教学检测:河南郑州一中17-18学年下学期高一期末复习卷
河南省郑州一中2017-2018学年高一下学期期末复习语文试卷Word版含答案

一中2017-2018学年下学期高一年级期末复习试卷 语 文 注意事项: 1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷 阅读题 一、现代文阅读(35分) (一)(2017-2018学年山西大学附中高一下月考)论述类文本阅读(本题共3小题,9分) 阅读下面的文字,完成1-3题。
中国传统美学所讲的“意象说”主张“美在意象”:美在“象”外之“意”,言外之情。
任何一件美的文艺作品,其本身或为声色,或为言词,都是有“象”的(“在场的东西”)。
能体悟到“象外之意”“词外之情”,就是一种美感。
此种美不是低层次的感性美,而是深层次的意境美、精神美。
“意象说”突破了美在声色之类的局限性,深刻地揭示了美之为美的本质内涵,不仅值得中国美学继承和弘扬,而且也值得世界美学借鉴。
但为什么要深入到象外,才能达到此种美的境界呢?“意象说”没有做论证。
我根据“万有相通”的哲学本体论认为,原因就在于,任何一件美的作品,都是作者凝聚了作品背后无尽的联系之网的结晶。
这背后无尽的联系之网,说得通俗具体一点,就是指形成作品本身的背后的人、事物和社会历史背景等。
我们对一件作品的欣赏,不过是把凝聚在作品这一点“在场的东西”中无尽的内涵(“不在场的东西”)展现在想象中,点点滴滴地加以玩味;不过是回归到形成作品的母源,从母源中,我们对作品获得了一种“原来如此”的醒悟,从而产生了一种满足感。
这也就是我们通常所说的“美的愉悦”“美的享受”。
这种愉悦和享受不是感官的娱乐或感性的满足,而是精神上的满足,思想上的满足。
河南省郑州市2017-2018学年高一下学期期末考试数学试题有答案

2017-2018学年下期期末考试高一数学试题卷 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.0sin 585的值为( ) A .22 B .22- C .32- D .322.已知向量a =(3,5-),b =(5,3),则a 与b ( )A .垂直B .不垂直也不平行C .平行且同向D .平行且反向 3.下列各式中,值为32的是( ) A .002sin15cos15 B .2020cos 15sin 15- C .202sin 151- D .2020sin 15cos 15+4.某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们所有比赛得分的情况用如下图所示的茎叶图表示,则运动员甲得分的中位数,乙得分的平均数分别为( )A .19,13B .13,19 C.19,18 D .18,195.从装有大小材质完全相同的3个红球和3个黑球的不透明口袋中,随机摸出两个小球,则两个小球同色的概率是( ) A .23 B .25 C. 12 D .136.函数cos sin cos sin 4444y x x x x ππππ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++•+-+ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦在一个周期内的图像是( ) A . B . C. D .7.设单位向量1e ,2e 的夹角为60°,则向量1234e e +与向量1e 的夹角的余弦值是( ) A .34 B .537C.253737 D .537378.如果下面程序框图运行的结果1320s =,那么判断框中应填入( )A .10?k <B .10?k > C. 11?k < D .11?k >9.甲、乙两人各自在400米长的直线型跑道上跑步,则在任一时刻两人在跑道上相距不超过50米的概率是( ) A .18 B .1136 C.14 D .156410.已知函数()sin(2)f x x ϕ=+的图像关于直线6x π=对称,则ϕ可能取值是( )A .2π B .12π- C.6π D .6π- 11.如图所示,点A ,B ,C 是圆O 上的三点,线段OC 与线段AB 交于圈内一点P ,若3OC mOA mOB =+,AP AB λ=,则λ=( )A .56 B .45 C.34 D .2512.已知平面上的两个向量OA 和OB 满足cos OA α=,sin OB α=,[0,]2πα∈,0OA OB ⋅=,若向量(,)OC OA OB R λμλμ=+∈,且22221(21)cos 2(21)sin 4λαμα-+-=,则OC 的最大值是( ) A .32 B .34 C.35 D .37第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.已知tan 4α=,tan()3πβ-=,则tan()αβ+ .14.已知样本7,8,9,x ,y 的平均数是8,标准差是2,则xy = .15.已知ABC ∆的三边长4AC =,3BC =,5AB =,P 为AB 边上的任意一点,则()CP BC BA -的最小值为 . 16.将函数()2sin(2)6f x x π=+的图像向左平移12π个单位,再向下平移2个单位,得到()g x 的图像,若12()()16g x g x =,且1x ,2[2,2]x ππ∈-,则122x x -的最大值为 . 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知向量(1,2)a =,(3,4)b =-. (I )求向量a b -与向量b 夹角的余弦值 (II )若()a a b λ⊥-,求实数λ的值.18.某同学用“五点法”画函数()sin()(0,)2f x A x B πωϕωϕ=++><在某一个周期内的图像时,列表并填入了部分数据,如下表:(I )请将上表数据补充完整,并直接写出函数()f x 的解析式 (II )将()f x 的图像上所有点向左平行移动6π个单位长度,得到()y g x =的图像,求()y g x =的图像离y 轴最近的对称中心.19. 某商场经营某种商品,在某周内获纯利y (元)与该周每天销售这种商品数x 之间的一组数据关系如表:(I )画出散点图;(II )求纯利y 与每天销售件数x 之间的回归直线方程;(III )估计当每天销售的件数为12件时,每周内获得的纯利为多少? 附注:721280ii x==∑,721()27i i x x =-=∑,713076i i i x y ==∑,72134992i i y ==∑,1122211()()()n niii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.20. 在矩形ABCD 中,点E 是BC 边上的中点,点F 在边CD 上.(I )若点F 是CD 上靠近C 的四等分点,设EF AB AD λμ=+,求λμ的值; (II )若3AB =,4BC =,当2AE BE =时,求DF 的长.21.某中学举行了数学测试,并从中随机抽取了60名学生的成绩(满分100分)作为样本,其中成绩不低于80分的学生被评为优秀生,得到成绩分布的频率分布直方图如图所示. (I )若该所中学共有3000名学生,试利用样本估计全校这次考试中优秀生人数;(II )若在样本中,利用分层抽样的方法从成绩不低于70分的学生中随机抽取6人,再从中抽取3人,试求恰好抽中1名优秀生的概率.22.已知函数21()sin 3cos 2f x x x x ωωω=+(0ω>),()y f x =的图象与直线2y =相交,且两相邻交点之间的距离为x . (I )求函数()f x 的解析式; (II )已知,2x ππ⎡⎤∈⎢⎥⎣⎦,求函数()f x 的值域; (III )求函数()f x 的单调区间并判断其单调性.试卷答案一、选择题1-5:BABCB 6-10:BDADC 11、12:CB 二、填空题 13.113 14.60 15.16 16.5512π 三、解答题17.解:(1)()4,2a b -=-,设a b -与a 的夹角为θ,所以()()24cos (32)()a a b bb b θ-⋅===-+-⨯- , (2)()13,24a b λλλ-=+-()a ab λ⊥-,∴()0a a b λ⋅-= ()()1132240λλ∴⨯++⨯-=,解得1λ= 18....解:..(1)...根据表中已知数据,解得...........5A =,.2ω=,.6πϕ=-..数据补全如下表:........且函数表达式为.......f(x)=5sin 2+26x π⎛⎫- ⎪⎝⎭..(2)...由.(1)...知.f(x)=5sin 2+26x π⎛⎫- ⎪⎝⎭,. 因此..g(x)=5sin 2+2=5sin 2+2666x x πππ⎡⎤⎛⎫⎛⎫+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.. 因为..y sinx =的对称中心为......(,2)k π ,.k Z ∈,令..2x+=k 6ππ,.k Z ∈,解得...x=212k ππ-,.k Z ∈,.即.()y g x =图象的对称中心为........222kx π(-,),.k Z ∈,其中离....y 轴最近的对称中心为.........(,2)12π-..19.解:(1)(2)712723456789675659637179808270730767670136 4.92807362813670640.928i ii iix y x y nx yb xnxa y bx =++++++==++++++==--⨯⨯∴===≈-⨯-∴=-=-⨯≈∑∑∴回归方程为: 4.940.9y x ∧=+(3)当12x -时 4.91240.999.7y ∧=⨯+=所以估计当每天销售的简述为12件时,周内获得的纯利润为99.7元. 20.解:(1)EFEC CF ,因为E 是BC 边的中点,点F 是CD 上靠近C 的四等分点,所以1124EF EC CF BC CD =+=+,在矩形ABCD 中,,BC AD CD AB ,所以,1142EF AB AD =-+,即14λ=-,12μ=,则18λμ⋅=-. (2)设DFmDC (0)m ,则(1)CF m DC ,1122AEABBC ABAD , (1)(1)BF CF BC m DC BC m AB AD ,又0AB AD ⋅=,所以1()[(m 1)]2AE BF AB AD AB AD ⋅=+-+221(1)2m ABAD 9(1)82m , 解得13m,所以DF 的长为1. 21.解:(1)由直方图可知,样本中数据落在[]80,100的频率为0.20.10.3+=,则估计全校这次考试中优秀生人数为30000.3900⨯=.(2)由分层抽样知识可知,成绩在[)70,80,[)80,90,[]90,100间分别抽取了3人,2人,1人. 记成绩在[)70,80的3人为a ,b ,c ,成绩在[)80,90的2人为d ,e ,成绩在[]90,100的1人为f ,则从这6人中抽取3人的所有可能结果有(,,)a b c ,(,,)a b d ,(,,)a b e ,(,,)a b f ,(,,)a c d ,(,,)a c e ,(,,)a c f ,(,,)a d e ,(,,)a d f ,(,,)a e f ,(,,)b c d ,(,,)b c e ,(,,)b c f ,(,,)b d e ,(,,)b d f ,(,,)b e f ,(,,)c d f ,(,,)c e f ,(,,)d e f 共20种,其中恰好抽中1名优秀生的结果有(,,)a b d ,(,,)b c d ,(,,)c a d ,(,,)a b e ,(,,)b c e (,,)c a e ,(,,)a b f ,(,,)b c f ,(,,)c a f 共9种,所以恰好抽中1名优秀生的概率为920P =.22.解:(1)()211cos2ωx 1sin 21sin(2)22226f x x xcos x sin x x πωωωωω-=+==-+=-+与直线2y =的图象的两相邻交点之间的距离为π,则T π=,所以1ω=(2)7131[,]2[,]sin(2)[1,]266662x x x ππππππ∈∴+∈∴+∈-()f x ∴的值域是1[,2]2(3)令222()262kx x kx k Z πππ-≤+≤+∈,则()36kx x kx k Z ππ-≤≤+∈,所以函数()f x 的单调减区间为()ππk π-,k πk Z 63⎡⎤+∈⎢⎥⎣⎦令3222(),262kx x kx k Z πππ+≤+≤+∈则2()63kx x kx k Z ππ+≤≤+∈, 所以函数()f x 的单调增区间为()π2πk π,k πk Z 63⎡⎤++∈⎢⎥⎣⎦。
河南省郑州市2017-2018学年高一下学期期末考试数学试题含答案

2017-2018学年下期期末考试高一数学试题卷 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.0sin585的值为( )A .2 B .2- C . D 2.已知向量a =(3,5-),b =(5,3),则a 与b ( )A .垂直B .不垂直也不平行C .平行且同向D .平行且反向3.的是( ) A .002sin15cos15 B .2020cos 15sin 15- C .202sin 151- D .2020sin 15cos 15+4.某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们所有比赛得分的情况用如下图所示的茎叶图表示,则运动员甲得分的中位数,乙得分的平均数分别为( )A .19,13B .13,19 C.19,18 D .18,195.从装有大小材质完全相同的3个红球和3个黑球的不透明口袋中,随机摸出两个小球,则两个小球同色的概率是( ) A .23 B .25 C. 12 D .136.函数cos sin cos sin 4444y x x x x ππππ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++∙+-+ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦在一个周期内的图像是( )A .B . C.D .7.设单位向量1e ,2e 的夹角为60°,则向量1234e e +与向量1e 的夹角的余弦值是( )A .34 B .537C.37 D .378.如果下面程序框图运行的结果1320s =,那么判断框中应填入( )A .10?k <B .10?k > C. 11?k < D .11?k >9.甲、乙两人各自在400米长的直线型跑道上跑步,则在任一时刻两人在跑道上相距不超过50米的概率是( ) A .18 B .1136 C.14 D .156410.已知函数()sin(2)f x x ϕ=+的图像关于直线6x π=对称,则ϕ可能取值是( )A .2π B .12π- C.6π D .6π- 11.如图所示,点A ,B ,C 是圆O 上的三点,线段OC 与线段AB 交于圈内一点P ,若3OC mOA mOB =+,AP AB λ=,则λ=( )A .56 B .45 C.34 D .2512.已知平面上的两个向量OA 和OB 满足cos OA α=,sin OB α=,[0,]2πα∈,0OA OB ⋅=,若向量(,)OC OA OB R λμλμ=+∈,且22221(21)cos 2(21)sin 4λαμα-+-=,则OC 的最大值是( ) A .32 B .34 C.35 D .37第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.已知tan 4α=,tan()3πβ-=,则tan()αβ+ .14.已知样本7,8,9,x ,y 的平均数是8,则xy = . 15.已知ABC ∆的三边长4AC =,3BC =,5AB =,P 为AB 边上的任意一点,则()CP BC BA -的最小值为 .16.将函数()2sin(2)6f x x π=+的图像向左平移12π个单位,再向下平移2个单位,得到()g x 的图像,若12()()16g x g x =,且1x ,2[2,2]x ππ∈-,则122x x -的最大值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知向量(1,2)a =,(3,4)b =-. (I )求向量a b -与向量b 夹角的余弦值 (II )若()a a b λ⊥-,求实数λ的值.18.某同学用“五点法”画函数()sin()(0,)2f x A x B πωϕωϕ=++><在某一个周期内的图像时,列表并填入了部分数据,如下表:(I )请将上表数据补充完整,并直接写出函数()f x 的解析式(II )将()f x 的图像上所有点向左平行移动6π个单位长度,得到()y g x =的图像,求()y g x =的图像离y 轴最近的对称中心.19. 某商场经营某种商品,在某周内获纯利y (元)与该周每天销售这种商品数x 之间的一组数据关系如表:(I )画出散点图;(II )求纯利y 与每天销售件数x 之间的回归直线方程;(III )估计当每天销售的件数为12件时,每周内获得的纯利为多少? 附注:721280ii x==∑,721()27i i x x =-=∑,713076i i i x y ==∑,72134992i i y ==∑,1122211()()()n niii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.20. 在矩形ABCD 中,点E 是BC 边上的中点,点F 在边CD 上.(I )若点F 是CD 上靠近C 的四等分点,设EF AB AD λμ=+,求λμ的值; (II )若3AB =,4BC =,当2AE BE =时,求DF 的长.21.某中学举行了数学测试,并从中随机抽取了60名学生的成绩(满分100分)作为样本,其中成绩不低于80分的学生被评为优秀生,得到成绩分布的频率分布直方图如图所示. (I )若该所中学共有3000名学生,试利用样本估计全校这次考试中优秀生人数; (II )若在样本中,利用分层抽样的方法从成绩不低于70分的学生中随机抽取6人,再从中抽取3人,试求恰好抽中1名优秀生的概率.22.已知函数21()sin cos 2f x x x x ωωω=-+(0ω>),()y f x =的图象与直线2y =相交,且两相邻交点之间的距离为x .(I )求函数()f x 的解析式; (II )已知,2x ππ⎡⎤∈⎢⎥⎣⎦,求函数()f x 的值域; (III )求函数()f x 的单调区间并判断其单调性.试卷答案一、选择题1-5BABCB 6-10BDADC 11、12:CB 二、填空题 13.113 14.60 15.16- 16.5512π 三、解答题17.解:(1)()4,2a b -=-,设a b -与a 的夹角为θ,所以()()2(3)(2)4cos a a b bb b θ-⋅⨯-+-⨯===- , (2)()13,24a b λλλ-=+-()a ab λ⊥-,∴()0a a b λ⋅-= ()()1132240λλ∴⨯++⨯-=,解得1λ= 18....解:..(1)...根据表中已知数据,解得...........5A =,.2ω=,.6πϕ=-..数据补全如下表:........且函数表达式为.......f(x)=5sin 2+26x ⎛⎫- ⎪⎝⎭..(2)...由.(1)...知.f(x)=5sin 2+26x π⎛⎫- ⎪⎝⎭,. 因此..g(x)=5sin 2+2=5sin 2+2666x x πππ⎡⎤⎛⎫⎛⎫+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦..因为..y sinx =的对称中心为......(,2)k π ,.k Z ∈,令..2x+=k 6ππ,.k Z ∈,解得...x=212k ππ-,.k Z ∈,.即.()y g x =图象的对称中心为........222kx π(-,),.k Z ∈,其中离....y 轴最近的对称中心为.........(,2)12π-..19.解:(1)(2)712723456789675659637179808270730767670136 4.92807362813670640.928i ii iix y x y nx yb xnxa y bx =++++++==++++++==--⨯⨯∴===≈-⨯-∴=-=-⨯≈∑∑∴回归方程为: 4.940.9y x ∧=+(3)当12x -时 4.91240.999.7y ∧=⨯+=所以估计当每天销售的简述为12件时,周内获得的纯利润为99.7元.20.解:(1)EF EC CF =+,因为E 是BC 边的中点,点F 是CD 上靠近C 的四等分点,所以1124EF EC CF BC CD =+=+,在矩形ABCD 中,,BC AD CD AB ==-, 所以,1142EF AB AD =-+,即14λ=-,12μ=,则18λμ⋅=-. (2)设DF mDC =(0)m >,则(1)CF m DC =-,1122AE AB BC AB AD =+=+,(1)(1)BF CF BC m DC BC m AB AD =+=-+=-+,又0AB AD ⋅=, 所以1()2A E ⋅=221(1)2m AB AD =-+9m=, 解得13m =,所以DF 的长为1. 21.解:(1)由直方图可知,样本中数据落在[]80,100的频率为0.20.10.3+=,则估计全校这次考试中优秀生人数为30000.3900⨯=.(2)由分层抽样知识可知,成绩在[)70,80,[)80,90,[]90,100间分别抽取了3人,2人,1人.记成绩在[)70,80的3人为a ,b ,c ,成绩在[)80,90的2人为d ,e ,成绩在[]90,100的1人为f ,则从这6人中抽取3人的所有可能结果有(,,)a b c ,(,,)a b d ,(,,)a b e ,(,,)a b f ,(,,)a c d ,(,,)a c e ,(,,)a c f ,(,,)a d e ,(,,)a d f ,(,,)a e f ,(,,)b c d ,(,,)b c e ,(,,)b c f ,(,,)b d e ,(,,)b d f ,(,,)b e f ,(,,)c d f ,(,,)c e f ,(,,)d e f 共20种,其中恰好抽中1名优秀生的结果有(,,)a b d ,(,,)b c d ,(,,)c a d ,(,,)a b e ,(,,)b c e (,,)c a e ,(,,)a b f ,(,,)b c f ,(,,)c a f 共9种,所以恰好抽中1名优秀生的概率为920P =. 22.解:(1)()211cos2ωx 1sin 21sin(2)22226f x x xcos x sin x x πωωωωω-=+==-+=-+与直线2y =的图象的两相邻交点之间的距离为π,则T π=,所以1ω=(2)7131[,]2[,]sin(2)[1,]266662x x x ππππππ∈∴+∈∴+∈-()f x ∴的值域是1[,2]2(3)令222()262kx x kx k Z πππ-≤+≤+∈,则()36kx x kx k Z ππ-≤≤+∈,所以函数()f x 的单调减区间为()ππk π-,k πk Z 63⎡⎤+∈⎢⎥⎣⎦令3222(),262kx x kx k Z πππ+≤+≤+∈则2()63kx x kx k Z ππ+≤≤+∈, 所以函数()f x 的单调增区间为()π2πk π,k πk Z 63⎡⎤++∈⎢⎥⎣⎦。
河南省郑州市2017-2018学年高一下学期期末考试数学试题含答案

2017-2018学年下期期末考试高一数学试题卷 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.0sin585的值为( )A .2 B .2- C . D 2.已知向量a =(3,5-),b =(5,3),则a 与b ( )A .垂直B .不垂直也不平行C .平行且同向D .平行且反向3. ) A .002sin15cos15 B .2020cos 15sin 15- C .202sin 151- D .2020sin 15cos 15+4.某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们所有比赛得分的情况用如下图所示的茎叶图表示,则运动员甲得分的中位数,乙得分的平均数分别为( )A .19,13B .13,19 C.19,18 D .18,195.从装有大小材质完全相同的3个红球和3个黑球的不透明口袋中,随机摸出两个小球,则两个小球同色的概率是( ) A .23 B .25 C. 12 D .136.函数cos sin cos sin 4444y x x x x ππππ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++∙+-+ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦在一个周期内的图像是( )A .B . C.D .7.设单位向量1e ,2e 的夹角为60°,则向量1234e e +与向量1e 的夹角的余弦值是( )A .34 B .537C.37 D .378.如果下面程序框图运行的结果1320s =,那么判断框中应填入( )A .10?k <B .10?k > C. 11?k < D .11?k >9.甲、乙两人各自在400米长的直线型跑道上跑步,则在任一时刻两人在跑道上相距不超过50米的概率是( ) A .18 B .1136 C.14 D .156410.已知函数()sin(2)f x x ϕ=+的图像关于直线6x π=对称,则ϕ可能取值是( )A .2π B .12π- C.6π D .6π- 11.如图所示,点A ,B ,C 是圆O 上的三点,线段OC 与线段AB 交于圈内一点P ,若3OC mOA mOB =+,AP AB λ=,则λ=( )A .56 B .45 C.34 D .2512.已知平面上的两个向量OA 和OB 满足cos OA α=,sin OB α=,[0,]2πα∈,0OA OB ⋅=,若向量(,)OC OA OB R λμλμ=+∈,且22221(21)cos 2(21)sin 4λαμα-+-=,则OC 的最大值是( ) A .32 B .34 C.35 D .37第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.已知tan 4α=,tan()3πβ-=,则tan()αβ+ .14.已知样本7,8,9,x ,y 的平均数是8,则xy = . 15.已知ABC ∆的三边长4AC =,3BC =,5AB =,P 为AB 边上的任意一点,则()CP BC BA -的最小值为 .16.将函数()2sin(2)6f x x π=+的图像向左平移12π个单位,再向下平移2个单位,得到()g x 的图像,若12()()16g x g x =,且1x ,2[2,2]x ππ∈-,则122x x -的最大值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知向量(1,2)a =,(3,4)b =-. (I )求向量a b -与向量b 夹角的余弦值 (II )若()a a b λ⊥-,求实数λ的值.18.某同学用“五点法”画函数()sin()(0,)2f x A x B πωϕωϕ=++><在某一个周期内的图像时,列表并填入了部分数据,如下表:(I )请将上表数据补充完整,并直接写出函数()f x 的解析式(II )将()f x 的图像上所有点向左平行移动6π个单位长度,得到()y g x =的图像,求()y g x =的图像离y 轴最近的对称中心.19. 某商场经营某种商品,在某周内获纯利y (元)与该周每天销售这种商品数x 之间的一组数据关系如表:(I )画出散点图;(II )求纯利y 与每天销售件数x 之间的回归直线方程;(III )估计当每天销售的件数为12件时,每周内获得的纯利为多少? 附注:721280ii x==∑,721()27i i x x =-=∑,713076i i i x y ==∑,72134992i i y ==∑,1122211()()()n niii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.20. 在矩形ABCD 中,点E 是BC 边上的中点,点F 在边CD 上.(I )若点F 是CD 上靠近C 的四等分点,设EF AB AD λμ=+,求λμ的值; (II )若3AB =,4BC =,当2AE BE =时,求DF 的长.21.某中学举行了数学测试,并从中随机抽取了60名学生的成绩(满分100分)作为样本,其中成绩不低于80分的学生被评为优秀生,得到成绩分布的频率分布直方图如图所示. (I )若该所中学共有3000名学生,试利用样本估计全校这次考试中优秀生人数; (II )若在样本中,利用分层抽样的方法从成绩不低于70分的学生中随机抽取6人,再从中抽取3人,试求恰好抽中1名优秀生的概率.22.已知函数21()sin cos 2f x x x x ωωω=+(0ω>),()y f x =的图象与直线2y =相交,且两相邻交点之间的距离为x .(I )求函数()f x 的解析式; (II )已知,2x ππ⎡⎤∈⎢⎥⎣⎦,求函数()f x 的值域; (III )求函数()f x 的单调区间并判断其单调性.试卷答案一、选择题1-5BABCB 6-10BDADC 11、12:CB 二、填空题 13.113 14.60 15.16- 16.5512π 三、解答题17.解:(1)()4,2a b -=-,设a b -与a 的夹角为θ,所以()()2(3)(2)4cos a a b bb b θ-⋅⨯-+-⨯===- , (2)()13,24a b λλλ-=+-()a ab λ⊥-,∴()0a a b λ⋅-= ()()1132240λλ∴⨯++⨯-=,解得1λ= 18....解:..(1)...根据表中已知数据,解得...........5A =,.2ω=,.6πϕ=-..数据补全如下表:........且函数表达式为.......f(x)=5sin 2+26x ⎛⎫- ⎪⎝⎭..(2)...由.(1)...知.f(x)=5sin 2+26x π⎛⎫- ⎪⎝⎭,. 因此..g(x)=5sin 2+2=5sin 2+2666x x πππ⎡⎤⎛⎫⎛⎫+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦..因为..y sinx =的对称中心为......(,2)k π ,.k Z ∈,令..2x+=k 6ππ,.k Z ∈,解得...x=212k ππ-,.k Z ∈,.即.()y g x =图象的对称中心为........222kx π(-,),.k Z ∈,其中离....y 轴最近的对称中心为.........(,2)12π-..19.解:(1)(2)712723456789675659637179808270730767670136 4.92807362813670640.928i ii iix y x y nx yb xnxa y bx =++++++==++++++==--⨯⨯∴===≈-⨯-∴=-=-⨯≈∑∑∴回归方程为: 4.940.9y x ∧=+(3)当12x -时 4.91240.999.7y ∧=⨯+=所以估计当每天销售的简述为12件时,周内获得的纯利润为99.7元.20.解:(1)EF EC CF =+,因为E 是BC 边的中点,点F 是CD 上靠近C 的四等分点,所以1124EF EC CF BC CD =+=+,在矩形ABCD 中,,BC AD CD AB ==-, 所以,1142EF AB AD =-+,即14λ=-,12μ=,则18λμ⋅=-. (2)设DF mDC =(0)m >,则(1)CF m DC =-,1122AE AB BC AB AD =+=+,(1)(1)BF CF BC m DC BC m AB AD =+=-+=-+,又0AB AD ⋅=, 所以1()2A E ⋅=221(1)2m AB AD =-+9m=, 解得13m =,所以DF 的长为1. 21.解:(1)由直方图可知,样本中数据落在[]80,100的频率为0.20.10.3+=,则估计全校这次考试中优秀生人数为30000.3900⨯=.(2)由分层抽样知识可知,成绩在[)70,80,[)80,90,[]90,100间分别抽取了3人,2人,1人.记成绩在[)70,80的3人为a ,b ,c ,成绩在[)80,90的2人为d ,e ,成绩在[]90,100的1人为f ,则从这6人中抽取3人的所有可能结果有(,,)a b c ,(,,)a b d ,(,,)a b e ,(,,)a b f ,(,,)a c d ,(,,)a c e ,(,,)a c f ,(,,)a d e ,(,,)a d f ,(,,)a e f ,(,,)b c d ,(,,)b c e ,(,,)b c f ,(,,)b d e ,(,,)b d f ,(,,)b e f ,(,,)c d f ,(,,)c e f ,(,,)d e f 共20种,其中恰好抽中1名优秀生的结果有(,,)a b d ,(,,)b c d ,(,,)c a d ,(,,)a b e ,(,,)b c e (,,)c a e ,(,,)a b f ,(,,)b c f ,(,,)c a f 共9种,所以恰好抽中1名优秀生的概率为920P =. 22.解:(1)()211cos2ωx 1sin 21sin(2)22226f x x xcos x sin x x πωωωωω-=+==-+=-+与直线2y =的图象的两相邻交点之间的距离为π,则T π=,所以1ω=(2)7131[,]2[,]sin(2)[1,]266662x x x ππππππ∈∴+∈∴+∈-()f x ∴的值域是1[,2]2(3)令222()262kx x kx k Z πππ-≤+≤+∈,则()36kx x kx k Z ππ-≤≤+∈,所以函数()f x 的单调减区间为()ππk π-,k πk Z 63⎡⎤+∈⎢⎥⎣⎦令3222(),262kx x kx k Z πππ+≤+≤+∈则2()63kx x kx k Z ππ+≤≤+∈, 所以函数()f x 的单调增区间为()π2πk π,k πk Z 63⎡⎤++∈⎢⎥⎣⎦。
河南省郑州市2017 2018高一下学期期末考试数学试题有答案

2017-2018学年下期期末考试高一数学试题卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.0585sin的值为( 1.)3322??.. CA D B..2222a?a b?b5,3?3,5( (则)),与(2.已知向量 ),A.垂直 B.不垂直也不平行 C.平行且同向D.平行且反向3的是( 3.)下列各式中,值为20020202020201515152sin15coscos15cos?151?sinsin15?2sin.A. B. D C.4.某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们所有比赛得分的情况用如下图所示的茎叶图表示,则运动员甲得分的中位数,乙得分的平均数分别为()A.19,13 B.13,19 C.19,18 D.18,195.从装有大小材质完全相同的3个红球和3个黑球的不透明口袋中,随机摸出两个小球,则两个小球同色的概率是()2211 B. C. D. A.2335?????????????????sinx??cos?cos?xx??sinx?y在一个周期内的图像是()函数6.????????????4444????????????. D. A C.. B e e3e?4ee的夹角的余弦值是()与向量设单位向量7.°,则向量,的夹角为60 11122373752553D B..A C..3743737 11320?s),那么判断框中应填入(8.如果下面程序框图运行的结果11?kk?11??k?10?k?10?.A. D C. . B米的概率是400米长的直线型跑道上跑步,则在任一时刻两人在跑道上相距不超过509.甲、乙两人各自在()151111 A.. C. D. B643684????x)?)?sin(2xf(x可能取值是(的图像关于直线10.已知函数对称,则)6?????? BA... C. D61262OCCO PABAB,若11.如图所示,点与线段,上的三点,线段,交于圈内一点是圆???ABmOBAP?OC?mOA?3,),则(2354.A. B C. D.5465????0?OA?OBOBOAsinOAOB??cos]?[0,,若向满足,,12.已知平面上的两个向量和,212222????????OC?2(2(21)sin?1)cos??)?OCOA?OB(,?R的最大值是(量),且,则43333B.A. C. D.2457第Ⅱ卷(共90分)2二、填空题(每题5分,满分20分,将答案填在答题纸上)??4tan????)tan(??)?tan(3.,13.已知,则x2xyy?.,标准差是,9,,,则的平均数是8,14.已知样本78?ABCAC?4BC?3AB?5PAB CP(BC?BA)的最为,边上的任意一点,则,15.已知,的三边长小值为.??)??2sin(2xf(x)g(x)的图像,若2的图像向左平移个单位,得到个单位,再向下平移将函数16.126??]2x?[?2x,2xg(x)g(x)?16x?的最大值为,则,且,.211122三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)a?(1,2)b?(?3,4).已知向量,17.a?bb夹角的余弦值与向量)求向量(I??)b?(a?a的值,求实数(II)若.?????)?0,)?B((fx)?Asin(?x?在某一个周期内的图像时,列表某同学用“五点法”画函数18.2并填入了部分数据,如下表:f(x)的解析式(I)请将上表数据补充完整,并直接写出函数?y?g(x))y?g(x)(fx的图像离)将个单位长度,得到的图像,求的图像上所有点向左平行移动(II 6y轴最近的对称中心.x y之间的一组数据关系如(元)与该周每天销售这种商品数19. 某商场经营某种商品,在某周内获纯利表:(I)画出散点图;x y之间的回归直线方程;与每天销售件数II()求纯利(III)估计当每天销售的件数为12件时,每周内获得的纯利为多少?附注:37777????22234992?3076??x)?27yxx?280y(x,,,,iiiiii?i1?1i?1i?1nn ??ynxyx?x)(y?y)(x?iiii1i?i?1?b?a?y?bx.,nn2??22nxx?x(x?)ii11i?i?ABCDBCCD FE上.是在边20. 在矩形边上的中点,点中,点CDC????F ADAB??EF的值;上靠近,求I()若点的四等分点,设是AB?3BC?4AEBE?2DF的长,当)若(II,.时,求21.某中学举行了数学测试,并从中随机抽取了60名学生的成绩(满分100分)作为样本,其中成绩不低于80分的学生被评为优秀生,得到成绩分布的频率分布直方图如图所示.(I)若该所中学共有3000名学生,试利用样本估计全校这次考试中优秀生人数;(II)若在样本中,利用分层抽样的方法从成绩不低于70分的学生中随机抽取6人,再从中抽取3人,试求恰好抽中1名优秀生的概率.1?2???0??xxcossin(fx)?3x?sin2?x)yfy?(相交,且两已知函数22.的图象与直线)(,2x.相邻交点之间的距离为f(x)的解析式;(I )求函数 4????,x?)(xf(II)已知,求函数的值域;??2??)xf(. )求函数的单调区间并判断其单调性(III试卷答案一、选择题BDADC CBBABCB 11、 6-10:12:1-5:二、填空题?55116- 16.13. 14.60 15.1213三、解答题??a2?4,?a?b?ba?,设与,的夹角为)17.解:(1??bb?a?4?(?3)?(?2)?425???cos???,所以52bba???2224??3??(2))?4(????????b?a?a41?3?a,2b??, 2)(??????????1?0a?b??a0?2??1?1?34?2?,解得∴???2?A=5??,18.,解:(1)根据表中已知数据,解得数据补全如下表:...............................6 51111Asi???+2x?f(x)=5sin2.且函数表达式为??........6?????+2?f(x)=5sin2x, (1)(2)由知??.........6???????????+2x?x2?+2=5sin?2g(x)=5sin.因此??????...666?????????k??Zk?k?Z?kZ,2)(k sinxy=?x=2x+=k,,,因为,解得,的对称中心为,令.................1226??kx Z?k,2)(?)2(-,)(gxy=y. ,其中离图象的对称中心为轴最近的对称中心为即,........................1222(1)解:19.y9080706050x0968754123)(2 69?7?8?3?4?5?66?x?782?80?56?59?63?71?7970??y77?y?nxxy ii136703076?7?6?1i?4.9??b????2nx?x ii136?70y?bx?6?40.9??a?228?36280?7728?40.9?4.9xy??回归方程为:?12x?99.740.9?y?4.9?12?)当时(3.元件时,周内获得的纯利润为所以估计当每天销售的简述为1299.7FECFEC+EF=CBCCD以的四等分点点20.解:(1),是上靠,因为近是所边的中点,11CD?BC?CF?EF?ECABBC=AD,CD=-ABCD,在矩形,中,4211111???????AB?EF??AD???. 所以,,,则,即8424211AD==AB+AB+BCAE0)>(mDC-(m1)CF=mDCDF=,则,(2)设,22ADAB+=(m-1)BCBF=CF+BC=(m-1)DC+,0AD?AB?又,1122ADm-1)AB+)[(mAE?BF?(AB?AD?1)AB?AD]=(21)+8=9(=m-所以,221=m DF解得.的长为,所以13??0.30.1?0.2?80,100,则估计全校这次考试中优)由直方图可知,样本中数据落在的频率为解:21.(19000.3?3000?秀生人数为.??????90,10080,9070,80人,间分别抽取了,3人,,)由分层抽样知识可知,成绩在(221人.??????eac db90,10080,9070,80f,的3人为,成绩在,的,,成绩在,1记成绩在人为的2人为)ec,(((,b,e)a,b,f)a,c,d)a,(,(,(a,bc)a,bd)a,,,,6则从这人中抽取3人的所有可能结果有,,),(,b,de)b,df),,bef((),,(),,(),,(),,(),,(),,(),,(acfadeadfaefbcdbcebcf,,,,,,,,,,)),,(),,(cdfcef e,f,d(共种,,,20 7)b,f,e)(a,)(b,c,e)(c,a,,(ab,d)(b,c,d)(ca,d)(a,b,e,,,,,,其中恰好抽中1名优秀生的结果有)a,ff)(c,(b,c,共,9种,9?P所以恰好抽中1名优秀生的概率为.20?1?cos2ωx311??2??????3xsin?sinxxcos???sin2x??1?sin(2fx?)x?)22.与解:(162222???1?T?2?y直线,所以,则的图象的两相邻交点之间的距离为π?????2x?1?f?xsin??6???????1713?]?2x??[,]?sin(2xx?[,?)?[?1,]()22666621??[,2]xf?的值域是2?????(k?kx?Zkx?Z)?)?x?2kx??2x??2kx?(k,3()令,则62263ππ??????Z?-?k,kπkπxf所以函数的单调减区间为??36???????23(k?Z),kx??x?kx??2x?2kx??(k?kx2?Z),则令26263π2π??????Z?π??kπk,k xf所以函数的单调增区间为??63??8。
河南省郑州市2017-2018学年高一下学期期末考试数学试题含答案

2017-2018学年下期期末考试高一数学试题卷 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.0sin585的值为( )A .2 B .2- C .2- D .22.已知向量a =(3,5-),b =(5,3),则a 与b ( )A .垂直B .不垂直也不平行C .平行且同向D .平行且反向3.的是( ) A .002sin15cos15 B .2020cos 15sin 15- C .202sin 151- D .2020sin 15cos 15+4.某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们所有比赛得分的情况用如下图所示的茎叶图表示,则运动员甲得分的中位数,乙得分的平均数分别为( )A .19,13B .13,19 C.19,18 D .18,195.从装有大小材质完全相同的3个红球和3个黑球的不透明口袋中,随机摸出两个小球,则两个小球同色的概率是( ) A .23 B .25 C. 12 D .136.函数cos sin cos sin 4444y x x x x ππππ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++∙+-+ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦在一个周期内的图像是( )A .B . C.D .7.设单位向量1e ,2e 的夹角为60°,则向量1234e e +与向量1e 的夹角的余弦值是( )A .34 B .537D 8.如果下面程序框图运行的结果1320s =,那么判断框中应填入( )A .10?k <B .10?k > C. 11?k < D .11?k >9.甲、乙两人各自在400米长的直线型跑道上跑步,则在任一时刻两人在跑道上相距不超过50米的概率是( ) A .18 B .1136 C.14 D .156410.已知函数()sin(2)f x x ϕ=+的图像关于直线6x π=对称,则ϕ可能取值是( )A .2π B .12π- C.6π D .6π- 11.如图所示,点A ,B ,C 是圆O 上的三点,线段OC 与线段AB 交于圈内一点P ,若3OC mOA mOB =+,AP AB λ=,则λ=( )A .56 B .45 C.34 D .2512.已知平面上的两个向量OA 和OB 满足cos OA α=,sin OB α=,[0,]2πα∈,0OA OB ⋅=,若向量(,)OC OA OB R λμλμ=+∈,且22221(21)cos 2(21)sin 4λαμα-+-=,则OC 的最大值是( ) A .32 B .34 C.35 D .37第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.已知tan 4α=,tan()3πβ-=,则tan()αβ+ .14.已知样本7,8,9,x ,y 的平均数是8,则xy = . 15.已知ABC ∆的三边长4AC =,3BC =,5AB =,P 为AB 边上的任意一点,则()CP BC BA -的最小值为 .16.将函数()2sin(2)6f x x π=+的图像向左平移12π个单位,再向下平移2个单位,得到()g x 的图像,若12()()16g x g x =,且1x ,2[2,2]x ππ∈-,则122x x -的最大值为 . 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知向量(1,2)a =,(3,4)b =-. (I )求向量a b -与向量b 夹角的余弦值 (II )若()a a b λ⊥-,求实数λ的值.18.某同学用“五点法”画函数()sin()(0,)2f x A x B πωϕωϕ=++><在某一个周期内的图像时,列表并填入了部分数据,如下表:(I )请将上表数据补充完整,并直接写出函数()f x 的解析式(II )将()f x 的图像上所有点向左平行移动6π个单位长度,得到()y g x =的图像,求()y g x =的图像离y 轴最近的对称中心.19. 某商场经营某种商品,在某周内获纯利y (元)与该周每天销售这种商品数x 之间的一组数据关系如表:(I )画出散点图;(II )求纯利y 与每天销售件数x 之间的回归直线方程;(III )估计当每天销售的件数为12件时,每周内获得的纯利为多少? 附注:721280ii x==∑,721()27i i x x =-=∑,713076i i i x y ==∑,72134992i i y ==∑,1122211()()()n niii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.20. 在矩形ABCD 中,点E 是BC 边上的中点,点F 在边CD 上.(I )若点F 是CD 上靠近C 的四等分点,设EF AB AD λμ=+,求λμ的值; (II )若3AB =,4BC =,当2AE BE =时,求DF 的长.21.某中学举行了数学测试,并从中随机抽取了60名学生的成绩(满分100分)作为样本,其中成绩不低于80分的学生被评为优秀生,得到成绩分布的频率分布直方图如图所示. (I )若该所中学共有3000名学生,试利用样本估计全校这次考试中优秀生人数;(II )若在样本中,利用分层抽样的方法从成绩不低于70分的学生中随机抽取6人,再从中抽取3人,试求恰好抽中1名优秀生的概率.22.已知函数21()sin cos 2f x x x x ωωω=-+(0ω>),()y f x =的图象与直线2y =相交,且两相邻交点之间的距离为x . (I )求函数()f x 的解析式; (II )已知,2x ππ⎡⎤∈⎢⎥⎣⎦,求函数()f x 的值域; (III )求函数()f x 的单调区间并判断其单调性.试卷答案一、选择题1-5BABCB 6-10BDADC 11、12:CB 二、填空题 13.113 14.60 15.16- 16.5512π 三、解答题17.解:(1)()4,2a b -=-,设a b -与a 的夹角为θ,所以()()2(3)(2)4cos a a b bb b θ-⋅⨯-+-⨯===- , (2)()13,24a b λλλ-=+-()a ab λ⊥-,∴()0a a b λ⋅-= ()()1132240λλ∴⨯++⨯-=,解得1λ= 18....解:..(1)...根据表中已知数据,解得...........5A =,.2ω=,.6πϕ=-..数据补全如下表:........且函数表达式为.......f(x)=5sin 2+26x ⎛⎫- ⎪⎝⎭..(2)...由.(1)...知.f(x)=5sin 2+26x π⎛⎫- ⎪⎝⎭,. 因此..g(x)=5sin 2+2=5sin 2+2666x x πππ⎡⎤⎛⎫⎛⎫+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦..因为..y sinx =的对称中心为......(,2)k π ,.k Z ∈,令..2x+=k 6ππ,.k Z ∈,解得...x=212k ππ-,.k Z ∈,.即.()y g x =图象的对称中心为........222kx π(-,),.k Z ∈,其中离....y 轴最近的对称中心为.........(,2)12π-..19.解:(1)(2)712723456789675659637179808270730767670136 4.92807362813670640.928i ii iix y x y nx yb xnxa y bx =++++++==++++++==--⨯⨯∴===≈-⨯-∴=-=-⨯≈∑∑∴回归方程为: 4.940.9y x ∧=+(3)当12x -时 4.91240.999.7y ∧=⨯+=所以估计当每天销售的简述为12件时,周内获得的纯利润为99.7元.20.解:(1)EF EC CF =+,因为E 是BC 边的中点,点F 是CD 上靠近C 的四等分点,所以1124EF EC CF BC CD =+=+,在矩形ABCD 中,,BC AD CD AB ==-, 所以,1142EF AB AD =-+,即14λ=-,12μ=,则18λμ⋅=-. (2)设DF mDC =(0)m >,则(1)CF m DC =-,1122AE AB BC AB AD =+=+, (1)(1)BF CF BC m DC BC m AB AD =+=-+=-+,又0AB AD ⋅=, 所以1()[(m 1)]2AE BF AB AD AB AD ⋅=+-+221(1)2m AB AD =-+9(1)82m =-+=, 解得13m =,所以DF 的长为1. 21.解:(1)由直方图可知,样本中数据落在[]80,100的频率为0.20.10.3+=,则估计全校这次考试中优秀生人数为30000.3900⨯=.(2)由分层抽样知识可知,成绩在[)70,80,[)80,90,[]90,100间分别抽取了3人,2人,1人.记成绩在[)70,80的3人为a ,b ,c ,成绩在[)80,90的2人为d ,e ,成绩在[]90,100的1人为f ,则从这6人中抽取3人的所有可能结果有(,,)a b c ,(,,)a b d ,(,,)a b e ,(,,)a b f ,(,,)a c d ,(,,)a c e ,(,,)a c f ,(,,)a d e ,(,,)a d f ,(,,)a e f ,(,,)b c d ,(,,)b c e ,(,,)b c f ,(,,)b d e ,(,,)b d f ,(,,)b e f ,(,,)c d f ,(,,)c e f ,(,,)d e f 共20种,其中恰好抽中1名优秀生的结果有(,,)a b d ,(,,)b c d ,(,,)c a d ,(,,)a b e ,(,,)b c e (,,)c a e ,(,,)a b f ,(,,)b c f ,(,,)c a f 共9种,所以恰好抽中1名优秀生的概率为920P =. 22.解:(1)()211cos2ωx 1sin 21sin(2)2226f x x xcos x x x πωωωωω-=+==+=-+与直线2y =的图象的两相邻交点之间的距离为π,则T π=,所以1ω=(2)7131[,]2[,]sin(2)[1,]266662x x x ππππππ∈∴+∈∴+∈-()f x ∴的值域是1[,2]2(3)令222()262kx x kx k Z πππ-≤+≤+∈,则()36kx x kx k Z ππ-≤≤+∈,所以函数()f x 的单调减区间为()ππk π-,k πk Z 63⎡⎤+∈⎢⎥⎣⎦令3222(),262kx x kx k Z πππ+≤+≤+∈则2()63kx x kx k Z ππ+≤≤+∈, 所以函数()f x 的单调增区间为()π2πk π,k πk Z 63⎡⎤++∈⎢⎥⎣⎦。
河南省郑州市2017-2018学年高一下学期期末考试数学试题含答案

2017-2018学年下期期末考试高一数学试题卷 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.0sin585的值为( )A .2 B .2- C . D 2.已知向量a =(3,5-),b =(5,3),则a 与b ( )A .垂直B .不垂直也不平行C .平行且同向D .平行且反向3. ) A .002sin15cos15 B .2020cos 15sin 15- C .202sin 151- D .2020sin 15cos 15+4.某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们所有比赛得分的情况用如下图所示的茎叶图表示,则运动员甲得分的中位数,乙得分的平均数分别为( )A .19,13B .13,19 C.19,18 D .18,195.从装有大小材质完全相同的3个红球和3个黑球的不透明口袋中,随机摸出两个小球,则两个小球同色的概率是( ) A .23 B .25 C. 12 D .136.函数cos sin cos sin 4444y x x x x ππππ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++∙+-+ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦在一个周期内的图像是( )A .B . C.D .7.设单位向量1e ,2e 的夹角为60°,则向量1234e e +与向量1e 的夹角的余弦值是( )A .34 B .537C.37 D .378.如果下面程序框图运行的结果1320s =,那么判断框中应填入( )A .10?k <B .10?k > C. 11?k < D .11?k >9.甲、乙两人各自在400米长的直线型跑道上跑步,则在任一时刻两人在跑道上相距不超过50米的概率是( ) A .18 B .1136 C.14 D .156410.已知函数()sin(2)f x x ϕ=+的图像关于直线6x π=对称,则ϕ可能取值是( )A .2π B .12π- C.6π D .6π- 11.如图所示,点A ,B ,C 是圆O 上的三点,线段OC 与线段AB 交于圈内一点P ,若3OC mOA mOB =+,AP AB λ=,则λ=( )A .56 B .45 C.34 D .2512.已知平面上的两个向量OA 和OB 满足cos OA α=,sin OB α=,[0,]2πα∈,0OA OB ⋅=,若向量(,)OC OA OB R λμλμ=+∈,且22221(21)cos 2(21)sin 4λαμα-+-=,则OC 的最大值是( ) A .32 B .34 C.35 D .37第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.已知tan 4α=,tan()3πβ-=,则tan()αβ+ .14.已知样本7,8,9,x ,y 的平均数是8,则xy = . 15.已知ABC ∆的三边长4AC =,3BC =,5AB =,P 为AB 边上的任意一点,则()CP BC BA -的最小值为 .16.将函数()2sin(2)6f x x π=+的图像向左平移12π个单位,再向下平移2个单位,得到()g x 的图像,若12()()16g x g x =,且1x ,2[2,2]x ππ∈-,则122x x -的最大值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知向量(1,2)a =,(3,4)b =-. (I )求向量a b -与向量b 夹角的余弦值 (II )若()a a b λ⊥-,求实数λ的值.18.某同学用“五点法”画函数()sin()(0,)2f x A x B πωϕωϕ=++><在某一个周期内的图像时,列表并填入了部分数据,如下表:(I )请将上表数据补充完整,并直接写出函数()f x 的解析式(II )将()f x 的图像上所有点向左平行移动6π个单位长度,得到()y g x =的图像,求()y g x =的图像离y 轴最近的对称中心.19. 某商场经营某种商品,在某周内获纯利y (元)与该周每天销售这种商品数x 之间的一组数据关系如表:(I )画出散点图;(II )求纯利y 与每天销售件数x 之间的回归直线方程;(III )估计当每天销售的件数为12件时,每周内获得的纯利为多少? 附注:721280ii x==∑,721()27i i x x =-=∑,713076i i i x y ==∑,72134992i i y ==∑,1122211()()()n niii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.20. 在矩形ABCD 中,点E 是BC 边上的中点,点F 在边CD 上.(I )若点F 是CD 上靠近C 的四等分点,设EF AB AD λμ=+,求λμ的值; (II )若3AB =,4BC =,当2AE BE =时,求DF 的长.21.某中学举行了数学测试,并从中随机抽取了60名学生的成绩(满分100分)作为样本,其中成绩不低于80分的学生被评为优秀生,得到成绩分布的频率分布直方图如图所示. (I )若该所中学共有3000名学生,试利用样本估计全校这次考试中优秀生人数; (II )若在样本中,利用分层抽样的方法从成绩不低于70分的学生中随机抽取6人,再从中抽取3人,试求恰好抽中1名优秀生的概率.22.已知函数21()sin cos 2f x x x x ωωω=+(0ω>),()y f x =的图象与直线2y =相交,且两相邻交点之间的距离为x .(I )求函数()f x 的解析式; (II )已知,2x ππ⎡⎤∈⎢⎥⎣⎦,求函数()f x 的值域; (III )求函数()f x 的单调区间并判断其单调性.试卷答案一、选择题1-5BABCB 6-10BDADC 11、12:CB 二、填空题 13.113 14.60 15.16- 16.5512π 三、解答题17.解:(1)()4,2a b -=-,设a b -与a 的夹角为θ,所以()()2(3)(2)4cos a a b bb b θ-⋅⨯-+-⨯===- , (2)()13,24a b λλλ-=+-()a ab λ⊥-,∴()0a a b λ⋅-= ()()1132240λλ∴⨯++⨯-=,解得1λ= 18....解:..(1)...根据表中已知数据,解得...........5A =,.2ω=,.6πϕ=-..数据补全如下表:........且函数表达式为.......f(x)=5sin 2+26x ⎛⎫- ⎪⎝⎭..(2)...由.(1)...知.f(x)=5sin 2+26x π⎛⎫- ⎪⎝⎭,. 因此..g(x)=5sin 2+2=5sin 2+2666x x πππ⎡⎤⎛⎫⎛⎫+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦..因为..y sinx =的对称中心为......(,2)k π ,.k Z ∈,令..2x+=k 6ππ,.k Z ∈,解得...x=212k ππ-,.k Z ∈,.即.()y g x =图象的对称中心为........222kx π(-,),.k Z ∈,其中离....y 轴最近的对称中心为.........(,2)12π-..19.解:(1)(2)712723456789675659637179808270730767670136 4.92807362813670640.928i ii iix y x y nx yb xnxa y bx =++++++==++++++==--⨯⨯∴===≈-⨯-∴=-=-⨯≈∑∑∴回归方程为: 4.940.9y x ∧=+(3)当12x -时 4.91240.999.7y ∧=⨯+=所以估计当每天销售的简述为12件时,周内获得的纯利润为99.7元.20.解:(1)EF EC CF =+,因为E 是BC 边的中点,点F 是CD 上靠近C 的四等分点,所以1124EF EC CF BC CD =+=+,在矩形ABCD 中,,BC AD CD AB ==-, 所以,1142EF AB AD =-+,即14λ=-,12μ=,则18λμ⋅=-. (2)设DF mDC =(0)m >,则(1)CF m DC =-,1122AE AB BC AB AD =+=+,(1)(1)BF CF BC m DC BC m AB AD =+=-+=-+,又0AB AD ⋅=, 所以1()2A E ⋅=221(1)2m AB AD =-+9m=, 解得13m =,所以DF 的长为1. 21.解:(1)由直方图可知,样本中数据落在[]80,100的频率为0.20.10.3+=,则估计全校这次考试中优秀生人数为30000.3900⨯=.(2)由分层抽样知识可知,成绩在[)70,80,[)80,90,[]90,100间分别抽取了3人,2人,1人.记成绩在[)70,80的3人为a ,b ,c ,成绩在[)80,90的2人为d ,e ,成绩在[]90,100的1人为f ,则从这6人中抽取3人的所有可能结果有(,,)a b c ,(,,)a b d ,(,,)a b e ,(,,)a b f ,(,,)a c d ,(,,)a c e ,(,,)a c f ,(,,)a d e ,(,,)a d f ,(,,)a e f ,(,,)b c d ,(,,)b c e ,(,,)b c f ,(,,)b d e ,(,,)b d f ,(,,)b e f ,(,,)c d f ,(,,)c e f ,(,,)d e f 共20种,其中恰好抽中1名优秀生的结果有(,,)a b d ,(,,)b c d ,(,,)c a d ,(,,)a b e ,(,,)b c e (,,)c a e ,(,,)a b f ,(,,)b c f ,(,,)c a f 共9种,所以恰好抽中1名优秀生的概率为920P =. 22.解:(1)()211cos2ωx 1sin 21sin(2)22226f x x xcos x sin x x πωωωωω-=-+==-+=-+与直线2y =的图象的两相邻交点之间的距离为π,则T π=,所以1ω=(2)7131[,]2[,]sin(2)[1,]266662x x x ππππππ∈∴+∈∴+∈-()f x ∴的值域是1[,2]2(3)令222()262kx x kx k Z πππ-≤+≤+∈,则()36kx x kx k Z ππ-≤≤+∈,所以函数()f x 的单调减区间为()ππk π-,k πk Z 63⎡⎤+∈⎢⎥⎣⎦令3222(),262kx x kx k Z πππ+≤+≤+∈则2()63kx x kx k Z ππ+≤≤+∈, 所以函数()f x 的单调增区间为()π2πk π,k πk Z 63⎡⎤++∈⎢⎥⎣⎦。
河南省郑州市2017-2018学年高一下学期期末考试数学试题word版有答案

高一下期期末考试数学试题卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.0sin 585的值为( ) A .22 B .22- C .32- D .322.已知向量a =(3,5-),b =(5,3),则a 与b ( )A .垂直B .不垂直也不平行C .平行且同向D .平行且反向 3.下列各式中,值为32的是( ) A .002sin15cos15 B .2020cos 15sin 15- C .202sin 151- D .2020sin 15cos 15+ 4.某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们所有比赛得分的情况用如下图所示的茎叶图表示,则运动员甲得分的中位数,乙得分的平均数分别为( )A .19,13B .13,19 C.19,18 D .18,195.从装有大小材质完全相同的3个红球和3个黑球的不透明口袋中,随机摸出两个小球,则两个小球同色的概率是( ) A .23 B .25 C. 12 D .136.函数cos sin cos sin 4444y x x x x ππππ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++•+-+ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦在一个周期内的图像是( ) A . B . C. D .7.设单位向量1e ,2e 的夹角为60°,则向量1234e e +与向量1e 的夹角的余弦值是( ) A .34 B .53725375378.如果下面程序框图运行的结果1320s =,那么判断框中应填入( )A .10?k <B .10?k > C. 11?k < D .11?k >9.甲、乙两人各自在400米长的直线型跑道上跑步,则在任一时刻两人在跑道上相距不超过50米的概率是( ) A .18 B .1136 C.14 D .156410.已知函数()sin(2)f x x ϕ=+的图像关于直线6x π=对称,则ϕ可能取值是( )A .2π B .12π- C.6π D .6π- 11.如图所示,点A ,B ,C 是圆O 上的三点,线段OC 与线段AB 交于圈内一点P ,若3OC mOA mOB =+u u u r u u u r u u u r ,AP AB λ=u u u r u u u r,则λ=( )A .56B .45 C.34 D .2512.已知平面上的两个向量OA u u u r 和OB uuu r 满足cos OA α=u u u r ,sin OB α=u u u r ,[0,]2πα∈,0OA OB ⋅=u u u r u u u r ,若向量(,)OC OA OB R λμλμ=+∈u u u r u u u r u u u r ,且22221(21)cos 2(21)sin 4λαμα-+-=,则OC u u u r 的最大值是( )A .32 B .34 C.35 D .37第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.已知tan 4α=,tan()3πβ-=,则tan()αβ+ .14.已知样本7,8,9,x ,y 的平均数是8,标准差是2,则xy = .15.已知ABC ∆的三边长4AC =,3BC =,5AB =,P 为AB 边上的任意一点,则()CP BC BA -u u u r u u u r u u u rg的最小值为 . 16.将函数()2sin(2)6f x x π=+的图像向左平移12π个单位,再向下平移2个单位,得到()g x 的图像,若12()()16g x g x =,且1x ,2[2,2]x ππ∈-,则122x x -的最大值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知向量(1,2)a =,(3,4)b =-. (I )求向量a b -与向量b 夹角的余弦值 (II )若()a a b λ⊥-,求实数λ的值.18.某同学用“五点法”画函数()sin()(0,)2f x A x B πωϕωϕ=++><在某一个周期内的图像时,列表并填入了部分数据,如下表:(I )请将上表数据补充完整,并直接写出函数()f x 的解析式 (II )将()f x 的图像上所有点向左平行移动6π个单位长度,得到()y g x =的图像,求()y g x =的图像离y 轴最近的对称中心.19. 某商场经营某种商品,在某周内获纯利y (元)与该周每天销售这种商品数x 之间的一组数据关系如表:(I )画出散点图;(II )求纯利y 与每天销售件数x 之间的回归直线方程;(III )估计当每天销售的件数为12件时,每周内获得的纯利为多少? 附注:721280ii x==∑,721()27i i x x =-=∑,713076i i i x y ==∑,72134992i i y ==∑,1122211()()()n niii ii i nni i i i x x y y x y nx yb x x x nx====---==--∑∑∑∑,$ay bx =-.20. 在矩形ABCD 中,点E 是BC 边上的中点,点F 在边CD 上.(I )若点F 是CD 上靠近C 的四等分点,设EF AB AD λμ=+u u u r u u u r u u u r,求λμg 的值;(II )若3AB =,4BC =,当2AE BE =u u u r u u u rg 时,求DF 的长.21.某中学举行了数学测试,并从中随机抽取了60名学生的成绩(满分100分)作为样本,其中成绩不低于80分的学生被评为优秀生,得到成绩分布的频率分布直方图如图所示. (I )若该所中学共有3000名学生,试利用样本估计全校这次考试中优秀生人数;(II )若在样本中,利用分层抽样的方法从成绩不低于70分的学生中随机抽取6人,再从中抽取3人,试求恰好抽中1名优秀生的概率.22.已知函数21()sin 3cos 2f x x x x ωωω=+(0ω>),()y f x =的图象与直线2y =相交,且两相邻交点之间的距离为x . (I )求函数()f x 的解析式; (II )已知,2x ππ⎡⎤∈⎢⎥⎣⎦,求函数()f x 的值域; (III )求函数()f x 的单调区间并判断其单调性.试卷答案一、选择题1-5:BABCB 6-10:BDADC 11、12:CB 二、填空题 13.113 14.60 15.16- 16.5512π 三、解答题17.解:(1)()4,2a b -=-vv ,设a b -vv 与a v的夹角为θ,所以()cos 5a a bbbb θ-⋅===--vv r r vv , (2)()13,24a b λλλ-=+-vv ()a a b λ⊥-v v Q v ,∴()0a a b λ⋅-=v v v()()1132240λλ∴⨯++⨯-=,解得1λ=18....解:..(1)...根据表中已知数据,解得...........5A =,.2ω=,.6πϕ=-..数据补全如下表:........且函数表达式为.......f(x)=5sin 2+26x ⎛⎫- ⎪⎝⎭..(2)...由.(1)...知.f(x)=5sin 2+26x π⎛⎫- ⎪⎝⎭,. 因此..g(x)=5sin 2+2=5sin 2+2666x x πππ⎡⎤⎛⎫⎛⎫+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.. 因为..y sinx =的对称中心为......(,2)k π ,.k Z ∈,令..2x+=k 6ππ,.k Z ∈,解得...x=212k ππ-,.k Z ∈,.即.()y g x =图象的对称中心为........222kx π(-,),.k Z ∈,其中离....y 轴最近的对称中心为.........(,2)12π-..19.解:(1)(2)$712723456789675659637179808270730767670136 4.92807362813670640.928i ii iix y x y nx ybxnxay bx =++++++==++++++==--⨯⨯∴===≈-⨯-∴=-=-⨯≈∑∑$$∴回归方程为: 4.940.9y x ∧=+(3)当12x -时 4.91240.999.7y ∧=⨯+=所以估计当每天销售的简述为12件时,周内获得的纯利润为99.7元. 20.解:(1)EF EC CF =+u u u r u u u r u u u r,因为E 是BC 边的中点,点F 是CD 上靠近C 的四等分点,所以1124EF EC CF BC CD =+=+u u u r u u u r u u u r u u u r u u u r ,在矩形ABCD 中,,BC AD CD AB ==-u u u r u u u r u u u r u u u r ,所以,1142EF AB AD =-+u u u r u u u r u u u r ,即14λ=-,12μ=,则18λμ⋅=-.(2)设DF mDC =u u u r u u u r(0)m >,则(1)CF m DC =-u u u r u u u r ,1122AE AB BC AB AD =+=+u u u r u u u r u u u r u u u r u u u r ,(1)(1)BF CF BC m DC BC m AB AD =+=-+=-+u u u r u u u r u u u r u u u r u u u r u u u r u u u r ,又0AB AD ⋅=u u u r u u u r,所以1()[(m 1)]2AE BF AB AD AB AD ⋅=+-+u u u r u u u r u u u r u u u r u u u r u u u r 221(1)2m AB AD =-+u u u r u u u r 9(1)82m =-+=,解得13m =,所以DF 的长为1. 21.解:(1)由直方图可知,样本中数据落在[]80,100的频率为0.20.10.3+=,则估计全校这次考试中优秀生人数为30000.3900⨯=.(2)由分层抽样知识可知,成绩在[)70,80,[)80,90,[]90,100间分别抽取了3人,2人,1人. 记成绩在[)70,80的3人为a ,b ,c ,成绩在[)80,90的2人为d ,e ,成绩在[]90,100的1人为f ,则从这6人中抽取3人的所有可能结果有(,,)a b c ,(,,)a b d ,(,,)a b e ,(,,)a b f ,(,,)a c d ,(,,)a c e ,(,,)a c f ,(,,)a d e ,(,,)a d f ,(,,)a e f ,(,,)b c d ,(,,)b c e ,(,,)b c f ,(,,)b d e ,(,,)b d f ,(,,)b e f ,(,,)c d f ,(,,)c e f ,(,,)d e f 共20种,其中恰好抽中1名优秀生的结果有(,,)a b d ,(,,)b c d ,(,,)c a d ,(,,)a b e ,(,,)b c e (,,)c a e ,(,,)a b f ,(,,)b c f ,(,,)c a f 共9种,所以恰好抽中1名优秀生的概率为920P =.22.解:(1)()211cos2ωx 1sin 21sin(2)2226f x x xcos x sin x x πωωωωω-=+==+=-+与直线2y =的图象的两相邻交点之间的距离为π,则T π=,所以1ω=(2)7131[,]2[,]sin(2)[1,]266662x x x ππππππ∈∴+∈∴+∈-Q ()f x ∴的值域是1[,2]2(3)令222()262kx x kx k Z πππ-≤+≤+∈,则()36kx x kx k Z ππ-≤≤+∈,所以函数()f x 的单调减区间为()ππk π-,k πk Z 63⎡⎤+∈⎢⎥⎣⎦令3222(),262kx x kx k Z πππ+≤+≤+∈则2()63kx x kx k Z ππ+≤≤+∈, 所以函数()f x 的单调增区间为()π2πk π,k πk Z 63⎡⎤++∈⎢⎥⎣⎦。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学检测:河南郑州一中17-18学年下学期高一期末复习卷_4a348da30102xpov河南郑州一中2017-2018学年下学期高一期末复习试卷语文注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第卷阅读题一、现代文阅读(35分)(一)(2017-2018学年山西大学附中高一下月考)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1-3题。
中国传统美学所讲的意象说主张美在意象:美在象外之意,言外之情。
任何一件美的文艺作品,其本身或为声色,或为言词,都是有象的(在场的东西)。
能体悟到象外之意词外之情,就是一种美感。
此种美不是低层次的感性美,而是深层次的意境美、精神美。
意象说突破了美在声色之类的局限性,深刻地揭示了美之为美的本质内涵,不仅值得中国美学继承和弘扬,而且也值得世界美学借鉴。
但为什么要深入到象外,才能达到此种美的境界呢?意象说没有做论证。
我根据万有相通的哲学本体论认为,原因就在于,任何一件美的作品,都是凝聚了作品背后无尽的之网的结晶。
这背后无尽的之网,说得通俗具体一点,就是指形成作品本身的背后的人、事物和社会历史背景等。
我们对一件作品的欣赏,不过是把凝聚在作品这一点在场的东西中无尽的内涵(不在场的东西)展现在想象中,点点滴滴地加以玩味;不过是回归到形成作品的母源,从母源中,我们对作品获得了一种原来如此的醒悟,从而产生了一种满足感。
这也就是我们通常所说的美的愉悦美的享受。
这种愉悦和享受不是感官的娱乐或感性的满足,而是精神上的满足,思想上的满足。
杜甫的诗句国破山河在,城春草木深,为什么能引起美感?山河在是一点在场的东西,但形成此在之背后的东西,则是什么都不在。
正是这什么都不在构成这在的内涵(此即司马光的解读:山河在,明无余物矣;草木深,明无人矣)。
我们欣赏这诗句时,就回归到这在的母源——什么都不在,自然倍感凄凉。
但这里的凄凉绝非现实生活中的凄凉可以比拟,它是审美意义下的凄凉,它超越了现实生活中凄凉的现实性,给欣赏者引发了一种对在的内涵的醒悟,这种醒悟就是审美的愉悦感,给人以美的享受。
梵·高的画《农鞋》,为什么能引起人的美感?海德格尔做了生动的说明:是农鞋这点在场的东西引发观赏者回归到了其背后一系列不在场的东西——农夫为了面包而日日夜夜地在崎岖的道路上奔波,一年四季风风雨雨对农夫的摧残,以至社会的贫穷、落后、不公,等等,这些都是构成农鞋上几个破洞的母源。
观赏者正是从这一回归中获得了某种醒悟,从而也得到一种精神上、思想上的满足。
我们经常爱用玩味无穷这样的字眼来形容我们对一件优秀作品的欣赏。
玩味之所以能达到无穷的地步,其根源就在于隐藏在作品背后不在场的东西是无穷的。
中国传统文化重含蓄之美,其实就是把的情或意隐藏在作品的表面形象或言词背后,让鉴赏者自己去领会、体悟,从而获得一种醒悟的满足感。
(摘编自张世英《美是玩味无穷的精神愉悦》)1.下列关于原文内容的表述,不正确的一项是(3分)()A.中国传统美学的意象说,在今天仍然有价值,不仅值得中国美学继承和弘扬,而且值得世界美学借鉴。
B.文艺作品的运用万有相通的理论,把形成作品本身背后的人、事物和社会历史背景等凝聚成结晶,创作出美的作品来。
C.在场的东西就是美的作品中的象,不在场的东西就是美的作品中的象外之意,言外之情。
D.如果隐藏在作品背后的不在场的东西是无穷的,那么这个作品欣赏起来就可能给人一种玩味无穷的感觉。
2.下列理解和分析,不符合原文意思的一项是(3分)()A.欣赏一件美的作品,通常是展开想象,把凝聚在作品背后无尽的内涵,一点一滴地进行仔细体味。
B.欣赏作品时,能够获得一种原来如此的醒悟,这原来如此就是指回归到形成这一件美的作品的母源。
C.杜甫诗句中的山河在是作品中的象,这象的内涵,就是司马光的解读:山河在,明无余物矣。
D.《农鞋》画里的农鞋上的几个破洞,之所以能使观赏者得到一种精神上、思想上的满足,是因为象外有意。
3.根据原文内容,下列说法不正确的一项是(3分)()A.中国传统美学所说的美的本质,不是指声色之美这类低层次的感性美,而是指意境美、精神美这类深层次的美。
B.深入到美的作品的象外之意中,才能获得精神上的满足,思想上的满足,即感受到美的愉悦美的享受。
C.有些美的作品中的凄凉与现实生活中的凄凉给人的感受是不同的,前者具有审美意义,使欣赏者产生审美的愉悦感。
D.把在场的东西隐藏在表面形象或言词背后的作品具有含蓄之美,领会到作品中的情或意,是一种深层次的欣赏。
(二)(2017-2018学年广东佛山高一上期末)文学类文本阅读(本题共3小题,14分)阅读下面的文字,完成4-6题。
泰山石刻汪曾祺第一次看见经石峪字,是在昆明一个旧家,一副四言的集字对联,厚纸浓墨,是较早的拓本。
百年老屋,光线晦暗,而宇字神气俱足,不能忘。
经石峪在泰山中路的岔道上。
这地方的地形很奇怪,在崇山峻岭之中,怎么会出现一片一亩大的基本平整的石坪呢?泰山石为花岗岩,多为青色,而这片石坪的颜色是姜黄的。
四周都没有这样的石头,很奇怪。
是一个什么人发现了这片石坪,并且想起在石坪上刻下一部《金刚经》呢?经字大径一尺半。
摩崖大字,一般都是刻在直立的石崖上,刻在平铺的石坪上的,很少见。
这样的字体,他处也极少见。
经石峪的时代,众说纷坛。
说这是从隶书过渡到楷书之间的字体,则多数人并无异议。
经石峪保存较多隶书笔意,但无蚕头雁尾,笔圆而体稍扁,可以上接《石门铭》,但不似《石门铭》的放肆,有人说这和《瘗鹤铭》(瘗y)都是王羲之写的,似无据。
王羲之书多以偏侧取势,经石峪非也。
《瘗鹤铭》结体稍长,用笔瘦动,秀气扑人,说这近似二王书,还有几分道理(我以为应早于王羲之)。
书法自晋唐以后,都贵瘦硬。
杜甫诗书贵瘦硬方通神,是一时风气。
经石峪字颇肥重,但是骨在内中,肥而不痴,笔笔送到,而不板滞。
假如用一个字评经石峪字,曰:稳。
这是一个心平而志坚的学佛的人所写的字,这不是废话么,《金刚经》还能是不学佛的人写的?这样的字,和泰山才相称。
刻在他处,无此效果。
十年前,我在经石峪呆了好大一会,觉得两天的疲劳,看了经石峪,也就值了。
经石峪是泰山不可分离的一部分。
泰山即使没有别的东西,没有碧霞元君祠,没有南天门,只有一个经石峪,也还是值得来看看的。
我很希望有人能拓印一份经石峪字的全文(得用好多张纸拼起来),在北京陈列起来,即使专为它盖一个大房子,也不为过。
名山之中,石刻最多,也最好的,似为泰山。
泰山上的大观峰真是大观,那么多块摩崖大字,大都写得很好,这好像是摩崖大字大赛。
这块地场(这是山东话)也选得好。
石岩壁立,上无遮盖,而石壁前有一片空地,看字的人可以在一个距离之外看,收其全貌,不必像壁虎似的趴在石壁上。
摩崖字多是真书,体兼颜柳,是得这样,才压得住。
蔡襄平日写行草,泰山的石刻题名却是真书。
董其昌字体飘逸,但写大字却是颜体。
看大字碑刻上的题名,很多都是山东巡抚。
大概到山东来当巡抚,先得练好大字。
有些摩崖石刻,是当代人手笔。
较之前人,不逮也,有的字甚至明显地看得出是用铅笔或圆珠笔写在纸上放大的。
这哪里可以呢?很奇怪,泰山上竟没有一块韩复榘写的碑。
这位老兄在山东呆了那么久,为什么不想到泰山来留下一点字迹?看来他有点自知之明。
韩复榘在他的任内曾大修过泰山一次,竣工后,电令泰山各处:嗣后除奉令准刊外,无论何人不准题字、题诗。
我准备投他一票。
随便刻字,实在是糟蹋了泰山。
(选自汪曾棋散文集《人间草木》)4.下列对本文相关思想内容和艺术特色的分析鉴赏,不正确的一项是(3分)()A.文章通过认真的历史考证和多角度的描写,表现了经石峪刻字的价值。
B.详写经石峪刻字而略写大观峰刻字,详略得当,结构安排合理。
C.蔡襄在泰山的石刻题名改写真书是为了展示他在书法艺术上的造诣。
D.文章的语言平淡冲和,朴素简净。
篇幅虽短,但文化意蕴极为丰厚。
5.结合文本,从描写手法的角度对文中画线句子进行赏析。
(5分)6.结合文本,谈谈汪曾祺对中华传统文化的态度是怎样的。
(6分)(三)(湖南长郡中学2017-2018学年高一下期中)实用类文本阅读(本题共3小题,12分)阅读下面的文字,完成7-9题。
材料一:随着社会经济发展和人民精神文化生活需求的日益多样化,博物馆服务于社会建设的格局发生了重大变化,博物馆收藏,展示的文化遗产资源多渠道、多层次、多形式地为社会公众所共享,在讲好中国故事,传播好中国声音上发挥着举足轻重的作用。
博物馆接待参观人次,从2001年的7955万人次增长到2014年的7.2亿人次,13年间增长了8倍,对于青少年而言,博物馆逐渐成为学校教育之外的第二课堂,在互动性、体验性、趣味性方面发挥着独特的优势。
2014年,全国博物馆拥有近3000万件(套)藏品,依托这些藏品在历史、文化、考古等领域开展了大量的科研活动,科研成果也非常丰富。
针对藏品的研究,需要整合学校和研究机构的学者、教师,因此博物馆往往会成为一个地区的文史研究中心,同时,博物馆逐渐成为展示城市独特历史文化、提升城市文化品牌价值的重要载体。
2010年,西安市委、市政府正式提出把西安建设成博物馆之城的战略目标,随后广州、济南等城市也纷纷提出建设博物馆之城的口号,以此提升城市的竞争力。
(摘编自刘世锦主编《中国文化遗产事业发展报告(2014)》)材料二:2008年起,中国文化文物系统的博物馆开始全面免费开放,此后博物馆的直接经济贡献逐渐减弱。
因此,只能通过博物馆事业增加值来衡量博物馆对国民经济的直接贡献。
博物馆事业增加值即文化文物系统内的博物馆向社会提供产品或服务(如文化创意产品销售、文物巡展、社会文物鉴定及咨询等)而增加的价值总和。
2001-2014年全国博物馆事业增加值变化情况如下图:(摘编自苏杨等主编《中国文化遗产事业发展报告(2015—2016)》)注:计算或比较不同时期的经济数据时,用某一时期产品的平均价值作为固定的计算尺度,这种平均价格叫可比价格。
可比价格计算出的指标,可以消除价格变动因素的影响,便于对不同时期进行历史对比,以观察国民经济的发展情况。
材料三:要真正了解或融入一个城市与国家,最直接也是最重要的途径就是参观博物馆。
北京每年接待的上亿游客中,相当一部分要参观北京的博物馆。
博物馆对于旅游经济的拉动难以用数字衡量,它更多的是一种潜移默化的宣传和教育作用。
通过品牌价值的提升和精神核心的建立,实现对旅游经济的长远影响,这也是博物馆对国民经济的间接贡献。