AC , ∴,PC PFPA PC= ∴2PC PF PA =⋅ 设,2.PF a PC a == ∴()245a a a =+ ,∴53a = ,∴1023PC a == ------------8分22. 解:作DH BC ⊥ 于H ,设DH =x 米. ∵∠AHD =90°,∴在直角△ADH 中,∠DAH =30°,AD =2DH =2x,tan 30DHAH ==︒-------------2分在直角△BDH 中,∠DBH =45°,BH =DH =x ,x x x DH BH BD 22222=+=+=-------------4分∵A H -BH=AB10x -=∴)51x = ,----------------6分∴小刚此时所收回的风筝的长度为:28AD BD x -=≈(米) 答:小刚此时所收回的风筝线的长度约为8米. ----------------8分23. 解:(1)()()40150,905090,x x x y x x ⎧+≤≤⎪=⎨≤≤⎪⎩且为整数且为整数 ----------------3分 【x 的取值范围1分,取值等于50可在上、可在下,也可都取】(2)由数据可猜测:每天的销售量p 与时间x 成一次函数关系 设p mx n =+ (m 、n 为常数,且0m ≠ ), ∵p mx n =+过点(60,80)、(30,140), ∴608030140m n m n +=⎧⎨+=⎩ ,解得:2200m n =-⎧⎨=⎩ ∴2002+-=x p -----------------5分将(1,198)、(90,20)代入,符合关系式∴()2200190,p x x x =-+≤≤且为整数 -----------------------------------------6分 当150x ≤≤时,()()()2304030220021802000W y p x x x x =-⋅=+--+=-++ ;当5090x ≤≤ 时,()()9030220012012000W x x =--+=-+ 综上,每天的销售利润W 与时间x 的函数关系式为()()21802000150,120120005090,x x x x W x x x ⎧-++≤≤⎪=⎨-+≤≤⎪⎩且为整数且为整数 ------------9分(3)当150x ≤≤时,()22218020002456050W x x x ==-++=--+ ; ∵2050a x =-<≤≤且1,∴当45x = 时,W 取得最大值,最大值为6050元。
潍坊四区数学一模试题2017

2017年初中学业水平模拟考试(一)数学试题2017.4注意事项:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分. 第Ⅰ卷,为选择题,36分;第Ⅱ卷,为非选择题,84分;满分120分,考试时间120分钟.2.答卷前务必将试卷密封线内和答题卡上面的项目填涂清楚. 所有答案都必须涂写在答题卡的相应位置,答在本试卷上一律无效.第Ⅰ卷(选择题共36分)一、选择题(本大题共12小题,在每个小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,错选、不选或选出的答案超过一个均记0分.)1.下列图形是中国某些著名品牌的标志,其中既是轴对称图形又是中心对称图形的是().A.B.C.D.2.下列运算正确的是().3.数据显示,2016年“一带一路”国家双边贸易进出口总额6.3万亿人民币,数6.3万亿用科学记数法表示为().A.6.3×1011B.6.3×1012C.6.3×1013D.6.3×1084.下图是某工件的实物图,则它的俯视图正确的是().第4题图5.某小组6名同学在一周内参加家务劳动的时间如表所示,关于“劳动时间” 的这组数据,以下说法正确的是( ).A .中位数是5.5,平均数是6B .中位数是4.5,平均数是5C .中位数是5,平均数是5 D .中位数是4.5,平均数是3166.下列命题是真命题的是().A .若a b >,则22ac bc > B .若a b >,则11a b>C.若ab== D .若a b == 7. 如图所示,一种盛液体的特制容器,外部圆柱的高度是6, 内部圆锥高度为3,底面半径为2,若注入液体的速度一定, 则液面高度h 随时间t 的变化图象可能正确的是( ).A .B .C .D .8.若20 10a bb c==,,则a b b c ++的值为( ).A .11021B.21011 C .1121 D .21119. 如图,⊙O 为四边形ABCD 的外接圆,连接AO 、 CO ,若ABCO 为菱形,则∠ADC 的度数为( ). A .120° B .90° C .60° D .45°第7题图10.不等式组5511x x x m +<+⎧⎨->⎩的解集是x >1,则m 的取值范围是( ).A .m ≤0B .m ≥0C .m ≤1D .m ≥111.如图,已知二次函数2(0)y ax bx c a =++≠的图象如图所示,给出以下四 个结论:①0abc =,②0a b c ++>,③a b >,④240ac b -<. 其中正确的个数为( ).A .1B .2C .3D .412.一块种植花卉的矩形土地如图所示,E 是CD 的中点,甲、乙、丙、丁、戊区域分别种植白花、红花、黄花、紫花、白花.那么种植白花的面积占矩形土地面积的( ). A .12 B .712 C .23 D .34第Ⅱ卷 (非选择题 共84分)说明:将第Ⅱ卷答案用0.5mm 的黑色签字笔答在答题卡的相应位置上.二、填空题(本大题共6小题,共18分. 只要求填写最后结果,每小题填对得3分.)13.20,则x 的取值为__________.第11题图第12题图14. 如图,正方形ABCD 的对角线BD 是菱形BEFD 的一边,菱形BEFD 的对角线BF交正方形ABCD 的一边CD 于点P ,则∠FPC =_____________.15. 因式分解()22aa a -+=________________.16. 小莹使用大雁计算器,依次按键:.则屏幕显示的结果是______________. 17. 如图,点A 是反比例函数ky x=的图象上的一点,过点A 作AB ⊥x 轴,垂足 为B . 点C 为y 轴上的任意一点,连接AC ,BC . 若△ABC 的面积为6,则k 的值是__________.18. 如下图,用黑白两种颜色的菱形纸片,按黑色纸片逐渐增加1的规律拼成下列图案,若第n 个图案中有2017个白色纸片,则n 的值为_______.三、解答题(本大题共7小题,共66分. 解答要写出文字说明、证明过程或演算步骤) 19. (本题满分8分)某校开设了四个社团活动:A 足球、B 羽毛球、C 国画、D 戏剧,为了解学生最喜欢哪一种社团活动,随机抽取了部分学生进行调查,其调查结果绘制成了如下的统计图,根据图中信息回答下列问题:第14题图(1)求这次调查的学生总数,并将条形图(图2)补充完整;(2)在羽毛球项目中,有五人表现优秀,其中三男两女,现决定从这五名同学中任选两名代表学校参赛,求恰好选中一男一女的概率.20. (本题满分8分)某市政府为方便市民出行,拨付9000万元,同时购进A、B两种型号的单车5万辆,每辆单车的成本价和每辆单车预计日租平均收入如下表所示:A型号B型号(2)每年按照360天计算,政府至少几年才能收回成本?21.(本题满分8分)在Rt△ABC中,∠ACB=90°,D为AB边上的中点,DE⊥AB,AD=2DE.(1)求sin B的值;(2)若CD CE的值.22. (本题满分10分)已知关于x的方程x2+2mx-(m+1)=0.(1)试说明不论m取何值,方程总有两个不相等的实数根;(2)方程两根倒数的和比两根倒数的积小1,求m的值.23. (本题满分10分)如图,P为⊙O外一点,BC是⊙O的直径,CA为⊙O的一条弦,连接P A、PB,∠PBA=∠C.(1)求证:PB是⊙O的切线;(2)连接OP,OP∥AC,且OP=10,BC=求AC的长.24.(本题满分10分)在ABCD中,∠ADC的平分线交直线BC于点E、交AB的延长线于点F,连接AC (1)如图1,若∠ADC=90°,G是EF的中点,连接AG、CG.①求证:BE=BF;②请判断△AGC的形状,并说明理由.(2)如图2,若∠ADC=60°,将线段FB绕点F顺时针旋转60°至FG,连接AG、CG,那么△AGC又是怎样的形状.(直接写出结论不必证明)25.(本题满分12分)如图,抛物线y=ax2﹣2ax﹣c(a<0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:1122y x=--与抛物线的另一交点为D,与y轴交于点C,且CD=4AC.(1)求抛物线的解析式;(2)点E是直线l上方的抛物线上的一点,求△ACE的面积最大值;(3)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A,D,P,Q为顶点的四边形能否成为平行四边形?若能,求出点P的坐标;若不能,请说明理由.。
2017中考数学一模试卷含答案解析

2017年中考数学一模试卷一、选择题1.的平方根是()A.±3 B.3 C.±9 D.92.用两块完全相同的长方体摆放成如图所示的几何体,这个几何体的左视图是()A.B.C.D.3.下面计算一定正确的是()A.b3+a3=2b6B.(﹣3pq)2=﹣9p2q2C.5y3+3y5=15y8D.b9÷b3=b34.如图,∠1=∠2,∠3=40°,则∠4等于()A.120°B.130°C.140° D.40°5.若反比例函数y=的图象过点(﹣2,1),则一次函数y=kx﹣k的图象过()A.第一、二、四象限B.第一、三、四象限C.第二、三、四象限D.第一、二、三象限6.在平面直角坐标系中,O为坐标原点,点A的坐标为(1,),M为坐标轴上一点,且使得△MOA为等腰三角形,则满足条件的点M的个数为()A.4 B.5 C.6 D.87.不等式组的解集在数轴上表示正确的是()A. B.C.D.8.在平面直角坐标系中,线段OP的两个端点坐标分别是O(0,0),P(4,3),将线段OP绕点O逆时针旋转90°到OP′位置,则点P′的坐标为()A.(3,4) B.(﹣4,3)C.(﹣3,4)D.(4,﹣3)9.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,点E为垂足,连接DF,则∠CDF为()A.80°B.70°C.65°D.60°10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=﹣.下列结论中,正确的是()A.abc>0 B.a+b=0 C.2b+c>0 D.4a+c<2b二、填空题11.分解因式:ab2﹣4ab+4a=.12.如图,A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,△ABP面积为2,则这个反比例函数的解析式为.13.如图,已知点P是半径为1的⊙A上一点,延长AP到C,使PC=AP,以AC为对角线作▱ABCD.若AB=,则▱ABCD面积的最大值为.[选做题]请从以下两个小题中任选一个作答,若多选,则按第一题计分14.若一个正n边形的每个内角为156°,则这个正n边形的边数是.15.用科学计算器计算:cos32°≈.(精确到0.01)三、解答题16.计算:|2﹣tan60°|﹣(π﹣3.14)0+()﹣2+.17.解分式方程:﹣=1.18.小明家的房前有一块矩形的空地,空地上有三棵树A、B、C,小明想建一个圆形花坛,使三棵树都在花坛的边上.请你帮小明把花坛的位置画出来(尺规作图,不写作法,保留作图痕迹).19.在某市开展的“读中华经典,做书香少年”读书月活动中,围绕学生日人均阅读时间这一问题,对初二学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请你根据图中提供的信息解答下列问题:(1)本次抽样调查的样本容量是多少?(2)请将条形统计图补充完整.(3)在扇形统计图中,计算出日人均阅读时间在1~1.5小时对应的圆心角度数.(4)根据本次抽样调查,试估计该市12000名初二学生中日人均阅读时间在0.5~1.5小时的多少人.20.如图正方形ABCD的边长为4,E、F分别为DC、BC中点.(1)求证:△ADE≌△ABF.(2)求△AEF的面积.21.高考英语听力测试期间,需要杜绝考点周围的噪音.如图,点A是某市一高考考点,在位于A考点南偏西15°方向距离125米的C处有一消防队.在听力考试期间,消防队突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即赶往救火.已知消防车的警报声传播半径为100米,若消防车的警报声对听力测试造成影响,则消防车必须改进行驶,试问:消防车是否需要改道行驶?请说明理由.(取1.732)22.A、B两城间的公路长为450千米,甲、乙两车同时从A城出发沿这一公路驶向B城,甲车到达B城1小时后沿原路返回.如图是它们离A城的路程y(千米)与行驶时间x(小时)之间的函数图象.(1)求甲车返回过程中y与x之间的函数解析式,并写出函数的定义域;(2)乙车行驶6小时与返回的甲车相遇,求乙车的行驶速度.23.在一个不透明的布袋里装有4个标号为1、2、3、4的小球,它们的材质、形状、大小完全相同,小凯从布袋里随机取出一个小球,记下数字为x,小敏从剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点P的坐标(x,y).(1)请你运用画树状图或列表的方法,写出点P所有可能的坐标;(2)求点P(x,y)在函数y=﹣x+5图象上的概率.24.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若PD=,求⊙O的直径.25.如图,在平面直角坐标系xOy中,顶点为M的抛物线是由抛物线y=x2﹣3向右平移一个单位后得到的,它与y轴负半轴交于点A,点B在该抛物线上,且横坐标为3.(1)求点M、A、B坐标;(2)连结AB、AM、BM,求∠ABM的正切值;(3)点P是顶点为M的抛物线上一点,且位于对称轴的右侧,设PO与x正半轴的夹角为α,当α=∠ABM时,求P点坐标.26.【问题探究】(1)如图①,点E是正△ABC高AD上的一定点,请在AB上找一点F,使EF= AE,并说明理由;(2)如图②,点M是边长为2的正△ABC高AD上的一动点,求AM+MC的最小值;【问题解决】(3)如图③,A、B两地相距600km,AC是笔直地沿东西方向向两边延伸的一条铁路.点B到AC的最短距离为360km.今计划在铁路线AC上修一个中转站M,再在BM间修一条笔直的公路.如果同样的物资在每千米公路上的运费是铁路上的两倍.那么,为使通过铁路由A到M再通过公路由M到B的总运费达到最小值,请确定中转站M的位置,并求出AM的长.(结果保留根号)2016年陕西省西安市XX中学中考数学一模试卷参考答案与试题解析一、选择题1.的平方根是()A.±3 B.3 C.±9 D.9【考点】平方根;算术平方根.【分析】根据平方运算,可得平方根、算术平方根.【解答】解:∵,9的平方根是±3,故选:A.2.用两块完全相同的长方体摆放成如图所示的几何体,这个几何体的左视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】左视图是从左边看得到的视图,结合选项即可得出答案.【解答】解:所给图形的左视图为C选项说给的图形.故选C.3.下面计算一定正确的是()A.b3+a3=2b6B.(﹣3pq)2=﹣9p2q2C.5y3+3y5=15y8D.b9÷b3=b3【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方.【分析】利用合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;同底数幂的除法法则:底数不变,指数相减进行分析即可.【解答】解:A、b3+a3=2b6,计算错误;B、(﹣3pq)2=﹣9p2q2,计算错误;C、5y3+3y5=15y8,计算错误;D、b9÷b3=b3,计算正确;故选:D.4.如图,∠1=∠2,∠3=40°,则∠4等于()A.120°B.130°C.140° D.40°【考点】平行线的判定与性质.【分析】首先根据同位角相等,两直线平行可得a∥b,再根据平行线的性质可得∠3=∠5,再根据邻补角互补可得∠4的度数.【解答】解:∵∠1=∠2,∴a∥b,∴∠3=∠5,∵∠3=40°,∴∠5=40°,∴∠4=180°﹣40°=140°,故选:C.5.若反比例函数y=的图象过点(﹣2,1),则一次函数y=kx﹣k的图象过()A.第一、二、四象限B.第一、三、四象限C.第二、三、四象限D.第一、二、三象限【考点】一次函数图象与系数的关系;反比例函数图象上点的坐标特征.【分析】首先利用反比例函数图象上点的坐标特征可得k的值,再根据一次函数图象与系数的关系确定一次函数y=kx﹣k的图象所过象限.【解答】解:∵反比例函数y=的图象过点(﹣2,1),∴k=﹣2×1=﹣2,∴一次函数y=kx﹣k变为y=﹣2x+2,∴图象必过一、二、四象限,故选:A.6.在平面直角坐标系中,O为坐标原点,点A的坐标为(1,),M为坐标轴上一点,且使得△MOA为等腰三角形,则满足条件的点M的个数为()A.4 B.5 C.6 D.8【考点】等腰三角形的判定;坐标与图形性质.【分析】分别以O、A为圆心,以OA长为半径作圆,与坐标轴交点即为所求点M,再作线段OA的垂直平分线,与坐标轴的交点也是所求的点M,作出图形,利用数形结合求解即可.【解答】解:如图,满足条件的点M的个数为6.故选C.分别为:(﹣2,0),(2,0),(0,2),(0,2),(0,﹣2),(0,).7.不等式组的解集在数轴上表示正确的是()A. B.C.D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】先求出每个不等式的解集再求出其公共解集.【解答】解:该不等式组的解集为1<x≤2,故选C.8.在平面直角坐标系中,线段OP的两个端点坐标分别是O(0,0),P(4,3),将线段OP绕点O逆时针旋转90°到OP′位置,则点P′的坐标为()A.(3,4) B.(﹣4,3)C.(﹣3,4)D.(4,﹣3)【考点】坐标与图形变化﹣旋转.【分析】如图,把线段OP绕点O逆时针旋转90°到OP′位置看作是把Rt△OPA 绕点O逆时针旋转90°到RtOP′A′,再根据旋转的性质得到OA′、P′A′的长,然后根据第二象限点的坐标特征确定P′点的坐标.【解答】解:如图,OA=3,PA=4,∵线段OP绕点O逆时针旋转90°到OP′位置,∴OA旋转到x轴负半轴OA′的位置,∠P′A′0=∠PAO=90°,P′A′=PA=4,∴P′点的坐标为(﹣3,4).故选C.9.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,点E为垂足,连接DF,则∠CDF为()A.80°B.70°C.65°D.60°【考点】菱形的性质.【分析】连接BF,利用SAS判定△BCF≌△DCF,从而得到∠CBF=∠CDF,根据已知可注得∠CBF的度数,则∠CDF也就求得了.【解答】解:如图,连接BF,在△BCF和△DCF中,∵CD=CB,∠DCF=∠BCF,CF=CF∴△BCF≌△DCF∴∠CBF=∠CDF∵FE垂直平分AB,∠BAF=×80°=40°∴∠ABF=∠BAF=40°∵∠ABC=180°﹣80°=100°,∠CBF=100°﹣40°=60°∴∠CDF=60°.故选D.10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=﹣.下列结论中,正确的是()A.abc>0 B.a+b=0 C.2b+c>0 D.4a+c<2b【考点】二次函数图象与系数的关系.【分析】由二次函数的性质,即可确定a,b,c的符号,即可判定A是错误的;又由对称轴为x=﹣,即可求得a=b;由当x=1时,a+b+c<0,即可判定C错误;然后由抛物线与x轴交点坐标的特点,判定D正确.【解答】解:A、∵开口向上,∴a>0,∵抛物线与y轴交于负半轴,∴c<0,∵对称轴在y轴左侧,∴﹣<0,∴b>0,∴abc<0,故A选项错误;B、∵对称轴:x=﹣=﹣,∴a=b,故B选项错误;C、当x=1时,a+b+c=2b+c<0,故C选项错误;D、∵对称轴为x=﹣,与x轴的一个交点的取值范围为x1>1,∴与x轴的另一个交点的取值范围为x2<﹣2,∴当x=﹣2时,4a﹣2b+c<0,即4a+c<2b,故D选项正确.故选D.二、填空题11.分解因式:ab2﹣4ab+4a=a(b﹣2)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式a,再根据完全平方公式进行二次分解.完全平方公式:a2﹣2ab+b2=(a﹣b)2.【解答】解:ab2﹣4ab+4a=a(b2﹣4b+4)﹣﹣(提取公因式)=a(b﹣2)2.﹣﹣(完全平方公式)故答案为:a(b﹣2)2.12.如图,A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,△ABP面积为2,则这个反比例函数的解析式为.【考点】反比例函数系数k的几何意义.【分析】由于同底等高的两个三角形面积相等,所以△AOB的面积=△ABP的面积=2,然后根据反比例函数中k的几何意义,知△AOB的面积=|k|,从而确定k的值,求出反比例函数的解析式.【解答】解:设反比例函数的解析式为.∵△AOB的面积=△ABP的面积=2,△AOB的面积=|k|,∴|k|=2,∴k=±4;又∵反比例函数的图象的一支位于第一象限,∴k>0.∴k=4.∴这个反比例函数的解析式为.13.如图,已知点P是半径为1的⊙A上一点,延长AP到C,使PC=AP,以AC为对角线作▱ABCD.若AB=,则▱ABCD面积的最大值为2.【考点】平行四边形的性质;三角形的面积.【分析】由已知条件可知AC=2,AB=,应该是当AB、AC是直角边时三角形的面积最大,根据AB⊥AC即可求得.【解答】解:由已知条件可知,当AB⊥AC时▱ABCD的面积最大,∵AB=,AC=2,==,∴S△ABC∴S▱ABCD=2S△ABC=2,∴▱ABCD面积的最大值为2.故答案为:2.[选做题]请从以下两个小题中任选一个作答,若多选,则按第一题计分14.若一个正n边形的每个内角为156°,则这个正n边形的边数是15.【考点】多边形内角与外角.【分析】根据多边形内角和定理列出方程,解方程即可.【解答】解:由题意得,=156°,解得,n=15,故答案为:15.15.用科学计算器计算:cos32°≈ 2.68.(精确到0.01)【考点】计算器—三角函数;近似数和有效数字;计算器—数的开方.【分析】熟练应用计算器,对计算器给出的结果,根据精确度的概念用四舍五入法取近似数.【解答】解:cos32°=3.1623×0.8480≈2.68,故答案为2.68.三、解答题16.计算:|2﹣tan60°|﹣(π﹣3.14)0+()﹣2+.【考点】特殊角的三角函数值;零指数幂;负整数指数幂.【分析】涉及绝对值、特殊角的三角函数值、0指数幂、负整数指数幂、二次根式的运算等考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:|2﹣tan60°|﹣(π﹣3.14)0+()﹣2+,=|2﹣|﹣1+4+,=2﹣﹣1+4+,=5.17.解分式方程:﹣=1.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x2﹣5x+6﹣3x﹣9=x2﹣9,解得:x=,经检验x=是分式方程的解.18.小明家的房前有一块矩形的空地,空地上有三棵树A、B、C,小明想建一个圆形花坛,使三棵树都在花坛的边上.请你帮小明把花坛的位置画出来(尺规作图,不写作法,保留作图痕迹).【考点】三角形的外接圆与外心.【分析】要使三棵树都在花坛的边上则应使花坛为△ABC的外接圆,故只要作出三角形两边垂直平分线的交点即为△ABC的外接圆圆心,再以此点为圆心,以此点到点A的长度为半径画圆,此圆即为花坛的位置.【解答】解:①分别以A、B为圆心,以大于AB为半径画圆,两圆相交于D、E两点,连接DE;②分别以A、C为圆心,以大于AC为半径画圆,两圆相交于G、F两点,连接GF;③直线DE与GF相交于点O,以O为圆心,以OA的长为半径画圆,则此圆即为花坛的位置.19.在某市开展的“读中华经典,做书香少年”读书月活动中,围绕学生日人均阅读时间这一问题,对初二学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请你根据图中提供的信息解答下列问题:(1)本次抽样调查的样本容量是多少?(2)请将条形统计图补充完整.(3)在扇形统计图中,计算出日人均阅读时间在1~1.5小时对应的圆心角度数.(4)根据本次抽样调查,试估计该市12000名初二学生中日人均阅读时间在0.5~1.5小时的多少人.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据第一组的人数是30,占20%,即可求得总数,即样本容量;(2)利用总数减去另外两段的人数,即可求得0.5~1小时的人数,从而作出直方图;(3)利用360°乘以日人均阅读时间在1~1.5小时的所占的比例;(4)利用总人数12000乘以对应的比例即可.【解答】解:(1)样本容量是:30÷20%=150;(2)日人均阅读时间在0.5~1小时的人数是:150﹣30﹣45=75(人).;(3)人均阅读时间在1~1.5小时对应的圆心角度数是:360°×=108°;(4)12000×=9600(人).20.如图正方形ABCD的边长为4,E、F分别为DC、BC中点.(1)求证:△ADE≌△ABF.(2)求△AEF的面积.【考点】正方形的性质;全等三角形的判定与性质.【分析】(1)由四边形ABCD为正方形,得到AB=AD,∠B=∠D=90°,DC=CB,由E、F分别为DC、BC中点,得出DE=BF,进而证明出两三角形全等;=S正方形ABCD﹣S△ADE﹣S△ABF﹣S△CEF得(2)首先求出DE和CE的长度,再根据S△AEF出结果.【解答】(1)证明:∵四边形ABCD为正方形,∴AB=AD,∠D=∠B=90°,DC=CB,∵E、F为DC、BC中点,∴DE=DC,BF=BC,∴DE=BF,在△ADE和△ABF中,,∴△ADE≌△ABF(SAS);(2)解:由题知△ABF、△ADE、△CEF均为直角三角形,且AB=AD=4,DE=BF=×4=2,CE=CF=×4=2,=S正方形ABCD﹣S△ADE﹣S△ABF﹣S△CEF∴S△AEF=4×4﹣×4×2﹣×4×2﹣×2×2=6.21.高考英语听力测试期间,需要杜绝考点周围的噪音.如图,点A是某市一高考考点,在位于A考点南偏西15°方向距离125米的C处有一消防队.在听力考试期间,消防队突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即赶往救火.已知消防车的警报声传播半径为100米,若消防车的警报声对听力测试造成影响,则消防车必须改进行驶,试问:消防车是否需要改道行驶?请说明理由.(取1.732)【考点】解直角三角形的应用﹣方向角问题.【分析】首先过点A作AH⊥CF于点H,易得∠ACH=60°,然后利用三角函数的知识,求得AH的长,继而可得消防车是否需要改进行驶.【解答】解:如图:过点A作AH⊥CF于点H,由题意得:∠MCF=75°,∠CAN=15°,AC=125米,∵CM∥AN,∴∠ACM=∠CAN=15°,∴∠ACH=∠MCF﹣∠ACM=75°﹣15°=60°,∴在Rt△ACH中,AH=AC•sin∠ACH=125×≈108.25(米)>100米.答:消防车不需要改道行驶.22.A、B两城间的公路长为450千米,甲、乙两车同时从A城出发沿这一公路驶向B城,甲车到达B城1小时后沿原路返回.如图是它们离A城的路程y(千米)与行驶时间x(小时)之间的函数图象.(1)求甲车返回过程中y与x之间的函数解析式,并写出函数的定义域;(2)乙车行驶6小时与返回的甲车相遇,求乙车的行驶速度.【考点】一次函数的应用.【分析】(1)设出一次函数解析式,代入图象上的两个点的坐标,即可解答;(2)把x=6代入(1)中的函数解析式,求得路程(甲、乙距A城的距离),进一步求得速度即可解答.【解答】解:(1)设甲车返回过程中y与x之间的函数解析式y=kx+b,∵图象过(5,450),(10,0)两点,∴, 解得,∴y=﹣90x +900.函数的定义域为5≤x ≤10;(2)当x=6时,y=﹣90×6+900=360,(千米/小时).23.在一个不透明的布袋里装有4个标号为1、2、3、4的小球,它们的材质、形状、大小完全相同,小凯从布袋里随机取出一个小球,记下数字为x ,小敏从剩下的3个小球中随机取出一个小球,记下数字为y ,这样确定了点P 的坐标(x ,y ).(1)请你运用画树状图或列表的方法,写出点P 所有可能的坐标;(2)求点P (x ,y )在函数y=﹣x +5图象上的概率.【考点】列表法与树状图法;一次函数图象上点的坐标特征.【分析】(1)首先根据题意画出表格,即可得到P 的所以坐标;(2)然后由表格求得所有等可能的结果与数字x 、y 满足y=﹣x +5的情况,再利用概率公式求解即可求得答案【解答】解:列表得:(1)点P所有可能的坐标有:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)共12种;(2)∵共有12种等可能的结果,其中在函数y=﹣x+5图象上的有4种,即:(1,4),(2,3),(3,2),(4,1)∴点P(x,y)在函数y=﹣x+5图象上的概率为:P=.24.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若PD=,求⊙O的直径.【考点】切线的判定.【分析】(1)连接OA,根据圆周角定理求出∠AOC,再由OA=OC得出∠ACO=∠OAC=30°,再由AP=AC得出∠P=30°,继而由∠OAP=∠AOC﹣∠P,可得出OA ⊥PA,从而得出结论;(2)利用含30°的直角三角形的性质求出OP=2OA,可得出OP﹣PD=OD,再由PD=,可得出⊙O的直径.【解答】(1)证明:连接OA,∵∠B=60°,∴∠AOC=2∠B=120°,又∵OA=OC,∴∠OAC=∠OCA=30°,又∵AP=AC,∴∠P=∠ACP=30°,∴∠OAP=∠AOC﹣∠P=90°,∴OA⊥PA,∴PA是⊙O的切线.(2)在Rt△OAP中,∵∠P=30°,∴PO=2OA=OD+PD,又∵OA=OD,∴PD=OA,∵,∴.∴⊙O的直径为.25.如图,在平面直角坐标系xOy中,顶点为M的抛物线是由抛物线y=x2﹣3向右平移一个单位后得到的,它与y轴负半轴交于点A,点B在该抛物线上,且横坐标为3.(1)求点M、A、B坐标;(2)连结AB、AM、BM,求∠ABM的正切值;(3)点P是顶点为M的抛物线上一点,且位于对称轴的右侧,设PO与x正半轴的夹角为α,当α=∠ABM时,求P点坐标.【考点】二次函数综合题.【分析】(1)根据平移规律写出抛物线解析式,再求出M、A、B坐标即可.(2)首先证明△ABE∽△AMF,推出的值,∠BAM=90°,根据tan∠ABM=即可解决问题.(3)分点P在x轴上方或下方两种情形解决问题.【解答】解:(1)∵抛物线y=x2﹣3向右平移一个单位后得到的函数解析式为y=(x﹣1)2﹣3,∴顶点M(1,﹣3),令x=0,则y=(0﹣1)2﹣3=﹣2,∴点A(0,﹣2),x=3时,y=(3﹣1)2﹣3=4﹣3=1,∴点B(3,1),(2)过点B作BE⊥AO于E,过点M作MF⊥AO于M,∵EB=EA=3,∴∠EAB=∠EBA=45°,同理可求∠FAM=∠FMA=45°,∴△ABE∽△AMF,∴==,又∵∠BAM=180°﹣45°×2=90°,∴tan∠ABM==,(3)过点P作PH⊥x轴于H,∵y=(x﹣1)2﹣3=x2﹣2x﹣2,∴设点P(x,x2﹣2x﹣2),①点P在x轴的上方时,=,整理得,3x2﹣7x﹣6=0,解得x1=﹣(舍去),x2=3,∴点P的坐标为(3,1);②点P在x轴下方时,=,整理得,3x2﹣5x﹣6=0,解得x1=(舍去),x2=,x=时,y=x2﹣2x﹣2=,∴点P的坐标为(,),综上所述,点P的坐标为(3,1)或(,).26.【问题探究】(1)如图①,点E是正△ABC高AD上的一定点,请在AB上找一点F,使EF= AE,并说明理由;(2)如图②,点M是边长为2的正△ABC高AD上的一动点,求AM+MC的最小值;【问题解决】(3)如图③,A、B两地相距600km,AC是笔直地沿东西方向向两边延伸的一条铁路.点B到AC的最短距离为360km.今计划在铁路线AC上修一个中转站M,再在BM间修一条笔直的公路.如果同样的物资在每千米公路上的运费是铁路上的两倍.那么,为使通过铁路由A到M再通过公路由M到B的总运费达到最小值,请确定中转站M的位置,并求出AM的长.(结果保留根号)【考点】作图—应用与设计作图.【分析】(1)根据等边三角形的性质得出∠BAD=30°,得出EF=AE;(2)根据题意得出C,M,N在一条直线上时,此时最小,进而求出即可;(3)作BD⊥AC,垂足为点D,在AC异于点B的一侧作∠CAN=30°,作BF⊥AN,垂足为点F,交AC于点M,点M即为所求,在Rt△ABD中,求出AD的长,在Rt△MBD中,得出MD的长,即可得出答案.【解答】解:(1)如图①,作EF⊥AB,垂足为点F,点F即为所求.理由如下:∵点E是正△ABC高AD上的一定点,∴∠BAD=30°,∵EF⊥AB,∴EF=AE;(2)如图②,作CN⊥AB,垂足为点N,交AD于点M,此时最小,最小为CN的长.∵△ABC是边长为2的正△ABC,∴CN=BC•sin60°=2×=,∴MN+CM=AM+MC=,即的最小值为.(3)如图③,作BD⊥AC,垂足为点D,在AC异于点B的一侧作∠CAN=30°,作BF⊥AN,垂足为点F,交AC于点M,点M即为所求.在Rt△ABD中,AD===480(km),在Rt△MBD中,∠MBD=∠MAF=30°,得MD=BD•tan30°=(km),所以AM=km.2017年3月19日。
山东中考一模检测《数学卷》含答案解析

山东数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一.选择题(共12小题)1.25平方根是( )A. ±5B. 5C. ﹣5D. ±252.如图,几何体的左视图是( )A. B. C. D.3.用科学记数法表示0.00000022是( )A. 0.22×10﹣6B. 2.2×107C. 2.2×10﹣6D. 2.2×10﹣74.下列App图标中,既不是中心对称图形也不是轴对称图形的是()A. B. C. D.5.下列计算正确的是( )A. a2+a2=a4B. a6÷a2=a4C. (a2)3=a5D. (a﹣b)2=a2﹣b26. 如图,已知AB∥CD∥EF,FC平分∠AFE,∠C=25°,则∠A的度数是( )A. 25°B. 35°C. 45°D. 50°7.某射击俱乐部将11名成员在某次射击训练中取得的成绩制成如图所示的条形统计图,由图可知,11名成员射击成绩的众数和中位数分别是( )A. 8,9B. 8,8C. 8,10D. 9,88.若不等式组236x xx m-<-⎧⎨<⎩无解,那么m的取值范围是( )A. m>2B. m<2C. m≥2D. m≤29.在商场里,为方便一部分残疾人出入,商场特意设计了一种特殊通道”无障碍通道”,如图,线段BC表示无障碍通道,线段AD表示普通扶梯,其中”无障碍通道”BC的坡度(或坡比)为i=1:2,BC=125米,CD =6米,∠D=30°,(其中点A、B、C、D均在同一平面内)则垂直升降电梯AB的高度约为( )米.A. 103B. 103﹣12C. 12D. 103+1210.抛物线y=x2﹣9与x轴交于A、B两点,点P在函数y=3x图象上,若△PAB为直角三角形,则满足条件的点P的个数为( )A. 2个B. 3个C. 4个D. 6个11.如图,将矩形ABCD绕点C沿顺时针方向旋转90°到矩形A′B′CD′位置时,若AB=2,AD=4,则阴影部分的面积为( )A. 433π B.2233π- C.8433π- D.8233π-12.平面直角坐标系中,函数y=4x(x>0)的图象G经过点A(4,1),与直线y=14x+b的图象交于点B,与y轴交于点C.其中横、纵坐标都是整数的点叫做整点.记图象G在点A、B之间的部分与线段OA、OC、BC围成的区域(不含边界)为W.若W内恰有4个整点,结合函数图象,b的取值范围是( )A. ﹣54≤b<1或74<b≤114B. ﹣54≤b<1或74<b≤114C. ﹣54≤b<﹣1或﹣74<b≤114D. ﹣54≤b<﹣1或74<b≤114二.填空题(共6小题)13.分解因式:39a a-=_________.14.五边形的内角和是_____°.15.方程2144xx x--=--的解是__________.16.A、B两地相距20km,甲乙两人沿同一条路线从A地到B地.甲先出发,匀速行驶,甲出发1小时后乙再出发,乙以2km/h的速度度匀速行驶1小时后提高速度并继续匀速行驶,结果比甲提前到达.甲、乙两人离开A地的距离y(km)与时间t(h)的关系如图所示,则甲出发_____小时后和乙相遇.17.如图,正方形ABCD的边长为1,AC、BD是对角线,将△DCB绕着点D顺时针旋转45°得到△DGH,HG 交AB于点E,连接DE交AC于点F,连接FG.则下列结论:①四边形AEGF是菱形;②△HED的面积是1﹣22;③∠AFG=135°;④BC+FG=3.其中正确的结论是_____.(填入正确的序号)18.如图,正方形ABCD的边长为8,E为BC的四等分点(靠近点B的位置),F为B边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为_____.三.解答题(共9小题)19.计算:|﹣2|﹣(﹣2)0+(13)﹣1﹣cos60°.20.解不等式组2102323xx x+>⎧⎪-+⎨≥⎪⎩.21.如图,在菱形ABCD中,E、F分别为边AD和CD上的点,且AE=CF.连接AF、CE交于点G.求证:∠DGE=∠DGF.22.济南市地铁1号线于2019年1月1日起正式通车,在修建过程中,技术人员不断改进技术,提高工作效率,如在打通一条长600米的隧道时,计划用若干小时完成,在实际工作过程中,每小时打通隧道长度是原计划的1.2倍,结果提前2小时完成任务.(1)求原计划每小时打通隧道多少米?(2)如果按照这个速度下去,后面的300米需要多少小时打通?23.如图,AB是⊙O的直径,射线BC交⊙O于点D,E是劣弧AD上一点,且AE=DE,过点E作EF⊥BC 于点F,延长FE和BA的延长线交与点G.(1)证明:GF是⊙O的切线;(2)若AG=6,GE=2,求⊙O的半径.24.自深化课程改革以来,某市某校开设了:A .利用影长求物体高度,B .制作视力表,C .设计遮阳棚,D .制作中心对称图形,四类数学实践活动课.规定每名学生必选且只能选修一类实践活动课,学校对学生选修实践活动课的情况进行抽样调查,将调查结果绘制成如下两幅不完整的统计图.根据图中信息解决下列问题:(1)本次共调查 名学生,扇形统计图中B 所对应的扇形的圆心角为 度;(2)补全条形统计图;(3)选修D 类数学实践活动的学生中有2名女生和2名男生表现出色,现从4人中随机抽取2人做校报设计,请用列表或画树状图法求所抽取的两人恰好是1名女生和1名男生的概率.25.如图,在矩形OABC 中,OA 3=,AB 4=,反比例函数k y x=(k 0>)的图像与矩形两边AB 、BC 分别交于点D 、点E ,且BD 2AD =.(1)求点D 的坐标和的值;(2)求证:BE 2CE =;(3)若点是线段OC 上的一个动点,是否存在点,使90APE ∠=︒?若存在,求出此时点的坐标;若不存在,请说明理由.26.在△ABC 中,AB =BC ,∠ABC =90°,D 为AC 中点,点P 是线段AD 上一点,点P 与点A 、点D 不重合),连接BP .将△ABP 绕点P 按顺时针方向旋转α角(0°<α<180°),得到△A 1B 1P ,连接A 1B 1、BB 1(1)如图①,当0°<α<90°,在α角变化过程中,请证明∠P AA 1=∠PBB 1.(2)如图②,直线AA 1与直线PB 、直线BB 1分别交于点E ,F .设∠ABP =β,当90°<α<180°时,在α角变化过程中,是否存在△BEF 与△AEP 全等?若存在,求出α与β之间数量关系;若不存在,请说明理由;(3)如图③,当α=90°时,点E 、F 与点B 重合.直线A 1B 与直线PB 相交于点M ,直线BB ′与AC 相交于点Q .若AB =2,设AP =x ,CQ =y ,求y 关于x 的函数关系式.27.若二次函数2y ax bx c =++的图象与轴分别交于点(3,0)A 、(0,2)B -,且过点(2,2)C -.(1)求二次函数表达式;(2)若点为抛物线上第一象限内的点,且4PAB S ∆=,求点的坐标;(3)在抛物线上(AB 下方)是否存在点M ,使ABO ABM ∠=∠?若存在,求出点M 到轴的距离;若不存在,请说明理由.答案与解析一.选择题(共12小题)1.25的平方根是( )A. ±5B. 5C. ﹣5D. ±25【答案】A【解析】【分析】如果一个数 x的平方是a,则x是a的平方根,根据此定义求解即可.【详解】∵(±5)2=25,∴25的立方根是±5,故选A.【点睛】本题考查了求一个数的平方根,解题的关键是掌握一个正数的平方根有两个,这两个互为相反数.2.如图,几何体的左视图是( )A. B. C. D.【答案】C【解析】【分析】找到从左面看所得到的图形,比较即可.【详解】观察可知,如图所示的几何体的左视图是:,故选C.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.3.用科学记数法表示0.00000022是( )A. 0.22×10﹣6B. 2.2×107C. 2.2×10﹣6D. 2.2×10﹣7【答案】D【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:用科学记数法表示0.00000022是2.2×10-7.故选:D.【点睛】此题考查科学记数法表示较小的数,解题关键在于掌握一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.下列App图标中,既不是中心对称图形也不是轴对称图形的是()A. B. C. D.【答案】B【解析】【分析】根据中心对称图形与轴对称图形的区别,逐一判断即可.【详解】解:∵A中的图形是轴对称图形,不是中心对称图形,∴选项A不正确;∵B中的图形既不是中心对称图形也不是轴对称图形,∴选项B正确;∵C中的图形是轴对称图形,不是中心对称图形,∴选项C不正确;∵D中的图形不是轴对称图形,是中心对称图形,∴选项D不正确.故选B.【点睛】此题主要考查了中心对称图形与轴对称图形的区别,要熟练掌握,解答此题的关键是要明确:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图重合.5.下列计算正确的是( )A. a2+a2=a4B. a6÷a2=a4C. (a2)3=a5D. (a﹣b)2=a2﹣b2【答案】B【解析】【详解】解:A. a2+a2=2a2,故A选项错误;B. a6÷a2=a4,故B正确;C. (a2)3=a6,故C选项错误;D. (a−b)2=a2+b2−2ab,故D选项错误.6. 如图,已知AB∥CD∥EF,FC平分∠AFE,∠C=25°,则∠A的度数是( )A. 25°B. 35°C. 45°D. 50°【答案】D【解析】试题分析:∵CD∥EF,∠C=∠CFE=25°,∵FC平分∠AFE,∴∠AFE=2∠CFE=50°,又∵AB∥EF,∴∠A=∠AFE=50°,故选D.考点:平行线性质.7.某射击俱乐部将11名成员在某次射击训练中取得的成绩制成如图所示的条形统计图,由图可知,11名成员射击成绩的众数和中位数分别是( )A. 8,9B. 8,8C. 8,10D. 9,8【答案】B【解析】分析:中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可,本题是最中间的那个数;对于众数可由条形统计图中出现频数最大或条形最高的数据写出.详解:由条形统计图知8环的人数最多,所以众数为8环,由于共有11个数据,所以中位数为第6个数据,即中位数为8环,故选B.点睛:本题主要考查了确定一组数据的中位数和众数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个,则找中间两个数的平均数.8.若不等式组236x xx m-<-⎧⎨<⎩无解,那么m的取值范围是( )A. m>2B. m<2C. m≥2D. m≤2【答案】D【解析】【分析】先求出每个不等式的解集,再根据不等式组解集的求法和不等式组无解的条件,即可得到m的取值范围.【详解】解:236 x xx m-<-⎧⎨<⎩②①由①得,x>2,由②得,x<m,又因为不等式组无解,所以根据”大大小小解不了”原则,m≤2.故选:D.【点睛】此题考查解一元一次不等式组,解题关键在于掌握求不等式组的解集,要根据以下原则:同大取较大,同小较小,小大大小中间找,大大小小解不了.9.在商场里,为方便一部分残疾人出入,商场特意设计了一种特殊通道”无障碍通道”,如图,线段BC表示无障碍通道,线段AD表示普通扶梯,其中”无障碍通道”BC的坡度(或坡比)为i=1:2,BC=125米,CD =6米,∠D=30°,(其中点A、B、C、D均在同一平面内)则垂直升降电梯AB的高度约为( )米.A. 3B. 3﹣12C. 12D. 3【答案】B【解析】【分析】根据勾股定理,可得CE ,BE 的长,根据正切函数,可得AE 的长,再根据线段的和差,可得答案.【详解】解:如图,延长AB 交DC 的延长线于点E ,,由BC 的坡度(或坡比)为i =1:2,得BE :CE =1:2.设BE =x ,CE =2x .在Rt △BCE 中,由勾股定理,得BE 2+CE 2=BC 2,即x 2+(2x )2=(52,解得x =12(米),∴BE =12(米),CE =24(米),DE =DC +CE =6+24=30(米),由tan30°=333=3AE DE , 解得AE =3由线段的和差,得AB =AE ﹣BE =(312)(米),故选:B .【点睛】此题考查解直角三角形的应用,利用勾股定理得出CE ,BE 的长是解题关键,又利用了正切函数,线段的和差.10.抛物线y =x 2﹣9与x 轴交于A 、B 两点,点P 在函数y =3x图象上,若△PAB 为直角三角形,则满足条件的点P 的个数为( )A. 2个B. 3个C. 4个D. 6个 【答案】D【解析】分析:先由二次函数与一元二次方程的关系求出A、B两点的坐标,然后分类讨论:①当∠P AB=90°时,则P点的横坐标为-3,根据反比例函数图象上点的坐标特征易得P点有1个;②当∠APB=90°,设P(x,3x),根据两点间的距离公式和勾股定理可得(x+3)2+(3x)2+(x-3)2+(3x)2=36,此时P点有4个,③当∠PBA=90°时,P点的横坐标为3,此时P点有1个.详解:解290x-=得,x=±3,∴A(-3,0),B(3,0).①当∠P AB=90°时,如图1,P点的横坐标为-3,把x=-3代入y=3x得y=-33,所以此时P点有1个;②当∠APB=90°,如图2,设P(x,3x),P A2=(x+3)2+(3x)2,PB2=(x-3)2+(3x)2,AB2=(3+3)2=36,∵P A2+PB2=AB2,∴(x+3)2+(3x)2+(x-3)2+(3x)2=36,整理得x4-9x2+4=0,所以x2=9692+,或x2=9692-,所以此时P点有4个,③当∠PBA =90°时,如图3,P 点的横坐标为3,把x =3代入y =3x 得y =33,所以此时P 点有1个; 综上所述,满足条件的P 点有6个.故选D .点睛:本题考查了二次函数与坐标轴的交点,反比例函数图象上点的坐标特征:反比例函数y =k x(k 为常数,k ≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy =k .11.如图,将矩形ABCD 绕点C 沿顺时针方向旋转90°到矩形A ′B ′CD ′的位置时,若AB =2,AD =4,则阴影部分的面积为( )A. 433πB. 2233π-C. 8433π-D. 8233π-【答案】D【解析】【详解】∵四边形ABCD 是矩形,∴AD =BC =4,CD =AB =2,90BCD ADC ∠=∠=︒,∴CE =BC =4,∴CE =2CD ,∴30DEC ∠=︒,∴60DCE ∠=︒,由勾股定理得:23DE =,∴阴影部分的面积是S =S 扇形CEB ′−S △CDE 260π41823π2 3.36023⨯=-⨯⨯=-故选D.12.平面直角坐标系中,函数y=4x(x>0)的图象G经过点A(4,1),与直线y=14x+b的图象交于点B,与y轴交于点C.其中横、纵坐标都是整数的点叫做整点.记图象G在点A、B之间的部分与线段OA、OC、BC围成的区域(不含边界)为W.若W内恰有4个整点,结合函数图象,b的取值范围是( )A. ﹣54≤b<1或74<b≤114B. ﹣54≤b<1或74<b≤114C. ﹣54≤b<﹣1或﹣74<b≤114D. ﹣54≤b<﹣1或74<b≤114【答案】D 【解析】【分析】由于直线BC:y=14x+b与OA平行,分两种情况:直线l在OA的下方和上方,画图根据区域W内恰有4个整点,确定b的取值范围.【详解】解:如图1,直线l在OA的下方时,当直线l:y=14x+b过(0,﹣1)时,b=﹣1,且经过(4,0)点,区域W内有三点整点,当直线l:y=14x+b过(1,﹣1)时,b=﹣54,且经过(5,0),区域W内有三点整点,∴区域W内恰有4个整点,b的取值范围是﹣54≤b<﹣1.如图2,直线l在OA的上方时,∵点(2,2)在函数y =k x(x >0)图象G , 当直线l :y =14x +b 过(1,2)时,b =74, 当直线l :y =14x +b 过(1,3)时,b =114, ∴区域W 内恰有4个整点,b 的取值范围是74<b ≤114. 综上所述,区域W 内恰有4个整点,b 的取值范围是﹣54≤b <﹣1或74<b ≤114. 故选:D .【点睛】此题考查反比例函数与一次函数的交点问题,求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,理解整点的定义是解题关键,并利用数形结合的思想.二.填空题(共6小题)13.分解因式:39a a -=_________.【答案】(3)(3)a a a +-【解析】【分析】先提取a ,再用公式法进行因式分解.【详解】39a a -=()29a a -=(3)(3)a a a +-故答案为:(3)(3)a a a +-.【点睛】此题主要考查因式分解,解题的关键是熟知公式法的运用.14.五边形的内角和是_____°.【答案】540【解析】【分析】根据正多边形内角和公式计算即可.【详解】解:五边形的内角和是(5﹣2)×180°=540°,故答案为:540.【点睛】本题主要考查多边形内角和公式,掌握多边形内角和公式是解题的关键.15.方程21044x x x --=--的解是__________. 【答案】x=3.【解析】【详解】解:21044x x x--=-- 21+044x x x -=-- 210x +-=解得:x=3 经检验:x=3是原方程的解故答案为:x=3.16.A 、B 两地相距20km ,甲乙两人沿同一条路线从A 地到B 地.甲先出发,匀速行驶,甲出发1小时后乙再出发,乙以2km/h 的速度度匀速行驶1小时后提高速度并继续匀速行驶,结果比甲提前到达.甲、乙两人离开A 地的距离y(km)与时间t(h)的关系如图所示,则甲出发_____小时后和乙相遇.【答案】165【解析】【分析】由图象得出解析式后联立方程组解答即可.【详解】由图象可得:y 甲=4t(0≤t≤5);y 乙=()()2112916(24)t t t t <⎧-≤≤⎨-≤⎩; 由方程组4916y t y t ⎧⎨-⎩==,解得t=165.故答案为165. 【点睛】此题考查一次函数的应用,关键是由图象得出解析式解答.17.如图,正方形ABCD 的边长为1,AC 、BD 是对角线,将△DCB 绕着点D 顺时针旋转45°得到△DGH ,HG 交AB 于点E ,连接DE 交AC 于点F ,连接FG .则下列结论:①四边形AEGF 是菱形;②△HED 的面积是1﹣22;③∠AFG =135°;④BC +FG =3.其中正确的结论是_____.(填入正确的序号)【答案】①②③【解析】【分析】依据四边形AEGF 为平行四边形,以及AE GE =,即可得到平行四边形AEGF 是菱形;依据21AE =,即可得到HED 的面积)112211211222DH AE =⨯=+=-;依据四边形AEGF 是菱形,可得267.5135AFG GEA ∠=∠=⨯︒=︒;根据四边形AEGF 是菱形,可得21FG AE ==,进而得到1212BC FG +=+=【详解】解:正方形ABCD 的边长为1,90BCD BAD ∴∠=∠=︒,45CBD ∠=︒,2BD =,1AD CD ==.由旋转的性质可知:90HGD BCD ∠==︒,45H CBD ∠=∠=︒,BD HD =,GD CD =, 21HA BG ∴==,45H EBG ∠=∠=︒,90HAE BGE ∠=∠=︒,HAE ∴和BGE 21的等腰直角三角形,AE GE ∴=.在Rt AED 和Rt GED 中,DE DE AD GD=⎧⎨=⎩,Rt AED ∴≌()Rt GED HL , ()118067.52AED GED BEG ∴∠=∠=︒-∠=︒,AE GE =, 1801804567.567.5AFE EAF AEF AEF ∴∠=︒-∠-∠=︒-︒-︒=︒=∠,AE AF ∴=.AE GE =,AF BD ⊥,EG BD ⊥,AF GE ∴=且//AF GE ,四边形AEGF 为平行四边形,AE GE =,平行四边形AEGF 是菱形,故①正确;21HA =-,45H ∠=︒,21AE ∴=-,HED ∴的面积()()112211211222DH AE =⨯=-+-=-,故②正确;四边形AEGF 是菱形, 267.5135AFG GEA ∴∠=∠=⨯︒=︒,故③正确;四边形AEGF 是菱形,21FG AE ∴==-,1212BC FG ∴+=+-=,故④不正确.故答案为:①②③.【点睛】本题考查旋转的性质,正方形的性质,全等三角形的判定和性质,菱形的判定和性质,等腰直角三角形的性质等知识,解题的关键是掌握旋转的性质:对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.18.如图,正方形ABCD 的边长为8,E 为BC 的四等分点(靠近点B 的位置),F 为B 边上的一个动点,连接EF ,以EF 为边向右侧作等边△EFG ,连接CG ,则CG 的最小值为_____.【答案】5【解析】【分析】由题意分析可知,点F为主动点,G为从动点,所以以点E为旋转中心构造全等关系,得到点G的运动轨迹,之后通过垂线段最短构造直角三角形获得CG最小值.【详解】由题意可知,点F是主动点,点G是从动点,点F在线段上运动,点G也一定在直线轨迹上运动将△EFB绕点E旋转60°,使EF与EG重合,得到△EFB≌△EHG从而可知△EBH为等边三角形,点G在垂直于HE的直线HN上作CM⊥HN,则CM即为CG的最小值作EP⊥CM,可知四边形HEPM为矩形,则CM=MP+CP=HE+12EC=2+3=5,故答案为:5.【点睛】此题考查旋转的性质,全等三角形的性质,正方形的性质,分清主动点和从动点,通过旋转构造全等,从而判断出点G的运动轨迹,是解题的关键,之后运用垂线段最短,构造图形计算.三.解答题(共9小题)19.计算:|﹣2|﹣(2)0+(13)﹣1﹣cos60°.【答案】312.【解析】【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可求出值.【详解】解:原式=2﹣1+3﹣1 2=1+3﹣1 2=4﹣1 2=312.【点睛】此题考查了实数的运算,零指数幂、负整数指数幂,熟练掌握运算法则是解题的关键.20.解不等式组2102323xx x+>⎧⎪-+⎨≥⎪⎩.【答案】﹣0.5<x≤0.【解析】【分析】先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【详解】解:2102323xx x+>⎧⎪⎨-+≥⎪⎩①②由①得:x>﹣0.5,由②得:x≤0,则不等式组的解集是﹣0.5<x≤0.【点睛】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.21.如图,在菱形ABCD中,E、F分别为边AD和CD上的点,且AE=CF.连接AF、CE交于点G.求证:∠DGE=∠DGF.【答案】证明见解析【解析】【分析】根据菱形的性质和全等三角形的判定和性质定理即可得到结论.【详解】证明:∵四边形ABCD是菱形,∴DA=DC=AB=BC,∵AE=CF,∴DE=DF,∵∠ADG=∠CDG,DG=DG,∴△DEG≌△DFG(SAS),∴∠DGE=∠DGF.【点睛】此题考查菱形的性质,全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题. 22.济南市地铁1号线于2019年1月1日起正式通车,在修建过程中,技术人员不断改进技术,提高工作效率,如在打通一条长600米的隧道时,计划用若干小时完成,在实际工作过程中,每小时打通隧道长度是原计划的1.2倍,结果提前2小时完成任务.(1)求原计划每小时打通隧道多少米?(2)如果按照这个速度下去,后面的300米需要多少小时打通?【答案】(1)原计划每小时打通隧道50米.(2)按照这个速度下去,后面的300米需要5小时打通.【解析】【分析】(1)设原计划每小时打通隧道x米,则实际工作过程中每小时打通隧道1.2x米,根据工作时间=工作总量÷工作效率结合在打通一条长600米的隧道时实际比原计划提前2小时完成任务,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)根据工作时间=工作总量÷工作效率(提高工作效率后的工作效率),即可求出结论.【详解】解:(1)设原计划每小时打通隧道x米,则实际工作过程中每小时打通隧道1.2x米,依题意,得:6006001.2x x=2,解得:x=50,经检验,x=50是原方程的解,且符合题意.答:原计划每小时打通隧道50米.(2)300÷(50×1.2)=5(小时).答:按照这个速度下去,后面的300米需要5小时打通.【点睛】此题考查分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.23.如图,AB是⊙O的直径,射线BC交⊙O于点D,E是劣弧AD上一点,且AE=DE,过点E作EF⊥BC 于点F,延长FE和BA的延长线交与点G.(1)证明:GF是⊙O的切线;(2)若AG=6,GE=62,求⊙O的半径.【答案】(1)见解析;(2)3【解析】【分析】(1)连接OE,由AE DE=知∠1=∠2,由∠2=∠3可证OE∥BF,根据BF⊥GF得OE⊥GF,得证;(2)设OA=OE=r,在Rt△GOE中由勾股定理求得r=3.【详解】解:(1)如图,连接OE,∵AE DE=,∴∠1=∠2,∵∠2=∠3,∴∠1=∠3,∴OE∥BF,∵BF⊥GF,∴OE⊥GF,∴GF是⊙O的切线;(2)设OA=OE=r,在Rt△GOE中,∵AG=6,GE=2,∴由OG2=GE2+OE2可得(6+r)2=(62)2+r2,解得:r=3,故⊙O的半径为3.【点睛】本题考查圆切线的性质,关键在于熟记基本性质,结合图形灵活运用.24.自深化课程改革以来,某市某校开设了:A.利用影长求物体高度,B.制作视力表,C.设计遮阳棚,D.制作中心对称图形,四类数学实践活动课.规定每名学生必选且只能选修一类实践活动课,学校对学生选修实践活动课的情况进行抽样调查,将调查结果绘制成如下两幅不完整的统计图.根据图中信息解决下列问题:(1)本次共调查名学生,扇形统计图中B所对应的扇形的圆心角为度;(2)补全条形统计图;(3)选修D类数学实践活动的学生中有2名女生和2名男生表现出色,现从4人中随机抽取2人做校报设计,请用列表或画树状图法求所抽取的两人恰好是1名女生和1名男生的概率.【答案】(1)60 ,144(2)见解析(3)2 3【解析】【分析】(1)用C类别人数除以其所占百分比可得总人数,用360°乘以C类别人数占总人数的比例即可得;(2)总人数乘以A类别的百分比求得其人数,用总人数减去A,B,C的人数求得D类别的人数,据此补全图形即可;(3)画树状图展示12种等可能的结果数,再找出所抽取的两人恰好是1名女生和1名男生的结果数,然后根据概率公式求解.【详解】(1)本次调查的学生人数为12÷20%=60(名),则扇形统计图中B所对应的扇形的圆心角为360°×2460=144°.故答案为60 , 144(2)A 类别人数为60×15%=9(人),则D 类别人数为60﹣(9+24+12)=15(人),补全条形图如下:(3)画树状图为:共有12种等可能的结果数,其中所抽取的两人恰好是1名女生和1名男生的结果数为8,所以所抽取的两人恰好是1名女生和1名男生的概率为812=23. 【点睛】本题考查列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.也考查了统计图.25.如图,在矩形OABC 中,OA 3=,AB 4=,反比例函数k y x=(k 0>)的图像与矩形两边AB 、BC 分别交于点D 、点E ,且BD 2AD =.(1)求点D 的坐标和的值;(2)求证:BE 2CE =;(3)若点是线段OC 上的一个动点,是否存在点,使90APE ∠=︒?若存在,求出此时点的坐标;若不存在,请说明理由.【答案】(1)4(,3)3D ,4;(2)见解析;(3)存在点,(1,0)P 或(3,0)P .【解析】【分析】(1)由矩形OABC 中,AB =4,BD =2AD ,可得3AD =4,即可求得AD 的长,然后求得点D 的坐标,即可求得k 的值,继而求得点E 的坐标;(2)由E 点在反比例函数k y x=图像上,可求E 点坐标,进而求出EC 的长即可求证. (3)首先假设存在要求的点P 坐标为(m ,0),OP =m ,CP =4-m ,由∠APE =90°,易证得△AOP ∽△PCE ,然后由相似三角形的对应边成比例,求得m 的值,继而求得此时点P 的坐标. 【详解】解:(1)在矩形OABC 中,AB x 轴,且3OA =,∴点的纵坐标为3.∵4AB =,且2BD AD =,1433AD AB ∴==, ∴4,33D ⎛⎫ ⎪⎝⎭. ∴点在反比例函数k y x =图像上, ∴4343k =⨯=. (2)证:∵BC 上,∴横坐标为4,在4y x=中,当4x =时,1y =, ∴()4,1E .∴1CE =,∴312BE BC CE =-=-=,∴2BE CE =.(3)存在点,使090APE ∠=,其过程是:设OP x =,则4PC x =-.090APE ∠=,090APO CPE ∠∠∴+=,090OAP APO ∠∠+=,OAP CPE ∠∠∴=.AOP PCE ∠∠=,AOP PCE ∴∆∆∽. AO OP PC CE ∴=,即341x x =-.解得1x =或3x =. ()1,0P ∴或()3,0P .【点睛】此题属于反比例函数综合题,考查了待定系数求反比例函数解析式、矩形的性质以及相似三角形的判定与性质.注意求得点D 的坐标与证得△AOP ∽△PCE 是解此题的关键.26.在△ABC 中,AB =BC ,∠ABC =90°,D 为AC 中点,点P 是线段AD 上的一点,点P 与点A 、点D 不重合),连接BP .将△ABP 绕点P 按顺时针方向旋转α角(0°<α<180°),得到△A 1B 1P ,连接A 1B 1、BB 1(1)如图①,当0°<α<90°,在α角变化过程中,请证明∠P AA 1=∠PBB 1.(2)如图②,直线AA 1与直线PB 、直线BB 1分别交于点E ,F .设∠ABP =β,当90°<α<180°时,在α角变化过程中,是否存在△BEF 与△AEP 全等?若存在,求出α与β之间的数量关系;若不存在,请说明理由;(3)如图③,当α=90°时,点E 、F 与点B 重合.直线A 1B 与直线PB 相交于点M ,直线BB ′与AC 相交于点Q .若AB =2,设AP =x ,CQ =y ,求y 关于x 函数关系式.【答案】(1)证明见解析;(2)α﹣2β=90°;(3)y =222x x --. 【解析】【分析】 (1)先利用旋转得出两个顶角相等的两个等腰三角形,即可得出结论;(2)假设存在,然后利用确定的出AE=BE ,即可求出∠A 1AP=∠AA 1P ,最后用∠BAC=45°建立方程化简即可;(3)先判断出△ABQ ∽△CPB ,得出比例式即可得出结论.【详解】解:(1)∵将△ABP 绕点P 按顺时针方向旋转α角(0°<α<180°),得到△A 1B 1P ,∴∠AP A 1=∠BPB 1=α,AP =A 1P ,BP =B 1P ,∴∠AA 1P =∠A 1AP =1180APA 2︒-∠=1802α︒-,∠BB 1P =∠B 1BP =1180BPB 2︒-∠=1802α︒-, ∴∠P AA 1=∠PBB 1,(2)假设在α角变化的过程中,存在△BEF 与△AEP 全等,∵△BEF 与△AEP 全等,∴AE =BE ,∴∠ABE =∠BAE =β,∵AP =A 1P ,∴∠A 1AP =∠AA 1P =1802α︒-, ∵AB =BC ,∠ABC =90°,∴∠BAC =45°,∴β+1802α︒-=45°, ∴α﹣2β=90°,(3)当α=90°时,∵AP =A 1P ,BP =B 1P ,∠AP A 1=∠BPB 2=90°,∴∠A =∠PBB 1=45°,∵∠A =∠C ,∠AQB =∠C +∠QBC =45°+∠QBC =∠PBC , ∴△ABQ ∽△CPB , ∴AQ AB BC PC=,∵AB ,2x =-, ∴y =222x x --. 【点睛】此题考查几何变换综合题,旋转的性质,等腰三角形的性质,全等三角形的性质,相似三角形的判定和性质,解(2)的关键是得出∠BAC=45°,解(3)的关键是判断出△ABQ ∽△CPB .27.若二次函数2y ax bx c =++的图象与轴分别交于点(3,0)A 、(0,2)B -,且过点(2,2)C -.(1)求二次函数表达式;(2)若点为抛物线上第一象限内的点,且4PAB S ∆=,求点的坐标;(3)在抛物线上(AB 下方)是否存在点M ,使ABO ABM ∠=∠?若存在,求出点M 到轴的距离;若不存在,请说明理由.【答案】(l )224233y x x =-- ;(2)点的坐标为104,3⎛⎫ ⎪⎝⎭;(3)点M 到轴的距离为118 . 【解析】【分析】 (1)根据待定系数法,计算即可.(2)首先设出P 点的坐标,再利用PAB POA AOB POB S S S S ∆∆∆∆=+-求解未知数,可得P 点的坐标.(3)首先求出直线AB 的解析式,过点M 作ME y ⊥轴,垂足为,作MD x ⊥轴交AB 于点,再利用平行证明MD MB =,列出方程求解参数,即可的点M 到轴的距离.【详解】(l )因为抛物线2y ax bx c =++过点(0,2)-,∴2c =-,又因为抛物线过点(3,0),(2,2)- ∴93204222a b a b +-=⎧⎨+-=-⎩解,得2343a b ⎧=⎪⎪⎨⎪=-⎪⎩所以,抛物线表达式为224233y x x =--(2)连接PO ,设点224,233P m m m ⎛⎫-- ⎪⎝⎭. 则PAB POA AOB POB S S S S ∆∆∆∆=+-2124113232223322m m m ⎛⎫=⨯⋅--+⨯⨯-⨯⋅ ⎪⎝⎭ 23m m =-由题意得234m m -=∴4m =或1m =-(舍)∴224102333m m --= ∴点的坐标为104,3⎛⎫ ⎪⎝⎭.(3)设直线AB 的表达式为y kx n =+,因直线AB 过点(3,0)A 、(0,2)B -,∴302k n n +=⎧⎨=-⎩解,得232k n ⎧=⎪⎨⎪=-⎩所以AB 的表达式为223y x =- 设存在点M 满足题意,点M 的坐标为224,233t t t ⎛⎫-- ⎪⎝⎭,过点M 作ME y ⊥轴,垂足为,作MD x ⊥轴交AB 于点,则的坐标为2,23t t ⎛⎫- ⎪⎝⎭,2223MD t t =-+,22433BE t t =-+.又MD y 轴∴ABO MDB ∠=∠又∵ABO ABM ∠=∠∴MDB ABM ∠=∠∴MD MB = ∴2223MB t t =-+.在Rt BEM ∆中 222222422333t t t t t ⎛⎫⎛⎫-++=-+ ⎪ ⎪⎝⎭⎝⎭解得:118t = 所以点M 到轴的距离为118 【点睛】本题主要考查二次函数与一次函数的综合性问题,难度系数高,但是是中考的必考知识点,应当熟练地掌握.。
山东省潍坊市诸城市、青州市中考数学一模试卷

中考数学一模试卷一、选择题(本大题共12小题,共36.0分)1.下列运算中,正确的是()A. B. C. D.2.将一个长方体内部挖去一个圆柱(如图所示),它的主视图是()A.B.C.D.3.作为世界文化遗产的长城,其总长大约为6700000m.将6700000用科学记数法表示为()A. B. C. D.4.如图,已知AB∥DE,∠ABC=75°,∠CDE=145°,则∠BCD的值为()A. B. C. D.5.如图,数轴上点A,B分别对应1,2,过点B作PQ⊥AB,以点B为圆心,AB长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M对应的数是()A. B. C. D.6.如图,一根5m长的绳子,一端拴在互相垂直的围墙墙角的柱子上,另一端拴着一只小羊A(羊只能在草地上活动),那么小羊A在草地上的最大活动区域面积是()A. B. C. D.7.用配方法解方程2x2+3x-1=0,则方程可变形为()A. B. C. D.8.函数y=的自变量x的取值范围是()A. B. 且 C. D. 且9.如图,直角梯形ABCD中,∠A=90°,∠B=45°,底边AB=5,高AD=3,点E由B沿折线BCD向点D移动,EM⊥AB于M,EN⊥AD于N,设BM=x,矩形AMEN的面积为y,那么y与x之间的函数关系的图象大致是()A. B. C.D.10.如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AC的长是()A. B. 6 C. 4 D. 511.在平面直角坐标系xOy中,点P(x0,y0)到直线Ax+By+C=0的距离公式为d=,例如:点P0(0,0)到直线4x+3y-3=0的距离为d==,根据以上材料,求点P1(3,4)到直线y=-x+的距离为()A. 3B. 4C. 5D. 612.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数).其中正确结论的有()A. ①②③B. ①③④C. ③④⑤D. ②③⑤二、填空题(本大题共6小题,共18.0分)13.甲、乙、丙三位选手各10次射击成绩的平均数均为9.3环,方差(单位:环2)依次分别为0.026、0.015、0.032.则射击成绩最稳定的选手是______(填“甲”、“乙”、“丙”中的一个).14.因式分解:x3y-2x2y-3xy=______.15.若关于x的分式方程=的解为非负数,则a的取值范围是______.16.如图,已知梯形ABCD中,AD∥BC,AB=CD=AD,AC、BD相交于点O,∠BCD=60°,则下列4个结论:①梯形ABCD是轴对称图形;②BC=2AD;③梯形ABCD是中心对称图形;④AC平分∠DCB,其中正确的是______.17.在△ABC中,AB=9,AC=6.点M在边AB上,且AM=3,点N在AC边上.当AN=______时,△AMN与原三角形相似.18.如图,正方形OA1B1C1的边长为1,以O为圆心,OA1为半径作扇形OA1C1,弧A1C1与OB1相交于点B2,设正方形OA1B1C1与扇形OA1C1之间的阴影部分的面积为S1;然后以OB2为对角线作正方形OA2B2C2,又以O为圆心,OA2为半径作扇形OA2C2,弧A2C2与OB1相交于点B3,设正方形OA2B2C2与扇形OA2C2之间的阴影部分面积为S2;按此规律继续作下去,设正方形OA2018B2018C2018与扇形OA2018C2018之间的阴影部分面积为S2018,则S2018=______.三、解答题(本大题共7小题,共66.0分)19.2018年某市学业水平体育测试即将举行,某校为了解同学们的训练情况,从九年级学生中随机抽取部分学生进行了体育测试(把成绩分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图,请根据统计图中的信息解答下列问题:(1)求本次抽测的学生人数;(2)求扇形图中∠α的度数,并把条形统计图补充完整;(3)在测试中甲乙、丙、丁四名同学表现非常优秀,现决定从这四名同学中任选两名给大家介绍训练经验,求恰好选中甲、乙两名同学的概率(用树状图或列表法解答).20.某校为美化校园,计划对面积为1900m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?21.如图,湿地景区岸边有三个观景台A、B、C,已知AB=700米,AC=500米,B点位于A点的南偏西60.7°方向,C点位于A点的南偏东66.1°方向.景区规划在线段BC的中点D处修建个湖心亭,并修建观景栈道AD.求A,D间的距离.(结果精确到0.1米)(参考数据:sin53.2°≈0.80,cos53.2°≈0.60,sin60.7°≈0.87,cos60.7°≈0.49,sin66.1°≈0.91,cos66.1°≈0.41,≈1.414).22.如图,⊙O是△ABC的外接圆,O点在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线,与AB的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)若AB=3,AC=4,求线段PB的长.23.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用32m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.(1)若花园的面积为252m2,求x的值;(2)若在P处有一棵树与墙CD,AD的距离分别是17m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.24.有两张完全重合的矩形纸片,将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),连接BD,MF,若BD=16cm,∠ADB=30°.(1)试探究线段BD与线段MF的数量关系和位置关系,并说明理由;(2)把△BCD与△MEF剪去,将△ABD绕点A顺时针旋转得△AB1D1,边AD1交FM于点K(如图2),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,求β的度数;(3)若将△AFM沿AB方向平移得到△A2F2M2(如图3),F2M2与AD交于点P,A2M2与BD交于点N,当NP∥AB时,求平移的距离.25.如图,抛物线y=-x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(-1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.答案和解析1.【答案】C【解析】解:A、结果是2x2,故本选项不符合题意;B、结果是x6,故本选项不符合题意;C、结果是x3,故本选项符合题意;D、结果是x3-x2,不能合并,故本选项不符合题意;故选:C.先求出每个式子的值,再进行判断即可.本题考查了同底数幂的乘法,合并同类二次根式,积的乘方和幂的乘方等知识点,能正确求出每个式子的值是解此题的关键.2.【答案】A【解析】解:从正面看易得主视图为长方形,中间有两条垂直地面的虚线.故选:A.找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.【答案】B【解析】解:6700000=6.7×106.故选:B.用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.4.【答案】C【解析】解:延长ED交BC于F,如图所示:∵AB∥DE,∠ABC=75°,∴∠MFC=∠B=75°,∵∠CDE=145°,∴∠FDC=180°-145°=35°,∴∠C=∠MFC-∠MDC=75°-35°=40°,故选:C.延长ED交BC于F,根据平行线的性质求出∠MFC=∠B=75°,求出∠FDC=35°,根据三角形外角性质得出∠C=∠MFC-∠MDC,代入求出即可.本题考查了三角形外角性质,平行线的性质的应用,解此题的关键是求出∠MFC的度数,注意:两直线平行,同位角相等.5.【答案】B【解析】解:如图所示:连接OC,由题意可得:OB=2,BC=1,则OC==,故点M对应的数是:.故选:B.直接利用勾股定理得出OC的长,进而得出答案.此题主要考查了勾股定理,根据题意得出CO的长是解题关键.6.【答案】D【解析】解:大扇形的圆心角是90度,半径是5,所以面积==m2;小扇形的圆心角是180°-120°=60°,半径是1m,则面积==(m2),则小羊A在草地上的最大活动区域面积=+=(m2).故选:D.小羊A在草地上的最大活动区域是一个扇形+一个小扇形.本题的关键是从图中找到小羊的活动区域是由哪几个图形组成的,然后分别计算即可.7.【答案】B【解析】解:x2+x=,x2+x+=+,(x+)2=.故选:B.先把常数项移到方程右侧,两边除以2,然后方程两边加上,再把方程左边写成完全平方的形式即可.本题考查了解一元二次方程-配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.8.【答案】B【解析】解:根据题意得:,解得x≥-1且x≠2.故选:B.根据二次根式有意义的条件是:被开方数是非负数,以及分母不等于0,据此即可求解.本题考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.9.【答案】A【解析】解:根据已知可得:点E在未到达C之前,y=x(5-x)=5x-x2;且x≤3,当x从0变化到2.5时,y逐渐变大,当x=2.5时,y有最大值,当x从2.5变化到3时,y逐渐变小,到达C之后,y=3(5-x)=15-3x,x>3,根据二次函数和一次函数的性质.故选:A.利用面积列出二次函数和一次函数解析式,利用面积的变化选择答案.利用一次函数和二次函数的性质,结合实际问题于图象解决问题.10.【答案】B【解析】解:∵将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,∴AF=AB,∠AFE=∠B=90°,∴EF⊥AC,∵∠EAC=∠ECA,∴AE=CE,∴AF=CF,∴AC=2AB=6,故选:B.根据折叠的性质得到AF=AB,∠AFE=∠B=90°,根据等腰三角形的性质得到AF=CF,于是得到结论.本题考查了翻折变换的性质,矩形的性质,熟练掌握折叠的性质是解题的关键.11.【答案】B【解析】解:∵y=-x+,∴x+y-=0,∴点P1(3,4)到直线y=-x+的距离为:=4,故选:B.根据题目中的距离,可以求得点P1(3,4)到直线y=-x+的距离,本题得以解决.本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.12.【答案】C【解析】解:①由图象可知:a<0,b>0,c>0,abc<0,故①错误;②当x=-1时,y=a-b+c<0,即b>a+c,故②错误;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,故③正确;④当x=3时函数值小于0,y=9a+3b+c<0,且x=-=1,即a=-,代入得9(-)+3b+c<0,得2c<3b,故④正确;⑤当x=1时,y的值最大.此时,y=a+b+c,而当x=m时,y=am2+bm+c,所以a+b+c>am2+bm+c,故a+b>am2+bm,即a+b>m(am+b),故⑤正确.综上所述,③④⑤正确.故选:C.由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.考查二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴和、抛物线与y轴的交点、抛物线与x轴交点的个数确定.13.【答案】乙【解析】解:∵0.015<0.026<0.032,∴乙的方差<甲的方差<丙的方差,∴射击成绩最稳定的选手是乙.故答案为:乙.从统计表可以看出甲、乙、丙三位选手的平均数相同,进一步比较方差,方差小的数据的比较稳定,由此解决问题即可.此题主要利用方差来判定数据的波动性,方差越小,数据越稳定,属于统计的基础知识,难点不大.14.【答案】xy(x+1)(x-3)【解析】解:x3y-2x2y-3xy=xy(x2-2xy-3)=xy(x+1)(x-3).故答案为:xy(x+1)(x-3).首先提取公因式xy,再利用十字相乘法分解因式得出答案.此题主要考查了提取公因式法以及十字相乘法分解因式,正确分解常数项是解题关键.15.【答案】a>1,且a≠4【解析】解:两边同时乘以2(x-2),得:4x-2a=x-2,解得x=,由题意可知,x≥0,且x≠2,∴,解得:a≥1,且a≠4,故答案为:a≥1,且a≠4.在方程的两边同时乘以2(x-2),解方程,用含a的式子表示出x的值,再根据x≥0,且x≠2,解不等于组即可.本题主要考查分式方程的解,解决此类问题时,通常先用含a的式子表示出x 的值,再根据x的取值范围即可求出a的取值范围,但要注意分式的最简公分母不等于0.16.【答案】①②④【解析】解:①∵AB=CD,∴梯形ABCD是等腰梯形,∴过点O作直线l⊥BC,此时直线l为梯形的对角线,故①正确;②如图,过点D作DE∥AB,易证,四边形ADEB是平行四边形,∴AD=BE,AB=DE,∵AB=CD,∴DE=CD,∵∠BCD=60°,∴△DEC是等边三角形,∴CE=CD,∴BC=BE+CE=AD+CD=2AD,故②正确;③根据中心对称图形的定义可知等腰梯形ABCD不是中心对称图形,故③错误;④∵AD=CD,∴∠DAC=∠DCA,∵AD∥BC,∴∠DAC=∠ACB,∴∠DCA=∠ACB,∴CA平分∠DCB,故④正确;故答案为:①②④;根据等腰梯形的性质即可求出答案.本题考查等腰梯形的性质,解题的关键是熟练运用平行四边形的性质与判定以及等边三角形的性质与判定,本题属于中等题型.17.【答案】2或4.5【解析】解:由题意可知,AB=9,AC=6,AM=3,①若△AMN∽△ABC,则=,即=,解得:AN=2;②若△AMN∽△ACB,则=,即=,解得:AN=4.5;故AN=2或4.5.故答案为:2或4.5.分别从△AMN∽△ABC或△AMN∽△ACB去分析,根据相似三角形的对应边成比例,即可求得答案.此题考查了相似三角形的性质.此题难度适中,注意掌握分类讨论思想的应用是解此题的关键.18.【答案】-【解析】解:S2018=-=-.故答案为:-.=1,OB1=,以O为圆心,正方形OA1B1C1的边长为1,则S正方形OA1B1C1=1-;以OB2为对角线作正OA为半径作扇形OA1C1,得到S1=1-S扇形OA1C1方形OA2B2C2,又以O为圆心,OA2为半径作扇形OA2C2,得到S2=-S扇形=-;依此类推得到S n=-.进而可将n=2018代入求解.OA2C2本题考查了扇形面积的计算以及正方形的性质,要先从简单的例子入手得出一般化的结论,然后根据得出的规律去求特定的值.19.【答案】解:(1)160÷40%=400,答:本次抽样测试的学生人数是400人;(2)×360°=108°,答:扇形图中∠α的度数是108°;C等级人数为:400-120-160-40=80(人),补全条形图如图:(3)画树状图如下:或列表如下:共有12种等可能的结果,其中恰好选中甲、乙两位同学的结果有2种,所以P(恰好选中甲、乙两位同学)==.【解析】(1)根据B级的频数和百分比求出学生人数;(2)求出A级的百分比,360°乘百分比即为∠α的度数,根据各组人数之和等于总数求得C级人数即可补全图形;(3)根据列表法或树状图,运用概率计算公式即可得到恰好选中甲、乙两名同学的概率.本题考查的是条形统计图和扇形统计图以及概率计算公式的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,扇形统计图直接反映部分占总体的百分比大小.20.【答案】解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得:-=4,解得:x=50,经检验x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2),答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)设应安排甲队工作y天,根据题意得:0.4y+×0.25≤8,解得:y≥15,答:至少应安排甲队工作15天.【解析】(1)设乙工程队每天能完成绿化的面积是x(m2),根据在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,列出方程,求解即可;(2)设应安排甲队工作y天,根据这次的绿化总费用不超过8万元,列出不等式,求解即可.此题考查了分式方程的应用,关键是分析题意,找到合适的数量关系列出方程和不等式,解分式方程时要注意检验.21.【答案】解:作CE⊥BA于E,在Rt△AEC中,∠CAE=180°-60.7°-66.1°=53.2°,∴CE=AC•sin53.2°≈500×0.8=400米.连接AD,作DF⊥AB于F,则DF∥CE,∵BD=CD,DF∥CE,∴BF=EF,∴DF=CE=200米,∵AE=AC•cos53.2°≈300米,∴BE=AB+AE=1000米,∴AF=EB-AE=200米,在Rt△ADF中,AD==200≈282.8米,答:A,D间的距离为282.8m.【解析】作CE⊥BA于E.在Rt△ACE中,求出CE,连接AD,作DF⊥AB于F.,则DF∥CE.首先求出DF、AF,再在Rt△ADF中求出AD即可.本题考查解直角三角形-方向角问题,勾股定理、三角形的中位线定理等知识,解题的关键是学会添加常用辅助线.构造直角三角形解决问题,属于中考常考题型.22.【答案】(1)证明:∵圆心O在BC上,∴BC是圆O的直径,∴∠BAC=90°,连接OD,∵AD平分∠BAC,∴∠BAC=2∠DAC,∵∠DOC=2∠DAC,∴∠DOC=∠BAC=90°,即OD⊥BC,∵PD∥BC,∴OD⊥PD,∵OD为圆O的半径,∴PD是圆O的切线;(2)∵PD∥BC,∴∠P=∠ABC,∵∠ABC=∠ADC,∴∠P=∠ADC,∵∠PBD+∠ABD=180°,∠ACD+∠ABD=180°,∴∠PBD=∠ACD,∴△PBD∽△DCA;∵△ABC为直角三角形,∴BC2=AB2+AC2=32+42=25,∴BC=5,∵OD垂直平分BC,∴DB=DC,∵BC为圆O的直径,∴∠BDC=90°,在Rt△DBC中,DB2+DC2=BC2,即2DC2=BC2=25,∴DC=DB=,∵△PBD∽△DCA,∴,则PB=.【解析】(1)由直径所对的圆周角为直角得到∠BAC为直角,再由AD为角平分线,得到一对角相等,根据同弧所对的圆心角等于圆周角的2倍及等量代换确定出∠DOC为直角,与平行线中的一条垂直,与另一条也垂直得到OD与PD垂直,即可得证;(2)由PD与BC平行,得到一对同位角相等,再由同弧所对的圆周角相等及等量代换得到∠P=∠ACD,根据同角的补角相等得到一对角相等,利用两对角相等的三角形相似;由三角形ABC为直角三角形,利用勾股定理求出BC的长,再由OD垂直平分BC,得到DB=DC,相似三角形的性质,得比例,求出所求即可.此题考查了相似三角形的判定与性质,切线的判定与性质,熟练掌握各自的判定与性质是解本题的关键.23.【答案】解:(1)设AB=x米,可知BC=(32-x)米,根据题意得:x(32-x)=252.解这个方程得:x1=18,x2=14,答:x的长度18m或14m.(2)设周围的矩形面积为S,则S=x(32-x)=-(x-16)2+256.∵在P处有一棵树与墙CD,AD的距离是17m和6米,∴6≤x≤15.∴当x=15时,S最大=-(15-16)2+256=255(平方米).答:花园面积的最大值是255平方米.【解析】(1)根据AB=x米可知BC=(32-x)米,再根据矩形的面积公式即可得出结论;(2)根据P处有一棵树与墙CD、AD的距离分别是18米和8米求出x的取值范围,再根据(1)中的函数关系式即可得出结论.本题考查的是二次函数的应用,熟知矩形的面积公式及二次函数的增减性是解答此题的关键.24.【答案】解:(1)结论:BD=MF,BD⊥MF.理由:如图1,延长FM交BD于点N,由题意得:△BAD≌△MAF.∴BD=MF,∠ADB=∠AFM.又∵∠DMN=∠AMF,∴∠ADB+∠DMN=∠AFM+∠AMF=90°,∴∠DNM=90°,∴BD⊥MF.(2)如图2,①当AK=FK时,∠KAF=∠F=30°,则∠BAB1=180°-∠B1AD1-∠KAF=180°-90°-30°=60°,即β=60°;②当AF=FK时,∠FAK=(180°-∠F)=75°,∴∠BAB1=90°-∠FAK=15°,即β=15°;综上所述,β的度数为60°或15°;(3)如图3,由题意得矩形PNA2A.设A2A=x,则PN=x,在Rt△A2M2F2中,∵F2M2=FM=16,∠F=∠ADB=30°,∴A2M2=8,A2F2=8,∴AF2=8-x.∵∠PAF2=90°,∠PF2A=30°,∴AP=AF2•tan30°=8-x,∴PD=AD-AP=8-8+x.∵NP∥AB,∴∠DNP=∠B.∵∠D=∠D,∴△DPN∽△DAB,∴=,∴=,解得x=12-4,即A2A=12-4,∴平移的距离是(12-4 )cm . 【解析】(1)有两张完全重合的矩形纸片,将其中一张绕点A 顺时针旋转90°后得到矩形AMEF (如图1),得BD=MF ,△BAD ≌△MAF ,推出BD=MF ,∠ADB=∠AFM=30°,进而可得∠DNM 的大小. (2)分两种情形讨论①当AK=FK 时,②当AF=FK 时,根据旋转的性质得出结论.(3)求平移的距离是A 2A 的长度.在矩形PNA 2A 中,A 2A=PN ,只要求出PN 的长度就行.用△DPN ∽△DAB 得出对应线段成比例,即可得到A 2A 的大小. 本题属于四边形综合题,主要考查了旋转的性质,相似三角形的判定与性质,勾股定理的运用,等腰三角形的性质的运用运用.在利用相似三角形的性质时注意使用相等线段的代换以及注意分类思想的运用.25.【答案】解:(1)把A (-1,0),C (0,2)代入y =-x 2+mx +n 得,解得, ∴抛物线解析式为y =-x 2+x +2;(2)存在.抛物线的对称轴为直线x =-=, 则D (,0),∴CD = ==,如图1,当CP =CD 时,则P 1(,4); 当DP =DC 时,则P 2(, ),P 3( ,-), 综上所述,满足条件的P 点坐标为( ,4)或( ,)或( ,-);(3)当y =0时,- x 2+x +2=0,解得x 1=-1,x 2=4,则B(4,0),设直线BC 的解析式为y =kx +b ,把B(4,0),C(0,2)代入得,解得,∴直线BC的解析式为y=-x+2,设E(x,-x+2)(0≤x≤4),则F(x,-x2+x+2),∴FE=-x2+x+2-(-x+2)=-x2+2x,∵S△BCF=S△BEF+S△CEF=•4•EF=2(-x2+2x)=-x2+4x,而S△BCD=×2×(4-)=,∴S四边形CDBF=S△BCF+S△BCD=-x2+4x+(0≤x≤4),=-(x-2)2+当x=2时,S四边形CDBF有最大值,最大值为,此时E点坐标为(2,1).【解析】(1)直接把A点和C点坐标代入y=-x2+mx+n得m、n的方程组,然后解方程组求出m、n即可得到抛物线解析式;(2)先利用抛物线对称轴方程求出抛物线的对称轴为直线x=-,则D(,0),则利用勾股定理计算出CD=,然后分类讨论:如图1,当CP=CD时,利用等腰三角形的性质易得P1(,4);当DP=DC时,易得P2(,),P3(,-);(3)先根据抛物线与x轴的交点问题求出B(4,0),再利用待定系数法求出直线BC的解析式为y=-x+2,利用一次函数图象上点的坐标特征和二次函数图象上点的坐标特征,设E(x,-x+2)(0≤x≤4),则F(x,-x2+x+2),则FE=-x2+2x,由于△BEF和△CEF共底边,高的和为4,则S△BCF=S△BEF+S△CEF=•4•EF=-x2+4x,加上S△BCD=,所以S四边形=S△BCF+S△BCD=-x2+4x+(0≤x≤4),然后根据二次函数的性质求四边形CDBFCDBF的面积最大,并得到此时E点坐标.本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、一次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数的解析式;理解坐标与图形性质;灵活应用三角形的面积公式;学会运用分类讨论的思想解决数学问题.。
潍坊市诸城市2017届九年级上期中数学试卷含答案解析

2016-2017学年山东省潍坊市诸城市九年级(上)期中数学试卷一、选择题(共12小题,每小题3分,满分36分)1.如图,在△ABC中,DE∥BC,且AE=CE,则△ADE与四边形DBCE的面积之比等于()A.1 B.C.D.2.如图,某水库堤坝横断面迎水坡AB的坡比是1,堤坝高BC=50m,则迎水坡面AB 的长度是()A.100m B.100m C.150m D.50m3.若一元二次方程x2+bx+5=0配方后为(x﹣3)2=k,则b,k的值分别为()A.0,4 B.0,5 C.﹣6,5 D.﹣6,44.如图,要使△ABC∽△CBD,则下列选项中不能作为条件添加的是()A.BC2=BD∙BA B.∠A=∠BCD C.AC2=AD∙AB D.∠BDC=∠ACB5.如图,在Rt△ABC中,∠C=90°,AB=6,cosB=,则BC的长为()A.4 B.2C.D.6.关于x的一元二次方程x2﹣5x+p2﹣2p+5=0的一个根为1,则实数p的值是()A.4 B.0或2 C.1 D.﹣17.轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,在C处观测灯塔A位于北偏东60°方向上,则C处与灯塔A的距离是()海里.A.25B.25C.50 D.258.如果关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,那么k的取值范围是()A.k<B.k<且k≠0C.﹣≤k<D.﹣≤k<且k≠09.为了测量被池塘隔开的A,B两点之间的距离,根据实际情况,作出如图图形,其中AB ⊥BE,EF⊥BE,AF交BE于D,C在BD上.有四位同学分别测量出以下四组数据:①BC,∠ACB;②CD,∠ACB,∠ADB;③EF,DE,BD;④DE,DC,BC.能根据所测数据,求出A,B间距离的有()A.1组B.2组C.3组D.4组10.如图,正方形ABCD的两边BC,AB分别在平面直角坐标系的x轴、y轴的正半轴上,正方形A′B′C′D′与正方形ABCD是以AC的中点O′为中心的位似图形,已知AC=3,若点A′的坐标为(1,2),则正方形A′B′C′D′与正方形ABCD的相似比是()A.B.C.D.11.如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB′C′D′,图中阴影部分的面积为()A.B.C.1﹣D.1﹣12.如图,Rt△ABC中,AB⊥AC,AB=3,AC=4,P是BC边上一点,作PE⊥AB于E,PD ⊥AC于D,设BP=x,则PD+PE=()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)13.观察下列等式①sin30°=cos60°=②sin45°=cos45°=③sin60°=cos30°=…根据上述规律,计算sin2a+sin2(90°﹣a)= .14.如图,在一块长为22米、宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米.若设道路宽为x米,则根据题意可列出方程为.15.如图,△ABC中,DE∥FG∥BC,且S△ADE=S梯形DFGE=S梯形FBCG,DE:FG:BC= .16.已知线段AB的长为2,以AB为边在AB的下方作正方形ACDB.取AB边上一点E,以A E为边在AB的上方作正方形AENM.过E作EF⊥CD,垂足为F点,如图.若正方形AENM与四边形EFDB的面积相等,则AE的长为.17.如图,将45°的∠AOB按下面的方式放置在一把刻度尺上:顶点O与尺下沿的端点重合,OA与尺下沿重合,OB与尺上沿的交点B在尺上的读数恰为2cm.若按相同的方式将37°的∠AOC放置在该刻度尺上,则OC与尺上沿的交点C在尺上的读数约为cm.(结果精确到0.1cm,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)18.已知a≠b,且a、b满足a2﹣3a﹣4=0,b2﹣3b﹣4=0,那么+的值等于.三、解答题(共6小题,满分66分)19.解关于x的方程:(1)(2x﹣5)2=(x﹣2)2(2)(1+x)2+(1+x)=12(3)x2+ax+b=0(配方法)20.如图,在正方形ABCD中,E、F分别是边BC、CD上的点,=,CF=DF,连接AE、AF、EF,并延长FE交AB的延长线于点G.(1)若正方形的边长为4,则EG等于;(2)求证:△ECF∽△FDA;(3)比较∠EAB与∠EAF的大小.21.已知一元二次方程x2﹣2x+m﹣1=0.(1)当m取何值时,方程有两个不相等的实数根?(2)设x1,x2是方程的两个实数根,且满足x12+x1x2=1,求m的值.22.今年“五一“假期.某数学活动小组组织一次登山活动.他们从山脚下A点出发沿斜坡A B到达B点.再从B点沿斜坡BC到达山顶C点,路线如图所示.斜坡AB的长为1040米,斜坡BC的长为400米,在C点测得B点的俯角为30°.已知A点海拔121米.C点海拔721米.(1)求B点的海拔;(2)求斜坡AB的坡度.23.某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产76件,每件利润10元.每提高一个档次,每件利润增加2元.(1)每件利润为14元时,此产品质量在第几档次?(2)由于生产工序不同,产品每提高1个档次,一天产量减少4件.若生产第x档的产品一天的总利润为y元(其中x为正整数,且1≤x≤10),求出y关于x的函数关系式;若生产某档次产品一天的总利润为1080元,该工程生产的是第几档次的产品?24.如图1,小红家阳台上放置了一个晒衣架.如图2是晒衣架的侧面示意图,立杆AB、C D相交于点O,B、D两点立于地面,经测量:AB=CD=136cm,OA=OC=51cm,OE=OF=34cm,现将晒衣架完全稳固张开,扣链EF成一条直线,且EF=32cm.(1)求证:AC∥BD;(2)求扣链EF与立杆AB的夹角∠OEF的度数(精确到0.1°);(3)小红的连衣裙穿在衣架后的总长度达到122cm,垂挂在晒衣架上是否会拖落到地面?请通过计算说明理由.(参考数据:sin61.9°≈0.882,cos61.9°≈0.471,tan61.9°≈0.553;可使用科学计算器)2016-2017学年山东省潍坊市诸城市九年级(上)期中数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.如图,在△ABC中,DE∥BC,且AE=CE,则△ADE与四边形DBCE的面积之比等于()A.1 B.C.D.【考点】相似三角形的判定与性质.【分析】因为DE∥BC,所以可得△ADE∽△ABC,根据相似三角形的面积比等于相似比的平方解答即可.【解答】解:∵DE∥BC∴△ADE∽△ABC,∴AE:AC=DE:BC,∵AE=CE,∴DE:BC=1:2,∴△ADE与△ABC的面积之比是1:4,∴△ADE与四边形DBCE的面积之比是1:3.故选C.2.如图,某水库堤坝横断面迎水坡AB的坡比是1,堤坝高BC=50m,则迎水坡面AB 的长度是()A.100m B.100m C.150m D.50m【考点】解直角三角形的应用-坡度坡角问题.【分析】根据题意可得=,把BC=50m,代入即可算出AC的长,再利用勾股定理算出AB的长即可.【解答】解:∵堤坝横断面迎水坡AB的坡比是1,∴=,∵BC=50m,∴AC=50m,∴AB==100m,故选:A.3.若一元二次方程x2+bx+5=0配方后为(x﹣3)2=k,则b,k的值分别为()A.0,4 B.0,5 C.﹣6,5 D.﹣6,4【考点】解一元二次方程-配方法.【分析】先把(x﹣3)2=k化成x2﹣6x+9﹣k=0,再根据一元二次方程x2+bx+5=0得出b=﹣6,9﹣k=5,然后求解即可.【解答】解:∵(x﹣3)2=k,∴x2﹣6x+9﹣k=0,∵一元二次方程x2+bx+5=0配方后为(x﹣3)2=k,∴b=﹣6,9﹣k=5,∴k=4,∴b,k的值分别为﹣6、4;故选D.4.如图,要使△ABC∽△CBD,则下列选项中不能作为条件添加的是()A.BC2=BD∙BA B.∠A=∠BCD C.AC2=AD∙AB D.∠BDC=∠ACB【考点】相似三角形的判定.【分析】图中已知条件是∠ABC=∠CBD,所以根据“两角法”、“两边及其夹角法”进行添加条件即可.【解答】解:如图,∠ABC=∠CBD.A、若添加BC2=BD∙BA即=时,可以判定△ABC∽△CBD,故本选项错误;B、若添加∠A=∠BCD时,可以判定△ABC∽△CBD,故本选项错误;C、若添加AC2=AD∙AB即=时,可以判定△ABC∽△ACD,故本选项正确;D、若添加∠BDC=∠ACB时,可以判定△ABC∽△CBD,故本选项错误;故选:C.5.如图,在Rt△ABC中,∠C=90°,AB=6,cosB=,则BC的长为()A.4 B.2C.D.【考点】锐角三角函数的定义.【分析】根据cosB=,可得=,再把AB的长代入可以计算出CB的长.【解答】解:∵cosB=,∴=,∵AB=6,∴CB=×6=4,故选:A.6.关于x的一元二次方程x2﹣5x+p2﹣2p+5=0的一个根为1,则实数p的值是()A.4 B.0或2 C.1 D.﹣1【考点】一元二次方程的解.【分析】本题根据一元二次方程的根的定义、一元二次方程的定义求解.【解答】解:∵x=1是方程的根,由一元二次方程的根的定义,可得p2﹣2p+1=0,解此方程得到p=1.故本题选C.7.轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,在C处观测灯塔A位于北偏东60°方向上,则C处与灯塔A的距离是()海里.A.25B.25C.50 D.25【考点】等腰直角三角形;方向角.【分析】根据题中所给信息,求出∠BCA=90°,再求出∠CBA=45°,从而得到△ABC为等腰直角三角形,然后根据解直角三角形的知识解答.【解答】解:根据题意,∠1=∠2=30°,∵∠ACD=60°,∴∠ACB=30°+60°=90°,∴∠CBA=75°﹣30°=45°,∴△ABC为等腰直角三角形,∵BC=50×0.5=25,∴AC=BC=25(海里).故选D.8.如果关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,那么k的取值范围是()A.k<B.k<且k≠0C.﹣≤k<D.﹣≤k<且k≠0【考点】根的判别式.【分析】根据方程有两个不相等的实数根,则△>0,由此建立关于k的不等式,然后就可以求出k的取值范围.【解答】解:由题意知:2k+1≥0,k≠0,△=2k+1﹣4k>0,∴≤k<,且k≠0.故选:D.9.为了测量被池塘隔开的A,B两点之间的距离,根据实际情况,作出如图图形,其中AB ⊥BE,EF⊥BE,AF交BE于D,C在BD上.有四位同学分别测量出以下四组数据:①BC,∠ACB;②CD,∠ACB,∠ADB;③EF,DE,BD;④DE,DC,BC.能根据所测数据,求出A,B间距离的有()A.1组B.2组C.3组D.4组【考点】相似三角形的应用;解直角三角形的应用.【分析】根据三角形相似可知,要求出AB,只需求出EF即可.所以借助于相似三角形的性质,根据=即可解答.【解答】解:此题比较综合,要多方面考虑,①因为知道∠ACB和BC的长,所以可利用∠ACB的正切来求AB的长;②可利用∠ACB和∠ADB的正切求出AB;③,因为△ABD∽△EFD可利用=,求出AB;④无法求出A,B间距离.故共有3组可以求出A,B间距离.故选C.10.如图,正方形ABCD的两边BC,AB分别在平面直角坐标系的x轴、y轴的正半轴上,正方形A′B′C′D′与正方形ABCD是以AC的中点O′为中心的位似图形,已知AC=3,若点A′的坐标为(1,2),则正方形A′B′C′D′与正方形ABCD的相似比是()A.B.C.D.【考点】位似变换;坐标与图形性质.【分析】延长A′B′交BC于点E,根据大正方形的对角线长求得其边长,然后求得小正方形的边长后即可求两个正方形的相似比.【解答】解:∵在正方形ABCD中,AC=3∴BC=AB=3,延长A′B′交BC于点E,∵点A′的坐标为(1,2),∴OE=1,EC=A′E=3﹣1=2,∴OE:BC=1:3,∴AA′:AC=1:3,∵AA′=CC′,∴AA′=CC′=A′C′,∴A′C′:AC=1:3,∴正方形A′B′C′D′与正方形ABCD的相似比是.故选B.11.如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB′C′D′,图中阴影部分的面积为()A.B.C.1﹣D.1﹣【考点】旋转的性质;正方形的性质.【分析】设B′C′与CD的交点为E,连接AE,利用“HL”证明Rt△AB′E和Rt△ADE全等,根据全等三角形对应角相等∠DAE=∠B′AE,再根据旋转角求出∠DAB′=60°,然后求出∠DAE=30°,再解直角三角形求出DE,然后根据阴影部分的面积=正方形ABCD的面积﹣四边形ADEB′的面积,列式计算即可得解.【解答】解:如图,设B′C′与CD的交点为E,连接AE,在Rt△AB′E和Rt△ADE中,,∴Rt△AB′E≌Rt△ADE(HL),∴∠DAE=∠B′AE,∵旋转角为30°,∴∠DAB′=60°,∴∠DAE=×60°=30°,∴DE=1×=,∴阴影部分的面积=1×1﹣2×(×1×)=1﹣.故选:C.12.如图,Rt△ABC中,AB⊥AC,AB=3,AC=4,P是BC边上一点,作PE⊥AB于E,PD ⊥AC于D,设BP=x,则PD+PE=()A.B.C.D.【考点】相似三角形的判定与性质;勾股定理.【分析】先根据勾股定理求得BC的长,再根据相似三角形的判定得到△CDP∽△CAB,△BPE∽△BCA,利用相似三角形的边对应成比例就不难求得PD+PE了.【解答】解:∵在Rt△ABC中,AB⊥AC,AB=3,AC=4,∴由勾股定理得BC=5,∵AB⊥AC,PE⊥AB,PD⊥AC,∴PE∥AC,PD∥AB∴△CDP∽△CAB,△BPE∽△BCA∴,∴PD=,PE=,∴PD+PE=+=+3.故选A.二、填空题(共6小题,每小题3分,满分18分)13.观察下列等式①sin30°=cos60°=②sin45°=cos45°=③sin60°=cos30°=…根据上述规律,计算sin2a+sin2(90°﹣a)= 1 .【考点】互余两角三角函数的关系.【分析】根据①②③可得出规律,即sin2a+sin2(90°﹣a)=1,继而可得出答案.【解答】解:由题意得,sin230°+sin2(90°﹣30°)=1;sin245°+sin2(90°﹣45°)=1;sin260°+sin2(90°﹣60°)=1;故可得sin2a+sin2(90°﹣a)=1.故答案为:1.14.如图,在一块长为22米、宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米.若设道路宽为x米,则根据题意可列出方程为(22﹣x)(17﹣x)=300 .【考点】由实际问题抽象出一元二次方程.【分析】把所修的两条道路分别平移到矩形的最上边和最左边,则剩下的草坪是一个长方形,根据长方形的面积公式列方程.【解答】解:设道路的宽应为x米,由题意有(22﹣x)(17﹣x)=300,故答案为:(22﹣x)(17﹣x)=300.=S梯形DFGE=S梯形FBCG,DE:FG:BC= 15.如图,△ABC中,DE∥FG∥BC,且S△ADE1::.【考点】相似三角形的判定与性质.【分析】由平行线可得△ADE∽△AFC∽△ABC,进而利用相似三角形面积比等于对应边的平方比,即可得出结论.=S梯形DFGE=S梯形FBCG,【解答】解:∵S△ADE∵DE∥FG∥BC,∴△ADE∽△AFG∽△ABC,∴=,=,由于相似三角形的面积比等于对应边长的平方比,∴DE:FG:BC=1::.故答案为:1::.16.已知线段AB的长为2,以AB为边在AB的下方作正方形ACDB.取AB边上一点E,以A E为边在AB的上方作正方形AENM.过E作EF⊥CD,垂足为F点,如图.若正方形AENM与四边形EFDB的面积相等,则AE的长为.【考点】一元二次方程的应用.【分析】设AE=x,则BE=2﹣x,就有EFDB的面积为2(2﹣x),正方形AENM的面积=x2,根据正方形AENM与四边形EFDB的面积相等建立方程求出其解即可.【解答】解:设AE=x,则BE=2﹣x,由图形得x2=2(2﹣x),解得:x1=﹣1,x2=﹣﹣1(舍去)故答案为:.17.如图,将45°的∠AOB按下面的方式放置在一把刻度尺上:顶点O与尺下沿的端点重合,OA与尺下沿重合,OB与尺上沿的交点B在尺上的读数恰为2cm.若按相同的方式将37°的∠AOC放置在该刻度尺上,则OC与尺上沿的交点C在尺上的读数约为 2.7cm.(结果精确到0.1cm,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【考点】解直角三角形的应用.【分析】过点B作BD⊥OA于D,过点C作CE⊥OA于E.首先在等腰直角△BOD中,得到BD=OD=2cm,则CE=2cm,然后在直角△COE中,根据正切函数的定义即可求出OE的长度.【解答】解:过点B作BD⊥OA于D,过点C作CE⊥OA于E.在△BOD中,∠BDO=90°,∠DOB=45°,∴BD=OD=2cm,∴CE=BD=2cm.在△COE中,∠CEO=90°,∠COE=37°,∵tan37°=≈0.75,∴OE≈2.7cm.∴OC与尺上沿的交点C在尺上的读数约为2.7cm.故答案为2.7.18.已知a≠b,且a、b满足a2﹣3a﹣4=0,b2﹣3b﹣4=0,那么+的值等于﹣.【考点】根与系数的关系;分式的值.【分析】由a、b满足a2﹣3a﹣4=0、b2﹣3b﹣4=0,可得出a、b是方程x2﹣3x﹣4=0的两个根,利用根与系数的关系即可得出a+b=3、ab=﹣4,将+变形成,代入数据即可得出结论.【解答】解:∵a、b满足a2﹣3a﹣4=0,b2﹣3b﹣4=0,∴a、b是方程x2﹣3x﹣4=0的两个根,∴a+b=3,ab=﹣4,∴+====﹣.故答案为:﹣.三、解答题(共6小题,满分66分)19.解关于x的方程:(1)(2x﹣5)2=(x﹣2)2(2)(1+x)2+(1+x)=12(3)x2+ax+b=0(配方法)【考点】换元法解一元二次方程;解一元二次方程-配方法;解一元二次方程-因式分解法.【分析】(1)直接开方法解即可.(2)因式分解法解即可.(3)根据配方法的步骤解即可.【解答】解:(1)∵(2x﹣5)2=(x﹣2)2∴2x﹣5=±(x﹣2),∴x1=3,x2=.(2)∵(1+x)2+(1+x)=12∴(1+x)2+(1+x)﹣12=0∴(1+x+4)(1+x﹣3)=0,∴1+x+4=0或1+x﹣3=0,∴x1=2,x2=﹣5.(3)∵x2+ax+b=0,∴x2+ax=﹣b∴x2+ax+()2=()2﹣b,∴(x+)2=当a2﹣4b<0时,方程无解.当a2﹣4b≥0时,x=﹣±.20.如图,在正方形ABCD中,E、F分别是边BC、CD上的点,=,CF=DF,连接AE、AF、EF,并延长FE交AB的延长线于点G.(1)若正方形的边长为4,则EG等于3;(2)求证:△ECF∽△FDA;(3)比较∠EAB与∠EAF的大小.【考点】相似形综合题.【分析】(1)先根据正方形边长得CF=2,由平行相似得:△FCE∽△GBE,则,代入求得BG=6,根据勾股定理得:EG=3;(2)根据已知边的长度分别求=,==,则,再由正方形性质得:∠C=∠D=90°,则△ECF∽△FDA;(3)先根据(2)中的△ECF∽△FDA,得∠CFE=∠DAF,,证明∠EFA=90°,分别计算∠EAB与∠EAF的正切值,根据两锐角正切大的角大,得出结论.【解答】解:(1)∵四边形ABCD是正方形,∴AB=CD=BC=4,∠ABC=90°,DC∥AB,∵CF=DF,∴CF=CD=2,∵DC∥AG,∴△FCE∽△GBE,∴,∵=,∴=,BE=BC=×4=3,∴,∴BG=6,在Rt△BEG中,EG===3;故答案为:3;(2)∵四边形ABCD是正方形,∴BC=AD=DC=4,∠C=∠D=90°,∵DF=FC=2,CE=1,∴=,==,∴,∴△ECF∽△FDA;(3)∵△ECF∽△FDA,∴∠CFE=∠DAF,,∵∠DFA+∠DAF=90°,∴∠CFE+∠DFA=90°,∴∠EFA=90°,∴tan∠EAF==,∵,∴tan∠EAB=,∴,∴∠EAF<∠EAB.21.已知一元二次方程x2﹣2x+m﹣1=0.(1)当m取何值时,方程有两个不相等的实数根?(2)设x1,x2是方程的两个实数根,且满足x12+x1x2=1,求m的值.【考点】根与系数的关系;一元二次方程的解;根的判别式.【分析】(1)若一元二次方程有两不等根,则根的判别式△=b2﹣4ac>0,建立关于m的不等式,求出m的取值范围.(2)x1是方程的实数根,就适合原方程,可得到关于x1与m的等式.再根据根与系数的关系知,x1x2=m﹣1,故可求得x1和m的值.【解答】解:(1)根据题意得△=b2﹣4ac=4﹣4×(m﹣1)>0,解得m<2;(2)∵x1是方程的实数根,∴x12﹣2x1+m﹣1=0 ①∵x1,x2是方程的两个实数根∴x1•x2=m﹣1∵x12+x1x2=1,∴x12+m﹣1=1 ②由①②得x1=0.5,把x=0.5代入原方程得,m=.22.今年“五一“假期.某数学活动小组组织一次登山活动.他们从山脚下A点出发沿斜坡A B到达B点.再从B点沿斜坡BC到达山顶C点,路线如图所示.斜坡AB的长为1040米,斜坡BC的长为400米,在C点测得B点的俯角为30°.已知A点海拔121米.C点海拔721米.(1)求B点的海拔;(2)求斜坡AB的坡度.【考点】解直角三角形的应用-坡度坡角问题;解直角三角形的应用-仰角俯角问题.【分析】(1)过C作CF⊥AM,F为垂足,过B点作BE⊥AM,BD⊥CF,E、D为垂足,构造直角三角形ABE和直角三角形CBD,然后解直角三角形.(2)求出BE的长,根据坡度的概念解答.【解答】解:如图,过C作CF⊥AM,F为垂足,过B点作BE⊥AM,BD⊥CF,E、D为垂足.在C点测得B点的俯角为30°,∴∠CBD=30°,又BC=400米,∴CD=400×sin30°=400×=200(米).∴B点的海拔为721﹣200=521(米).(2)∵BE=DF=521﹣121=400米,又∵AB=1040米,AE===960米,∴AB的坡度i AB===.故斜坡AB的坡度为1:2.4.23.某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产76件,每件利润10元.每提高一个档次,每件利润增加2元.(1)每件利润为14元时,此产品质量在第几档次?(2)由于生产工序不同,产品每提高1个档次,一天产量减少4件.若生产第x档的产品一天的总利润为y元(其中x为正整数,且1≤x≤10),求出y关于x的函数关系式;若生产某档次产品一天的总利润为1080元,该工程生产的是第几档次的产品?【考点】二次函数的应用;一元二次方程的应用.【分析】(1)由每提高一个档次,每件利润增加2元,14﹣10=4,需要提高2个档次,由此即可解决问题.(2)根据一天的利润=生产的件数×每件的利润,即可求出y与x的关系,再列出方程即可解决问题.【解答】解:(1)每件利润为14元时,此产品质量在第3档次.(2)由题意y=[10+2(x﹣1)][76﹣4(x﹣1)]=﹣8x2+128x+640.(1≤x≤10).当y=1080时,﹣8x2+128x+640=1080,解得x=5或11(舍弃).答:工程生产的是第5档次的产品时,一天的总利润为1080元.24.如图1,小红家阳台上放置了一个晒衣架.如图2是晒衣架的侧面示意图,立杆AB、C D相交于点O,B、D两点立于地面,经测量:AB=CD=136cm,OA=OC=51cm,OE=OF=34cm,现将晒衣架完全稳固张开,扣链EF成一条直线,且EF=32cm.(1)求证:AC∥BD;(2)求扣链EF与立杆AB的夹角∠OEF的度数(精确到0.1°);(3)小红的连衣裙穿在衣架后的总长度达到122cm,垂挂在晒衣架上是否会拖落到地面?请通过计算说明理由.(参考数据:sin61.9°≈0.882,cos61.9°≈0.471,tan61.9°≈0.553;可使用科学计算器)【考点】相似三角形的应用;解直角三角形的应用.【分析】(1)根据等角对等边得出∠OAC=∠OCA=和∠OBD=∠ODB=,进而利用平行线的判定得出即可;(2)首先过点O作OM⊥EF于点M,则EM=16cm,利用cos∠OEF=0.471,即可得出∠OEF的度数;(3)首先证明Rt△OEM∽Rt△ABH,进而得出AH的长即可.【解答】(1)证明:证法一:∵AB、CD相交于点O,∴∠AOC=∠BOD∵OA=OC,∴∠OAC=∠OCA=,同理可证:∠OBD=∠ODB=,∴∠OAC=∠OBD,∴AC∥BD,…3分证法二:AB=CD=136cm,OA=OC=51cm,∴OB=OD=85cm,∴又∵∠AOC=∠BOD∴△AOC∽△BOD,∴∠OAC=∠OBD;∴AC∥BD;(2)解:在△OEF中,OE=OF=34cm,EF=32cm;过点O作OM⊥EF于点M,则EM=16cm;∴cos∠OEF=0.471,用科学计算器求得∠OEF=61.9°;(3)解法一:小红的连衣裙会拖落到地面;在Rt△OEM中,=30cm,过点A作AH⊥BD于点H,同(1)可证:EF∥BD,∴∠ABH=∠OEM,则Rt△OEM∽Rt△ABH,∴所以:小红的连衣裙垂挂在衣架后的总长度122cm>晒衣架的高度AH=120cm.小红的连衣裙会拖落到地面.解法二:小红的连衣裙会拖落到地面;同(1)可证:EF∥BD,∴∠ABD=∠OEF=61.9°;过点A作AH⊥BD于点H,在Rt△ABH中,AH=AB×sin∠ABD=136×sin61.9°=136×0.882≈120.0cm 所以:小红的连衣裙垂挂在衣架后的总长度122cm>晒衣架的高度AH=120cm.小红的连衣裙会拖落到地面.。