三角函数、三角恒等变换综合考试题

合集下载

三角函数与三角恒等变换-经典测试题-附答案

三角函数与三角恒等变换-经典测试题-附答案

三角函数与三角恒等变换(A)一、填空题(本大题共14小题,每题5分,共70分.不需写出解答过程,请把答案写在指定位置上)1. 半径是r,圆心角是α(弧度)的扇形的面积为________.2. 若,则tan(π+α)=________.3. 若α是第四象限的角,则π-α是第________象限的角.4. 适合的实数m的取值范围是_________.5. 若tanα=3,则cos2α+3sin2α=__________.6. 函数的图象的一个对称轴方程是___________.(答案不唯一)7. 把函数的图象向左平移个单位,所得的图象对应的函数为偶函数,则的最小正值为___________.8. 若方程sin2x+cosx+k=0有解,则常数k的取值范围是__________.9. 1-sin10°·sin 30°·sin 50°·sin 70°=__________.10. 角α的终边过点(4,3),角β的终边过点(-7,1),则sin(α+β)=__________.11. 函数的递减区间是___________.12. 已知函数f(x)是以4为周期的奇函数,且f(-1)=1,那么__________.13. 若函数y=sin(x+)+cos(x+)是偶函数,则满足条件的为_______.14. tan3、tan4、tan5的大小顺序是________.二、解答题(本大题共6小题,共90分.解答后写出文字说明、证明过程或演算步骤)15. (本小题满分14分)已知,求的值.16. (本小题满分14分)已知函数f(x)=2sinx(sinx+cosx).(1) 求函数f(x)的最小正周期和最大值;(2) 在给出的直角坐标系中,画出函数y=f(x)在区间上的图象.17. (本小题满分14分)求函数y=4sin2x+6cosx-6()的值域.18. (本小题满分16分)已知函数的图象如图所示.(1) 求该函数的解析式;(2) 求该函数的单调递增区间.19. (本小题满分16分)设函数(x∈R).(1) 求函数f(x)的值域;(2) 若对任意x∈,都有|f(x)-m|<2成立,求实数m的取值范围.20. (本小题满分16分)已知奇函数f(x)的定义域为实数集,且f(x)在[0,+∞)上是增函数.当时,是否存在这样的实数m,使对所有的均成立?若存在,求出所有适合条件的实数m;若不存在,请说明理由.三角函数与三角恒等变换(B)一、填空题(本大题共14小题,每题5分,共70分.不需写出解答过程,请把答案写在指定位置上)1.______.2._______.3. 已知,则的值为_________.4. 已知,则________.5. 将函数y=sin2x的图象向左平移个单位,再向上平移1个单位,所得图象的函数解析式是________.6. 已知函数是R上的偶函数,则__________.7. 函数的单调递减区间为________.8. 已知函数,且,则函数的值域是_________.9. 若,则的值是___________.10. 已知都是锐角,且,则的值是_________.11. 给出下列四个命题,其中不正确命题的序号是_______.① 若,则,k∈Z;② 函数的图象关于对称;③ 函数(x∈R)为偶函数;④ 函数y=sin|x|是周期函数,且周期为2π.12. 已知函数的图象如图所示,,则f(0)=_________.13. 若,且,则______.14. 已知函数(x∈R,ω>0)的最小正周期为π.将y=f(x)的图象向左平移个单位长度,所得图象关于y轴对称,则的最小值是______.二、解答题(本大题共6小题,共90分.解答后写出文字说明、证明过程或演算步骤)15. (本小题满分14分)如图是表示电流强度I与时间t的关系在一个周期内的图象.(1) 写出的解析式;(2) 指出它的图象是由I=sint的图象经过怎样的变换而得到的.16. (本小题满分14分)化简.17. (本小题满分14分)已知函数y=sinx·cosx+sinx+cosx,求y的最大值、最小值及取得最大值、最小值时x的值.18. (本小题满分16分)设,曲线和有4个不同的交点.(1) 求的取值范围;(2) 证明这4个交点共圆,并求圆的半径的取值范围.19. (本小题满分16分)函数f(x)=1-2a-2acosx-2sin2x的最小值为g(a),a∈R.(1) 求g(a)的表达式;(2) 若g(a)=,求a及此时f(x)的最大值.20. (本小题满分16分)已知定义在区间上的函数y=f(x)的图象关于直线对称,当x≥时,函数f(x)=sinx.(1) 求的值;(2) 求y=f(x)的函数表达式;(3) 如果关于x的方程f(x)=a有解,那么在a取某一确定值时,将方程所求得的所有解的和记为Ma,求Ma的所有可能取值及相对应的a的取值范围.三角函数与三角恒等变换(A)1.2. ±3. 三4.5.6. x=【解析】对称轴方程满足2x+=kπ+,所以x=(k∈Z).7.8.9.【解析】∵ sin10°·sin30°·sin50°·sin70°==∴ 原式=1-10. -11.12. -1 【解析】f(5)=-f(-5)=-f(-1)=-1,∴ 原式=sin=-1.13.=kπ+(k∈Z) 14. tan5<tan3<tan415. 2+sinθcosθ-cos2θ=2+=16. (1) f(x)=2sin2x+2sinxcosx=1-cos2x+sin2x=1+(sin2xcos-cos2xsin)=1+sin(2x-).所以函数f(x)的最小正周期为π,最大值为1+.(2)列表.xy 1 1 1 故函数y=f(x)在区间上的图象是17. y=4sin2x+6cosx-6=4(1-cos2x)+6cosx-6 =-4cos2x+6cosx-2 =-4∵ -≤x≤,∴ -≤cosx≤1,∴ y∈.18. (1)由图象可知:T=2=πω==2.A==2,∴ y=2sin(2x+).又∵为“五点画法”中的第二点,∴ 2×+==.∴ 所求函数的解析式为y=2sin(2)∵ 当2x+∈(k∈Z)时,f(x)单调递增,∴ 2x∈x∈(k∈Z).19. (1) f(x)=4sinx·+cos2x=2sinx(1+sinx)+1-2sin2x=2sinx+1.∵ x∈R,∴ sinx∈[-1,1],故f(x)的值域是[-1,3].(2)当x∈时,sinx∈,∴ f(x)∈[2,3].由|f(x)-m|<2-2<f(x)-m<2,∴ f(x)-2<m<f(x)+2恒成立.∴ m<[f(x)+2]min=4,且m>[f(x)-2]max=1.故m的取值范围是(1,4).20. 因为f(x)为奇函数,所以f(-x)=-f(x)(x∈R),所以f (0)=0.所以f(4m-2mcosθ)-f(2sin2θ+2)>0,所以f(4m-2mcosθ)>f(2sin2θ+2).又因为f(x)在[0,+∞)上是增函数,且f(x)是奇函数,所以f(x)是R上的增函数,所以4m-2mcosθ>2sin2θ+2.所以cos2θ-mcosθ+2m-2>0. 因为θ∈,所以cosθ∈[0,1].令l=cosθ(l∈[0,1]). 满足条件的m应使不等式l2-ml+2m-2>0对任意l∈[0,1]均成立. 设g(l)=l2-ml+2m-2=-+2m-2.由条件得解得,m>4-2.三角函数与三角恒等变换(B)1.2.3.【解析】原式=4. 25. y=2cos2x6.7.(k∈Z)【解析】∵ sin>0,且y=是减函数,∴ 2kπ<2x+≤+2kπ,(k∈Z),∴ x∈(k∈Z).8.【解析】y=sinx+cosx=2sin,又≤x+≤∴ sin∈,∴ y∈[-,2].9.【解析】tanθ=,∴ cos2θ+sin2θ=10.【解析】由题意得cosα=,sin(α+β)=.∴ sinβ=sin[(α+β)-α]=sin(α+β)·cosα-cos(α+β)·sinα=.11. ①②④ 12.13.【解析】tanα=tan(α-β+β)=,∴ tan(2α-β)=tan[(α-β)+α]=.∵ β∈(0,π),且tanβ=-∈(-1,0),∴ β∈,∴ 2α-β∈∴ 2α-β=-.14.【解析】由已知,周期为π=,∴ ω=2.则结合平移公式和诱导公式可知平移后是偶函数,sin=±cos2x,故min=.15. (1) I=300sin.(2) I=sintI=sinI=sinI=300sin.16. 原式=sin6°·cos48°·cos24°·cos12°===…=17. 令sinx+cosx=t.由sinx+cosx=sin,知t∈[-,],∴ sinx·cosx=,t∈[-,].所以y=+t=(t+1)2-1,t∈[-,].当t=-1,即2sin=-1,x=2kπ+π或x=2kπ+π(k∈Z)时,ymin=-1;当t=,即sin=, x=2kπ+(k∈Z)时,ymax=.18. (1)解方程组故两条已知曲线有四个不同的交点的充要条件为∵ 0<θ<,∴ 0<θ<.(2)设四个交点的坐标为(xi,yi)(i=1,2,3,4),则+=2cosθ∈(,2)(i=1,2,3,4).故此四个交点共圆,并且这个圆的半径r=.19. f(x)=1-2a-2acosx-2sin2x=1-2a-2acosx-2(1-cos2x)=2cos2x-2acosx-1-2a=2-1-2a-(a∈R).(1)函数f(x)的最小值为g(a).① 当<-1,即a<-2时,由cosx=-1,得g(a)=2-1-2a-=1;。

高中数学-三角恒等变换综合练习(苏教版必修第二册)(解析版)

高中数学-三角恒等变换综合练习(苏教版必修第二册)(解析版)

10.4 三角恒等变换综合练习(基础)一.选择题(共8小题)1.已知α是第二象限角,sin α=45,则sin2α=( ) A .−2425B .2425C .−1225D .1225【分析】由已知利用同角三角函数基本关系式可求cos α的值,进而根据二倍角的正弦公式即可求解. 【解答】解:因为α是第二象限角,sin α=45, 所以cos α=−√1−sin 2α=−35,则sin2α=2sin αcos α=2×45×(−35)=−2425. 故选:A .【点评】本题主要考查了同角三角函数基本关系式,二倍角的正弦公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.2.已知cos (θ−π2)=45,−π2<θ<π2,则sin2θ的值等于( ) A .−2425B .2425C .−1225D .1225【分析】由已知利用同角三角函数基本关系式可求cos θ的值,进而根据二倍角的正弦公式即可求解sin2θ的值.【解答】解:因为cos (θ−π2)=sin θ=45,−π2<θ<π2, 所以cos θ=√1−sin 2θ=35,则sin2θ=2sin θcos θ=2×45×35=2425. 故选:B .【点评】本题主要考查了同角三角函数基本关系式,二倍角的正弦公式在三角函数化简求值中的应用,考查了转化思想,属于基础题. 3.已知tan α=2,则sinα+2cosα3sinα−cosα的值为( )A .−25B .45C .23D .25【分析】由已知利用同角三角函数基本关系式化简所求即可得解. 【解答】解:因为tan α=2,则sinα+2cosα3sinα−cosα=tanα+23tanα−1=2+23×2−1=45.故选:B .【点评】本题主要考查了同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基础题.4.cos350°sin70°﹣sin170°sin20°=( ) A .√32B .−√32C .12D .−12【分析】结合诱导公式及两角和的余弦公式进行化简即可求值.【解答】解:cos350°sin70°﹣sin170°sin20°=cos10°cos20°﹣sin10°sin20°=cos30°=√32.故选:A .【点评】本题主要考查了两角和的余弦公式及诱导公式在三角函数化简求值中的应用,属于基础试题. 5.已知sin(π6+α)=−45,则cos(π3−α)=( ) A .45B .35C .−45D .−35【分析】由已知直接利用三角函数的诱导公式化简求值. 【解答】解:∵sin(π6+α)=−45,∴cos(π3−α)=cos[π2−(π6+α)]=sin(π6+α)=−45,故选:C .【点评】本题考查三角函数的化简求值,考查诱导公式的应用,是基础题. 6.计算1−cos 270°1+cos40°=( )A .45B .34C .23D .12【分析】利用二倍角公式,诱导公式即可化简求解.【解答】解:1−cos 270°1+cos40°=1−1+cos140°21+cos40°=1−cos140°2(1+cos40°)=1+cos40°2(1+cos40°)=12.故选:D .【点评】本题主要考查了二倍角公式,诱导公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.7.若12sin2α﹣sin 2α=0,则cos (2α+π4)=( )A .1B .√22C .−√22D .±√22【分析】由已知结合二倍角公式可求sin α=0或tan α=1,然后分类讨论,结合同角基本关系即可求解. 【解答】解:因为12sin2α﹣sin 2α=0,所以sin αcos α﹣sin 2α=0, 所以sin α=0或sin α=cos α, 当sin α=0时, cos (2α+π4)=√22(cos2α﹣sin2α)=√22(1−2sin 2α−2sinαcosα)=√22,当sin α=cos α即tan α=1时,cos (2α+π4)=√22(cos2α﹣sin2α),=√22×(cos 2α﹣sin 2α﹣2sin αcos α), =√22(1−tan 2α1+tan 2α−2tanα1+tan 2α)=−√22.故选:D .【点评】本题以三角函数为背景,主要考查了三角恒等变换,考查了运算求解能力,考查了数学运算的核心素养.8.已知α∈(0,π2),sin2α1+cos2α=12,则cos α=( )A .√55B .2√55C .√1010D .3√1010【分析】利用二倍角公式化简已知等式可得cos α=2sin α,进而根据同角三角函数基本关系式即可求解. 【解答】解:由于sin2α1+cos2α=12,可得4sin αcos α=2cos 2α,因为α∈(0,π2),cos α≠0,所以cos α=2sin α,联立{cosα=2sinαsin 2α+cos 2α=1,解得cos α=2√55. 故选:B .【点评】本题主要考查了二倍角公式,同角三角函数基本关系式,考查推理论证能力,运算求解能力,考查了数学运算核心素养,属于基础题. 二.多选题(共4小题) 9.下列各式中值为12的是( )A .2sin75°cos75°B .1﹣2sin 2π12C .sin45°cos15°﹣cos45°sin15°D .tan20°+tan25°+tan20°tan25° 【分析】根据对应的公式求出判断即可.【解答】解:对于A :2sin75°cos75°=sin150°=12, 对于B :1﹣2sin 2π12=cosπ6=√32, 对于C :sin45°cos15°﹣cos45°sin15°=sin30°=12,对于D :tan20°+tan25°+tan20°tan25°=tan (20°+25°)(1﹣tan20°tan25°)+tan20°tan25°=1, 故选:AC .【点评】本题考查了三角的恒等变换,属于基础题. 10.下列化简正确的是( ) A .tan (π+1)=tan 1 B .sin(−α)tan(360°−α)=cos αC .sin(π−α)cos(π+α)=tan αD .cos(π−α)tan(−π−α)sin(2π−α)=1【分析】由题意利用诱导公式化简所给的式子,可的结果. 【解答】解:∵由诱导公式可得 tan (π+1)=tan1,故A 正确;sin(−α)tan(360°−α)=−sinα−tanα=cos α,故B 正确;sin(π−α)cos(π+α)=sinα−cosα=−tan α,故C 不正确; cos(π−α)tan(−π−α)sin(2π−α)=−cosα⋅(−tanα)−sinα=−1,故D 不正确,故选:AB .【点评】本题主要考查诱导公式的应用,属于基础题. 11.若α∈[0,2π],sin α3sin4α3+cos α3cos4α3=0,则α的值是( )A .π6B .π4C .π2D .3π2【分析】由已知结合两角差的余弦公式进行化简求解即可.【解答】解:因为α∈[0,2π],sin α3sin4α3+cos α3cos4α3=cos α=0,则α=12π或α=3π2, 故选:CD .【点评】本题主要考查了两角差的余弦公式的简单应用,属于基础试题. 12.若tan2x ﹣tan (x +π4)=5,则tan x 的值可能为( ) A .−√63B .−√62C .√63D .√62【分析】利用三角函数恒等变换的应用即可化简求值得解.【解答】解:设tan x =t ,因为tan2x −tan(x +π4)=2t 1−t 2−t+11−t =2t−(t+1)21−t 2=t 2+1t 2−1=5,所以t 2=32,故tanx =t =±√62. 故选:BD .【点评】本题考查三角恒等变换,考查运算求解能力,属于基础题. 三.填空题(共4小题)13.已知α、β均为锐角,且cos α=17,cos (α+β)=−1114,则β=π3.【分析】先利用同角三角函数的基本关系求得sin α和sin (α+β)的值,然后利用cos β=cos p [(α+β)﹣α],根据两角和公式求得答案. 【解答】解:α,β均为锐角,∴sin α=√1−149=4√37,sin (α+β)=√1−(−1114)2=5√314,∴cos β=cos p [(α+β)﹣α]=cos (α+β)cos α+sin (α+β)sin α=−1114×17+4√37×5√314=12. ∴β=π3. 故答案为π3.【点评】本题主要考查了两角和公式的化简求值和同角三角函数的基本关系的应用.熟练记忆三角函数的基本公式是解题的基础.14.若cos (α﹣β)=12,cos (α+β)=−35,则tan αtan β= ﹣11 .【分析】由已知利用两角和与差的余弦公式可求cos αcos β,sin αsin β的值,进而根据同角三角函数基本关系式即可求解.【解答】解:因为cos (α﹣β)=12, 所以cos αcos β+sin αsin β=12, 因为cos (α+β)=−35,所以cos αcos β﹣sin αsin β=−35,所以cos αcos β=12(12−35)=−120,sin αsin β=12(12+35)=1120,则tan αtan β=1120−120=−11.故答案为:﹣11.【点评】本题主要考查了两角和与差的余弦公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基础题.15.若0<α<π2,﹣π<β<−π2,cos (π4+α)=13,cos (π4−β2)=−√33,则cos (α+β2)= √33.【分析】由已知先求出,的范围,再根据正弦和余弦的平方关系和为1求出对应的正弦值,然后再利用凑角的方法即可求解.【解答】解:因为0<α<π2,−π<β<−π2, 所以π4<α+π4<3π4,π2<π4−β2<3π4,所以sin (π4+α)=√1−(13)2=2√23, sin (π4−β2)=1−(−√33)2=√63,所以cos (α+β2)=cos[(π4+α)﹣(π4−β2)]=cos (π4+α)cos (π4−β2)+sin (π4+α)sin (π4−β2)=13×(−√33)+2√23×√63 =√33, 故答案为:√33. 【点评】本题考查了两角和与差的的三角函数求值问题,考查了学生的运算能力,属于基础题. 16.已知α∈R ,3sin α+cos α=3,则sin2α﹣cos 2α=35或0. .【分析】由已知可得,(3sin α+cos α)2=9sin 2α+6sinαcosα+cos 2αsin 2α+cos 2α,然后利用同角基本关系弦化切可求tan α,进而可求.【解答】解:因为3sin α+cos α=3, 当cos α≠0时,所以(3sin α+cos α)2=9sin 2α+6sinαcosα+cos 2αsin 2α+cos 2α=9tan 2α+6tanα+11+tan 2α=9,解得,tan α=43,所以sin2α﹣cos 2α=2sinαcosα−cos 2αsin 2α+cos 2α=2tanα−1tan 2α+1=2×43−1(43)2+1=35.当cos α=0时,sin2α﹣cos 2α=0 故答案为:35或0.【点评】本题主要考查了三角恒等变换,考查了运算求解能力,数据处理的能力. 四.解答题(共8小题)17.已知0<α<π2,0<β<π2,sin α=45,cos (α+β)=513. (1)求cos β的值; (2)求sin 2α+sin2αcos2α−1的值.【分析】(1)由已知利用同角三角函数基本关系式可求cos α,sin (α+β)的值,进而根据β=(α+β)﹣α,利用两角差的余弦函数公式即可求解.(2)利用二倍角公式可求sin2α,cos2α的值,进而即可代入求解. 【解答】解:(1)因为0<α<π2,sin α=45, 所以cos α=35,又因为0<β<π2,cos (α+β)=513, 所以sin (α+β)=1213, 所以cos β=cos[(α+β)﹣α]=cos (α+β)cos α+sin (α+β)sin α=513×35+1213×45=6365. (2)因为cos α=35,sin α=45,所以sin2α=2sin αcos α=2×45×35=2425,cos2α=2cos 2α﹣1=2×(35)2﹣1=−725,所以sin 2α+sin2αcos2α−1=(45)2+2425−725−1=−54.【点评】本题主要考查了同角三角函数基本关系式,两角差的余弦函数公式,二倍角公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题. 18.已知cosα=−45,α为第三象限角. (1)求sin α,tan α的值; (2)求cos(π4−2α)的值.【分析】(1)先根据α所在的象限,判断出sin α的正负,进而根据同角三角函数的基本关系,利用cos α的值求得sin α,进而求得tan α的值.(2)由(1)利用二倍角公式可求sin2α,cos2α的值,进而根据两角差的余弦函数公式即可求解. 【解答】解:(1)∵cosα=−45,α为第三象限角, ∴sin α<0,∴sin α=−√1−cos 2α=−√1−1625=−35,tan α=sinαcosα=34. (2)∵由(1)可得sin2α=2sin αcos α=2425,cos2α=2cos 2α﹣1=725, ∴cos(π4−2α)=cos π4cos2α+sin π4sin2α=√22×725+√22×2425=31√250.【点评】本题主要考查了同角三角函数基本关系,二倍角公式,两角差的余弦函数公式在三角函数化简求值中的应用.注意根据角的范围确定三角函数的正负号,属于基础题. 19.已知cosα=35,,. (Ⅰ)求tan α,sin2α的值; (Ⅱ)求sin(π3−α)的值.【分析】(Ⅰ)由已知利用同角三角函数基本关系式可求sin α,tan α的值,利用二倍角的正弦函数公式可求sin2α的值.(Ⅱ)利用两角差的正弦函数公式即可计算得解. 【解答】解:(Ⅰ)∵cosα=35,,, ∴sinα=−√1−cos 2α=−45, ∴tanα=sinαcosα=−43,sin2α=2sinαcosα=−2425. (Ⅱ)∴sin(π3−α)=sin π3cosα−cos π3sinα=√32×35−12×(−45)=3√3+410. 【点评】本题主要考查了同角三角函数基本关系式,二倍角的正弦函数公式,两角差的正弦函数公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题. 20.(1)已知sinα=−13,且α为第四象限角,求sin(α−π2)与tan α值; (2)已知tan α=2,求cos αsin α的值.【分析】(1)由已知利用同角三角函数基本关系式,诱导公式,即可求解. (2)利用同角三角函数基本关系式即可计算得解. 【解答】解:(1)因为sinα=−13,且α为第四象限角, 所以cosα=√1−sin 2α=2√23, 可得sin(α−π2)=−cos α=−2√23,tanα=−√24. (2)因为tan α=2, 可得sinαcosα=sinαcosαsin 2α+cos 2α=tanαtan 2α+1=25. 【点评】本题主要考查了同角三角函数基本关系式,诱导公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题. 21.已知α,β∈(0,π2),cos α=√55,sin β=45.(1)求sin2β; (2)求tan (α+2β).【分析】(1)利用同角三角函数关系以及倍角公式进行转化求解即可. (2)先求出对应的正切值,利用两角和差的正切公式进行转化求解即可. 【解答】解:(1)∵α,β∈(0,π2),cos α=√55,sin β=45.∴sin α=2√55,cos β=35.则sin2β=2sin βcos β=2×45×35=2425. (2)∵cos2β=1﹣2sin 2β=−725, ∴tan2β=sin2βcos2β=−247,tan α=sinαcosα=2,∴tan (α+2β)=tanα+tan2β1−tanαtan2β=2−2471+2×247=−211.【点评】本题主要考查三角函数值的计算,同角三角函数关系以及两角和差的三角公式是解决本题的关键,比较基础.22.已知sin (π3−x )=13,且0<x <π2,求sin (π6+x )﹣cos (2π3+x )的值.【分析】由题意利用同角三角函数的基本关系,求得cos (π3−x )的值,再利用诱导公式、两角和差的三角公式,求得要求式子的值.【解答】解:∵0<x <π2,∴−π6<π3−x <π3,∵已知sin (π3−x )=13,∴cos (π3−x )=√1−sin 2(π3−x)=2√23. 且 0<x <π2,求sin (π6+x )﹣cos (2π3+x )的∴sin (π6+x )﹣cos (2π3+x )=cos (π3−x )+cos (π3−x )=2cos (π3−x )=4√23. 【点评】本题主要考查同角三角函数的基本关系,诱导公式、两角和差的三角公式的应用,属于基础题. 23.已知tan α,,β是第三象,角. (1)求,的值;(2)求cos (α﹣β)的值.【分析】(1)利用同角三角函数的基本关系求得 sin α和cos α的值,进而即可代入求解.(2)利用同角三角函数的基本关系求得sin β的值,再利用两角差的余弦公式求得cos (α﹣β)的值. 【解答】解:(1)∵tan α=sinαcosα=−43,α∈(π2,π),sin 2α+cos 2α=1, ∴sin α=45,cos α=−35,可得3sinα+cosαsinα−cosα=3×45+(−35)45−(−35)=97.(2)∵cos β=−513,β是第三象限角, ∴sin β=−√1−cos 2β=−1213,∴cos (α﹣β)=cos αcos β+sin αsin β=−35•(−513)+45•(−1213)=−3365.【点评】本题主要考查同角三角函数的基本关系,两角差的余弦公式的应用,属于基础题.24.已知tanα,tanβ为方程式x2+6x+2=0的两根,求下列各式之值:(1)1cos2(α+β);(2)sin2(α+β)+4sin(α+β)cos(α+β)+2cos2(α+β).【分析】(1)由题意得,tanα+tanβ=﹣6,tanαtanβ=2,然后结合两角和的正切公式及同角基本关系可求.(2)由sin2(α+β)+4sin(α+β)cos(α+β)+2cos2(α+β)=cos2(α+β)[tan2(α+β)+4tan(α+β)+2],代入可求.【解答】解:(1)由题意得,tanα+tanβ=﹣6,tanαtanβ=2,∴tan(α+β)=tanα+tanβ1−tanαtanβ=−61−2=6,∴1cos2(α+β)=cos2(α+β)+sin2(α+β)cos2(α+β)=1+sin2(α+β)cos2(α+β),=1+tan2(α+β)=1+36=37,(2)sin2(α+β)+4sin(α+β)cos(α+β)+2cos2(α+β),=cos2(α+β)[tan2(α+β)+4tan(α+β)+2],=137(36+4×6+2)=6237.【点评】本题主要考查了同角基本关系的应用,解题的关键是公式的灵活应用.。

三角恒等变换(测试题及答案)

三角恒等变换(测试题及答案)

三角恒等变换(测试题及答案)三角恒等变换测试题第I卷一、选择题(本大题共12个小题,每小题5分,共60分)1.求cos24cos36-cos66cos54的值。

A。

0.B。

1/2.C。

1/4.D。

1/82.已知tan(α+β)=3,tan(α-β)=5,则tan(2α)的值为:A。

1/2.B。

2/3.C。

3/4.D。

4/53.函数y=sin(x)+cos(x)的最小正周期为:A。

π。

B。

2π。

C。

4π。

D。

π/24.已知等腰三角形顶角的余弦值等于4/5,则这个三角形底角的正弦值为:A。

3/5.B。

4/5.C。

5/6.D。

5/45.α,β都是锐角,且sin(α)=1/3,cos(α+β)=-1/2,则sin(β)的值是:A。

-2/3.B。

-1/3.C。

1/3.D。

2/36.已知-x<π/3且cos(-x)=-√3/2,则cos(2x)的值是:A。

-7/24.B。

-1/8.C。

1/8.D。

7/247.函数y=sin(x)+cos(x)的值域是:A。

[0,1]。

B。

[-1,1]。

C。

[-1/2,1/2]。

D。

[1/2,√2]8.将y=2sin(2x)的图像向左平移π/4个单位,得到y=3sin(2x)-cos(2x)的图像,只需将y=2sin(2x)的图像:A。

向右平移π/4个单位。

B。

向左平移π/4个单位C。

向右平移π/2个单位。

D。

向左平移π/2个单位9.已知等腰三角形顶角的正弦值等于4/5,则这个三角形底角的余弦值为:A。

3/5.B。

4/5.C。

5/6.D。

5/410.函数y=sin(x)+3cos(2x)的图像的一条对称轴方程是:A。

x=π/4.B。

x=π/6.C。

x=π/2.D。

x=π/3二、填空题(本大题共4小题,每小题5分,共20分.请把答案填在题中的横线上)11.已知α,β为锐角,cosα=1/10,cosβ=1/5,则α+β的值为__ π/6 __。

12.在△ABC中,已知tanA,tanB是方程3x^2-7x+2=0的两个实根,则tanC=__ 1/2 __。

高二数学三角函数三角恒等变换解三角形试题

高二数学三角函数三角恒等变换解三角形试题

高二数学三角函数三角恒等变换解三角形试题1.已知⊿ABC和⊿BCD均为边长等于的等边三角形,且,则二面角的大小为()A.30°B.45°C.60°D.90°【答案】C【解析】略2.锐角中,已知,则的取值范围是()A.B.C.D.【答案】C【解析】由正弦定理可得,所以.因为为锐角三角形,所以.即.故C正确.【考点】1正弦定理;2三角函数化简求值.3.在中,三内角、、的对边分别是、、.(1)若求;(2)若,,试判断的形状.【答案】(1)或;(2)等边三角形【解析】(1)由题根据正弦定理得到,因为,所以,可得或;(2)根据正弦定理化简可得,结合条件,得到,判断三角形为等边三角形.试题解析:(1)由正弦定理得:又∴∴或(2)由得又是等边三角形.【考点】正弦定理;余弦定理4.圆锥的表面积是底面积的3倍,则该圆锥的侧面展开图扇形的圆心角的弧度数为.【答案】【解析】设母线长为R,底面半径为r,∴底面周长=,底面面积=,侧面面积,∵侧面积是底面积的3倍,∴,【考点】扇形和圆锥的相关计算5.在中,内角A 、B、C对的边长分别是a、b、c.(1)若c=2,C=,且的面积是,求a,b的值;(2)若,试判断的形状.【答案】(1)a=2, b=2(2)等腰三角形【解析】(Ⅰ)根据余弦定理,得,再由面积正弦定理得,两式联解可得到a,b的值;(Ⅱ)根据三角形内角和定理,得到sinC=sin(A+B),代入已知等式,展开化简合并,得sinBcosA=sinAcosA,最后讨论当cosA=0时与当cosA≠0时,分别对△ABC 的形状的形状加以判断,可以得到结论试题解析:(1)由余弦定理得又的面积为,得ab=4 解得 a=2, b=2(2)得得,为直角三角形;当时,A="B," 为等腰三角形【考点】1.正余弦定理解三角形;2.三角函数基本公式6.在中,,则边的长为()A.B.3C.D.7【答案】A【解析】由三角形的面积公式,得,解得;由余弦定理,得,即;故选A.【考点】1.三角形的面积公式;2.余弦定理.7.在△ABC中,A=60°,,,则B=()A.45°B.135°C.45°或135°D.以上答案都不对【答案】A【解析】由正弦定理,得,即,因为,所以,所以;故选A.【考点】正弦定理.【易错点睛】本题考查正弦定理的应用,属于基础题;在三角形中,若已知两边及其中一边的对角,则选用正弦定理求另一边的对角,但满足该条件的三角形并非唯一,可能一解、两解或无解,要根据题目中的条件合理取舍,如本题中由正弦定理得到后,部分学生会出现选C的错误答案,要注意利用“大边对大角”进行取舍.8.已知的三边长分别为,则的面积为__________.【答案】【解析】的边长由余弦定理得,,所以三角形的面积为.【考点】1、余弦定理的运用;2、三角形的面积公式.9.△ABC的内角A、B、C的对边分别为a、b、c,若a、b、c成等比数列,且c=2a,则cosB=()A. B. C. D.【解析】根据等比数列的性质,可得b=a,将c、b与a的关系结合余弦定理分析可得答案.解:△ABC中,a、b、c成等比数列,则b2=ac,由c=2a,则b=a,=,故选B.【考点】余弦定理;等比数列.10.(2015秋•河南期末)已知△ABC的三内角A,B,C成等差数列,且AB=1,BC=4,则该三角形面积为()A.B.2C.2D.4【答案】A【解析】由A,B,C成等差数列A+B+C=π可求B,利用三角形的面积公式S=bcsinA可求.解:∵△ABC三内角A,B,C成等差数列,∴B=60°又AB=1,BC=4,∴;故选A.【考点】三角形的面积公式.11.边长为5、7、8的三角形的最大角与最小角之和为()A.90°B.120°C.135°D.150°【答案】B【解析】长为7的边对应的角满足,,所以最大角与最小角之和为120°【考点】余弦定理解三角形12.(2015秋•珠海期末)△ABC内角A,B,C的对边分别为a,b,c.已知,则B= .【答案】45°.【解析】由已知及正弦定理可得sinB==,根据大边对大角由b<a可得B∈(0,60°),即可求B的值.解:△ABC中,∵,∴由正弦定理可得:sinB===,∵b<a,∴B∈(0,60°),∴B=45°.故答案为:45°.【考点】正弦定理.13.在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB=b.(1)求角A的大小;(2)若a=4,b+c=8,求△ABC的面积.【答案】(1)(2)4【解析】(1)由正弦定理将已知等式化成角的正弦的形式,化简解出sinA=,再由△ABC是锐角三角形,即可算出角A的大小;(2)由余弦定理a2=b2+c2﹣2bccosA的式子,结合题意化简得b2+c2﹣bc=16,与联解b+c=8得到bc的值,再根据三角形的面积公式加以计算,可得△ABC的面积.解:(1)∵△ABC中,,∴根据正弦定理,得,∵锐角△ABC中,sinB>0,∴等式两边约去sinB,得sinA=∵A是锐角△ABC的内角,∴A=;(2)∵a=4,A=,∴由余弦定理a2=b2+c2﹣2bccosA,得16=b2+c2﹣2bccos,化简得b2+c2﹣bc=16,∵b+c=8,平方得b2+c2+2bc=64,∴两式相减,得3bc=48,可得bc=16.因此,△ABC的面积S=bcsinA=×16×sin=4.【考点】余弦定理;正弦定理.14.在中,角对边分别是,且满足.(1)求角的大小;(2)若,且的面积为,求.【答案】(1);(2).【解析】(1)利用正弦定理,化边为角,利用两角差的正弦公式,可得进而得,即可求解角的大小;(2)利用三角形的面积公式得,再利用余弦定理得,联立方程组即可求解的值.试题解析:(1);(2)①,利用余弦定理得:即②,联立①②,解得:.【考点】正弦定理、余弦定理及三角形的面积公式.15.在中,内角所对的边分别为,且.(1)求角的大小;(2)如果,求面积的最大值,并判断此时的形状。

三角恒等变换综合测试题

三角恒等变换综合测试题

三角恒等变换综合测试题(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.⎝⎛⎭⎫cos π12-sin π12⎝⎛⎭⎫cos π12+sin π12=( ) A .-32 B .-12 C .12D .32 2.sin45°cos15°+cos225°sin15°的值为( )A .-32B .-12C .12D .323.tan15°+1tan 15°=( )A .2B .2+ 3C .4D .4334.在△ABC 中,tan A tan B =tan A +tan B +1,则C =( ) A .45° B .135° C .150° D .30°5.已知θ是锐角,那么下列各值中,sin θ+cos θ能取得的值是( )A .43B .34C .53D .126.函数y =sin ⎝⎛⎭⎫2x +π3cos ⎝⎛⎭⎫x -π6+cos ⎝⎛⎭⎫2x +π3sin ⎝⎛⎭⎫π6-x 的图象的一条对称轴方程是( ) A .x =π4 B .x =π2 C .x =π D .x =3π27.函数y =2sin x (sin x +cos x )的最大值为( ) A .2+1 B .2-1 C . 2 D .2 8.已知tan2θ=-22,π<2θ<2π,则tan θ的值为( )A . 2B .-22C .2D .2或-229.已知cos ⎝⎛⎭⎫π6-α=13,则cos ⎝⎛⎭⎫2π3+2α的值是( ) A .-79 B .-13 C .13 D .7910.已知sin (45°+α)=55,则sin2α=( )A .-45B .-35C .35D .4511.函数y =sin x -cos x 的图象可以看成是由函数y =sin x +cos x 的图象平移得到的.下列所述平移方法正确的是( )A .向左平移π2个单位B .向右平移π4个单位C .向右平移π2个单位D .向左平移π4个单位12.已知cos (α-β)=35,sin β=-513,且α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫-π2,0,则sin α=( ) A .3365 B .6365 C .-3365 D .-6365二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.方程sin x +3cos x -a =0有解,则实数a 的取值范围是________. 14.3tan 15°+13-tan 15°的值是________.15.已知α是第三象限角且sin α=-2425,则tan α2=________.16.设α为第四象限的角,若513sin 3sin =αα,则α2tan =________. 三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)已知tan α,tan β是方程6x 2-5x +1=0的两根,且0<α<π2,π<β<3π2.求:tan (α+β)及α+β的值.18.(12分)求值:1sin 10°-3sin 80°.19.(12分)在△ABC 中,sin (A -B )=15,sin C =35,求证:tan A =2tan B .20.(12分)求函数y =7-4sin x cos x +4cos 2x -4cos 4x 的最大值与最小值. 21.(12分)已知函数f (x )=cos ⎝⎛⎭⎫π3+x cos ⎝⎛⎭⎫π3-x ,g (x )=12sin2x -14. (1)求函数f (x )的最小正周期;(2)求函数h (x )=f (x )-g (x )的最大值,并求使h (x )取得最大值的x 的集合. 22.(12分)已知函数f (x )=2sin 2⎝⎛⎭⎫π4+x -3cos2x . (1)求f (x )的周期和单调递增区间;(2)若关于x 的方程f (x )-m =2在x ∈⎣⎡⎦⎤π4,π2上有解,求实数m 的取值范围.第三章 三角恒等变换综合测试题答案一、选择题1.D 2.C 3.C 4.A 5.A 6.C 7.A 8.B 9.D 10.B 11.C 12.A 提示:1.⎝⎛⎭⎫cos π12-sin π12⎝⎛⎭⎫cos π12+sin π12=cos 2π12-sin 2π12=cos π6=32. 2.原式=sin45°cos15°-cos45°sin15°=sin30°=12.3.原式=sin 15°cos 15°+cos 15°sin 15°=1sin 15°cos 15°=2sin 30°=4.4.由题意得tan A +tan B =-1+tan A tan B ,所以tan (A +B )=tan A +tan B1-tan A tan B =-1,所以A +B =135°,C =45°.5.因为0<θ<π2,所以θ+π4∈⎝⎛⎭⎫π4,34π,所以22<sin ⎝⎛⎭⎫θ+π4≤1,又sin θ+cos θ=2sin ⎝⎛⎭⎫θ+π4,1<sin θ+cos θ≤2. 6.y =sin ⎝⎛⎭⎫2x +π3cos ⎝⎛⎭⎫x -π6+cos ⎝⎛⎭⎫2x +π3sin ⎝⎛⎭⎫π6-x =sin ⎝⎛⎭⎫2x +π3+π6-x =sin ⎝⎛⎭⎫π2+x =cos x . 7.y =2sin 2x +2sin x cos x =sin2x +1-cos2x =2sin ⎝⎛⎭⎫2x -π4+1,所以y max =2+1. 8.因为π<2θ<2π,所以π2<θ<π,则tan θ<0,tan2θ=2tan θ1-tan 2θ=-22,化简得2tan 2θ-tan θ-2=0,解得tan θ=-22或tan θ=2(舍去),所以tan θ=-22.9.cos ⎝⎛⎭⎫2π3+2α=-cos ⎝⎛⎭⎫π3-2α=-cos ⎣⎡⎦⎤2⎝⎛⎭⎫π6-α=-⎣⎡⎦⎤2cos 2⎝⎛⎭⎫π6-α-1=79. 10.sin (α+45°)=22(sin α+cos α)·=55,所以sin α+cos α=105,两端平方得1+sin2α=25,所以sin2α=-35. 11.由于y =sin x +cos x =2sin ⎝⎛⎭⎫x +π4,y =sin x -cos x =2sin ⎝⎛⎭⎫x -π4=2sin ⎣⎡⎦⎤⎝⎛⎭⎫x -π2+π4,那么函数y =sin x -cos x的图象可以看成是由函数y =sin x +cos x 的图象向右平移π2个单位得到的.12.由于α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫-π2,0,因此α-β∈(0,π),又由于cos (α-β)=35>0,因此α-β∈(0,π2),sin (α-β)=45且cos β=1213,sin α=sin (α-β+β)=sin (α-β)cos β+cos (α-β)sin β=45×1213+35×⎝⎛⎭⎫-513=3365. 二、填空题13.[-2,2] 14.1 15.-43 16.-43提示:13.因为a =sin x +3cos x =2sin ⎝⎛⎭⎫x +π3,所以-2≤a ≤2. 14.因为3-tan 15°1+3tan 15°=tan 60°-tan 15°1+tan 60°tan 15°=tan45°=1,所以3tan 15°+13-tan 15°=1.15.因为α是第三象限角,sin α=-2425,所以cos α=-725,所以tan α2=sin α1+cos α=-24251-725=-43.16.()513sin sin 2cos cos 2sin sin 2sin sin 3sin =+=+=αααααααααα, 所以2α2cos +α2cos =513,即2α2cos -1+α2cos =58, 所以α2cos =54.因为2πk -2π<α<2πk ,k ∈Z ,所以4πk -π<2α<4πk ,又因为α2cos =54>0,所以2α为第四象限的角.所以αα2cos 12sin 2--==-53,所以α2tan =-43.三、解答题17.解:因为tan α、tan β为方程6x 2-5x +1=0的两根,所以tan α+tan β=56,tan αtan β=16,所以tan (α+β)=tan α+tan β1-tan αtan β=561-16=1,因为0<α<π2,π<β<3π2,所以π<α+β<2π,所以α+β=5π4.18.解:原式=1sin 10°-3cos 10°=cos 10°-3sin 10°sin 10°cos 10°=2⎝⎛⎭⎫12cos 10°-32sin 10°12sin 20°=20sin )10sin 30cos 10cos 30(sin 4-=4sin 30°-10°sin 20°=4sin 20°sin 20°=4.19.解:因为A +B +C =π,所以C =π-(A +B ),所以sin C =sin (A +B )=35,所以sin A cos B +cos A sin B =35,①又sin (A -B )=sin A cos B -cos A sin B =15,②由①②联立得⎩⎨⎧sin A cos B =25③cos A sin B =15④③÷④得sin A cos Bcos A sin B=2,所以tan A =2tan B .20.解:y =7-4sin x cos x +4cos 2x -4cos 4x =7-2sin2x +4cos 2x (1-cos 2x ) =7-2sin2x +4cos 2x sin 2x =7-2sin2x +sin 22x =(1-sin2x )2+6, 当sin2x =1时,y min =6;当sin2x =-1时,y max =10.21.解:(1)因为f (x )=cos ⎝⎛⎭⎫π3+x cos ⎝⎛⎭⎫π3-x =⎝⎛⎭⎫12cos x -32sin x ⎝⎛⎭⎫12cos x +32sin x =14cos 2x -34sin 2x =1+cos 2x 8-3-3cos 2x 8=12cos2x -14, 所以f (x )的最小正周期为2π2=π;(2)h (x )=f (x )-g (x )=12cos2x -12sin2x =22cos ⎝⎛⎭⎫2x +π4, 当2x +π4=2k π(k ∈Z )时,h (x )取得最大值22,此时,对应的x 的集合为⎩⎨⎧⎭⎬⎫x ⎪⎪x =kx -π8,k ∈Z . 22.解:(1)f (x )=2sin 2⎝⎛⎭⎫π4+x -3cos2x =1-cos ⎝⎛⎭⎫π2+2x -3cos2x =1+sin2x -3cos2x =2sin ⎝⎛⎭⎫2x -π3+1, 周期T =π;2k π-π2≤2x -π3≤2k π+π2,解得单调递增区间为⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z ); (2)x ∈⎣⎡⎦⎤π4,π2,所以2x -π3∈⎣⎡⎦⎤π6,2π3,sin ⎝⎛⎭⎫2x -π3∈⎣⎡⎦⎤12,1, 所以f (x )的值域为[2,3],而f (x )=m +2,所以m +2∈[2,3],即m ∈[0,1].。

三角恒等变换综合 (详细答案)

三角恒等变换综合 (详细答案)

题一函数f (x )=sin x (cos x -sin x )的最小正周期是( ) A.π4 B. π2C. πD. 2π 答案:注意公式选用同类题一题面:函数y =2cos x (sin x +cos x )的最大值和最小正周期分别是( ) A .2,π B.2+1,π C .2,2πD.2+1,2π答案:B. 详解:y =2cos x sin x +2cos 2x =sin 2x +cos 2x +1=2sin ⎝ ⎛⎭⎪⎫2x +π4+1,所以当2x +π4=2k π+π2(k ∈Z ),即x =k π+π8(k ∈Z )时取得最大值2+1,最小正周期T =2π2=π.同类题二 题面:函数f (x )=cos ⎝ ⎛⎭⎪⎫-x 2+sin ⎝ ⎛⎭⎪⎫π-x 2,x ∈R . 求f (x )的最小正周期;答案:4π.详解:f (x )=cos ⎝⎛⎭⎪⎫-x 2+sin ⎝⎛⎭⎪⎫π-x 2=sin x 2+cos x 2=2sin ⎝ ⎛⎭⎪⎫x 2+π4.∴f (x )的最小正周期T =2π12=4π.题二题面:设θ为第二象限角,若π1tan()42θ+=,则sin cos θθ+=______.答案:同类题一题面:若tan θ+1tan θ=4,则sin 2θ=()A.15 B.14 C.13 D.12答案:D. 详解:∵tan θ+1tan θ=4,∴sin θcos θ+cos θsin θ=4,∴sin2θ+cos2θcos θsin θ=4,即2sin 2θ=4,∴sin 2θ=1 2.同类题二题面:已知tan θ=2,则sin⎝⎛⎭⎪⎫π2+θ-cos π-θsin⎝⎛⎭⎪⎫π2-θ-sin π-θ=()A.2 B.-2C.0 D.2 3答案:B. 详解:原式=cos θ+cos θcos θ-sin θ=21-tan θ=21-2=-2.题一题面:在△ABC中,若2cos B sin A=sin C,则△ABC的形状一定是( )A. 等腰直角三角形B. 直角三角形C. 等腰三角形D.等边三角形答案:C同类题一题面:已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,a =80,b =100,A =30°,则此三角形( )A .一定是锐角三角形B .一定是直角三角形C .一定是钝角三角形D .可能是直角三角形,也可能是锐角三角形答案:C. 详解:依题意得a sin A =b sin B ,sin B =b sin A a =100sin 30°80=58,12<58<32,因此30°<B <60°,或120°<B <150°.若30°<B <60°,则C =180°-(B +30°)>90°,此时△ABC 是钝角三角形;若120°<B <150°,此时△ABC 仍是钝角三角形.因此,此三角形一定是钝角三角形,选C.同类题二 题面:在三角形ABC 中,若cos ⎝ ⎛⎭⎪⎫π2+A sin ⎝ ⎛⎭⎪⎫32π+B tan (C -π)<0,求证:三角形ABC 为钝角三角形. 答案:见详解.详解:若cos ⎝ ⎛⎭⎪⎫π2+A sin ⎝ ⎛⎭⎪⎫32π+B tan (C -π)<0,则(-sin A )(-cos B )tan C <0, 即sin A cos B tan C <0,∵在△ABC 中,0<A <π,0<B <π,0<C <π, ∴sin A >0,⎩⎨⎧ cos B <0,tan C >0或⎩⎨⎧tan C <0,cos B >0,∴B 为钝角或C 为钝角,故△ABC 为钝角三角形.题二题面:设π,2Zkkα≠∈,sin tancos cotTαααα+=+,则( )A. T < 0B. T ≤ 0C. T > 0D. T的值可正可负答案:同类题一题面:三角形ABC是锐角三角形,若角θ终边上一点P的坐标为(sin A-cos B,cosA-sin C),则sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值是()A.1 B.-1C.3 D.4答案:B.详解:因为三角形ABC是锐角三角形,所以A+B>90°,即A>90°-B,则sin A>sin(90°-B)=cos B,sin A-cos B>0,同理cos A-sin C<0,所以点P在第四象限,sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|=-1+1-1=-1,故选B.同类题二题面:已知α为第二象限角,则cos α1+tan2α+sin α1+1tan2α=________.答案:0. 详解:原式=cos α1+sin2αcos2α+sin α1+cos2αsin2α=cos α1cos2α+sin α1sin2α=cos α1-cos α+sin α1sin α=0.题三题面:求值:oo o o tan 20tan 4020tan 40++.答案: 3同类题一题面:若α+β=3π4,则(1-tan α)(1-tan β)的值是________. 答案:2. 详解:-1=tan 3π4=tan(α+β)=tan α+tan β1-tan αtan β,∴tan αtan β-1=tan α+tan β. ∴1-tan α-tan β+tan αtan β=2, 即(1-tan α)(1-tan β)=2.同类题二 题面:若tan α=lg(10a ),tan β=lg ⎝ ⎛⎭⎪⎫1a ,且α+β=π4,则实数a 的值为( )A .1B.110 C .1或110D .1或10答案:C. 详解:tan(α+β)=1⇒tan α+tan β1-tan αtan β=lg 10a +lg ⎝ ⎛⎭⎪⎫1a 1-lg 10a ·lg ⎝ ⎛⎭⎪⎫1a =1⇒lg 2a +lg a =0,所以lg a =0或lg a =-1,即a =1或110.题四题面:设当x θ=时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=______答案:5-同类题一 题面:当函数y =sin x -3cos x (0≤x <2π)取得最大值时,x =________. 答案:56π. 详解:利用正弦函数的性质求解. ∵y =sin x -3cos x (0≤x <2π), ∴y =2sin ⎝ ⎛⎭⎪⎫x -π3(0≤x <2π).由0≤x <2π知,-π3≤x -π3<5π3,∴当y 取得最大值时,x -π3=π2,即x =56π.同类题二 题面:函数f (x )=sin x -cos ⎝ ⎛⎭⎪⎫x +π6的值域为( )A .[-2,2]B .[-3,3]C .[-1,1] D.⎣⎢⎡⎦⎥⎤-32,32答案:[-3,3]. 详解:将函数化为y =A sin(ωx +φ)的形式后求解.∵f (x )=sin x -cos ⎝ ⎛⎭⎪⎫x +π6=sin x -cos x cos π6+sin x sin π6=sin x -32cos x +12sin x =3⎝ ⎛⎭⎪⎫32sin x -12cos x=3sin ⎝ ⎛⎭⎪⎫x -π6(x ∈R ),∴f (x )的值域为[-3,3].题五 题面:已知1sin cos ()1sin cos x xf x x x+-=++,(1)计算f (x )+ f (-x )的值; (2)判断函数f (x )的奇偶性.答案:同类题一题面:已知sin(2α+β)=3sin β,设tan α=x ,tan β=y ,记y =f (x ). (1)求证:tan(α+β)=2tan α; (2)求f (x )的解析式. 答案: (1)略. (2) f (x )=x1+2x 2详解:(1)证明:由sin(2α+β)=3sin β, 得sin [(α+β)+α]=3sin [(α+β)-α],即sin(α+β)cos α+cos(α+β)sin α=3sin(α+β)cos α-3cos(α+β)sin α, ∴sin(α+β)cos α=2cos(α+β)sin α. ∴tan(α+β)=2tan α.(2)由(1)得tan α+tan β1-tan αtan β=2tan α,即x +y1-xy=2x ,∴y =x 1+2x 2,即f (x )=x1+2x 2.同类题二题面:已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x +7π4+cos ⎝ ⎛⎭⎪⎫x -3π4,x ∈R .(1)求f (x )的最小正周期和最小值;(2)已知cos(β-α)=45,cos(β+α)=-45,0<α<β≤π2,求证:[f (β)]2-2=0. 答案:(1)-2.(2)略. 详解:(1)∵f (x )=sin ⎝ ⎛⎭⎪⎫x +7π4-2π+cos ⎝ ⎛⎭⎪⎫x -π4-π2=sin ⎝ ⎛⎭⎪⎫x -π4+sin ⎝ ⎛⎭⎪⎫x -π4=2sin ⎝ ⎛⎭⎪⎫x -π4,∴T =2π,f (x )的最小值为-2.(2)证明:由已知得cos βcos α+sin βsin α=45, cos βcos α-sin βsin α=-45. 两式相加得2cos βcos α=0.∵0<α<β≤π2,∴β=π2.∴[f (β)]2-2=4sin 2π4-2=0.题一题面:在△ABC 中,若tan A +tan B +tan C >0,则△ABC 是( )A .直角三角形B .钝角三角形C .锐角三角形D .形状不确定答案:C同类题一题面:在△ABC 中a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状. 答案:(1) A =120°.(2)等腰的钝角三角形. 详解:(1)由已知,根据正弦定理得2a 2=(2b +c )·b +(2c +b )c ,即a 2=b 2+c 2+bc . 由余弦定理得a 2=b 2+c 2-2bc cos A , 故cos A =-12,∵0<A <180°,∴A =120°. (2)由(1)得sin 2A =sin 2B +sin 2C +sin B sin C =34. 又sin B +sin C =1, 解得sin B =sin C =12.∵0°<B <60°,0°<C <60°,故B =C , ∴△ABC 是等腰的钝角三角形.同类题二 题面:已知△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,向量m =(4,-1),n =⎝ ⎛⎭⎪⎫cos 2A 2,cos 2A ,且m ·n =72.(1)求角A 的大小;(2)若b +c =2a =23,试判断△ABC 的形状. 答案:(1)A =π3.(2)△ABC 为等边三角形. 详解:(1)∵m =(4,-1),n =⎝ ⎛⎭⎪⎫cos 2A 2,cos 2A ,∴m ·n =4cos 2A2-cos 2A =4·1+cos A 2-(2cos 2A -1)=-2cos 2A +2cos A +3. 又∵m ·n =72,∴-2cos 2A +2cos A +3=72, 解得cos A =12. ∵0<A <π,∴A =π3.(2)在△ABC 中,a 2=b 2+c 2-2bc cos A ,且a =3, ∴(3)2=b 2+c 2-2bc ·12=b 2+c 2-bc .①又∵b +c =23,∴b =23-c ,代入①式整理得c 2-23c +3=0,解得c =3,∴b = 3,于是a =b =c = 3,即△ABC 为等边三角形.题二题面:oo 4cos50tan 40- = ( )A B .2+ C D .1-答案:C同类题一题面:sin 47°-sin 17°cos 30°cos 17°=( )A .-32 B .-12 C.12 D.32.答案:C.详解:原式=sin 30°+17° -sin17°cos 30°cos 17°=sin 30°cos 17°+cos 30°sin 17°-sin 17°cos 30°cos 17°=sin 30°cos 17°cos 17°=sin 30°=12.同类题二题面: 计算:cos 10°+3sin 10°1-cos 80°=________.答案: 2.详解:cos 10°+3sin 10°1-cos 80° =2 s in 30°cos 10°+cos 30°sin 10° 2sin 240°=2sin 40°2sin 40°= 2.题一题面:方程x 2-2a sin(cos x )+a 2=0仅有一个解,求a 的值.答案:0或2sin1同类题一题面:若sin θ,cos θ是方程4x 2+2mx +m =0的两根,则m 的值为()A .1+ 5B .1- 5C .1±5D .-1- 5答案:B.详解: 由题意知:sin θ+cos θ=-m 2,sin θcos θ=m 4,又(sin θ+cos θ)2=1+2sin θcos θ,∴m 24=1+m 2,解得:m =1±5,又Δ=4m 2-16m ≥0,∴m ≤0或m ≥4,∴m =1- 5.同类题二题面:已知sin θ、cos θ是关于x 的方程x 2-ax +a =0的两根,则a =________. 答案:1- 2详解:由题意知,原方程判别式Δ≥0,即(-a )2-4a ≥0,∴a ≥4或a ≤0.∵⎩⎨⎧sin θ+cos θ=a ,sin θcos θ=a ,又(sin θ+cos θ)2=1+2sin θcos θ,∴a 2-2a -1=0,∴a =1-2或a =1+2(舍去).。

三角恒等变换综合算式练习题

三角恒等变换综合算式练习题

三角恒等变换综合算式练习题在学习三角学时,我们经常会遇到涉及三角恒等变换的综合算式练习题。

通过解决这些练习题,可以帮助我们加深对三角函数恒等式的理解和运用。

下面,我将给出一些练习题,并逐步解答,希望能为大家提供一些参考和帮助。

1. 练习题一:若已知sin²θ = a,cosθ = b,其中0 < θ < π/2,求证:tanθ = √(a/b - 1)。

解答:首先,我们先将tanθ用其他三角函数表示,即tanθ = sinθ/cosθ。

然后,将已知的sin²θ和cosθ代入,得到tanθ = √(a/b)。

接下来,我们需要证明√(a/b - 1)与√(a/b)是相等的。

为了证明这个恒等式,我们可以进行平方运算:左边:[√(a/b - 1)]² = a/b - 1右边:[√(a/b)]² = a/b显然,左边等于右边,所以√(a/b - 1) = √(a/b)。

综上所述,我们证明了tanθ = √(a/b - 1)。

2. 练习题二:已知cos²θ = p,sinθ>0,求证:cosθ = √(1 - p)。

解答:我们可以利用三角恒等变换公式sin²θ + cos²θ = 1,在已知条件cos²θ = p的基础上,将它代入这个恒等式,得到sin²θ = 1 - p。

根据已知条件sinθ>0,我们知道sinθ = √(1 - cos²θ)。

将这个式子代入sin²θ = 1 - p,得到1 - cos²θ = 1 - p。

经过简化运算,我们得到cosθ = √(1 - p)。

因此,我们证明了cosθ = √(1 - p)。

3. 练习题三:已知tanθ = m,求证:sin²θ = m² / (m² + 1)。

解答:首先,我们可以利用三角函数的定义,将tanθ表示为sinθ/cosθ。

三角函数、三角恒等变换、解三角形(含答案)

三角函数、三角恒等变换、解三角形(含答案)

三角函数、三角恒等变换、解三角形学校:___________姓名:___________班级:___________考号:___________1.已知1sin 2α=,则cos()2πα-=( )A. 2-B. 12-C. 12D. 2 2.200︒是( )A. 第一象限角B. 第二象限角C. 第三象限角D. 第四象限角3.已知()1cos 03ϕϕπ=-<<,则sin 2ϕ=( )A.9B.9-C.9D.9-4.函数 )321sin(π+=x y 的图像可由函数x y 21sin =的图像( ) A .向左平移32π个单位得到 B .向右平移3π个单位得到C .向左平移6π个单位得到 D .向左平移3π个单位得到5.函数5sin(2)2y x π=+图像的一条对称轴方程是( ) A .2π-=x B . 4π-=x C . 8π=x D .45π=x6.函数())24x f x π=-,x R ∈的最小正周期为( )A .2πB .πC .2πD .4π7.给出以下命题:①若α、β均为第一象限角,且βα>,且βαsin sin >;②若函数⎪⎭⎫⎝⎛-=3cos 2πax y 的最小正周期是π4,则21=a ; ③函数1sin sin sin 2--=x xx y 是奇函数;④函数1|sin |2y x =-的周期是π; ⑤函数||sin sin x x y +=的值域是]2,0[. 其中正确命题的个数为( )A . 3B . 2C . 1D . 0 8.函数()sin()(0,0,||)2f x A x A πωϕωϕ=+>><的部分图像如图示,则将()y f x =的图像向右平移6π个单位后,得到的图像解析式为( )A .x y 2sin = B.x y 2cos = C.)322sin(π+=x y D.)62sin(π-=x y 9.函数()sin 2f x x =的最小正周期是 .10.300tan 480sin +的值为________.11.在ABC ∆中,已知内角3A π=,边BC =,则ABC ∆的面积S 的最大值为 .12.比较大小:sin1 cos1(用“>”,“<”或“=”连接).13.已知角α的顶点在坐标原点,始边在x 轴的正半轴,终边经过点(1,,则cos ____.α=14.已知3cos()(,)41024x x πππ-=∈. (Ⅰ)求sin x 的值; (Ⅱ)求sin(2)3x π+的值.15.已知x x x x x f 424cos 3)cos (sin sin 3)(-++=.(1)求()f x 的最小值及取最小值时x 的集合; (2)求()f x 在[0,]2x π∈时的值域;(3)在给出的直角坐标系中,请画出()f x 在区间[,]22ππ-上的图像(要求列表,描点).16.已知3cos()(,)424x x πππ-=∈. (1)求sin x 的值; (2)求sin(2)3x π+的值.17.(1)化简:︒--︒︒︒-20sin 1160sin 20cos 20sin 212;(2)已知α为第二象限角,化简ααααααcos 1cos 1sin sin 1sin 1cos +-++-.18.函数(其中)的图象如图所示,把函数)(x f 的图像向右平移4π个单位,再向下平移1个单位,得到函数)(x g y =的图像.(1)若直线m y =与函数)(x g 图像在]2,0[π∈x 时有两个公共点,其横坐标分别为21,x x ,求)(21x x g +的值;(2)已知ABC ∆内角AB C 、、的对边分别为a b c 、、,且0)(,3==C g c .若向量(1,sin )m A = 与(2,sin )n B =共线,求a b 、的值.19.已知函数()4cos sin()16f x x x π=+-.(1)求()f x 的最小正周期; (2)求()f x 在区间[,]64ππ-上的最大值与最小值.参考答案1.C 【解析】 试题分析:由1cos()sin 22παα-==,故选C. 考点:诱导公式. 2.C 【解析】试题分析:因为第一象限角α的范围为36036090,k k k z α⋅<<⋅+∈ ; 第二象限角α的范围为36090360180,k k k z α⋅+<<⋅+∈ ; 第三象限角α的范围为360180360270,k k k z α⋅+<<⋅+∈ ; 第四象限角α的范围为360270360360,k k k z α⋅+<<⋅+∈ ;200∴︒是第三象限角,故选C.考点:象限角的概念. 3.D 【解析】试题分析:0ϕπ<< ,sin 0ϕ∴>,故sin ϕ===,因此sin 2ϕ=12sin cos 2339ϕϕ⎛⎫=⨯-=- ⎪⎝⎭,故选D. 考点:1.同角三角函数的基本关系;2.二倍角公式4.A 【解析】试题分析:因为1sin()23y x π=+可化为12sin ()23y x π=+.所以将x y 21sin =向左平移32π.可得到12sin ()23y x π=+.故选 A.本小题关键是考查1ω≠的三角函数的平移,将0x ωϕ+=时的x 的值,与0x =是对比.即可知道是向左还是向右,同时也可以知道移了多少单位.考点:1.三角函数的平移.2.类比的思想. 5.A 【解析】试题分析:5sin(2)sin(22)sin(2)cos 2222y x x x x ππππ=+=++=+= ,由c o s y x =的对称轴()x k k Z π=∈可知,所求函数图像的对称轴满足2()x k k Z π=∈即()2k x k Z π=∈,当1k =-时,2x π=-,故选A. 考点:1.三角函数图像与性质中的余弦函数的对称性;2.诱导公式. 6.C 【解析】 试题分析:这是三角函数图像与性质中的最小正周期问题,只要熟悉三角函数的最小正周期的计算公式即可求出,如sin(),cos()y A x k y A x k ωϕωϕ=++=++的最小正周期为2||T πω=,而t a n ()y A x k ωϕ=++的最小正周期为||T πω=,故函数()tan()24x f x π=-的最小正周期为212T ππ==,故选C.考点:三角函数的图像与性质. 7.D 【解析】试题分析:对于①来说,取390,60αβ=︒=︒,均为第一象限,而1sin 60390sin 3022=︒=︒=,故s i n s i n αβ<;对于②,由三角函数的最小正周期公式214||2T a a ππ==⇒=±;对于③,该函数的定义域为{}|s i n 10|2,2x x x x k k Zππ⎧⎫-≠=≠+∈⎨⎬⎩⎭,定义域不关于原点对称,没有奇偶性;对于④,记1()|sin |2f x x =-,若T π=,则有()()22f f ππ-=,而1()|1| 1.522f π-=--=,1()|1|0.522f π=-=,显然不相等;对于⑤,0sin sin ||2sin y x x x ⎧=+=⎨⎩(0)(0)x x <≥,而当()2sin (0)f x x x =≥时,22sin 2x -≤≤,故函数sin sin ||y x x =+的值域为[2,2]-;综上可知①②③④⑤均错误,故选D.考点:1.命题真假的判断;2.三角函数的单调性与最小正周期;3.函数的奇偶性;4.函数的值域. 8.D 【解析】试题分析:通过观察图像可得1A =,311341264T πππ=-=,所以T π=,所以222T ππωπ===,又因为函数()f x 过点(,1)6π,所以s i n ()12()332k k Z πππϕϕπ+=⇒+=+∈,而||2πϕ<,所以当0k =时,6πϕ=满足要求,所以函数()sin(2)6f x x π=+,将函数向右平移6π个单位,可得()s i n [2()]s i n (2)666f x x x πππ=-+=-,故选D.考点:1.正弦函数图像的性质.2.正弦函数图像的平移.3.待定系数确定函数的解析式. 9.π 【解析】试题分析:直接利用求周期公式2T πω=求得.考点:周期公式.10. 【解析】 试题分析:sin 480tan 300sin(120360)tan(36060)sin120tan 60sin 60tan 60+=︒+︒+︒-︒=︒-︒=︒-︒,故sin 480tan 300+==考点:1.诱导公式;2.三角恒等变换.11.【解析】试题分析:∵2222cos a b c bc A =+-,∴2212b c bc =+-,∵222b c bc +≥,∴122b c b c +≥,∴12bc ≤,∴1sin 2S bc A ∆==≤ 考点:1.余弦定理;2.基本不等式;3.三角形面积.12.>. 【解析】试题分析:在单位圆中,做出锐角1的正切线、正弦线、余弦线,观察他们的长度,发现正切线最长,余弦线最短,故有 tan1>sin1>cos1>0. 考点:三角函数线.13.-12. 【解析】试题分析:由题意可得 x=-1,r 2=x 2+y 2=4,r=2,故cos =x r =-12. 考点:任意角的三角函数的定义.14.(1)45;(2)2450+-.【解析】试题分析:(1)先判断4x π-的取值范围,然后应用同角三角函数的基本关系式求出sin()4x π-,将所求进行变形sin sin[()]44x x ππ=-+,最后由两角和的正弦公式进行计算即可;(2)结合(1)的结果与x 的取值范围,确定cos x 的取值,再由正、余弦的二倍角公式计算出sin 2x 、cos2x ,最后应用两角和的正弦公式进行展开计算即可.试题解析:(1)因为3(,)24x ππ∈,所以(,)442x πππ-∈,于是sin()410x π-==sin sin[()]sin()cos cos()sin444444x x x x ππππππ=-+=-+-41021025=⨯+=(2)因为3(,)24x ππ∈,故3cos 5x ===-2247sin 22sin cos ,cos 22cos 12525x x x x ==-=⨯-=-所以中24sin(2)sin 2coscos 2sin33350x x x πππ++=+=-. 考点:1.同角三角函数的基本关系式;2.两角和与差公式;3.倍角公式;4.三角函数的恒等变换.15.(1)当1-,},12|{Z k k x x ∈-=ππ;(2)[1,3];(3)详见解析. 【解析】试题分析:先根据平方差公式、同角三角函数的基本关系式、二倍角公式化简所给的函数()2sin(2)13f x x π=-+.(1)将23x π-看成整体,然后由正弦函数sin y x =的最值可确定函数()f x 的最小值,并明确此时x 的值的集合;(2)先求出23x π-的范围为2[,]33ππ-,从而sin(2)13x π≤-≤,然后可求出]2,0[π∈x 时,函数()f x 的值域;(3)根据正弦函数的五点作图法进行列表、描点、连线完成作图.试题解析:化简424()(sin cos )f x x x x x =++222222cos )(sin cos )sin 2sin cos cos x x x x x x x =-++++22cos )2sin cos 1x x x x =-++sin 221x x =+2sin(2)13x π=-+ 4分(1)当sin(2)13x π-=-时,()f x 取得最小值211-+=-,此时22,32x k k Z πππ-=-+∈即,12x k k Zππ=-∈,故此时x 的集合为},12|{Z k k x x ∈-=ππ 6分(2)当]2,0[π∈x 时,所以]32,3[32πππ-∈-x ,所以sin(2)13x π≤-≤,从而12sin(2)133x π+≤-+≤即]3,13[)(+-∈x f 9分(3)由()2sin(2)1f x x π=-+知故()f x 在区间[,]22ππ-上的图象如图所示:13分.考点:1.三角恒等变换;2.三角函数的图像与性质.16.(1)45;(2).【解析】试题分析:(1)先判断4x π-的取值范围,然后应用同角三角函数的基本关系式求出sin()4x π-,将所求进行变形sin sin[()]44x x ππ=-+,最后由两角和的正弦公式进行计算即可;(2)结合(1)的结果与x 的取值范围,确定cos x 的取值,再由正、余弦的二倍角公式计算出sin 2x 、cos2x ,最后应用两角和的正弦公式进行展开计算即可.试题解析:(1)因为3(,)24x ππ∈,所以(,)442x πππ-∈,于是sin()410x π-==sin sin[()]sin()cos cos()sin444444x x x x ππππππ=-+=-+-41021025=⨯+=(2)因为3(,)24x ππ∈,故3cos 5x ===-2247sin 22sin cos ,cos 22cos 12525x x x x ==-=⨯-=-所以中24sin(2)sin 2coscos 2sin33350x x x πππ++=+=-. 考点:1.同角三角函数的基本关系式;2.两角和与差公式;3.倍角公式;4.三角函数的恒等变换. 17.(1)1-;(2)0. 【解析】试题分析:本题主要考查同角三角函数基本关系式与诱导公式的应用.(1)将分子中的1变形为22sin 20cos 20︒+︒,从而分子进一步化简为cos20sin 20︒-︒,分母s i n 16n 20︒︒利用诱导公式与同角三角函数的基本关系式转化为s i n 20c o s 2︒-︒,最后不难得到答案;(2)1sin |cos |αα-=,1cos |sin |αα-=,然后根据三角函数在第二象限的符号去绝对值进行运算即可.试题解析:(1)原式=cos 20sin 201sin 20cos 20sin 20cos 20︒-︒==-︒-︒︒-︒6分(2)解:原式cos sin 1sin 1cos cos |sin |cos |sin |αααααα--=⨯+⨯ 1cos 1cos cos sin 0cos sin αααααα--=⨯+⨯=- 6分. 考点:1.同角三角函数的基本关系式;2.三角恒等变换;3.诱导公式.18.(1)123()2g x x +=-;(2)a b ⎧=⎨=⎩【解析】试题分析:本题主要考查三角函数的图像和性质,向量共线的充要条件以及解三角形中正弦定理余弦定理的应用,考查分析问题解决问题的能力和计算能力,考查数形结合思想和化归与转化思想.第一问,先由函数图像确定函数解析式,再通过函数图像的平移变换得到()g x 的解析式,由于y m =与()g x 在[0,]2π上有2个公共点,根据函数图像的对称性得到2个交点的横坐标的中点为3π,所以122()()3g x x g π+=得出函数值;第二问,先用()0g c =在ABC ∆中解出角C 的值,再利用两向量共线的充要条件得到sin 2sin B A =,从而利用正弦定理得出2b a =,最后利用余弦定理列出方程解出边,a b 的长.试题解析:(1)由函数)(x f 的图象,ωπππ2)3127(4=-=T ,得2=ω, 又3,32πϕπϕπ=∴=+⨯,所以)32sin()(π+=x x f 2分 由图像变换,得1)62sin(1)4()(--=--=ππx x f x g 4分由函数图像的对称性,有23)32()(21-==+πg x x g 6分 (Ⅱ)∵ ()sin(2)106f C C π=--=, 即sin(2)16C π-= ∵ 0C π<<,112666C πππ-<-<, ∴ 262C ππ-=,∴ 3C π=. 7分 ∵ m n 与共线,∴ sin 2sin 0B A -=.由正弦定理 sin sin a b A B=, 得2,b a = ① 9分 ∵ 3c =,由余弦定理,得2292cos 3a b ab π=+-, ② 11分解方程组①②,得a b ⎧=⎨=⎩ 12分 考点:1.函数图像的平移变换;2.函数图像的对称性;3.正弦定理和余弦定理;4.函数的周期性;5.两向量共线的充要条件.19.(1)T =π;(2)最大值2;最小值-1.【解析】试题分析:(1)本小题首先需要对函数的解析式进行化简()⎪⎭⎫ ⎝⎛+=62sin 2πx x f ,然后根据周期公式可求得函数的周期T =π;(2)本小题首先根据.32626,46πππππ≤+≤-≤≤-x x 所以,然后结合正弦曲线的图像分别求得函数的最大值和最小值.试题解析:(1)因为1)6sin(cos 4)(-+=πx x x f1)cos 21sin 23(cos 4-+=x x x 1cos 22sin 32-+=x xx x 2cos 2sin 3+=)62sin(2π+=x所以)(x f 的最小正周期为π(2)因为.32626,46πππππ≤+≤-≤≤-x x 所以于是,当6,262πππ==+x x 即时,)(x f 取得最大值2; 当)(,6,662x f x x 时即πππ-=-=+取得最小值—1. 考点:三角函数的图像与性质.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数综合考试卷一、选择题(每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求) 1、在△ABC 中,222,b c bc a +-=则角A 等于( ) A6π B 4π C 3π D 2π 2、函数()2sin cos f x x x =是( ) A 最小正周期为2π的奇函数B 最小正周期为2π的偶函数C 最小正周期为π的奇函数D 最小正周期为π的偶函数3、在△ABC中,2,2b c A ===,则△ABC 的面积为( ) A 2BC D 14、设π20<≤x ,且x x x cos sin 2sin 1-=-,则( ) A 0x π≤≤ B544x ππ≤≤C 744x ππ≤≤D 322x ππ≤≤5、要测出杭州夕照山雷锋塔BC 的高,从山脚A测得AC =,塔顶B 的仰角045α=,已知山坡的倾斜角015β=,则雷锋塔高BC 为( ) A 70mBC D 62m6、若3(,cos ),),2a b a αα== ∥b ,02απ≤<,则α=( ) A6π B 76π C 433ππ或 D 766ππ或7、若x 是△ABC 的最小内角,则函数sin cos y x x =+的值域是( )A (1,B C (1,2]D 8、在△ABC 中,5sin 13A =,3cos 5B =,则cosC 的值为( ) βαABC DA 1665-B 5665C 1665-或5665D 5665-或16659、在△ABC 中,22720,,8b bc c a A --===则△ABC 的面积为( )ABC 2D 7210、如果把直角三角形的三边都减少同样的长度,仍能构成三角形,则这个新的三角形的形状为( )A 锐角三角形B 直角三角形C 钝角三角形D 由减少的长度决定11、已知在区间[0,]2π内有两个不同的实数x 的值满足cos2210x x k --=,则k 的范围是( )A 01k <≤B 31k -≤≤C 01k ≤<D 1k < 12、在△ABC 中,,EF 分别是AC ,AB 的中点,且32AB AC =,若BEt CF<恒成立,则t 的最小值为( ) A43 B 1 C 78 D 45 二、填空题:(每小题4分,共16分)13、已知角θ的顶点为坐标原点,始边为x 轴的正半轴,若()4,p y 是角θ终边上一点,且sin θ=,则y =________________. 14、正在向正北开的轮船看见正东方向有两座灯塔,过15分钟后,再看这两座灯塔,分别在正东南和南偏东075的方向,两座灯塔相距10海里,则轮船的速度是_______________海里/小时。

15、在△ABC 中,2AB AC ==,且∠6B π=,则△ABC 的面积为_____________。

16、若函数()f x 的定义域为R ,且存在常数0m >,对任意x R ∈,有|()|||f x m x ≤,则称()f x 为F 函数。

给出下列函数:①2()f x x =,②()s i n c o s f x x x =+,③2()1xf x x x =++,④()f x 是定义在R 上的奇函数,且满足对一切实数12,x x 均有121|()()|2012|f x f x x x -≤-,⑤12()f x x =,其中是F 函数的有____________________。

三角函数综合考试卷二、填空题答案:13、 14、 15、 16、三、解答题(17-21每小题12分,22题14分,共74分.解答应写出文字说明,证明过程或演算步骤)17、在△ABC 中,已知113cos ,cos(),07142A AB B A π=-=<<< (1)求tan 2A 的值; (2)求角B18、已知2(2cos ,1)a x = ,(1cos )(,,)b x x m x R m R m y a b =+∈∈=⋅ 是常数且(1)求y 关于x 的函数关系式()y f x =; (2)若[0,]2x π∈时,()f x 的最大值为4,求m 的值;(3)求()f x 的最小正周期及单调减区间。

19、如图,A ,B是海面上位于东西方向相距(53+海里的两个观测点,现位于A 点北偏东60°,B 点北偏西45°的D 点有一艘轮船发出求救信号,位于B 点南偏西75°且与B点相距海里的C 点的救援船立即前往营救,其航行速度为30海里/小时,该救援船到达D 点需要多长时间?20、如图所示,在Rt △ABC 内有一内接正方形,它的一条边在斜边BC 上,设AB=a ,∠ABC θ=(1)求△ABC 的面积()f θ与正方形面积()g θ;(2)当θ变化时,求()()f g θθ的最小值。

ABCDEH G21、在△ABC 中,tan tan b B c C =, (1)判断△ABC 的形状,并说明理由;(2)若BD 是边AC 的中线,且BD =,求△ABC 面积的最大值。

22、已知函数()sin cos g x a x b x c =++ (1)当0b =时,求()g x 的值域;(2)当1a =,0c =时,函数()g x 的图象关于53x π=对称,求函数sin cos y b x a x =+的对称轴。

(3)若()g x 图象上有一个最低点11(,1)6π,如果图象上每点纵坐标不变,横坐标缩短到原来的3π倍,然后向左平移1个单位可得()y f x =的图象,又知()3f x =的所有正根从小到大依次为123,,,,,n x x x x ,且13(2)n n x x n --=≥,求()f x 的解析式。

三角函数综合考试卷(参考答案)一、选择题(每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求) 1—5:CCABD 6—10:DAABC 11—12:CC 二、填空题:(每小题4分,共16分)13、8 14、1) 15、 16、③④三、解答题(17-21每小题12分,22题14分,共74分.解答应写出文字说明,证明过程或演算步骤)17、解:(1)∵1cos 7A =且(0,)2A π∈∴tan A =又22tan tan 21tan 47A A A ==-- (2)∵(0,)2A π∈ 1cos 7A =∴sin A = 又2B A π<<∴ 02A B π<-< ∵13cos()14A B -=,∴sin()A B -=∴cos cos[()]B A A B =--cos cos()sin sin()A A B A A B =-+-21=∵(0,)2B π∈ ∴3B π=18、解:(1)∵cos221y x x m =++ ∴2sin(2)16y x m π=+++(2)1m = (3)Z k k k T ∈++=],32,6[;πππππ 19、解:在△ABD 中,由正弦定理:0sin sin 30AB BD ADB =∠12BD=⇒2BD =⇒BD =在△CBD 中,由余弦定理:2222cos60CD BC BD BC BD =+-⋅⇒2220CD =+-⋅⇒213501504501050CD =+-=⇒CD =∴306t ==(小时)答:该救援船到达D 点需要的时间为6小时20、解:(1)由题得:tan AC a θ= ∴21()tan (0)22f a πθθθ=<< 设正方形的边长为x ,则sin xBG θ=,由几何关系知:AGD θ∠= ∴cos AG x θ= 由BG AG a += ⇒ cos sin xx a θθ+= ⇒sin 1sin cos a x θθθ=+∴222sin ()(0)(1sin cos )2a g θπθθθθ=<<+ (2)2()(1sin cos )1sin 21()2sin cos sin 24f g θθθθθθθθ+==++令:sin 2t θ= ∵02πθ<< ∴(0,1]t ∈ ∴11411()44t y t t t =++=++ ∵函数141()4y t t=++在(0,1]递减∴min 94y =(当且仅当1t =即4πθ=时成立)答:21()tan (0)22f a πθθθ=<< 222sin ()(0)(1sin cos )2a g θπθθθθ=<<+当 4πθ=时成立 m i n 94y =21、解:(1)∵tan tan b B c C = ∴sin sin cos cos B C b c B C= 即:22cos cos b C c B = 即:2222222222a b c a c b b c ab ac+-+-= ⇒222222()()b a bc c a c b +-=+- ⇒232232a b b bc a c c b c +-=+- ⇒ 2233220a b a c b c b c bc -+-+-= ⇒222()()()()0a b c b c b bc c bc b c -+-+++-=⇒222()()0b c a b bc c bc -++++= ∴b c =∴△ABC 为等腰三角形(2)设,AD DC m ==则2AB m =,根据面积公式得:11sin 2222ABC S AB AC A m ∆=⋅=⨯⨯根据余弦定理得:22222224353cos24AB AD BD m m m A m m m +-+--===⨯∴2ABC S ∆==易知当253m =时,max ()2ABC S ∆=22、解:(1)当0b =时,()sin g x a x c =+ 当0a =时,值域为:{}c当0a ≠时,值域为:[||,||]a c a c -++(或将a 分三类讨论也行)(2)当1a =,0c =时,()sin cos g x x b x =+且图象关于53x π=对称。

∴1|2b = ⇒b =∴函数sin cos y b x a x =+即:cos y x x =+∴)6y x π=+ 由()6x k k Zππ+=∈∴函数的对称轴为:()6x k k Z ππ=-∈(3)由()sin cos g x a x b x c =++)x c ϕ=++ (其中sinϕ=,cos ϕ=由()g x 图象上有一个最低点11(,1)6π,所以112621k c ππϕπ⎧+=-⎪⎨⎪=⎩∴72,31k k Z c πϕπ⎧=-∈⎪=- ∴()(1)sin()3g x c x c π=--+又图象上每点纵坐标不变,横坐标缩短到原来的3π倍,然后向左平移1个单位可得()y f x =的图象,则()(1)sin3f x c x c π=-+又∵()3f x =的所有正根从小到大依次为123,,,,,n x x x x ,且13(2)n n x x n --=≥所以()y f x =与直线3y =的相邻交点间的距离相等,根据三角函数的图象与性质,直线3y =要么过()f x 的最高点或最低点,要么是2112c y -+= 即:213c -=或13c c -+=(矛盾)或21132c -+= ⇒2c =或3c =当2c =时,函数的 ()sin 23f x x π=+ 6T =直线3y =和()sin23f x x π=+相交,且13(2)n n x x n --=≥,周期为3(矛盾)当3c =时,函数 ()2sin 33f x x π=+ 6T =直线3y =和()2sin 33f x x π=+相交,且13(2)n n x x n --=≥,周期为6(满足)综上:()2sin 33f x x π=+。

相关文档
最新文档