有机化合物的结构表征
有机化合物结构表征

有机化合物的结构表征§4-1 概述研究一个有机化合物,不论是天然产物还是人工合成品都需要对这个化合物进行结构表征。
如果一个化合物的结构不清楚,就不能深入研究它的性质和作用,更不可说合成和改进这个化合物了。
所以,确定有机化合物的结构是有机化学研究的一项重要任务。
在有机化学研究中,怎样表征有机化合物的结构呢?下面我们从三个方面概要地讨论这个问题。
Ⅰ.有机化合物的研究过程有机化合物的研究过程是以化学实验为基础,现代分析技术为手段,有机结构理论为知道的系统研究方法,基本程序如下。
1.化合物的分离提纯研究任何一种有机化合物,必须保证该化合物是单一纯净的物质。
由于有机反应较为复杂,副反应较多,提纯有机化合物是一个非常艰巨的工作,尤其是从大量的天然物内提取生理活性很强的物质。
有机化合物分离提纯,经常使用的方法有蒸馏,萃取,重结晶,升华和层析等物理过程分离法。
随着分离提纯一起和方法的改善,技术手段的提高,有机化合物的分离提纯及经过仪器化,连续化和定量化发展。
经过分离提纯的有机化合物,可令相色清,高压液相色清,纸色谱和薄层色色谱等确定起纯度,具有微量,快速和准确的优点。
2.元素定性定量分析经过分离提纯的物质,纯度恰恰正式为一个纯的化合物后,可以进行元素定性分析测定这个化合物是由哪些元素组成的,然后在进行元素的定量分析时,确定组成化合物的每种元素的百分含量。
元素分析仪可以直接自动给出元素的定量分析结果。
根据元素定量分析结果,计算出该有机物的实验式。
实验式是反映组成化合物的元素种类和各元素原子比例的化学式,但还不能说明分子中各种元素的原子数目。
3.相对分子质量的测定测定化合物的相对分子质量,结合实验式就可以写出该化合物的分子式。
相对分子质量的测定方法有很多,质谱法是一种快速精确的测定方法。
4.确定化合物可能的构造式写出化合物的分子式后,按照同分异构的概念,就可以写出可能的同分异构体的构造式。
有机化学中同分异构现象十分普遍。
有机化合物的表征

• 15.1 • 15.2 • 15.3 • 15.4
红外光谱法 核磁共振波谱法 紫外光谱法 质谱法
返回
15.1 红外光谱法
• 1. 峰强及峰形,判断化合物中可能存在的官能团,从而推断出未知物的 结构
• 2. 核磁共振波谱法:具有磁矩的原子核在强外界磁场条件下吸收电 磁辐射,从较低自旋能级跃迁到较高自旋能级而产生的波谱。根据核 磁共振波谱图中峰数、化学位移、峰面积及峰的裂分可以比较准确地 推断有机化合物的构造
由于振动偶合,结果使甲基的面内弯曲振动(1380cm-1)峰发生分 裂,出现双峰。 • 甲氧基中的甲基:甲氧基中的碳直接与氧原子连接,氧原子的影响使 C—H 伸缩振动显示特别的吸收峰,该振动在2835~2815cm-1范 围内出现尖锐而中等强度的吸收,具有很强的结构鉴定
上一页 下一页 返回
15.1 红外光谱法
• 红外光是一种波长大于可见光的电磁辐射,波长范围为 0.76~1000μm,通常又把这个区域分为近红外区、中红外区和远 红外区,其波长范围见表15-2。
• 近红外区主要研究稀土和过渡金属离子的化合物、水、含氢原子团
上一页 下一页 返回
15.1 红外光谱法
• 化合物的定量分析。绝大多数有机化合物和无机离子的基频吸收带都 出现在中红外区,由于基频振动是最强的吸收,适宜进行定性、定量 分析,所以中红外区又称红外光谱区。远红外区对异构体的研究特别 方便,由于低频骨架振动能很灵敏地反映出结构变化,此区还可用于 金属有机化合物的氢键、吸附现象的研究,但由于该光区弱,一般不 在此范围内进行分析。
上一页 下一页 返回
15.1 红外光谱法
• 电波能引起原子核自旋能级跃迁,产生核磁共振谱;红外光辐射能引 起分子中原子的振动和转动能级跃迁,产生红外光谱;紫外光和可见 光辐射能够引起分子中价电子能级跃迁,产生紫外-可见光谱;χ射线 辐射能够引起分子中内层电子的跃迁,产生χ射线衍射,等等。
第七章-有机化合物的结构表征

H
6.73
7.81 H
特征质子的化学位移值
常用溶剂的质子
CHCl3
的化学位移值
D (7.27)
0.5(1)—5.5 2—4.7
OH
NH2 NH
10.5—12
6—8.5
9—10
4.6—5.9
1.7—3 0.2—1.5
13 12 11 10 9 8 7 6 5 4 3 2 1 0
C3CH
R
RCOOH RCHO
光的能量为:
E1
E2
h
[(1
1) 2
(0
1 2
)]h
振
振
分子振动频率习惯以σ(波数)表示:
1 k 1307 k
c 2c
c
由此可见: σ(ν)∝ k,σ(ν)与μ成反比
吸收峰的峰位: 化学键的力常数k越大,原子 的折合质量越小,振动频率越大,吸收峰将出现 在高波数区(短波长区);反之,出现在低波数 区(高波长区)
无线电波与处于磁场中的自旋核相互作用, 引起核 自旋能级的跃迁而产生核磁共振。
高能态
H'
ms = _ 1/2
E= h ν H0
外场
低能态
H'
ms = + 1/2
二、 核磁共振谱解析
核磁共振谱图提供的主要信息
❖ 峰的组数 ❖ 各组峰的化学位移 ❖ 各组峰的面积 ❖ 峰的裂分
1.峰的组数: 一个化合物有几组吸收峰,
对有机化合物的研究,应用最为广泛的是: 紫外光谱(ultravioler spectroscopy 缩写为UV) 红外光谱(infrared spectroscopy 缩写为IR) 核磁共振谱(nuclear magnetic resonance 写为NMR) 质谱(mass spectroscopy 缩写为MS).
有机化合物的表征

• 分子及组成它的原子、电子在不断运动,各种运动状态都有一定的能 级,有电子能级、振动和转动能级、原子核自旋能级。分子中不同运 动方式的能级跃迁需要不同频率或波长的电磁辐射提供能量。如无线
• 电磁辐射,又称电磁波,具有波、粒二象性。电磁辐射的波长l(单位 cm 或nm)越短,频率v(单位Hz)越高,光子能量E(单位kJ·mol-1) 也越大。它们之间的关系是
上一页 下一页 返回
15.1 红外光谱法
• 式中 c为光速,是常数3×1010cm/s;犺为普朗克常数, 6.626×10-34J·s;犾为波长。电磁波的频率也常以波数σ表示,σ 是指每厘米所含有波长的数目,单位为cm-1。
• 组成分子的原子不停地振动,振动方式很多,在红外光谱中一般可以 分为伸缩振动和弯曲振动两种类型。
上一页 下一页 返回
15.1 红外光谱法
• 1)伸缩振动 • 键合原子沿键轴方向伸展和收缩,键长改变而键角不变。可以分为对
称伸缩振动和不对称伸缩振动。 • 2)弯曲振动 • 键合原子在键轴上下左右弯曲振动,键角改变而键长基本不变。可以
• 3. 紫外光谱法 • 4. 质谱法 • 有机化合物的结构表征可以分为三种方法:物理常数测定法、化学法
和近代物理方法。在每种方法中又可以分为不同的方法。但一般情况
下一页 返回
15.1 红外光谱法
• 下,没有只用一种方法就能够准确无误地给出化合物的构造,实际工 作中往往是几种方法联合使用、互相补充,才能够得到确切的构造式。 其中近代物理方法是应用近代物理实验技术建立的一系列仪器分析方 法。测定有机化合物的各种波谱,确定有机化合物的结构,现已构成 了有机化合物的波谱学。这种方法的特点是试样用样量少、测试时间 短、结果精确等。尤其与计算机联用后,其优越性更加突出。有机化 合物的波谱是记录有机化合物分子的微观性质,能够揭示微观粒子的 运动状态和相互之间的关系,是研究表征分子结构的最有利的手段和 方法。
化学中的有机化合物结构解析

化学中的有机化合物结构解析现代化学领域中,有机化合物是一个极其重要的研究对象。
有机化合物的结构解析,可以帮助我们深入了解其性质和反应机制,为药物开发、新材料研究以及环境保护等领域的进展提供基础支持。
本文将从有机化合物的结构表征方法、结构解析的原则以及实际应用等方面进行探讨。
一、有机化合物的结构表征方法有机化合物的结构解析是根据其化学键的类型、键长、键角、空间构型等信息,揭示化合物分子的精确结构和三维构型。
目前,有机化合物的结构表征方法主要包括以下几种:1. 光谱学方法:包括核磁共振(NMR)、红外光谱(FT-IR)、紫外可见光谱(UV-Vis)等。
其中,核磁共振可以提供关于原子核的化学位移、偶合常数等信息,红外光谱则是通过测量化合物分子中的振动频率来推断其结构。
2. 质谱法:利用质谱仪对有机化合物蒸汽进行分析,通过质量-电荷比(M/Z)来确定分子的分子量、基团以及可能的结构。
3. 晶体学方法:通过单晶X射线衍射技术,可以获得有机化合物单晶的晶胞参数、分子排列方式以及键的长度等信息。
4. 色谱分离方法:如气相色谱(GC)、液相色谱(LC)等,通过对化合物混合物进行分离,进而获得纯净的有机化合物,为结构解析提供前提条件。
二、有机化合物结构解析的原则在进行有机化合物结构解析时,有一些基本原则需要遵循,以确保解析结果的准确性和可靠性。
1. 分子对称性:化合物的对称性对结构解析非常重要。
有机化合物常见的对称性有点群Dn、Cn、Cnv等,通过分析对称性可以推断出化合物的结构特点。
2. 化学键的长度和键角:通过实验测定或计算方法可以获取化学键的长度和键角数据,这些数据对于推导分子几何构型和键的特性非常有帮助。
3. 立体化学:立体构型的分析常常需要考虑手性、构象异构体以及双键的轴向异构体等因素,通过化学键的角度和轴向异构体的对称性可以解析出化合物的立体结构。
4. 共价键的杂化和电子云分布:根据共价键的杂化方式以及电子云的分布情况,可以推测分子中各原子的杂化状态,从而推导出有机化合物的结构。
第6章结构表征

3 指纹区 (低频区)
小于1600cm-1的振动频率都在此区,主要是C-C,C-N,CO等单键的伸缩振动和各种弯曲振动的频率。
分子结构的微小变化,这些键的振动频率都能反映出来,就象人的指 纹一样有特征,故称指纹区。能反映化合物的精细结构。
17
18
6.2.3 红外吸收光谱图及其解析 1. 红外吸收光谱图
剪 式 振 动
平 面 摇 摆
非 平 面 摇 摆
扭 曲 振 动
12
面 内 弯 曲
面 外 弯 曲
经典力学说明分子的振动: 一般用不同质量的小球代表原子,以不同硬度的 弹簧代表各种化学键。
K m 1 m 2
双 原 子 分 子 伸 缩 振 动 示 意 图
化学键的振动频率ν 与化学键的强度(力常数 k ) 及振动原子的质量m1、m2有关,关系式为:
吸 收 强 度 OH CH3 CH2
1 乙醇的 HNMR 图
Ho
这种由于氢原子在分子中的化学环境不同,因而在不同磁场 强度下产生吸收峰,峰与峰之间的差距称为化学位移,用δ 表示。 25
2.屏蔽效应—化学位移产生的原因
有机物分子中不同类型质子的周围的电子云密度不一样, 在外加磁场作用下,引起电子环流,电子环流围绕质子产生一 个感应磁场(H’),其方向与外磁场方向相反,这个感应磁 场使质子所感受到的磁场强度减弱了,即实际上作用于质子的 磁场强度比Ho要小。 这种由于电子产生的感应磁场对外加磁场的抵消作用称为 屏蔽效应。
(1) 伸缩振动
成键的两原子沿键轴方向伸长和缩短的振动称为伸缩振 动,常用ν 表示。 包括:对称伸缩振动(νs)、不对称伸缩振动(νas)。
伸缩振动—(键长发生改变,键角不变)。
11
教案:有机物的结构表征技术

教案:有机物的结构表征技术有机物是自然界中广泛存在的一类化合物,其中包含了大部分的生命活动所需的分子,因此研究有机物的结构与性质无论在理论探究上还是在应用研究上都有着重要的作用。
由于有机物种类繁多,结构多样,样品通常难以制备,所以需要有效的结构表征技术才能提高研究的准确度和效率。
目前,有机物的结构表征技术主要包括光谱法、色谱法、质谱法以及X射线衍射法等多种方法,下面将对这几种方法分别进行详细介绍。
一、光谱法光谱法是通过有机物吸收、散射或发射的光信号来确定其分子结构和性质。
根据所使用的光源、检测器以及样品状态,光谱法又可以分为红外光谱、紫外光谱、拉曼光谱、荧光光谱、圆二色光谱等多个子领域。
其中,红外光谱(FTIR)和紫外光谱(UV-Vis)是最为常用和广泛的两种光谱方法。
红外光谱法是一种基于有机物分子的振动吸收谱的谱学分析方法,根据不同种类的化学键在不同部位的振动特性,可以分析有机物的官能团、键型以及化学结构。
相较于其他分析方法,红外光谱法具有快速、易用、非破坏性的特点,因此在有机物分析中被广泛应用。
同时也有一定的局限性,例如无法检测出对称结构等方面的信息。
紫外光谱法是一种测定有机物分子中所含共轭体系吸收紫外光的谱学分析方法,通过分析有机物的吸收特性得到其电子结构、分子键型、芳香或几何结构等信息,应用也很广泛。
但是需要注意,紫外光谱法的结果受溶剂和温度等影响较大。
二、色谱法色谱法是一种分离和分析化合物的方法,通过样品在固定相、流动相以及温度等条件下的分离达到分析的目的。
常用的色谱法有气相色谱法(GC)、液相色谱法(HPLC)以及毛细管色谱法(CE)等。
气相色谱法是指将气体作为流动相,在某种固定相上,将需要分离的有机物混合物分离出不同的成分,其中流动相和站相皆是气体。
气相色谱法在大分子的有机物分离时不太适用,但是其可检测的范围广,分离效率高,因此被广泛应用于分析化学和生物化学等领域。
液相色谱法是将有机物样品在一种液体流动相中传输,到达与之亲和的固定相表面并被分离的一种色谱方法。
第四章 有机化合物的结构表征

4,振动频率及其影响因
根据胡克定律和经典力学规律可以推导出其振动频率和 波数的公式:
化学键越强(即键的力常数k越大)原子折合质量越小,化 14 学键的振动频率越大,吸收峰将出现在高波数区。
P98-99
(1)力常数和折合质量的影
折合质量对振动频率的影响
15
(2),诱导效
O R C R' 1715 O R C F 1869
红外吸收产生条件
(1) 基团振动产生偶极矩变化。 (2) 辐射能量满足振动能级跃迁需要。 红外光谱适用范围广,无机和有机化合物都可以测定红外光 谱;各种相态都可以测定,如气态、液态、固态。 最常用溴化钾压片法,吸湿造成在3330cm-1处有吸收峰。
17
6.红外光谱图和波谱信
波数线性 4000~2000 cm–1等间距,2000~400 cm–1等间距。
43
44
二、1H-NMR的化学位移:
(一)屏蔽效应和化学位
感应磁场对外磁场的屏蔽作用称 作电子屏蔽效应(electronic shield effect)。 这种由于分子中各组氢核所处的化学环境不同,在不同的磁场 产生共振吸收的现象称为化学位移(chemical shift),也作为表 示不同信号间差距的度量。
近代物理方法 ——有机化合物的波谱学。
4
(5)化合物结构表征: 化学方法:利用官能团特征反应确定化合物类别,化 降解及合成方法,官能团转化法。 物理常数测定法:标准品对比法,如混合熔点法。 近代物理方法 ——有机化合物的波谱学。 近代物理方法的特点:试样用量少,测试时间 短,结果精确等。 有机化合物的结构表征往往需要多种方法结合 使用,才能确定化合物的结构。
羰基的伸缩振动频率(cm-1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章有机化合物的结构表征【教学重点】红外光谱和核磁共振谱。
【教学难点】谱图解析。
【教学基本内容】红外光谱(分子振动与红外光谱、有机化合物基团的特征频率、红外谱图解析);核磁共振谱(核磁共振的产生、屏蔽效应与化学位移、自旋偶合与自旋裂分、n + 1规则、谱图解析)。
Ⅰ目的要求在研究有机化合物的过程中,往往要对未知物的结构加以测定,或要对所合成的目的物进行验证结构。
其经典的方法有降解法和综合法。
降解法是在确定未知物的分子式以后,将待测物降解为分子较小的有机物,这些较小的有机物的结构式都是已知的。
根据较小有机物的结构及其他有关知识可以判断被测物的结构式。
综合法是将已知结构的小分子有机物,通过合成途径预计某待测的有机物,将合成的有机物和被研究的有机物进行比较,可以确定其结构。
经典的化学方法是研究有机物结构的基础,今天在有机物研究中,仍占重要地位。
但是经典的研究方法花费时间长,消耗样品多,操作手续繁。
特别是一些复杂的天然有机物结构的研究,要花费几十年甚至几代人的精力。
近代发展起来的测定有机物结构的物理方法,可以在比较短的时间内,用很少量的样品,经过简单的操作就可以获得满意的结果。
近代物理方法有多种,有机化学中应用最广泛的波谱方法是质谱、紫外和可见光谱,红外光谱,以及核磁共振谱,一般简称“四谱”。
本章的重点是了解四谱的基本原理,并能够认识简单的谱图,综合四谱进行结构剖析和确证。
本章学习的具体要求:1、了解紫外光谱的基本原理和解析方法。
2、运用紫外光谱进行定性和定量分析。
3、了解红外光谱的基本原理和表示方法。
4、了解各类基本有机化合物的特征频率,并借此识别有机物的简单红外光谱图。
5、了解核磁共振的基本原理。
6、弄清屏蔽效应、等性质子和不等性质子,化学位移、自旋偶合和裂分等基本概念。
7、能够认识基本有机化合物的核磁共振谱图。
8、了解质谱基本原理和表示方法。
9、熟悉离子碎裂的机理和多类有机物裂解的规律。
10、熟悉质谱应用。
11、能够综合运用四谱知识和化学知识,剖析有机分子结构。
Ⅱ教学内容学生在学习本章之前,可以先复习一下物理学中的相关概念——光的基本性质方面的几个概念。
⑴光具有波粒二象性 E=hν=hc/λ,λ=c/ν,λν1~= 。
熟悉波长λ、频率ν、波数~ν、能量E 的概念、单位及相互关系。
⑵熟悉电磁波谱图,包括紫外光区、红外光区的划分。
⑶了解分子总的能量E 的组成,它包括E 平动能,电子运动能E 电、分子振动能量E 振和分子转动能量E 转。
电磁波(光波)照射物质时,分子要吸收一部分辐射,但是,吸收是量子化的,即只吸收某些特定频率的辐射,吸收的能量可以激发电子到较高的能级或增加分子振动能级和转动能级,从而产生特征的分子吸收光谱。
其中电子能级差最大、振动能级差次之,转动能级差最小。
只有恰好等于某个能级差时,分子才能吸收。
⑷了解吸收光谱与分子结构的关系。
分子中不同的基团表现出不同的吸收特征,因此,确定分子的吸收光谱可以推测分子可能存在的官能团。
⑸了解分子能级裂化与光谱的关系。
读者要了解吸收光谱的分类,以及电磁波谱区域与相应波谱方法的对应关系。
①紫外光谱法:波长在200—400nm 的近紫外光,激发n 及π电子跃迁②红外光谱法:波长在2.5—15μm 激发振动与转动③核磁共振波谱法:波长在无线电波1—1000m 激发原子核自旋能级。
质谱不同于以上三谱,不属于吸收光谱。
它不是描述一个分子吸收不同波长电磁波的能力,而是记录化合物蒸汽在高真空系统中,受到能量很小的电子束轰击后生成碎片正离子的情况。
⑹光吸收定律透射率T=透射光/入射光=I /I 0,吸光度A =-logT=εbc(L -B 定律)⑺物质吸收谱带的特征主要特征:位置(波长)及强度(几率)(一)紫外光谱(Ultraviolet Spectra,UV)(电子光谱)一、基本原理1、分子轨道形成与σ,π及n 轨道。
2、电子能级和跃迁类型3、发色团4、助色团及其对光谱的影响5、溶剂极性影响。
二、不饱和有机物的紫外吸收带及计算方法三、紫外光谱仪(二)红外光谱一、基本原理1、红外光谱红外光谱是由于分子吸收了红外光的能量之后发生振动能级和转动能级的跃迁而产生~的一种吸收光谱。
红外光谱是指 λ=2.5—1μm 相当于 =4000~625cm -1,这种光只能对应分子振动能级和转动能级的跃迁。
2、红外光谱的表示方法及特征。
用不同λ、ν或 的红外光照射样品,依次测定百分透射率(T%),有时也用百分吸收率(A%),然后以T%作纵坐标,以λ或 作横坐标,作图,即得一张IR 谱图。
由于吸收强度通常是用T%来表示,所以吸收愈强,曲线愈向下,IR 谱图上的那些“谷”,实际上是“吸收峰”,又称吸收带。
纵坐标表示分子对某波长的红外光吸收的强度,横坐标指出了吸收峰出现的位置。
在IR 谱图中,吸收峰一般不按其绝对吸光强度表示,而是粗略的分为:强(S)、弱(W)、中强(m);并按形状分为:尖(sh)、宽(b)等。
上述属性均是分子振动能级跃迁而引起的,而且均与分子的构造有严格的因果关系。
二、多原子分子的简正振动与吸收带的位置、形状、相对强度的关系。
1、简正振动2、红外光谱吸收与强度3、基本频率4、特征频率(区)5、指纹区6、多原子分子的红外吸收频率7、影响基团频率的因素三、有机化合物的红外光谱红外光谱图由于下述原因致使很复杂的。
①振动多,跃迁多,因此吸收带也多;②由于吸收带多,特征频率就会出现重迭而被掩盖;③倍频率的存在(在基本频率两倍大的频率处出现吸收带);④振动之间偶合;⑤特征频率还会受其它结构因素的影响。
IR 光谱复杂,以至于谱图中的很多吸收带至今还不能作出解释。
特别是指纹区,除个别吸收带明显可看出是特征吸收峰之外,其它大多数峰不能解释。
但是,一个红外光谱的某一段总是可以解释的,尤其是特征区。
借此,可以大体上了解在一定区域内出现吸收带是由于那种键的振动而产生的,这对测定分子的结构是大有帮助。
1、烷烃2、烯烃3、炔烃4、单环苯系防烃四、红外吸收光谱应用(三)核磁共振谱一、核磁共振的基本原理所谓核磁共振是指自旋核在外磁场作用下,吸收无线电波的能量,从一个自旋能级跃迁到另一个自旋能级所产生的吸收光谱,其中以氢核,即质子的NMR 为重要,简称氢谱(PMR)。
本教材只讲PMR 。
质子带单位正电荷,而且自旋,其自旋量子数m s =±1/2,简记I =1/2。
一个自旋的电荷(只要原子核质量数和原子序数有一个为奇数)即可形成循环电流,循环电流就会产生磁场与之联系,因此质子可视为一个小小的磁偶极子(或比作小磁棒)。
不存在外部磁场时,质子的取向是随机的,只有一个能级(平均能量)。
但把质子置于外磁场(H 0)时,有两种取向:一种ν ~ ν ~与H 0平行,一种与H 0方向反平行;两种取向的能量不同,遂分为两个能级,称为磁能级或自旋能级。
即说质子在外磁场作用下分裂出两个自旋能级。
一个相当于m s =+1/2 (低),一个相当于m s =-1/2 (高)。
两个自旋能级的能量差△E =2μH 0,μ为磁距,对于给定的核来说,μ是一个常数,对质子而言,μ=γh/4π,γ为质子的旋磁比,特征常数。
如果对处于外磁场H 。
作用的质子,用无线电磁波照射,并当无线电辐射的能量(hν照)等于质子两个自旋能级的能量差时,即hν照=γh/2π,简化为ν照=γH 0/2π,质子将吸收这份能量而从低自旋能级跃迁到高自旋能级,这叫质磁共振。
这种共振可在专门设计的核磁共振仪中获得,并给出一个信号,记录下来,就是PMR 谱图。
H 0外低场 → 高场实现共振方法有两种,从共振公式ν照=γH 0/2π知,原则上固定ν照,作H 0扫描(即扫场);或固定H 0,作ν照扫描(即扫频)均可获得共振。
但实际上最方便的方法是扫场。
扫场时,只要比H 0变大或变小,质磁均不能共振。
上述原理说明,对于“孤立”的质子,只给出一个共振倍号。
这对于只含一种氢原子的分子来说是真实的,只给出一个共振信号,例如CH 4。
但发现CH 4中质子出现的共振位置(即施加外磁场的强度)不同于简单的质子,略有偏移,移向高场。
也发现苯中质子只有一个信号,出现共振的位置移向低场,而且更多的分子的PMR 谱图上出现不止一个共振信号。
这是为什么呢?这是因为分子中的质子周围总存在电子,电子对质子的共振存在如下影响。
二、屏蔽效应1、抗磁屏蔽效应2、顺磁去屏蔽效应三、化学位移——pmr 谱图的横坐标综上所述,化合物中的质子都不同于“孤立”的质子。
由于大多数情况下,化合物中的质子,往往周围环境不同,它们感受到抗屏蔽效应或顺磁去屏效应,而且程度不同。
所以它们的共振吸收出现在不同的外加磁场强度,这一重要现象叫化学位移。
由于上述位置差异很小,难以精确地测出其绝对值,因而采用一个标准物质作对比,常用的标准物质是TMS 。
化学位移一般表达为:6TMS 10-⨯=照样νννδ (无因次量,单位ppm) 式中,ν样为样品中质子的共振频率;νTMS 为TMS 中质子的共振频率,它是与样品混在一起测得;ν照为仪器所采用的固定照射频率。
(四)质谱1913年J 、J 、Thomsom 首先利用质谱发现了同位素氖-22,到1960年质谱成为分析有机物的主要且广泛使用的技术,目前已有GC-MS ,LC-MS ,MS-MS 等。
一、基本原理1、质谱仪工作原理⑴质谱仪的基本组成: 3个基本系统:离子源,质量分析器,离子检测系统和两个辅助部分:真空系统,进样系统,⑵各部分的功能和原理Vr H e m 222 (3)质谱仪的主要性能指标:①分辨率;②灵敏度;③质量测定的准确度2、质谱图的表示方法3、产生质谱的电离方法二、离子主要类型(七种)三、离子碎裂机理四、有机化合物的裂解反应和质谱1、 饱和烃2、 烯烃和炔烃3、芳烃4、 卤代烃5、醇6、 酚7、 醚 8、 磷醇和硫键9、 醛酮 10、羧酸及其衍生物11、 含氮化合物五、有机质谱的解析六、质谱应用及举例Ⅲ 补充说明(一)四谱提供的结构信息及特点一、UV紫外及可见吸收光谱提供的信息主要涉及化合物中所含的共轭体系或羰基、硝基等生色团以及与它们直接关联部分的结构。
与红外吸收光谱类似,紫外吸收光谱通过谱图中吸收带的位置(即最大吸收波长λmax )、强度(摩尔吸光系数ε)和形状提供有关分子的这些结构信息。
根据吸收带的位置可以估计化合物中共轭体系的大小;吸收带的强度和形状有助于确定吸收带的归属(K 带、R 带或B 带),从而判断生色团的类型;与生色团直接相连的助色团或其他取代基也会影响吸收带的位置,一些经验公式提供了这方面的信息。
紫外及可见吸收光谱可提供的结构信息简要归纳如下:①在20~800nm 区域内没有吸收(ε<1),则可以推断被测化合物中不存在共轭双键、苯环、醛基、酮基、硝基、溴和碘;②在210~250nm 区域有强吸收带(ε≥104),则可以推断分子中存在两个双键组成的共轭体系;· + · + · +③在260~300nm区域有高强度吸收带(ε>104),则表示被测物中有3~5个双键组成的共轭体系,依据吸收带的具体位置可判断体系中共轭双键的个数;④在270~300nm之间有弱吸收带(ε<102),表示羰基的存在。