北京大学基础数学专业-数学基础考试2 (高等代数、解析几何) 考研复习题-考研资料-考研真题

合集下载

《高等代数》考研2021考研真题北京大学考研真题二

《高等代数》考研2021考研真题北京大学考研真题二

《高等代数》考研2021考研真题北京大学考研真题二第一部分名校考研真题第6章线性空间一、选择题1.下面哪一种变换是线性变换().[西北工业大学研]A.B. C.【答案】C查看答案【解析】不一定是线性变换,比如则也不是线性变换,比如给而不是惟一的.2.在n维向量空间取出两个向量组,它们的秩().[西北工业大学研] A.必相等B.可能相等亦可能不相等C.不相等【答案】B查看答案【解析】比如在中选三个向量组(I):0(Ⅱ)(Ⅲ).若选(I)(II),秩秩(II),从而否定A,若选(Ⅱ)(Ⅲ),秩(Ⅲ)=秩(Ⅱ),从而否定C,故选B.二、填空题1.若则V对于通常的加法和数乘,在复数域C上是______维的,而在实数域R上是______维的.[中国人民大学研]【答案】2;4.查看答案【解析】在复数域上令;则是线性无关的.则此即证可由线性表出.在实数域上,令若,其中,则此即在R上线性关.可由线性表出,所以在实数域R上,有三、分析计算题1.设V是复数域上n维线性空间,V 1和V2各为V的r1维和r2维子空间,试求之维数的一切可能值.[南京大学研]解:取的一组基,再取的一组基则=秩2.设U是由生成的的子空间,W是由生成的的子空间,求(1)U+W:(2)L∩W的维数与基底.[同济大学研]解:(1)令可得.所以由于为的一个极大线性无关组,因此又可得且,故为U+W的一组基.(2)令因为秩=3.所以齐次方程组①的基础解系由一个向量组成:再令,则故ζ为U∩W的一组基.3.设A是数域K上的一个m×n,矩阵,B是一个m维非零列向量.令(1)证明:W关于K n的运算构成K n的一个子空间;(2)设线性方程组AX=B的增广矩阵的秩为r.证明W的维数dimW=n-r+1:(3)对于非齐次线性方程组求W的一个基.[华东师范大学研]证明:(1)显然W≠,又因为存在t1,t2使Aα=t1B,Aβ=t2B.所以即kα+lβ∈W,此说明W是K n的子空间.(2)对线性方程组(A,B)X n+1=0,由题设,其解空间V的维数为(n+1)-r (A,B)=n-r+1.任取α∈W,存在t∈K,使所以是线性方程组(A,B)X n+1=0的解.这样,存在W到V的映射,显然,这是W形到V的一个双射.又α1,α2∈W,k∈K,存在t1,t2∈K,使Aα1=t1B,Aα2=t2B,则所以且可见W与V同构,从而有dim W=dim V=n-r+1.(3)由(2)W与如下齐次线性方程组解空间同构.该方程组的一个基础解系为:其在σ之下原像即为W的一组基.4.设V 1,V2均为有限维线性空间V的子空间,且,则和空间与另一个重合.[上海交通大学研]证明:因为所以由题设所以即当时,由得此时当时因为,所以,此时5.设V是数域K上n维线性空间,V1,…,Vs是V的s个真子空间,证明:(1)存在,使得(2)存在V中一组基,使[北京大学研]证明:(1)因V 1,…,Vs是V的真子空间,由上例,存在(2)令,同样有且显然,线性无关.令,则存在,且线性无关,如此继续下去,可得线性无关向量组(构成V的基),且有6.设V是定义域为实数集R的所有实值函数组成的集合,对于f,g∈V,a∈R,分别用下列式子定义f+g与af:则V成为实数域上的一个线性空间.设f0(x)=1,f1(x)=cosx,,f2(x)=cos2x,f3(x)=cos3x,(1)判断f0,f1,f2,f3是否线性相关,写出理由;(2)用<f,g>表示f,g生成的线性子空间,判断<f0,f1>+<f2,f3>是否为直和,写出理由.[北京大学研]解:(1)令k0f0+k1f1+k2f2+k3f3=0,分别取x=0,得解之得k0=k1=k2=k2=0,说明f0,f1,f2,f3线性无关.(2)因为<f,g>=L(f,g),所以从而又,故L(f0,f1,f2,f3)是<f0,f1>与<f2,f3>的直和.。

高等代数与解析几何考研试题 (2)

高等代数与解析几何考研试题 (2)

北京大学2005 数学专业研究生 数学分析 1. 设x xx x x x f sin sin 1sin )(22--=,试求)(sup lim x f x +∞→和)(inf lim x f x +∞→.解: 22sin 1()sin sin (0,1].sin x x f x x x x x-=∈-首先我们注意到.在的时候是单调增的 222222sin 1sin .sin sin ,,lim sup sin 11x x x x x x x x x x x x x x →+∞-≤≤→+∞---并且在充分大的时候显然有所以易知在时当然此上极限可以令2,2x k k ππ=+→+∞这么一个子列得到.2222sin sin ().lim 0,lim inf 0,lim inf ()0.sin sin x x x x x x f x f x x x x x→+∞→+∞→+∞===--对于的下极限我们注意到而所以有此下极限当然可以令(21),.x k k π=+→+∞这么个子列得到2. (1)设)(x f 在开区间),(b a 可微,且)(x f '在),(b a 有界。

证明)(x f 在),(b a 一致连续.证明:()(,).()(,).f x x a b M f x a b '∈设在时上界为因为在开区间上可微12,(,),x x a b ∀∈对于由,Lagrange 中值定理存在12121212(,),()()()x x f x f x f x x M x x ξξ'∈-=-≤-使得.这显然就是12,,.()(,).Lipschitz x x f x a b 条件所以由任意性易证明在上一致收敛 (2) 设)(x f 在开区间),(b a )(+∞<<<-∞b a 可微且一致连续,试问)(x f '在),(b a 是否一定有界。

(若肯定回答,请证明;若否定回答,举例说明) 证明:否定回答.()(,).f x a b '在上是无界的12()(1),()[0,1].f x x f x Cantor =-设显然此在上是连续的根据定理,闭区间上连续函数一致连续.所以()f x 在(0,1)上一致连续.显然此12121()(1)(0,1).().2(1)f x x f x x -'=-=-在上是可微的而121()(0,1).2(1)f x x -'=-在上是无界的3.设)1(sin )(22+=x x f . (1)求)(x f 的麦克劳林展开式。

2018年北京大学高等代数与解析几何试题及解答

2018年北京大学高等代数与解析几何试题及解答

6. (1) 显然V = 0及V = Mn (K )为两个平凡的公共子空间,但不是n维的. 设 Vi = span {E1i , E2i , · · · , Eni } , i = 1, 2, . . . , n. 则Vi 是n维公共子空间. 另外, V = {(α, α, 0, . . . , 0) | α ∈ K n }也是n维公共子空间. (2) 若V ⊂ V , 但是V = 0, 则存在B ∈ V 设bij = 0, 则
u v w
可得 yw − vz = 0
(x − 1)w − (z − 1)u = 0 , (x + 1)v − (y + 1)u = 0 因为(u, v, w) = 0, 因此上述线性方程组有非零解, 从而 0 1−z −z 0 y x−1 w = 0.
−y − 1 x + 1
B= sin θ3
cos θ2 cos θ3 − sin θ1 sin θ2 cos θ3 − cos θ1 sin θ3 − cos θ1 sin θ2 cos θ3 + sin θ1 sin θ3 sin θ2 sin θ1 cos θ2 cos θ1 cos θ2
= cos θ2 sin θ3
9. (15分) 记A是与下面三条直线都相交的直线的并集: 达式f (x, y, z ) = 0,其中f 是一个三元多项式.
y = 0 z = 0
,
x = 1 z = 1
,
x = −1 y = −1
. 给出A的一个一般表
10. (15分) 证明几何空间中任意一个旋转变换f , 只要转轴通过原点, 就一定可以写成f = gz ◦ gy ◦ gx 的形式, 其 中gx , gy , gz 分别表示绕x, y, z 轴的旋转变换.

北京大学高等代数和解析几何真题1983——1984年汇总

北京大学高等代数和解析几何真题1983——1984年汇总

北京大学数学考研题目1983年 基础数学、应用数学、计算数学、概率统计专业2222022200Ax By C z D yz Ezx Fxy A B C +++++=++=一、(分)证明:在直角坐标系中,顶点在原点的二次锥面有三条互相垂直的直母线的充要条件是.1223112220...1,...2, (1)n n n n n x x x x x x xx x n ++++++=⎧⎪+++=⎪⎨⎪⎪+++=+⎩二、(分)用导出组的基础解系表出线性方程组的一般解。

121220,,...,()()...()1n n a a a x a x a x a ----三、(分)设是相异整数。

证明:多项式在有理数域上不可约。

20000120231001011A ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭四、(分)用V 表示数域P 上全部4阶矩阵所成的线性空间,A 是V 中的一个矩阵,已知-10,,及10分别是的属于特征值, , ,-1的特征向量。

(1)求A;(2)求V 中与A 可交换的矩阵全体所成的子空间的维数及一组基。

20,A B 五、(分)设是两个n 级正定矩阵。

证明:AB 是正定矩阵的充要条件是A 与B 可交换。

1984年 数学各专业132110::23100363x y l z x y z π--==-++-=一、(分)求直线与平面的交点。

10,,,,a b c a b b c c a ⨯⨯⨯二、(分)设向量不共面。

试证:向量不共面。

15K K K K K K 三、(分)设和为平面上同心的单位(半径=1)开圆域和闭圆域。

(1)取定适当的坐标系,写出和的解析表示式;(2)试在和的点之间建立一个一一对应关系。

{}{}{}{}23231231251,,.2,,V R V T V V T T T T T T TT T T εεεεεεεεεεεεεεεεεεεεε--→==+=++111212312311113四、(分)设是实数域上的三维向量空间,,,是的一组基。

1999-2000,2,5-8,10北京大学高等代数考研真题

1999-2000,2,5-8,10北京大学高等代数考研真题

1. 在直角坐标系中,求直线⎩⎨⎧=++=-+1202:z y x z y x l 到平面03:=++z By x π的正交投影轨迹的方程。

其中B 是常数2. 在直角坐标系中对于参数λ的不同取值,判断下面平面二次曲线的形状:0222=+++λλxy y x .对于中心型曲线,写出对称中心的坐标;对于线心型曲线,写出对称直线的方程。

3. 设数域K 上的n 级矩阵A 的),(j i 元为ji b a -(1).求A ;(2).当2≥n 时,2121,b b a a ≠≠.求齐次线性方程组0=AX 的解空间的维数和一个基。

4.(1)设数域K 上n 级矩阵,对任意正整数m ,求mC (2)用)(K M n 表示数域K 上所有n 级矩阵组成的集合,它对于矩阵的加法和数量乘法成为K 上的线性空间。

数域K 上n 级矩阵1432121321a a a a a a a a a a a a A n n n-=称为循环矩阵。

用U 表示K 上所有n 级循环矩阵组成的集合。

证明:U 是)(K M n 的一个子空间,并求U 的一个基和维数。

5.(1)设实数域R 上n 级矩阵H 的),(j i 元为11-+j i (1>n )。

在实数域上n 维线性空间n R 中,对于nR ∈βα,,令βαβαH f '=),(。

试问:f 是不是n R 上的一个内积,写出理由。

(2)设A 是n 级正定矩阵(1>n )nR ∈α,且α是非零列向量。

令αα'=A B ,求B的最大特征值以及B 的属于这个特征值的特征子空间的维数和一个基6.设A 是数域R 上n 维线性空间V 上的一个线性变换,用I 表示V 上的恒等变换,证明: n r a n k r a n k =+++-⇔=)()(23A A I A I I A2006年北京大学研究生考试高等代数与解析几何试题 本试卷满分150分 考试时间 3小时 日期:2006年1月15日下午高等代数部分(100分)1.(16分)(1) 设,A B 分别是数域K 上,s n s m ××矩阵,叙述矩阵方程AX B =有解的充要条件,并且给予证明。

北京大学考研真题试题-高等代数与解析几何2007[试卷+答案]

北京大学考研真题试题-高等代数与解析几何2007[试卷+答案]
间V 上的线性变换 A , B ,满足 AB − BA = E . 【注】若线性空间V 是无穷维的,则存在V 的线性变换 A , B ,满足 AB − BA = E .
例如,设V = P[x] 是数域 P 上多项式全体所构成的线性空间,定义 Af (x) = f ′(x) , Bf (x) = xf (x) , ∀f (x) ∈V ,
北京大学 2007 年《高等代数与解析几何》试题解答
北京大学 2007 年高等代数与解析几何试题 解答
1、回答下列问题:
(1)问是否存在 n 阶方阵 A, B ,满足 AB − BA = E (单位矩阵)?又,是否存在 n 维
线性空间V 上的线性变换 A ,B ,满足 AB − BA = E (恒等变换)? 若是,举出例子;若否,
的基础解系)构成 n × r 矩阵 C ,则 rank(C) = r ,且 AC = O , BC = O .
考虑齐次线性方程组 CT X = 0 ,其解空间 S 的维数 dim(S ) = n − r = rank( A) .
因为 C T AT = O ,所以 A 的行向量都是 C T X = 0 的解,因此 A 的行空间WA 是 S 的一 个子空间,即WA ⊆ S .注意到 dim(WA ) = rank( A) = dim(S ) ,故WA = S .
容易验证: AB − BA = E . (2)设 n 阶矩阵 A 的各行元素之和为常数 c ,则 A3 的各行元素之和是否为常数?若是,
是多少?说明理由.
【解】是.设 η = (1,1, ,1)T 是 n 维列向量,则由 A 的各行元素之和为常数 c ,知 Aη = cη ,从而 A3η = c3η .所以 A3 的各行元素之和为常数 c3 .

北京大学2020年高等代数与解析几何试题及解答

北京大学2020年高等代数与解析几何试题及解答

5. 当 rank(A) < n − 1 时, A∗ = 0, 于是 A∗ 的特征值为 0, 特征向量为 Cn 中任意非零向量.
当 rank(A) = n − 1 时, rank (A∗) = 1, 于是 A∗ 的特征值为 0 (n − 1 重), tr (A∗) (1 重), 设 A∗ = αβT, 则 tr (A∗) 对应的特征向量为 kα, k ̸= 0; 0 对应的特征向量为由 A 的列向量线性生成的非零向量.
8. (20 分) 在平面 π 上取定平面直角坐标系, 设该平面里的一条二次曲线 γ 的方程为 x2 + 2y2 + 6xy + 8x + 10y + 6 = 0.
(1) 证明: γ 是双曲线. (2) 写出 γ 的长短轴方程和长短轴长, 并指出长短轴中哪一个与 γ 有交点.
9. (15 分) 在平面 π 上取定平面直角坐标系, 已知该平面里的一个椭圆 γ 的方程为 x2+8y2+4xy+6x+20y+4 = 0. 求 γ 的内接三角形 (即三个顶点都在 γ 上的三角形) 的面积的最大值.
− sin φj cos φj
=
− sin φj cos φj
][ ]
cos φj
01 ,
sin φj 1 0
(φj ̸= kπ, j = 1, 2, . . . , l) .
注意到若 σ 是正交变换, 则 σ 是镜面反射当且仅当 σ 在 V 中的标准正交基下的矩阵的特征值为 1 (n − 1 重), −1 (1 重), 而把 J 分解成有限个那样的正交矩阵的乘积的分解是存在的, 这里的有限个更 精确一点可改为不超过 n 个, 于是 σ 可以表示为一系列镜面反射的乘积.

高等代数考研2021考研真题北京大学考研真题二

高等代数考研2021考研真题北京大学考研真题二

高等代数考研2021考研真题北京大学考研真题二高等代数作为考研数学科目中的重点内容之一,对于考生来说是一个关键的考察点。

本文将以2021年北京大学考研真题二为基础,讨论高等代数相关知识点,帮助考生更好地备考。

1. 选择题题目一:设A是一个n阶方阵,若λ是A的特征值,那么下面哪个命题是错误的?A. λ是A的特征值,则λ²是A²的特征值。

B. λ是A²的特征值,则λ是A的特征值。

C. λ是A的特征值,则λ⁻¹是A⁻¹的特征值。

D. λ是A⁻¹的特征值,则λ⁻¹是A的特征值。

解析:对于矩阵A的特征值λ和特征向量x,有A×x=λ×x。

因此,对于任意非零实数k和非零向量x,有A(kx) = kA(x),即特征值与矩阵的乘法具有线性关系。

因此,选项A是正确的,选项B是错误的。

选项C和D中提到了矩阵的逆,根据矩阵特征值的定义,如果λ是矩阵A的特征值,则A⁻¹的特征值是λ⁻¹。

因此,选项C是错误的,选项D是正确的。

综上所述,选项B是错误的命题。

2. 解答题题目二:已知复数z满足|z|=2,求z+z⁻¹的实部和虚部。

解答:设z=a+bi,其中a和b为实数。

根据复数的模定义,有|z|=√(a²+b²)=2,可以得到一个方程,a²+b²=4。

根据复数的乘法性质,可以得到z⁻¹的表达式为z⁻¹=1/z=(a-ib)/((a+ib)(a-ib))=(a-ib)/(a²+b²)=a/(a²+b²)-i(b/(a²+b²))。

将z+z⁻¹展开并分别提取实部和虚部,得到:实部:Re(z+z⁻¹)=a+a/(a²+b²)=a(a²+b²)/(a²+b²)+a/(a²+b²)=(a³+2a)/(a²+b²)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京大学基础数学专业-数学基础考试2 (高等代数、解析几何) 考研复习题-考研资料-考研真题
报考北京大学基础数学专业考研专业课资料的重要性
根据考研网的统计,87.3%以上报考北京大学基础数学专业考研成功的考生,尤其是那些跨学校的考研人,他们大多都在第一时间获取了北京大学基础数学专业考研专业课指定的教材和非指定的北京大学基础数学专业内部权威复习资料,精准确定专业课考核范围和考点重点,才确保了自己的专业课高分,进而才才最后考研成功的。

如果咱们仔细的研究下问题的本质,不难发现因为非统考专业课的真题均是由北京大学基础数学专业自主命题和阅卷,对于跨校考研同学而言,初试和复试命题的重点、考点、范围、趋势、规律和阅卷的方式等关键信息都是很难获取的。

所以第一时间获取了北京大学基础数学专业考研专业课指定的教材和非指定的北京大学基础数学专业内部权威复习资料的考生,就占得了专业课复习的先机。

专业课得高分便不难理解。

那么怎么样才能顺利的考入北京大学基础数学专业呢?为了有把握的的取得专业课的高分,确保考研专业课真正意义上的成功,考研专业课复习的首要工作便是全面搜集北京大学基础数学专业的内部权威专业课资料和考研信息,建议大家做到以下两点:
1、快速消除跨学校考研的信息方面的劣势。

这要求大家查询好考研的招生信息,给大家推
/shop/
2、确定最合适的考研专业课复习资料,明确专业课的复习方法策略,并且制定详细的复习计划,并且将复习计划较好的贯彻执行。

北京大学基础数学专业导师复习题。

复习题由北京大学基础数学专业教研组核心导师编写,涵盖北京大学的重点,难点。

北京大学基础数学专业考研学生多以此复习题复习。

适合考研第一阶段基础复习使用,也适合强化阶段强化知识体系、巩固复习效果使用。

北京大学基础数学专业的本校考研学生以及北京大学当地考生多以此进行复习。

出题思路紧密结合北京大学基础数学专业考研重点,和考研真题的题型、难度和解题思路都很接近。

可以准确把握北京大学基础数学专业的出题特点,出题方向,据北京大学基础数学专业研究生传授的经验,要把本复习题做两遍以上。

导师复习题。

北京大学基础数学专业数学基础考试2 (高等代数、解析几何) 复习题由北京大学基础数学专业数学基础考试2 (高等代数、解析几何) 最权威的老师编写,这些老师也都是北京大学基础数学专业权威研究生导师。

含金量和参考价值极高。

涵盖数学基础考试2 (高等代数、解析几何) 的重点,难点,对于考北京大学基础数学专业的考生来说,是最好的习题资料,本校考研学生对本复习题也十分的重
视。

考生在考研的复习过程中,一定要非常重视这份北京大学基础数学专业数学基础考试2 (高等代数、解析几何) 复习题,因为能使你的复习变的高效而有针对性。

适合考生进行全面全面复习时使用,也适合强化阶段重点复习使用。

北京大学基础数学专业数学基础考试2 (高等代数、解析几何) 复习题的出题思路紧密结合本校本专业的重点,可以准确把握本校本专业的出题特点,出题方向。

北京大学基础数学专业的高分研究生均重点推荐这份北京大学基础数学专业数学基础考试2 (高等代数、解析几何) 复习题。

北京大学基础数学专业考研招生信息、招生简章、参考书、参考教材、研究方向、考试科目
北京大学基础数学专业 2012年考研招生简章招生目录
招生年份:2012本院系招生人数:95基础数学专业招生人数:17
专业代
码:070101
北京大学基础数学以上招生信息(招生目录、考试科目、参考书、复试信息)均来源于北京大学研究生院,权威可靠。

导师信息、历年分数线、招生录取比例、难度分析有些来源于在校的研究生,信息比较准确,但是可能存在一定的误差,仅供大家参考。

北京大学基础数学专业-数学基础考试2 (高等代数、解析几何) 考研复习题-考研资料-考研真题
中国考研网—考研网:。

相关文档
最新文档