2016年考研数学高数基础知识(吐血推荐)
2016考研数学怎么复习_考研数学各知识点复习资料.

2016考研数学怎么复习_考研数学各知识点复习资料2016考研数学复习资料——向量与线性方程组部分复习建议向量与线性方程组是整个线性代数部分的核心内容。
相比之下,行列式和矩阵可视作是为了讨论向量和线性方程组部分的问题而做铺垫的基础性章节,而其后两章特征值和特征向量、二次型的内容则相对独立,可以看作是对核心内容的扩展。
向量与线性方程组的内容联系很密切,很多知识点相互之间都有或明或暗的相关性。
复习这两部分内容最有效的方法就是彻底理顺诸多知识点之间的内在联系,因为这样做首先能够保证做到真正意义上的理解,同时也是熟练掌握和灵活运用的前提。
这部分的重要考点一是线性方程组所具有的两种形式——矩阵形式和向量形式;二是线性方程组与向量以及其它章节的各种内在联系。
(1齐次线性方程组与向量线性相关、无关的联系齐次线性方程组可以直接看出一定有解,因为当变量都为零时等式一定成立——印证了向量部分的一条性质“零向量可由任何向量线性表示”。
齐次线性方程组一定有解又可以分为两种情况:①有唯一零解;②有非零解。
当齐次线性方程组有唯一零解时,是指等式中的变量只能全为零才能使等式成立,而当齐次线性方程组有非零解时,存在不全为零的变量使上式成立;但向量部分中判断向量组是否线性相关、无关的定义也正是由这个等式出发的。
故向量与线性方程组在此又产生了联系——齐次线性方程组是否有非零解对应于系数矩阵的列向量组是否线性相关。
可以设想线性相关、无关的概念就是为了更好地讨论线性方程组问题而提出的。
(2齐次线性方程组的解与秩和极大无关组的联系同样可以认为秩是为了更好地讨论线性相关和线性无关而引入的。
秩的定义是“极大线性无关组中的向量个数”。
经过“秩→线性相关、无关→线性方程组解的判定”的逻辑链条,就可以判定列向量组线性相关时,齐次线性方程组有非零解,且齐次线性方程组的解向量可以通过r个线性无关的解向量(基础解系线性表示。
(3非齐次线性方程组与线性表出的联系非齐次线性方程组是否有解对应于向量是否可由列向量组线性表示,使等式成立的一组数就是非齐次线性方程组的解。
2016考研数学高等数学复习重点

2016考研数学高等数学复习重点考研数学如何取得高分?以下老师为各位同学整理了提高考研数学成绩的三个技巧,供大家参考,希望能对大家复习备考有帮助!考研数学复习是建立在对基本的东西很深刻的理解的基础上的,单纯多做题可能会多见识一些题型,但对于一些很灵活有新意的题目就可能无法应对,这和点石成金的故事是一样的道理。
而这种能力的培养却来自于老老实实地将基础打牢,这一点上要摒弃那种急功近利的想法,不论是考研还是成就一番事业,要想成功,首先要沉得住气,有一个长远的打算,而不是做一天算一天,同时要善于控制事情发展的节奏,不论太快抑或太慢都不好,你都得去考虑为什么会这样,怎样去解决。
一个人不论处于顺风还是逆风,都要学会不断的去跟自己出难题,不断地去反省自己,自己主动把握自己的命运,他才能最后成功。
在忙碌的考研复习中,或许你正在忙于大量的复习知识,或许你已投入无尽的题海,或许你还在为一道道题而苦恼,或许你还在因为复习不见成效而沮丧。
但是,不知忙于埋头复习的你有没有发现,不是你的能力不够强,而是你对如何复习还不熟练。
我们的最终目的是提高复习效果,提高复习效果的途径大致可以分为两种:一是调整数学整体的素质和能力,更好的驾驭考研;二是理解复习的每一个环节,掌握复习方法,将自己已有的潜能和水平发挥到极致。
第一章函数、极限与连续部分。
本部分的重点内容是极限,前后交叉的地方多,综合性强。
而求极限是考研数学的一个基本题型,也是对考生基本运算能力的考查,广大考生一定要对求极限的基本方法和运算思路有一个整体的把握。
第一章当中除了求极限之外,还有无穷小的比较、等价无穷小等也都是往年考查的重点,希望大家在复习当中予以关注。
另外,关于函数间断点类型的判断,也是考查比较频繁的知识点,大家在复习当中要引起重视。
第二章一元函数微分学。
这部分考生一定要注意导数的定义,理解导数的几何意义和物理意义,包括导数概念的一些充要条件要很清楚。
在一元函数微分学当中还有导数的计算和应用,导数的计算相对来说比较简单,大家对于导数的计算只要有足够的耐心和细心,就不会出问题;导数的应用是一个比较大的内容,函数的单调性、凹凸性、极值、拐点以及不等式的证明、方程根的应用都会在这块内容中出题,这是本章的重点和难点。
2016考研数学:高数重要定理汇总

2016考研数学:高数重要定理汇总导数与微分1、导数存在的充分必要条件函数f(x)在点x0处可导的充分必要条件是在点x0处的左极限lim(h→-0)[f(x0+h)-f(x0)]/h及右极限lim(h→+0)[f(x0+h)-f(x0)]/h都存在且相等,即左导数f-′(x0)右导数f+′(x0)存在相等。
2、函数f(x)在点x0处可导=>函数在该点处连续;函数f(x)在点x0处连续≠>在该点可导。
即函数在某点连续是函数在该点可导的必要条件而不是充分条件。
3、原函数可导则反函数也可导,且反函数的导数是原函数导数的倒数。
4、函数f(x)在点x0处可微=>函数在该点处可导;函数f(x)在点x0处可微的充分必要条件是函数在该点处可导。
函数与极限1、函数的有界性在定义域内有f(x)≥K1则函数f(x)在定义域上有下界,K1为下界;如果有f(x)≤K2,则有上界,K2称为上界。
函数f(x)在定义域内有界的充分必要条件是在定义域内既有上界又有下界。
2、数列的极限定理(极限的唯一性)数列{xn}不能同时收敛于两个不同的极限。
定理(收敛数列的有界性)如果数列{xn}收敛,那么数列{xn}一定有界。
如果数列{xn}无界,那么数列{xn}一定发散;但如果数列{xn}有界,却不能断定数列{xn}一定收敛,例如数列1,-1,1,-1,(-1)n+1…该数列有界但是发散,所以数列有界是数列收敛的必要条件而不是充分条件。
定理(收敛数列与其子数列的关系)如果数列{xn}收敛于a,那么它的任一子数列也收敛于a.如果数列{xn}有两个子数列收敛于不同的极限,那么数列{xn}是发散的,如数列1,-1,1,-1,(-1)n+1…中子数列{x2k-1}收敛于1,{xnk}收敛于-1,{xn}却是发散的;同时一个发散的数列的子数列也有可能是收敛的。
3、函数的极限函数极限的定义中0定理(极限的局部保号性)如果lim(x→x0)时f(x)=A,而且A>0(或A0(或f(x)>0),反之也成立。
2016考研数学:不得不背的8个高等数学概念

2016考研数学:不得不背的8个高等数学概念2015考研进入冲刺阶段,鉴于今年的考研数学大纲较往年而言没有变动,所以大家在复习高数时对其重难点的复习有所侧重,下面列出了高数的重难点,希望大家在掌握重难点概念的同时在习题上也加大练习。
1、函数极限连续①正确理解函数的概念,了解函数的奇偶性、单调性、周期性和有界性,理解复合函数、反函数及隐函数的概念。
②理解极限的概念,理解函数左、右极限的概念以及极限存在与左右极限之间的关系。
掌握利用两个重要极限求极限的方法。
理解无穷小、无穷大以及无穷小阶的概念,会用等价无穷小求极限。
③理解函数连续性的概念,会判别函数间断点的类型。
了解初等函数的连续性和闭区间上连续函数的性质(最大值、最小值定理和介值定理),并会应用这些性质。
重点是数列极限与函数极限的概念,两个重要的极限:limsinx/x=1,lim(1+1/x)=e,连续函数的概念及闭区间上连续函数的性质。
难点是分段函,复合函数,极限的概念及用定义证明极限的等式。
2、一元函数微分学①理解导数和微分的概念,导数的几何意义,会求平面曲线的切线方程,理解函数可导性与连续性之间的关系。
②掌握导数的四则运算法则和一阶微分的形式不变性。
了解高阶导数的概念,会求简单函数的n阶导数,分段函数的一阶、二阶导数。
会求隐函数和由参数方程所确定的函数的一阶、二阶导数及反函数的导数。
③理解并会用罗尔中值定理,拉格朗日中值定理,了解并会用柯西中值定理。
④理解函数极值的概念,掌握函数最大值和最小值的求法及简单应用,会用导数判断函数的凹凸性和拐点,会求函数图形水平铅直和斜渐近线。
⑤了解曲率和曲率半径的概念,会计算曲率和曲率半径及两曲线的交角。
⑥掌握用罗必塔法则求未定式极限的方法,重点是导数和微分的概念,平面曲线的切线和法线方程函数的可导性与连续性之间的关系,一阶微分形式的不变性,分段函数的导数。
罗必塔法则函数的极值和最大值、最小值的概念及其求法,函数的凹凸性判别和拐点的求法。
2016年考研数学一各题考点分析

2016年考研数学一各题考点分析一、选择题部分:前四题是高等数学部分,第1题是关于一元函数积分学中的反常积分判别收敛问题,这部分是要求我们会计算反常积分和判别其收敛性的。
第2题是有关原函数的问题,这部分是要知道原函数的概念的,别切要求我们知道哪些函数一定有原函数(连续函数),哪些函数一定没有原函数的(含有可去、跳跃、无穷间断点的函数)。
第3题是有关一阶微分方程解的性质的问题,关于常微分方程问题是我们常考的内容,在考试前我们已经做了大量的相关练习,因此这块内容相信同学们已经比较了解,做的也应该不错。
第4题是我们高等数学上册第一章节间断点的知识点。
关于间断点这一块,我们知道,它是常考内容,作为小题,其考察的也比较频繁的。
对于这一块内容,我们在找间断点前,首先要考虑的就是其间断点的嫌疑点问题,一是其无定义的点,一定是间断点,二是分段函数的分段点(有可能是间断点)。
选择题的5、6两题是线性代数部分的:第5题,是有关矩阵相似的问题,这题我们利用相似定义很快便可得出答案选C,关于矩阵相似的问题我们已经做过很多练习了,相对而言本题还是容易判别的。
第6题是关于二次型与空间解析几何中的双叶双曲面结合起来的。
其实对于这一部分数一单一的内容,我们在暑假的时候的二阶强化课讲义上就有类似的题,我们是要求考数一的同学一定要注意这些小的边角问题的。
记的在考前一周时,有数一的同学还特地问了我关于空间解析几何会考哪些东西,会与线代怎么结合,我是说了有关双曲面的问题的。
后面7、8两题是关于概率统计的:第7题是关于正态分布的题,这一题与我们之前做练习时所讲的题型,其实是没什么区别的,因此这题应该会做的,主要考察正态分布的知识内容。
第8题是关于相关系数的内容,此题的灵活性是比较大的,与10年考的拿到大题是差不多的,所以同学们在做这题时可能会有些难度。
关于数字特征这一章节我们讲的也比较多了,也讲了其也可能会与分布函数问题结合处大题的。
二、填空题部分:前四题是高数部分的内容,第9题是和往年差不多,也是考查了极限的计算问题,其是与变限积分相结合的,这里就要求同学们要掌握变限积分的求导方法,带有变限积分问题的极限往往要用洛必达法则来求解。
2016考研数学:高数中的难点

2016考研数学:高数中的难点高等数学是考研数学的重中之重,所占的比重较大,在数学一、三中占56%,数学二中占78%,重点难点较多。
在这一阶段的主要目标是针对高数中的重点考点做强化复习,对一般难度和常见题型要做到熟练掌握。
为了帮助提高大家高效复习,本文为大家梳理了考研数学的难重点,希望大家不要盲目复习。
1.函数、极限与连续。
求分段函数的复合函数;求极限或已知极限确定原式中的常数;讨论函数的连续性,判断间断点的类型;无穷小阶的比较;讨论连续函数在给定区间上零点的个数,或确定方程在给定区间上有无实根。
这一部分更多的会以选择题,填空题,或者作为构成大题的一个部件来考核,复习的关键是要对这些概念有本质的理解,在此基础上找习题强化。
2.一元函数微分学。
求给定函数的导数与微分(包括高阶导数),隐函数和由参数方程所确定的函数求导,特别是分段函数和带有绝对值的函数可导性的讨论;利用洛比达法则求不定式极限;讨论函数极值,方程的根,证明函数不等式;利用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理证明有关命题,此类问题证明经常需要构造辅助函数;几何、物理、经济等方面的最大值、最小值应用问题,解这类问题,主要是确定目标函数和约束条件,判定所讨论区间;利用导数研究函数性态和描绘函数图形,求曲线渐近线。
3.一元函数积分学。
计算题:计算不定积分、定积分及广义积分;关于变上限积分的题:如求导、求极限等;有关积分中值定理和积分性质的证明题;定积分应用题:计算面积,旋转体体积,平面曲线弧长,旋转面面积,压力,引力,变力作功等;综合性试题。
这一部分主要以计算应用题出现,只需多加练习即可。
4.向量代数和空间解析几何。
计算题:求向量的数量积,向量积及混合积;求直线方程,平面方程;判定平面与直线间平行、垂直的关系,求夹角;建立旋转面的方程;与多元函数微分学在几何上的应用或与线性代数相关联的题目。
这一部分的难度在考研数学中应该是相对简单的,找辅导书上的习题练习,需要做到快速正确的求解。
考研数学之高等数学讲义第一章(考点知识点概念定理总结)

高等数学讲义目录第一章函数、极限、连续 (1)第二章一元函数微分学 (24)第三章一元函数积分学 (49)第四章常微分方程 (70)第五章向量代数与空间解析几何 (82)第六章多元函数微分学 (92)第七章多元函数积分学 (107)第八章无穷级数(数一和数三) (129)第一章 函数、极限、连续§1.1 函数(甲) 内容要点一、函数的概念1.函数的定义 2.分段函数3.反函数 4.隐函数二、基本初等函数的概念、性质和图象三、复合函数与初等函数四、考研数学中常出现的非初等函数1.用极限表示的函数(1) )(lim x f y n n ∞→= (2) ),(lim x t f y xt →= 2.用变上、下限积分表示的函数(1) ⎰=x a dt t f y )( 其中)(t f 连续,则)(x f dx dy = (2) ⎰=)()(21)(x x dt t f y ϕϕ 其中)(),(21x x ϕϕ可导,)(t f 连续, 则2211[()]()[()]()dy f x x f x x dxϕϕϕϕ''=- 五、函数的几种性质1. 有界性:设函数)(x f y =在X 内有定义,若存在正数M ,使X x ∈都有M x f ≤)(,则称)(x f 在X 上是有界的。
2. 奇偶性:设区间X 关于原点对称,若对X x ∈,都有)()(x f x f -=-,则称)(x f 在X 上是奇函数。
若对X x ∈,都有()()f x f x -=,则称)(x f 在X 上是偶函数,奇函数的图象关于原点对称;偶函数图象关于y 轴对称。
3. 单调性:设)(x f 在X 上有定义,若对任意X x X x ∈∈21,,21x x <都有)()(21x f x f <)]()([21x f x f >则称)(x f 在X 上是单调增加的[单调减少的];若对任意1x X ∈,2,x X ∈12x x <都有1212()()[()()]f x f x f x f x ≤≥,则称)(x f 在X 上是单调不减[单调不增](注意:有些书上把这里单调增加称为严格单调增加;把这里单调不减称为单调增加。
2016考研数学:数学三知识点归纳

2016考研数学:数学三知识点归纳大家在做近几年的考研数学真题的时候要注意,发现自己的薄弱环节,抓紧时间补上才是最后提分关键。
从考研数学题目来看,虽然千变万化,有各种延伸或变式,数学三的考查都是常规题型与常考知识点的再现。
接下来凯程考研小编就考研数学三常考知识点做了整理归纳,希望对大家有所帮助!1.曲线的渐近线;2.某点处的高阶导数;3.化极坐标系下的二次积分为直角坐标系下的二次积分;4.数项级数敛散性的判定;5.向量组的线性相关性;6.初等变换与初等矩阵;7.二维均匀分布;8.统计量的常见分布;9.未定式的极限;10.分段函数的复合函数的导数;11.二元函数全微分的定义;12.平面图形的面积;13.初等变换、伴随矩阵、抽象行列式的计算;14.随机事件的概率;15.未定式的极限;16.无界区域上的二重积分;17.多元函数微分学的经济应用,条件极值;18.函数不等式的证明;19.微分方程、变限积分函数、拐点;20.含参数的方程组;21.利用正交变换化二次型为标准形;22.二维离散型随机变量的概率、数字特征;23.二维常见分布的随机变量函数的分布、数字特征所谓思维定势,就是按照积累的思维活动经验教训和已有的思维规律,在反复使用中所形成的比较稳定的、定型化了的思维思维定势路线、方式、程序、模式。
第一部分《高数解题的四种思维定势》1.在题设条件中给出一个函数f(x)二阶和二阶以上可导,"不管三七二十一",把f(x)在指定点展成泰勒公式再说。
2.在题设条件或欲证结论中有定积分表达式时,则"不管三七二十一"先用积分中值定理对该积分式处理一下再说。
3.在题设条件中函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=0或f(b)=0或f(a)=f(b)=0,则"不管三七二十一"先用拉格朗日中值定理处理一下再说。
4.对定限或变限积分,若被积函数或其主要部分为复合函数,则"不管三七二十一"先做变量替换使之成为简单形式f(u)再说。