2011年中考数学《一元一次不等式》基础测试题及答案
2011全国中考数学模拟汇编一13.一元一次不等式(组)的应用

一元一次不等式(组)的应用一、选择题1.(河北省中考模拟试卷)某商场的老板销售一种商品,他要以不低于进价20% 的价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价.若你想买下标价为360元的这种商品,最多可降价( ) A .80元 B .100元 C .120元D .160元答案:C2.(2011广东南塘二模)已知ab >15,且a =-5,则b 的取值范围是 ( ) A 、b >3 B 、b <3 C 、b >-3 D 、b <-3 答案:D二、填空题1、(2011山西阳泉盂县月考)如果点P (x,y )关于原点的对称点为(-2,3)则x+y= . 【答案】x+y=2+(—3)=-1三、解答题1. (2011年浙江省杭州市高桥初中中考数学模拟试卷)杭州国际动漫节开幕前,某动漫公司预测某种动漫玩具能够畅销,就用32000元购进了一批这种玩具,上市后很快脱销,动漫公司又用68000元购进第二批这种玩具,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该动漫公司两次共购进这种玩具多少套?(2)如果这两批玩具每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元? 答案:(1)设动漫公司第一次购进x 套玩具,由题意得:6800032000102x x-= 解这个方程,得200x =经检验,200x =是所列方程的根. 22200200600x x +=⨯+=.所以动漫公司两次共购进这种玩具600套 (2)设每套玩具的售价为y 元,由题意得:600320006800020%3200068000y --+≥,解这个不等式,得200y ≥,所以每套玩具的售价至少是200元.2、(2011年北京四中模拟26)某航运公司年初用120万元购进一艘运输船,在投入运输后,每一年的总收入为72万元,需要支出的各种费用为40万元.问:(1)该船运输几年后开始盈利(盈利即指总收入减去购船费及所有支出费用之差为正值?)(2)若该船运输满15年要报废,报废时旧船卖出可收回20万元,求这15年平均盈利额(精确0.1万元)答案:(1)设该船厂运输X年后开始盈利,72X-(120+40X)﹥0,X﹥154,因而该船运输4年后开始盈利(2)()()157********25.315⨯---≈(万元)[来源:Z*xx*]3、(2011年浙江省杭州市模拟)为执行中央“节能减排,美化环境,建设美丽新农村”的国策,我市某村计划建造A、B两种型号的沼气池共20个,以解决该村所有农户的燃料问题.两种型号沼气池的占地面积、使用农户数及造价见下表:已知可供建造沼气池的占地面积不超过365m2,该村农户共有492户.(1)满足条件的方案共有几种?写出解答过程.(2)通过计算判断,哪种建造方案最省钱.解: (1) 设建造A型沼气池x 个,则建造B型沼气池(20-x )个………1分依题意得:()()⎩⎨⎧≥-+≤-+492203018365202015xxxx…………………………………………3分解得:7≤ x≤ 9 ………………………………………………………………4分∵x为整数∴ x = 7,8 ,9 ,∴满足条件的方案有三种.. ……………5分(2)设建造A型沼气池x个时,总费用为y万元,则:y = 2x + 3( 20-x) = -x+60 ………………………………………………6分∵-1< 0,∴y随x 增大而减小,当x=9 时,y的值最小,此时y= 51( 万元) …………………………………7分∴此时方案为:建造A型沼气池9个,建造B型沼气池11个.……………8分解法②:由(1)知共有三种方案,其费用分别为:方案一: 建造A型沼气池7个,建造B型沼气池13个,总费用为:7×2 + 13×3 = 53( 万元 ) ……………………………6分 方案二: 建造A 型沼气池8个, 建造B 型沼气池12个, 总费用为:8×2 + 12×3 = 52( 万元 ) ……………………………7分 方案三: 建造A 型沼气池9个, 建造B 型沼气池11个, 总费用为:9×2 + 11×3 = 51( 万元 ) ∴方案三最省钱. …………………………………………… 8分4. (2011武汉调考模拟)已知△ABC 在平面直角坐标系中的位置如图所示.点A 和点C 坐标;②画出△ABC 绕点C 按顺时针方向旋转90°后的△A′B ′C ,并写出点A ③求点A 旋转到点A ′所经过的路线长.(结果保留π).【答案】.解:(1)A(0,4),C(3,1) (2)图略,A ′ (6,4) (3)lAA ′=223π5(北京四中模拟)解不等式组:⎩⎨⎧-≥->+.410)35(3,425x x x x 并把解集在数轴上表示出来.解: 解不等式x x 425>+,得2->x .解不等式x x 410)35(3-≥-,得1≤x 把不等式的解集在数轴上表示出来.12≤<-∴x6 (2011湖北省天门市一模)我市某镇组织20辆汽车装运完A 、B 、C 三种脐橙共100吨到外地销售。
一元一次不等式练习题及答案

测试1一、选择题1. 下列不等式中,是一元一次不等式的有( )个. ①x>-3;②xy ≥1;③32<x ;④132≤-x x ;⑤11>+xx . A. 1B. 2C. 3D. 42. 不等式3(x -2)≤x+4的非负整数解有( )个.. A. 4B. 5C. 6D. 无数3. 不等式4x -41141+<x 的最大的整数解为( ). A. 1B. 0C. -1D. 不存在4. 与2x<6不同解的不等式是( ) A. 2x+1<7B. 4x<12C. -4x>-12D. -2x<-65. 不等式ax+b>0(a<0)的解集是( ) A. x>-ab B. x<-abC. x>ab D. x<ab 6. 如果不等式(m -2)x>2-m 的解集是x<-1,则有( ) A. m>2B. m<2C. m=2D. m ≠27. 若关于x 的方程3x+2m=2的解是正数,则m 的取值范围是( ) A. m>1B. m<1C. m ≥1D. m ≤18. 已知(y -3)2+|2y -4x -a|=0,若x 为负数,则a 的取值范围是( ) A. a>3B. a>4C. a>5D. a>6二、填空题9. 当x________时,代数式61523--+x x 的值是非负数. 10. 当代数式2x-3x 的值大于10时,x 的取值范围是________. 11. 若代数式2)52(3+k 的值不大于代数式5k -1的值,则k 的取值范围是________. 12. 若不等式3x -m ≤0的正整数解是1,2,3,则m 的取值范围是________.13. 关于x 的方程x kx 21=-的解为正实数,则k 的取值范围是 . 三、解答题14. 解不等式:(1)2-5x ≥8-2x (2)223125+<-+x x 15. 不等式a (x -1)>x+1-2a 的解集是x<-1,请确定a 是怎样的值.16. 如果不等式4x -3a>-1与不等式2(x -1)+3>5的解集相同,请确定a 的值 17. 关于x 的一元一次方程4x+m+1=3x -1的解是负数,求m 的取值范围.18. 某种商品的进价为800元,出售时标价为1200元.后来由于该商品积压,商店准备打折出售,但要保持利润不低于5%,请你帮忙算一算,该商品至多可以打几折?参考答案一、选择题1. B (根据一元一次不等式的概念,不等号左右两边是整式,可排除⑤,根据只含有一个未知数可排除②;根据未知数的最高次数是1,可排除③.所以只有①④是一元一次不等式.)2. C (不等式的解集为x ≤5,所以非负整数解有0,1,2,3,4,5共6个.)3. B (解这个不等式得x<1,所以最大整数解为0.)4. D (2x<6的解集为x<3,D 选项中不等式的解集也是x>3.)5. B (不等式ax+b>0(a<0)移项得ax>-b ,系数化为1,得x<-ab.(由于a<0,系数化为1时,不等号的方向要改变.))6. B (由于不等号的方向发生了改变,所以m -2<0,解得m<2.)7. B (解此方程得322m x -=,由于方程的解是正数,所以0322>-m,解得m<1.)8. D (由(y -3)2+|2y -4x -a|=0,得y=3,46a x -=,由x 为负数,可得046<-a,解得a>6.) 二、填空题9. ≤5(由题意得61523--+x x ≥0,解得x ≤5.) 10. x<-4(由题意得2x-3x>10,解得x<-4.) 11. 417≥k (由题意得2)52(3+k ≤5k -1,解此不等式即可.) 12. 9≤m<12(解不等式得3m x ≤,其正整数解是1,2,3,说明433<≤m,所以9≤m<12.) 13. k>2(解方程得21-=k x ,其解为正实数,说明k -2>0,即k>2.) 三、解答题14. 解:(1)-5x+2x ≥8-2-3x ≥6 x ≤-2(2)x+5-2<3x+2x -3x<2+2-5 -2x<-121>x 15. 解:ax -a>x+1-2aax -x>1-2a+a (a -1)x>1-a由于不等式的解集是x<-1,所以a -1<0,即a<1.16. 解:解4x -3a>-1得413->a x ; 解2(x -1)+3>5得x>2, 由于两个不等式的解集相同,所以有2413=-a ,解得a=3.(A ) (B )(C ) (D )17. 解:解此方程得x=-2-m ,根据方程的解是负数,可得-2-m<0,解得m>-2. 18. 解:设该商品可以打x 折,则有1200·10x-800≥800×5% 解得x ≥7.答:该商品至多可以打7折.测试21、(2010广东广州)不等式110320.x x ⎧+>⎪⎨⎪-⎩,≥的解集是( )A .-31<x ≤2 B .-3<x ≤2 C .x ≥2 D .x <-32.(2010重庆市潼南县)不等式2x +3≥5的解集在数轴上表示正确的是( )3.(2010山东临沂)不等式组320,10x x ->⎧⎨+⎩≥的解集在数轴上表示正确是的是( )4.(2010江西)不等式26,2 1.x x -<⎧⎨-+>⎩的解集是( )A .x >-3B .x >3C .-3<x <3D .无解5.(2010湖南株洲)一个一元一次不等式组的解集在数轴上的表示如下图,则该不等式组的解集是( )A B C D○-12●A .13x -≤<B . 13x -<≤C .1x ≥-D . 3x <6.(2010泰安)若关于x 的不等式0721x m x -<⎧⎨-≤⎩的整数解共有4个,则m 的取值范围是 ( )A. 6<m<7B. 6≤m<7C. 6≤m ≤7D. 6<m ≤77.(2010广西南宁)不等式组⎩⎨⎧-<++≤14242x x xx 的正整数解有( )(A )1个 (B )2个 (C )3个 (D )4个8.(2010 湖南湘潭)不等式组的解集在数轴上表示如图所示,则该不等式组可能为( ) A .{12x x >-≤ B .{12x x ≥-< C .{12x x ≥-≤ D .{12x x <-≥二、填空题9.(2010浙江宁波) 请你写出一个满足不等式2x -1<6的正整数x 的值: .10.(2010新疆)写出下图中所表示的不等式组的解集:_______。
2011中考数学真题解析19 一元一次方程的应用(含答案)

(2012年1月最新最细)2011全国中考真题解析120考点汇编一元一次方程的应用一、选择题1. (2011山东日照,4,3分)某道路一侧原有路灯106盏,相邻两盏灯的距离为36米,现计划全部更换为新型的节能灯,且相邻两盏灯的距离变为70米,则需更换的新型节能灯有( )A .54盏B .55盏C .56盏D .57盏考点:一元一次方程的应用。
专题:优选方案问题。
分析:可设需更换的新型节能灯有x 盏,根据等量关系:两种安装路灯方式的道路总长相等,列出方程求解即可.解答:解:设需更换的新型节能灯有x 盏,则70(x+1)=36×(106+1)70x=3782,x≈55则需更换的新型节能灯有55盏.故选B .点评:本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.注意根据实际问题采取进1的近似数.2. (2011山西,10,2分)“五一”期间,某电器按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元.设该电器的成本价为x 元,根据题意,下面所列方程正确的是( )A .()130%80%2080x +⨯=B . 30%80%2080x ⋅⋅=C . 208030%80%x ⨯⨯=D . 30%208080%x ⋅=⨯考点:一元一次方程专题:一元一次方程分析:成本价提高30%后标价为()130%x +,打8折后的售价为()130%80%x +⨯.根据题意,列方程得()130%80%2080x +⨯=,故选A .解答:A点评:找出题中的等量关系,是列一元一次方程的关键.3. (2011•柳州)九(3)班的50名同学进行物理、化学两种实验测试,经最后统计知:物理实验做对的有40人,化学实验做对的有31人,两种实验都做错的有4人,则这两种实验都做对的有( )A 、17人B 、21人C 、25人D 、37人考点:一元一次方程的应用。
2011中考数学真题解析24 解一元一次不等式(组)(含答案)

考点:解一元一次不等式;解二元一次方程组。
专题:方程思想。
分析:先解关于关于x,y的二元一次方程组 错误!未找到引用源。的解集,其解集由a表示;然后将其代入x+y<2,再来解关于a的不等式即可.
分析:分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.
解答:解: 错误!未找到引用源。 ,由①得,x>﹣2,由②得,x≤3,故此不等式组的解集为:﹣2<x≤3.在数轴上表示为:
故选B.
点评:本题考查的是在数轴上表示一元一次不等式组的解集,解答此类题目时一定要注意实心圆点与空心圆点的区别.
由①得,x<2,
由②得,x≥﹣3,
在数轴上表示为:
故选D.
点评:本题考查的是在数轴上表示一元一次不等式组的解集,解答此类题目时一定要注意实心圆点与空心圆点的区别.
18.(2010河南,4,3分)不等式组 的解集在数轴上表示正确的是( )
A. B.
C. D.
考点:在数轴上表示不等式的解集;解一元一次不等式组
解答:解: 错误!未找到引用源。
由①-③×3,解得y=1- 错误!未找到引用源。;由①×3-③,解得x= 错误!未找到引用源。;
∴由x+y<2,得1+ <2,即 错误!未找到引用源。<1,解得,a<4.[来源:Z§xx§]
故答案是:a<4.
点评:本题综合考查了解二元一次方程组、解一元一次不等式.解答此题时,采用了“加减消元法”来解二元一次方程组;在解不等式时,利用了不等式的基本性质:
专题:探究型.
分析:先把先把两式相加求出x+y的值,再代入x+y<2中得到关于a的不等式,求出的取值范围即可.
初中数学一元一次不等式训练题(含答案解析)

一元一次不等式的解法1.解不等式:552(2)x x-<+.2.解下列不等式:(1)726x->;(2)415x x-<+.3.解下列不等式:(1)51541x x+>-;(2)325 23x x--.4.解不等式523(1)x x+-,并把它的解集在数轴上表示出来.5.解不等式:2613x x +>-,并在数轴上表示解集.6.解不等式4113x x --<,并在数轴上表示解集.7.解不等式5124xx ++,并把它的解集在数轴上表示出来.8.解不等式11123x x +-<+,并把它的解集在数轴上表示出来.9.解不等式组:34612553x x x x ++⎧⎪-+⎨<⎪⎩.10.解不等式组:3(1)2122x x x x +<⎧⎪⎨-+>⎪⎩.11.解不等式组541.2x x ⎨+->⎪⎩12.解不等式2(1)4x x -<-,并在数轴上表示出它的解集.13.解不等式组213122x x x +-⎧⎨+>-⎩,并把它的解集在数轴上表示出来.14.解不等式组2361422x x x x -<-⎧⎨--⎩,并在数轴上表示解集.15.解不等式组:1076,713x x x x >+⎧⎪+⎨-<⎪⎩16.解不等式组1139x x -+⎨⎪⎩,并将它的解集在数轴上表示出来.17.解不等式组4521,5118x x x x +-⎧⎪⎨+-⋅⎪⎩①② 请结合题意填空,完成本题的解答.()I 解不等式①,得 ;()II 解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来: ()IV 原不等式组的解集为 .18.解不等式组3152113x x x ->⎧⎪+⎨+⎪⎩,把解集在数轴上表示出来,并写出不等式组的所有整数解.19.解不等式组.(1)11213x x +>-⎧⎨+<⎩;(2)3(2)41213x x x x ---⎧⎪+⎨>-⎪⎩.20.解不等式组,并求出整数解33213(1)8x x x x-⎧+⎪⎨⎪--<-⎩.21.解不等式组2(3)535146x x x x --⎧⎪-⎨<+⎪⎩,并把解集表示在下面的数轴上.22.解不等式组2341213x xxx++⎧⎪+⎨>-⎪⎩,并写出它的所有正整数解.23.解不等式组:4537422133x xx x+<+⎧⎪⎨+-⎪⎩,并写出它的整数解.24.解不等式组2(1)12323x xx x-+⎧⎪++⎨⎪⎩,并求出不等式组的整数解之和.参考答案与试题解析1.解不等式:552(2)x x -<+.【解答】解:552(2)x x -<+,5542x x -<+5245x x -<+,39x <,3x <.2.解下列不等式:(1)726x ->;(2)415x x -<+.【解答】解:(1)移项,得:267x >+, 合并同类项得:33x >;(2)移项,得:451x x -<+,合并同类项得:36x <,系数化成1得:2x <.3.解下列不等式:(1)51541x x +>-;(2)32523x x --. 【解答】解:(1)51541x x +>-; 移项,得:54115x x ->--,合并同类项得:16x >-;(2)32523x x --. 去分母,得:3(3)2(25)x x --, 去括号,得:39410x x --,移项,得:34109x x --+,合并同类项,得:1x --,系数化成1得:1x .4.解不等式523(1)x x +-,并把它的解集在数轴上表示出来.【解答】解:去括号,得:5233x x +-, 移项,得:5332x x ---,合并同类项,得:25x -,系数化为1,得: 2.5x -,将不等式的解集表示在数轴上如下:5.解不等式:2613x x +>-,并在数轴上表示解集. 【解答】解:移项,得:2163x x +>-, 合并同类项,得:553x >-, 系数化为1,得:3x >-,将不等式的解集表示在数轴上如下:6.解不等式4113x x --<,并在数轴上表示解集.【解答】解:去分母得:4133x x --<, 移项合并同类项得:4x <,在数轴上表示为:.7.解不等式5124xx ++,并把它的解集在数轴上表示出来.【解答】解:去分母,得:425x x ++, 移项,得:254x x --,合并,得:1x ,将不等式的解集表示在数轴上如下:8.解不等式11123x x +-<+,并把它的解集在数轴上表示出来.【解答】解:去分母得:3(1)2(1)6x x +<-+, 去括号得:33226x x +<-+, 移项合并得:1x <.9.解不等式组:34612553x x x x ++⎧⎪-+⎨<⎪⎩. 【解答】解:34612553x x x x ++⎧⎪⎨-+<⎪⎩①②,解不等式①得:1x ,解不等式②得:4x >-,不等式组的解集为:41x -<.10.解不等式组:3(1)2122x x x x +<⎧⎪⎨-+>⎪⎩. 【解答】解:()312122x x x x +<⎧⎪⎨-+>⎪⎩①②, 解不等式①得:3x <-,解不等式②得:5x >-,则不等式组的解集为53x -<<-.11.解不等式组280,541.2x x x -⎧⎪⎨+->⎪⎩ 【解答】解:2805412x x x -⎧⎪⎨+->⎪⎩①②, 解不等式①,得4x ,解不等式②,得2x <-, ∴原不等式组的解集为2x <-.12.解不等式2(1)4x x -<-,并在数轴上表示出它的解集.【解答】解:去括号,得224x x -<-, 移项,得242x x +<+, 合并同类项,得36x <, 系数化为1,得2x <. 解集在数轴上表示如图:13.解不等式组213122x x x +-⎧⎨+>-⎩,并把它的解集在数轴上表示出来.【解答】解:213122x x x +-⎧⎨+>-⎩①②, 由①得:2x -,由②得:3x <,不等式组的解集为:23x -<, 在数轴上表示:.14.解不等式组2361422x x x x -<-⎧⎨--⎩,并在数轴上表示解集. 【解答】解:2361422x x x x -<-⎧⎨--⎩①②, 解不等式①得:3x <, 解不等式②得:12x , 不等式组的解集为:132x <,在数轴上表示为:.15.解不等式组:1076,713x x x x >+⎧⎪+⎨-<⎪⎩【解答】解:1076713x x x x >+⎧⎪⎨+-<⎪⎩①②, 解不等式①得2x >,解不等式②得5x <.故原不等式组的解集是25x <<.16.解不等式组121139x x x x ->⎧⎪-+⎨⎪⎩,并将它的解集在数轴上表示出来. 【解答】解:解不等式12x x ->,得:1x <-, 解不等式1139x x -+,得:2x , 将解集表示在数轴上如下:∴不等式组的解集为1x <-.17.解不等式组4521,5118x x x x +-⎧⎪⎨+-⋅⎪⎩①② 请结合题意填空,完成本题的解答.()I 解不等式①,得 3x - ;()II 解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来: ()IV 原不等式组的解集为 .【解答】解:()I 解不等式①,得3x -; ()II 解不等式②,得:3x ;(Ⅲ)把不等式①和②的解集在数轴上表示出来:()IV 原不等式组的解集为33x -.故答案为:3x -,3x ,33x -.18.解不等式组3152113x x x ->⎧⎪+⎨+⎪⎩,把解集在数轴上表示出来,并写出不等式组的所有整数解. 【解答】解:3152113x x x ->⎧⎪⎨++⎪⎩①②, 解不等式①得:2x >,解不等式②得:4x ,∴不等式组的解集是24x <, 在数轴上表示不等式组的解集为:,所以不等式组的所有整数解是3,4.19.解不等式组.(1)11213x x +>-⎧⎨+<⎩; (2)3(2)41213x x x x ---⎧⎪+⎨>-⎪⎩. 【解答】解:(1)11213x x +>-⎧⎨+<⎩①②, 解不等式①得:2x >-,解不等式②得:1x <,则不等式组的解集为21x -<<;(2)()3241213x x x x ⎧---⎪⎨+>-⎪⎩①②, 解不等式①得:1x ,解不等式②得:4x <,∴不等式组的解集为1x .20.解不等式组,并求出整数解 33213(1)8x x x x-⎧+⎪⎨⎪--<-⎩. 【解答】解()3321318x x x x -⎧+⎪⎨⎪--<-⎩①② 解不等式①得:3x ,解不等式②得:2x >-,则不等式组的解集为23x -<, 所以不等式组的整数解为1-,0,1,2,3.21.解不等式组2(3)535146x x x x --⎧⎪-⎨<+⎪⎩,并把解集表示在下面的数轴上.【解答】解:解不等式2(3)5x x --,得:1x , 解不等式35146x x -<+,得:3x >-, 则不等式组的解集为31x -<,将不等式组的解集表示在数轴上如下:22.解不等式组2341213x x x x ++⎧⎪+⎨>-⎪⎩,并写出它的所有正整数解. 【解答】解:2341213x x x x ++⎧⎪⎨+>-⎪⎩①②解①得:1x,解②得:4x<,不等式组的解集为:14x <,则它的所有正整数解为3,2,1.23.解不等式组:4537422133x xx x+<+⎧⎪⎨+-⎪⎩,并写出它的整数解.【解答】解:4537422133x xx x+<+⎧⎪⎨+-⎪⎩①②,解①得2x<,解②得12x-,故不等式组的解集为122x-<,则其整数解为0,1.24.解不等式组2(1)12323x xx x-+⎧⎪++⎨⎪⎩,并求出不等式组的整数解之和.【解答】解:解不等式2(1)1x x-+,得:3x,解不等式2323x x++,得:0x,则不等式组的解集为03x,所以不等式组的整数解之和为01236+++=.。
2011年中考数学试题总汇编---一元一次不等式(1)

一元一次不等式(组)一、知识导航图二、中考课标要求考点课标要求知识与技能目标了解理解掌握灵活应用一元一次不等式组理解并掌握不等式的性质,理解它们与等式性质的区别∨∨∨能用数形结合的思想理解一元一次不等式(组)解集的含义∨∨∨正确熟练地解一元一次不等式(组),并会求其特殊解∨∨能用转化思想、数形结合的思想解一元一次不等式(组)的综合题、应用题∨∨∨三、中考知识梳理1.判断不等式是否成立判断不等式是否成立,关键是分析判定不等号的变化,变化的依据是不等式的性质,特别注意的是,不等式两边都乘以(或除以)同一个负数时,要改变不等号方向;反之,若不等式的不等号方向发生改变,则说明不等式两边同乘以(或除以)了一个负数.因此,在判断不等式成立与否或由不等式变形求某些字母的范围时, 要认真观察不等式的形式与不等号方向. 2.解一元一次不等式(组)解一元一次不等式的步骤与解一元一次方程的步骤大致相同,应注意的是,不等式两边所乘以(或除以)的数的正负,并根据不同情况灵活运用其性质,不等式组解集的确定方法:若a<b,则有:(1)的解集是x<a,即“小小取小”.(2)的解集是x>b,即“大大取大”.(3) 的解集是a<x<b,即“大小小大取中间”.(4) 的解集是空集,即“大大小小取不了”.一元一次不等式(组)常与分式、根式、一元二次方程、函数等知识相联系,解决综合性问题。
3.求不等式(组)的特殊解不等式(组)的解往往是有无数多个,但其特殊解在某些范围内是有限的,如整数解、非负整数解,要求这些特殊解,首先是确定不等式(组)的解集, 然后再找到相应的答案.注意应用数形结合思想.4.列不等式(组)解应用题注意分析题目中的不等量关系,考查的热点是与实际生活密切相联的不等式(组)应用题.一元一次不等式(组)一、选择题1、(2011年浙江杭州二模)已知()0332=++++m y x x 中,y 为负数,则m 的取值范围是( )A. m >9B. m <9C. m >-9D. m <-9 答案:A2、(2011年浙江杭州七模)若不等式组0,122x a x x +⎧⎨->-⎩≥有解,则a 的取值范围是( )A .a >-1B .a ≥-1C .a ≤1D .a <1 答案:A1、(2011重庆市纂江县赶水镇)不等式组10,354x x -+≤⎧⎨+<-⎩的解集在数轴上可表示为( )A .x ≤0B .-3<x ≤1C .x ≤1D .x<-3 答案:D2、(2011年北京四中四模)不等式组⎩⎨⎧<-<-133042x x 的解集为( )(A )x <1 (B )x >2(C )x <1或x >2 (D )1<x <2 答案:D3、(2011年北京四中四模)已知a >b ,则下列不等式中,正确的是( ) (A )―3a >―3b (B )3a ->3b - (C )3-a >3-b (D )a -3>b -3答案:D4、(2011年北京四中模拟26)不等式组112x x ≤⎧⎨+>-⎩的解集在数轴上可表示为( )答案:A5、(2011年浙江省杭州市模拟)把不等式组21123x x +>-⎧⎨+⎩≤的解集表示在数轴上,下列选项正确的是( )A .B .C .D .答案:B6.(2011年江苏连云港)不等式112x ->的解集是 A.12x >- B .2x >- C .2x <- D .12x <-答案C7、(2011山西阳泉盂县月考)如图,直线y=kx+b 交坐标轴于两点,则不等式kx+b <0的解集是( )A 、x >—2B 、x >3C 、x <—2D 、x <3【答案】C8、(2011浙江杭州模拟14)若点A (m -3,1-3m )在第三象限,则m 的取值范围是( ).A .B .C .D .【答案】D9、(2011浙江杭州模拟) 关于x 的不等式的解集如图所示 ,则a 的取值是( )1 0 1- 1 0 1- 1 0 1- 10 1-第1题图-1 01A -1 01BC-1 01DA .0B .-3C .-2D .-1 【答案】D10、(2011浙江杭州模拟16)函数42-+-=x xx y 中自变量x 的取值范围是( ) A 、2≤x B 、42≠≤x x 且 C 、4≠x D 、42≠<x x 且 【答案】A11、(2011年北京四中中考模拟19)如图2,天平右盘中的每个砝码的质量为10g ,则物体M 的质量m(g)的取值范围,在数轴上可表示为( )答案C12.(2011.河北廊坊安次区一模)不等式组的解集是 A .-3<x ≤6 B .3<x ≤6 C .-3<x <6D .x >-3答案:B13.(2011浙江杭州模拟7)若不等式组0,122x a x x +⎧⎨->-⎩≥有解,则a 的取值范围是( )A .a >-1B .a ≥-1C .a ≤1D .a <1 答案:C14.(河北省中考模拟试卷)把不等式组⎩⎨⎧>+≤-01x 01x 的解集表示在数轴上,正确的是…………………………………( )答案:B第3题图A .B .C .D .252-52525B 组1、( 2011年杭州三月月考)不等式组21318x x --⎧⎨->⎩≥的解集在数轴上可表示为( )(C) (D) 答案:D2、(2011北京四中二模)把不等式组110x x +⎧⎨-≤⎩>0,的解集表示在数轴上,正确的是( )(A ) (B ) (C ) (D ) 答案:B3、(2011年海宁市盐官片一模)把不等式组110x x +⎧⎨-≤⎩>0,的解集表示在数轴上,如下图,正确的是( ▲ )A B C D答案: B4、(2011年浙江省杭州市模2)已知()0332=++++m y xx 中,y 为负数,则m 的取值范围是( )A. m >9B. m <9C. m >-9D. m <-9 答案:A5、(河南新乡2011模拟)不等式组2461x x >⎧⎨-≥⎩的解集在数轴上可表示为()-1 -1 1 -1 -1 1 -1 -1 -1 -1答案:A6、(2011杭州市模拟)若55x x -=-,下列不等式成立的是( ) A .50x -> B .50x -< C. 5x -≥0 D .5x -≤0 答案:D7、(2011年广东省澄海实验学校模拟)用 表示三种不同的物体,现放在天平上比较两次,情况如图所示,那么这三种物体按质量从大到小的顺序排列应为( ) A . B . C . D .答案:A8、(2011深圳市模四)一元一次不等式组⎩⎨⎧->≤-3312x x 的解集在数轴上的表示正确的是( )A B C D答案:C9、(2011深圳市模四)若关于x 的方程kx 2-2x -1=0有两个不相等的实数根,则k 的取值范围是( )A.k >-1B. k >-1且k ≠0C. k <1D. k <1且k ≠0 答案:B10、(2011杭州模拟20)若55x x -=-,下列不等式成立的是( ) A .50x -> B .50x -< C. 5x -≥0 D .5x -≤0 答案:D二、填空题b ac a b c a b c a b c a b c 第7题图第8题图A 组1、(衢山初中2011年中考一模)不等式组40320x x ->⎧⎨+>⎩的解集是答案:432〈〈-x 2、(2011年北京四中五模)不等式2131-<+x x 的解集是____________. 答案:x >53.(淮安市启明外国语学校2010-2011学年度第二学期初三数学期中试卷)请你写出一个满足不等式2x —1<10的正整数x 的值:_____. 答案:1(或者2)4.(2011年浙江省杭州市城南初级中学中考数学模拟试题)已知a ,b 为实数,若不等式组2223x a x b -<⎧⎨->⎩的解集为—1<x <1,那么(a —1)(b —1)的值等于 . 答案:35.(2011年江苏连云港)不等式组2494x xx x -<⎧⎨+>⎩的解集是 .答案3x <6、(2011山西阳泉盂县月考)已知关于x 的不等式组0320x a x ->⎧⎨->⎩的整数解共有6个,则a的取值范围是 【答案】-5<a ≤-47.(2011武汉调考模拟)已知关于z 的一元二次方程a 2x -5x+1=0有两个不相等的实数根,则a 的取值范围是___ __. 【答案】a<425且a ≠0 8、(2011杭州模拟)关于x 的方程12mx x -=的解均为非负数,则m 的取值范围是 答案:m >29. (2011湖北省天门市一模)已知关于x 的不等式组⎩⎨⎧--0x 230a x >>的整数解共有6个,则a 的取值范围是 。
中考数学《一元一次不等式》复习练习及答案中考数学考点分类汇

年级数学中考复习专题一元一次不等式一、选择题:1、若a、b是有理数,则下列说法正确的是()A、若,则B、若,则C、若,则D、若,则2、不等式5x﹣1>2x+5的解集在数轴上表示正确的是( )A. B.C. D.3、已知关于x的不等式(1﹣a)x>2的解集为x<,则a的取值范围是()A.a>0B.a>1C.a<0D.a<14、要使+有意义,则x应满足()A.≤x≤3 B.x≤3且x≠ C.<x<3 D.<x≤35、若不等式组无解,则有()A、B、 C、D、≤6、已知点P(2a+4,3a-6)在第四象限,那么a的取值范围是()A.-2<a<3B.a<-2C.a>3D.-2<a<27、不等式组有3个整数解,则a的取值范围是()A. B. C. D.8、若方程组的解x,y满足0<x+y<1,则k的取值范围是( )A.﹣4<k<0B.﹣1<k<0C.0<k<8D.k>﹣49、阅读理解:我们把称作二阶行列式,规定它的运算法则为,例如,如果,则的取值范围是()(A)(B)(C)(D)10、使不等式x-1≥2与3x-7<8同时成立的x的整数值是( )A.3,4B.4,5C.3,4,5D.不存在11、关于x的不等式组的解集为x<3,那么m的取值范围为()A.m=3 B.m>3 C.m<3 D.m≥312、某种商品的进价为800元,标价为1200元,由于该商品积压,商店准备打折销售,但要保证利润率不低于20%,则最低可打()A.8折B.8.5折C.7折D.6折学二、填空题:13、不等式的解集是.14、已知b<a<0,则ab,a²,b²的大小为。
15、不等式2+9≥3(+2)的正整数解是。
16、如图,已知直线与直线相交于点(2,-2),由图象可得不等式的解集是.17、已知点P(2a﹣8,2﹣a)是第三象限的整点(横、纵坐标均为整数),则P点的坐标是.18、关于x的不等式的解为,则不等式的解为。
19、从-3,-2,-1,0,4这五个数中随机抽取一个数记为a,a的值既是不等式组的解,又在函数的自变量取值范围内的概率是.20、某商品的售价是528元,商家出售一件这样的商品可获利润是进价的10%~20%.设进价为x元,则x的取值范围是___________.21、若不等式组的解集是﹣3<x<2,则a+b= .22、某种商品的进价为800元,出售标价为1 200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则最多可打__________折.23、有10名菜农,每人种茄子3亩或辣椒2亩,已知茄子每亩可收入0.5万元,辣椒每亩可收入0.8万元,要使总收入不低于15.6万元,则最多只能安排人种茄子。
中考数学精选题专练一元一次不等式(含答案).doc

A. 4B. 5C. 6D. 7 中考数学精选题专练一元一次不等式一、选择题: 1-如果点P (2x+6, x - 4)在平面直角坐标系的第四象限内,那么x 的取值范围在数轴上可表示为()-3 4 -3 4 ・3 4 ・3 42•某种商品的进价为800元,标价为1200元,由于该商品积压,商店准备打折销售,但要保证 利润率不低于20%, 则最低可打( )A. 8折B. 8.5 折C. 7折D. 6折3.下列不等式的解屮包括4、5、6的是( ).A. 2x + l>10B. 2x + l&9C. X + 5W10D. 3-x>-24-某旅行社某天有空房10间,当天接待了一个旅行团,当每个房间只住3人时,有一个房间住宿 情况是不满也不空•若旅行团的人数为偶数,求旅行团共有多少人( )A. 27B. 28C. 29 D ・ 30为了举行班级晚会,小明准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品.己 那么x 的最大值是(*•某化工厂,现有A 种原料52千克,B 种原料64千克,现用这些原料生产甲、乙两种产品共 20件.已知生产1件甲种产品需要A 种原料3千克,B 种原料2千克;生产1件乙种产品需要A 种原料2千克,B 种原料4千克,则生产方案的种数为( )A. 7B.C. 9D. 106•不等式组 x+3>21-2<3的解集是(A. x$2B. - 1V X W2C. xW2D. -1 VxWl7-若不等式组 :噥7有三个非负整数解' 则m 的取值范围是(A. 3<m<4B. 2<m<3C. 3VmW4D. 2VmW30. 知乒乓球每个1. 5元, 球拍每个22元. 如果购买金额不超过200元,购买的球拍为x 个,二、填空题:9. _________________________________ 若 |a-5| + (a+b-3)=0,则 a - 2b 二 .1°•如图的天平屮各正方体的质量相同,各小球质量相同,第一架天平是平衡的,若使第二架天平平衡,则下面天平右端托盘上正方体的个数为 ____________ .□•当x ___ 时,式子3x - 5的值大于5x+3的值.,2日是非负数,可以用不等式表示为 _________ ・13-若代数式字-乎的值不小于则t 的収值范围是 --------------------------------------□•已知4x+y 二3,且yW7,则x 的取值范围是 ________________ 16•不等式(a-b ) x>a-b 的解集是x<l,则a 与b 的大小关系是 ____________________ 三、解答题: □•当璋时,求关于x 的不等式耳的解集. 18- “五•一”黄金周期间,某学校计划组织385名师生租车旅游,现知道出租公司有42座和 60座两种客车,42座客车的租金每辆为320元,60座客车的租金每辆为460元.(1) 若学校单独租用这两种车辆各需多少钱?(2) 若学校同时租用这两种客车8辆(可以坐不满),而且要比单独租用一种车辆节省租金.请 你帮助该学校选择一种最节省的租车方案.4(x -1) + 2 > 3x,,6x + a 有且只有三个整数解,求a 的取值范围.X-1 < --------------------------------------------- (15.不等式组 (2x - l>x*l I x+8<4x - 1的解集是720•建华小区准备新建50个停车位,以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位需0. 5万元;新建3个地上停车位和2个地下停车位需1.1万元.(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?(2)若该小区预计投资金额超过10万元而不超过11万元,则共有儿种建造方案?(3)己知每个地上停车位月租金100元,每个地下停车位月租金300元.在(2)的条件下,新建停车位全部租出.若该小区将第一个月租金收入中的3600元用于旧车位的维修,其余收入继续兴建新车位,恰好用完,请直接写出该小区选择的是哪种建造方案?1. C.2. A3. B4. A5. A6. D7. B& B.9. 答案为:910. 答案为:5.11. 答案为:x<-4;12. 答案为:a>0;13. 答案为:tW 塁.314•答案为:x>-l ;15. 答案为:x>3.16. 答案为:a<b.17. 略18.解:(1) 73854-42^10辆…••单独租用42座客车需10辆,租金为320X10=328元, •・・385弓60心7$購.••电独租用60座客车需7辆,租金为460X7=3220元.(2)设租用42座客车X 辆,则60座客车(8-x )辆,由题意得f42x+60(8 -x )>385 [320x+460(8 - x )<320C'解320x+460(8-x ) <3200,解得:x>3%・••不等式组的解集为:3*点5备•・k 取整数Ax=4, 5当沪4时,租金为 320X4+460X (8-4) =3120元;当沪5时,租金为 320X5+460X (8-5〉=29 答:租用42座客车5辆,60座客车3辆时,租金最少・18. 答案为:-2<a^-l.19. 解:(1)设新建一个地上停车位需x 万元,新建一个地下停车位需y 万元,由题意得: {;:需解得嚅答:新建一个地上停车位需o. 1万元,新建一个地下停车位需0. 4万元;(2 )设新建m 个地上停车位,则:10<0. lm+0. 4 (50 - m ) W11,解得30WmV 譽, 因为m 为整数,所以m=30或m=31或m=32或m=33,对应的50・in 二20或50・呼19或50・m 二18或50・m 二17,答:有4种建造方案;(3 )当地上停车位二30 时,地下二20, 30X100+20X300=9000.用掉 3600,剩余 9000 - 3600二5400.因为修建一个地上停车位的费用是1000, 一个地下是4000. 5400不能凑成整数, 所以不符合题意.同参考答案c; 解:42x+60(8-x ) >385,解得:*W5走, lo元・理得:当地上停车位二31, 33时.均不能凑成整数. 当算到地上停车位二32时,地下停车位二18, 则32X100+18X300=8600, 8600 ・ 3600=5000.此时可凑成修建1个地上停车场和一个地下停车位,1000+4000二5000・所以答案是32和18.答:建造方案是建造32个地上停车位,18个地下停车位.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《一元一次不等式》基础测试
(一)填空题(每空2分,共32分)
1.已知a<b<0,用不等号连结下列各题中的两式:
(1)a-5_____b-5;(2)-
32
a_____-
32
b;(3)b-a_____0;
(4)|a|_____|b|;(5)a3_____b3;(6)【提示】根据不等式的基本性质及式子的意义判断.【答案】(1)<;(2)>;(3)>;(4)>;(5)<;(6)>. 2.x的
1
a
_____
1b
.
32
与5的差不小于-4的相反数,用不等式表示为_____.
【提示】“不小于”就是“大于或等于”.【答案】
3
2
x-5≥4.
3.若x<a<0,则把x 2 ,a2 ,ax从小到大排列是_______.【答案】a2<ax<x 2. 4.已知不等式mx-n>0,当m____时,不等式的解集是x<
n
m
;当m____时,不等式的解集是x>
nm
.【答案】m<0;m>0.
5.当x____时,代数式【答案】x<
2x?33?5x
的值是负数;当x_____时,代数式的值是非负数. 47
3
2
;x≤
3. 5
6.不等式4 x-3≤7的正整数解是_______.【答案】2,1.
?2x?5??1
7.不等式组?的整数解的和是_______,积是_______.【答案】7,0.
?x3???328.不等式-1<
3x?11
≤4的解集是_______.【答案】-<x≤3.
32
(二)选择题(每小题3分,共24分)
9.下列各式中一定成立的是???????????????????????()
(A)a>-a (B)-4a<-a (C)a-3<a+3 (D)a2>-a2 【提示】(D)中当a =0时,不等式不成立.换言之,此不等式仅当a≠0时才成立.【答案】C. 10.由m>n,得am≤an的条件是????????????????????()
(A)a>0 (B)a<0 (C)a≥0 (D)a≤0【答案】D.
11.若|2 x-5|=5-2 x,则x的取值是???????????????????()
(A)x>
52
(B)x≥
52
(C)x<
52
(D)x≤
52
【提示】根据绝对值的意义,得5-2 x≥0.【答案】D.
12.若方程5 x-2a=8的解是非负数,则a的取值是?????????????()
(A)a>-4 (B)a<-4 (C)a≥-4 (D)a≤-4
2a?8
≥0.【答案】C. 5?x?a
13.若a<b,则不等式组??????????????????????()
x?b?
【提示】根据题意,得
(A)解集是x<a (B)解集是x>b (C)解集是b<x<a (D)无解【答案】D.14.使不等式x+1>4 x+5成立的最大整数是???????????????()
(A)1 (B)0 (C)-1 (D)-2【提示】根据题意,得【答案】D.
2a?8
≥0. 5。