电磁场第3章
交变电磁场

2、频率必须够高 理论和实验均表明,振荡频率越 高,电荷的辐射功率越大,越有利于电磁波的发射。 上述两个条件是相互联系的。事实上,按3.9的顺序 改造LC振荡电路的同时,电路中C和 L的值都在不断地减 1 小,因此电荷的振荡频率 在不断地增高。 2 LC 最后得到的振荡电偶极子,已经是能够有效地发射电磁 波的振源了。
d m E Cos dl i L dt
(3.3)
式(3.1)和(3.2)是从两个不同侧面来计算的同一个功,因而
这种由磁场变化而激发的电场,称为感应电场,上式中 的 Ei 叫做感应电场强度。
实验表明,感应电场强度与回路的导电性能无关, 它是交变电磁场本身属性的一种表现。事实上,即使 没有导体回路,而在任意的假想回路上,式(3.3)仍然成 立。例如在空间任取的一个积分回路中,虽然没有电 流产生,但回路上任意一点仍然有感应电场强度。 式(3.3)中“-”号表示了Ei绕回路L的积分与穿过以L 为边界线的面上的磁通量增量之间方向的关系。当我 们取定回路绕行正方向,并规定与其成右手螺旋关系 的方向为通量及通量增量的正方向,如图3.1(a)所示。 在这种规定下,根据楞次定律必然有
d m E Cos dl i i L dt
可见,(3.3)式中“-”号是楞次定律的数学表示。也 可以说,Ei的环流 E dl 与磁通量的变化成左手关系 iCos
《电磁场》课件—第三章 静电场2(导体和介质中的静电场理论-边界条件).ppt

f
D1 ⋅ (− ∆S n) + D 2 ⋅ (∆S n) = σ f ∆S
公式的正负与D 的取向有关?
D2n − D1n = σ f (公式的正负与 nˆ 的取向有关)
B) 切向边界条件
E2t − E1t = 0
证:围绕分界面上p点作一个小的扁
E1
β ∆L 3 tˆ
的矩形
4
p 2 “小”:∆L线上的E能用点 p的 E代替
3.3 物质中的静电场
3.3.1. 导体中的静电场 1) 导体中的电子运动
金属导体中有大量的自由电子,时刻都在做不规则的微观运 动 ——热运动,当自由电子受到电场力时,还要在热运动的基 础上叠加一种有规则的宏观运动——定向运动,形成电流。
正极性的晶核相当于不动
2) 静电平衡状态——自由电子不作宏观运动
ε1 ε2
如果介质2是真空, 或空气则 σ p= P ⋅ nˆ P1
dS
• 极化电荷体密度
ρ p = −∇ ⋅ P
和高斯定理比较 : ρ = ε0∇ ⋅ E
ε1 ε2
P2 nˆ
均匀极化, ∇ ⋅ P = 0 , 则极化体电荷为零。
4) 电位移矢量
为什么要引入 新物理量?
=D ε0 E + P
定义式
∫ ∫ ∫ ( ) ∫ qp
=
V' ρ pdV
=
V ρ pdV
=−
P⋅ d S
S
= − ∇ ⋅ P dV V
• 整块介质的极化总电荷:qp=0
复习
div P =
lim
∫S
P⋅ d S
∆V →0 ∆V
• 分界面上极化电荷面密度:作高斯面,可证
电磁场与微波技术实验教程第3章

蓝色圆为匹配圆逆时针旋转90°(即λ/8)后得到的辅助圆):
ZL ~ (1) 计算归一化负载阻抗值, Z L Z 0 2 j1
, 在圆
图上找到阻抗点A。 由A点沿等反射系数圆旋转180°, 得 到导纳点B。
第3章 微波电路CAD
第3章 微波电路CAD
2) 反射演示
负载分别设为全反射、 匹配以及任意状态时, 观察传 输线上反射电压(U-)、 反射电流(I-)的形成过程, 比较二 者的相位关系; 比较反射波(U-、 I-)与入射波(U+、 I+)之 间的相位关系, 注意观察传输线末端的反射情况。
第3章 微波电路CAD
3) 驻波演示
, 则归一化输入阻
抗为Z in3 0.5 j0.8 , 在圆图上找到输入阻抗点Zin。 (2) 短路时的 Z in2 j2 , 圆图上短路点对应的电长度
为0.18, 即输入阻抗点距离终端0.18λ。 (3) 由输入阻抗点Zin沿等反射系数圆逆时针(向负载方向) 旋转0.18电长度, 即得负载阻抗点Z, 为归一化值, 再乘 以Z0即得负载阻抗ZL。
传输线波形演示及圆图应用
一、 实验目的
(1) 了解传输线上各种波形的形成及传输特点。
(2) 掌握圆图的构成及计算应用。
第3章 微波电路CAD
二、 实验设备
本实验采用传输线理论CAI软件进行。 该软件为实验室 自行开发、 设计的计算机辅助教学软件, 分为传输线波形 演示和圆图应用两大部分。 传输线理论CAI软件主界面如图3.1.1所示。
第3章 微波电路CAD
实验2
Microwave Office软件系统介绍及应用
《电磁场与电磁波》第4版(谢处方 编)课后习题答案 高等教育出版社三章习题解答

三章习题解答3.1 真空中半径为a 的一个球面,球的两极点处分别设置点电荷q 和q -,试计算球赤道平面上电通密度的通量Φ(如题3.1图所示)。
解 由点电荷q 和q -共同产生的电通密度为33[]4q R R π+-+-=-=R R D 22322232()(){}4[()][()]r z r z r z a r z a q r z a r z a π+-++-+-++e e e e 则球赤道平面上电通密度的通量d d zz SSS Φ====⎰⎰D S D e223222320()[]2d 4()()aq a ar r r a r a ππ--=++⎰ 22121)0.293()aqaq q r a =-=-+ 3.2 1911年卢瑟福在实验中使用的是半径为a r 的球体原子模型,其球体内均匀分布有总电荷量为Ze -的电子云,在球心有一正电荷Ze (Z 是原子序数,e 是质子电荷量),通过实验得到球体内的电通量密度表达式为02314ra Ze r r r π⎛⎫=- ⎪⎝⎭D e ,试证明之。
解 位于球心的正电荷Ze 球体内产生的电通量密度为 124rZer π=D e 原子内电子云的电荷体密度为333434a a Ze Zer r ρππ=-=- 电子云在原子内产生的电通量密度则为 32234344r ra r Ze rr r ρπππ==-D e e 故原子内总的电通量密度为 122314ra Ze r r r π⎛⎫=+=- ⎪⎝⎭D D D e 3.3 电荷均匀分布于两圆柱面间的区域中,体密度为30C m ρ, 两圆柱面半径分别为a 和b ,轴线相距为c )(a b c -<,如题3.3图()a 所示。
求空间各部分的电场。
解 由于两圆柱面间的电荷不是轴对称分布,不能直接用高斯定律求解。
但可把半径为a 的小圆柱面内看作同时具有体密度分别为0ρ±的两种电荷分布,这样在半径为b 的整个圆柱体内具有体密度为0ρ的均匀电荷分布,而在半径为a 的整个圆柱体内则具有体密度为0ρ-的均匀电荷分布,如题 3.3图()b 所示。
电磁场理论课件 3-1 矢势及其微分方程

三.稳恒电流磁场的能量
已知均匀介质中 W 1 B HdV
磁场总能量为
2
1.在稳恒场中有
W
1 2
A
JdV
① 能量分布在磁场内,不仅分布在电流区。
② 1 A J 不是能量密度。 2
14
③ 导出过程
B H ( A) H
( f g) ( f ) g f ( g)
( f ) g ( f g) f ( g)
Байду номын сангаас
Ay z
)ex
( Ax z
AZ x
)e y
( Ay x
Ax y
)ez
B0 e z
5
• 可选择 AZ AY 0 , AX B0 y , 即 A B0 yex
•即也A可 选B择0 xAeZy Ax 0, AY B0 x ,
• 还可有多种选择,即有多种 ,而描述同一 磁场
6
7
dz ↑I z oR P
19
例1 无穷长直导线载电流I,求磁场的矢势和 磁感应强度。
解:设P点到导线的垂直距离 为R,电流元Idz到P点的距离为
R2 z2
A(x) J (x' )dV '
4 r
dz ↑I z oR P
Az
I 4
dz I ln z R2 z2 4
M
z2 R2
M
A=0
A1n A2n
S A dS AdV 0
n
2
1
A2t A1t
A1 A2
12
(b) n (H2 H1)
n
(
1
2
A2
1
1
A1 )
5.矢量泊松方程解的唯一性定理
电磁场复习纲要

《电磁场理论》知识点第一章矢量分析一、基本概念、规律矢量微分算子在不同坐标系中的表达,标量场的梯度、矢量场的散度和旋度在不同坐标系中的计算公式,常用的矢量恒等式(见附录一1•和2.)、矢量积分定理(高斯散度定理、斯托克斯旋度定理及亥姆霍兹定理)。
二、基本技能练习1、已知位置矢量r x? y@y ze?z,r是它的模。
在直角坐标系中证明r r(1) r (2) ?r 3 (3) x r 0 (4) x( r) 0 (5) ?-y 0r r22、已知矢量A e x x e y xy gy z,求出其散度和旋度。
r3、在直角坐标系证明 A 04、已知矢量A e x 2?y, B e x3e z,分别求出矢量A和B的大小及A B5、证明位置矢量r £x X e『y e z Z的散度,并由此说明矢量场的散度与坐标的选择无关。
6、矢量函数A x2e x y?y x?z,试求(1)A(2)若在xy平面上有一边长为2的正方形,且正方形的中心在坐标原点,试求该矢量A穿过此正方形的通量。
第二章静电场一、基本常数二、基本概念、规律静电场、库仑定律、电场强度、电位及其微分方程、电荷密度、电偶极子模型、高斯定理、环路定理、极化强度矢量、电位移矢量、场方程(真空中和电介质中)、介质性能方程,边界条件,场能及场能密度。
三、基本技能练习2、证明极化介质中,极化电荷体密度b与自由电荷体密度的关系为:bD?(—)。
3、一半径为a内部均匀分布着体密度为0的电荷的球体。
求任意点的电场强度及电位。
媒质2。
已知空气中的电场强度为E14e x e z,求(1)空气中的电位移矢量(2)媒质2中的电场强度。
5、半径为a的均匀带电无限长圆柱导体,单位长度上的电荷量为,求空间电场强度分布。
6、半径为a的导体球外套一层厚为(b a)的电介质(其介电系数为),设导体球带电为q,求任意点的电位。
7、一个半径为a的电介质球内含有均匀分布的自由电荷,电荷体密度为证明其中心点的电位是(2 r 1) a 厶8、一个半径为a,带电量为Q的导体球,球外套有半径为b的同心介质球壳,壳外是空气,壳内介质的介电系数为「求空间任一点的D, E, P及束缚电荷密度。
必修一第三章电磁场的相互作用知识点总结

必修一第三章电磁场的相互作用知识点总
结
本文总结了必修一第三章电磁场的相互作用的重点知识。
1. 电磁场的概念和特点
- 电磁场是由电荷或电流产生的物质周围存在的一种物理场。
- 电磁场具有电场和磁场两个方面的特点。
- 电磁场是通过电磁波的传播来体现的。
2. 电磁场的相互作用
- 静电场和静磁场之间存在相互作用,称为静电磁场的相互作用。
- 动态电场和动态磁场之间也存在相互作用,称为动态电磁场
的相互作用。
3. 安培定律和法拉第电磁感应定律
- 安培定律描述了电流在磁场中的相互作用规律。
- 法拉第电磁感应定律描述了磁场变化产生感应电动势的规律。
4. 电磁感应现象
- 电磁感应现象是指磁场中的变化会引起感应电动势和感应电流的产生。
- 电磁感应现象在发电机、变压器等设备中得到了广泛应用。
5. 洛伦兹力和洛伦兹力的方向
- 洛伦兹力是由带电粒子在磁场中运动时受到的力。
- 洛伦兹力的方向遵循右手定则。
6. 麦克斯韦方程组
- 麦克斯韦方程组是描述电磁场的基本方程组。
- 麦克斯韦方程组包括电场和磁场的高斯定律、法拉第电磁感应定律、安培定律和法拉第电磁感应定律的积分形式。
7. 电磁波
- 电磁波是由变化的电场和磁场相互作用产生的波动现象。
- 电磁波具有传播速度为光速的特点,可以传播在真空中。
以上是必修一第三章电磁场的相互作用的重点知识点总结。
参考文献:
- 《高中物理必修一》,人民教育出版社
- 《高中物理学科教学大纲(2017年修订)》。
《电磁场与电磁波》第4版(谢处方编)课后习题答案高等教育出版社三章习题解答

三章习题解答3.1真空中半径为“的一个球而,球的两极点处分别设置点电荷G 和-0,试计算球赤道平 而上电通密度的通量0(如题3.1图所示人解 由点电荷。
和-Q 共同产生的电通密度为Z) = JL I 4-41 =4/r RI R 5q W + e :(z_a) _ e∕ + e( + d)4Λ, [r 2 +(z-a)2f f2 [r +(Z +Λ)2]V 2则球赤道平面上电通密度的通量Φ = ∫P ∙dS=∫D ∙ e.∣.=I)ClS =4,,(,+/)3/2(厂2+/)3/2 Md 心(咅一 l)g = -0.293q3.2 1911年卢瑟福在实验中使用的是半径为G 的球体原子模型.英球体内均匀分布有总电 荷量为-Ze 的电子云,在球心有一正电荷ZW (Z 是原子序数,e 是质子电荷量),通过实验得 到球体内的电通量密度表达式为n 0=e r - 4-4,试证明之。
4兀I 广乙丿Q 4∕ZT *∙ .,'3 Ze r 电子云在原子内产生的电通量密度则为73.3电荷均匀分布于两圆柱面间的区域中,体密度为POW 两圆柱而半径分别为"和b ∙轴线相距为C(C<b-u),如题3.3图(Q)所示。
求空 间各部分的电场。
解由于两圆柱而间的电荷不是轴对称分布,不能直接用髙斯立律求解。
但可把半径为α的 小圆柱而内看作同时具有体密度分别为±P()的两种电荷分布,这样在半径为。
的整个圆柱体内具 有体密度为PO 的均匀电荷分布,而在半径为"的整个圆柱体内则具有体密度为-几的均匀电荷 分布,如题3.3图(b)所示。
空间任一点的电场是这两种电荷所产生的电场的叠加。
在r>b 区域中,由髙斯泄律f β∙d5=-,可求得大.小圆柱中的正、负电荷在点P 产生(-d) 解 位于球心的正电荷ZW 球体内产生的电通量密度为Ze4zrr 2原子内电子云的电荷体密度为D = D i +D 1D ∖=S3Ze_4甥题3.3图故原子内总的电通量密度为/ 2 2 f点P 处总的电场为 E = d + E ; = £(二一豊) 2匂广 r 「在r<b 且F 〉a 区域中,同理可求得大、小圆柱中的正、负电荷在点P 产生的电场分别为TtFP Pr f 一兀&PPCrr Δ9 =e r ------ = --- E I =e r ------------ = ------- 72πε^r 2ε0 " 2πε0r f 2^0√-2 f点P 处总的电场为 E=Er+E2単(Γ-令・2q r ・在r<a 的空腔区域中,大、小圆柱中的正.负电荷在点P 产生的电场分别为E =e 乞込=竺 尽=”.一WQJ=—空§ r 2πεky r 2ε0 ' ,2πε0r , 2ε0点P 处总的电场为半径为"的球中充满密度Q(C 的体电荷,已知电位移分布为故在 r< a 区域 p(r)=勺)-K-[r 2(r' + Ar)] = ^0(5r 2 +4 Ar)r dr在尸>"区域 p(r) =[r 2 !≤t±L2∣ = O厂dr厂3.5 —个半径为"薄导体球壳内表面涂覆了一薄层绝缘膜,球内充满总电荷量为O 为的体 电荷,球壳上又另充有电荷量0。