第5章__模拟量控制与编程
电气控制与PLC应用-第5、8章习题与思考题参考解答

第5章S7-200 PLC的指令系统习题与思考题1.S7-200指令参数所用的基本数据类型有哪些?答:S7-200 PLC的指令参数所用的基本数据类型有1位布尔型(BOOL)、8位无符号字节型(BYTE)、8位有符号字节型(SIMATIC模式仅限用于SHRB指令)、16位无符号整数(WORD)、16位有符号整数(INT)、32位无符号双字整数(DWORD)、32位有符号双字整数(DINT)、32位实数型(REAL)。
实数型(REAL)是按照ANSI/IEEE 754-1985标准(单精度)的表示格式规定。
2~255字节的字符串型(STRING)2.立即I/O指令有何特点?它应用于什么场合?答:立即指令允许对输入和输出点进行快速和直接存取。
当用立即指令读取输入点的状态时,相应的输入映像寄存器中的值并未发生更新;用立即指令访问输出点时,访问的同时,相应的输出映像寄存器的内容也被刷新。
由于立即操作指令针对的是I/O端口的数字输入和数字输出信号,所以它们的位操作数地址只能是物理输入端口地址Ix.x和物理输出端口地址Qx.x。
3.逻辑堆栈指令有哪些?各用于什么场合?答:复杂逻辑指令,西门子称为逻辑堆栈指令。
主要用来描述对触点进行的复杂连接,并可以实现对逻辑堆栈复杂的操作。
复杂逻辑指令包括:ALD、OLD、LPS、LRD、LPP和LDS。
这些指令中除LDS外,其余指令都无操作数。
这些指令都是位逻辑指令。
栈装载与指令ALD用于将并联子网络串联起来。
栈装载或指令OLD用于将串联子网络并联起来。
逻辑推入栈指令LPS,在梯形图中的分支结构中,用于生成一条新的母线,左侧为主控逻辑块时,第一个完整的从逻辑行从此处开始。
逻辑读栈指令LRD,在梯形图中的分支结构中,当左侧为主控逻辑块时,该指令用于开始第二个和后边更多的从逻辑块。
逻辑栈弹出指令LPP,在梯形图中的分支结构中,用于恢复LPS指令生成的新母线。
装入堆栈指令LDS,复制堆栈中的第n级值,并将该值置于栈顶。
第5章 FX系列PLC的基本工作原理

(其中I/O点数超过8192点的为超大型PLC)
按结构形式分
在存储容量方面,有的PLC最高可达几十兆字节。为 了扩大存储容量,有的公司已使用了磁泡存储器或硬 盘。
向小型化和大型化两个方向发展
小型PLC由整体结构向小型模块化结构发展,使配臵 更加灵活,为了市场需要已开发了各种简易、经济的 超小型微型PLC,最小配臵的I/O点数为8~16点,以 适应单机及小型自动控制的需要。 大型化是指大中型PLC 向大容量、智能化和网络化发 展,使之能与计算机组成集成控制系统,对大规模、 复杂系统进行综合性的自动控制。现已有I/O点数达 14336点的超大型PLC,其使用32位微处理器,多CPU 并行工作和大容量存储器,功能强。
各种类型的PLC
中、大型PLC的结构外型
• 中、大型PLC的结构外型,它通常采用积木式结构,可以 根据需要将各种标准模块进行搭接,常用的模块有电源 模块、CPU模块、输入模块、输出模块以及各种特殊模块。
图3- 2中、大型PLC的结构外型
5.1.2 PLC的结构与特点
可编程控制器的类型
按I/O点数分
增强外部故障的检测与处理能力
据统计资料表明:在PLC控制系统的故障中,CPU占5%, I/O接口占15%,输入设备占45%,输出设备占30%,线 路占5%。 前二项共20%故障属于PLC的内部故障,它可通过PLC本 身的软、硬件实现检测、处理。 而其余80%的故障属于PLC的外部故障。PLC生产厂家都 致力于研制、发展用于检测外部故障的专用智能模块,
第5章习题解答

第五章可编程序控制器及其工作原理5-1 可编程序控制器具有哪些特点?答:可编程序控制器特点:1)抗干扰能力强,可靠性高;2)控制系统结构简单、通用性强、应用灵活;3)编程方便,易于使用;4)功能完善,扩展能力强;5)PLC控制系统设计、安装、调试方便;6) 维修方便,维修工作量小;7) 体积小、重量轻,易于实现机电一体化。
5-2 整体式PLC、组合式PLC由哪几部分组成?各有何特点?答:整体式结构的PLC是将中央处理单元(CPU)、存储器、输入单元、输出单元、电源、通信端口、I∕O扩展端口等组装在一个箱体内构成主机。
另外还有独立的I/O扩展单元等通过扩展电缆与主机上的扩展端口相连,以构成PLC不同配置与主机配合使用。
整体式结构的PLC结构紧凑、体积小、成本低、安装方便。
小型机常采用这种结构。
组合式结构的PLC是将CPU、输入单元、输出单元、电源单元、智能I∕O单元、通信单元等分别做成相应的电路板或模块,各模块可以插在带有总线的底板上。
装有CPU的模块称为CPU模块,其他称为扩展模块。
组合式的特点是配置灵活,输入接点、输出接点的数量可以自由选择,各种功能模块可以依需要灵活配置。
5-3 PLC控制与继电器控制比较,有何相同之处?有何不同之处?答:PLC控制与继电器控制的比较见下表:5-4 PLC的硬件指的是哪些部件?它们的作用是什么?答:PLC的基本结构由中央处理器(CPU),存储器,输入、输出接口,电源,扩展接口,通信接口,编程工具,智能I/O接口,智能单元等组成。
1)中央处理器(CPU)中央处理器(CPU)其主要作用有①接收并存储从编程器输入的用户程序和数据。
②诊断PLC内部电路的工作故障和编程中的语法错误。
③用扫描的方式通过I∕O部件接收现场的状态或数据,并存入输入映像存储器或数据存储器中。
④PLC进入运行状态后,从存储器逐条读取用户指令,解释并按指令规定的任务进行数据传送、逻辑或算术运算等;根据运算结果,更新有关标志位的状态和输出映像存储器的内容,再经输出部件实现输出控制、制表打印或数据通信等功能。
第5章S7-200 PLC的基本指令及应用

2) 访问方式指出操作数是按位、字节、字或双字 访问的。当按位访问时,可用操作数位置形式 加以区分。访问方式按如下符号表示: X:位 B:字节 W:字 D:双字 3) 操作数的位置指明了操作数在此存储区的确切 位置,操作数的位置用数字来指明,以字节为 单位计数。
2.梯形图指令格式
梯形图是一种图形语言,不仅支持对存储区域 的按位、字节、字、双字的访问方式,同时也支 持整数、实数、字符串、表格等高级数据类型。 指令用三种图形风格进行描述。 (1)位指令和逻辑运算比较指令的格式
(2)位寻址格式
按位寻址时的格式为:Ax.y,使用时必须指定 元件名称 A、字节地址x和位号y。
可以进行位寻址的编程元件: 输入继电器(I)、输出继电器(Q)、通用辅助继电 器(M)、特殊继电器(SM)、局部变量存储器(L)、变 量存储器(V)和顺序控制继电器 (S)。
图5-6 CPU存储器中位数据表示方法举例(位寻址)
4)定时器位:与其他继电器的输出相似。当定 时器的当前值达到设定值PT时,定时器的触点 动作。 5)定时器当前值:存储定时器当前所累积的时 间,它用16位符号整数来表示,最大计数值为 32767。 6)定时器的分辨率和编号如表5-9所列。通过 该表可知定时器的编号一旦确定,其对应的分 辨率也就随之确定。
定时器定时时间T 的计算:T=PT×S。式中:T 为实际定时时间,PT为设定值,S为分辨率。例 如:TON指令使用T33(为10ms的定时器),设 定值为100 ,则实际定时时间为 T= 100×10ms=1000ms 定时器的设定值PT的数据类型为INT型。操作数 可为:VW、IW、QW、MW、SW、SMW、LW、AIW、T 、C、AC、*VD、*AC、*LD或常数,其中常数最 为常用。 3)定时器的编号。定时器的编号用定时器的名 称和数字(0~255)来表示,即T***,如T37。 定时器的编号包含定时器位和定时器当前值两 方面的信息。
电气控制第5章-1

:L(0.0~63.7)、LB(0~63)、LW(0~62 )、LD(0~60)
(5)顺序控制继电器存储器(S)
S用于顺序控制(或步进控制) 顺序控制继电器指令提供控制程序的逻辑分段
,从而实现顺序控制。 S3.1、SB4、SW10、SD20 CPU226 模块内部顺序控制继电器存储器的有
数据类型检查 ◇完全数据类型检查 ◇简单数据类型检查 ◇无数据类型检查
SIMATIC指令集不支持完全数据类型检查。使 用局部变量时,执行简单数据类型检查,使 用全局变量时,执行无数据类型检查。
2. 数据长度与数值范围
不同的数据类型,具有不同的数据长度和数值范围。 见表5-4
指令的操作数具有一定的数据和长度,如整数乘法指令的操作 数是字型数据;编程时需要注意操作数的数据类型和指令 识志符相匹配
如M26.7
CPU226 模块内部标志位存储器的有效范围为 :M(0.0~31.7)、MB(0~31)、MW( 0~30 )、MD(0~28)
(3)变量存储器(V)
S7-200中有大量的变量存储器,用于模拟量控 制、数据运算、参数设置及存放程序执行过 程中控制逻辑操作的中间结果。变量存储器 可以位为单位使用,也可以按字节、字、双 字为单位使用。
4、用户程序的运算是根据PLC的输入/输出映象寄存器中 的内容,逻辑运算结果可以立即被后面的程序使用;
5、PLC的内部继电器不能做控制用,只能存放逻辑控制 的中间状态;
6、输出线圈不能直接驱动现场的执行元件,通过I/O模 块上的功率器件来驱动。
5.2 S7-200 PLC的基本指令及编程方法
编程时,应注意各操作数的数据类型及数值范围
简述可编程序控制器的定义

第一章习题1. 简述可编程序控制器的定义。
2. 可编程控制器的基本组成有哪些?3. 输入接口电路有哪几种形式?输出接口电路有哪几种形式?各有何特点?4. PLC的工作原理是什么?工作过程分哪几个阶段?5. PLC的工作方式有几种?如何改变PLC的工作方式?6. 可编程序控制器有哪些主要特点?7. 与一般的计算机控制系统相比可编程序控制器有哪些优点?8. 与继电器控制系统相比可编程序控制器有哪些优点?9. 可编程序控制器可以用在哪些领域?第二章习题1. S7-200系列PLC有哪些编址方式?2. S7-200系列CPU224 PLC有哪些寻址方式?3. S7-200系列PLC的结构是什么?4. CPU224 PLC有哪几种工作方式?5. CPU224 PLC有哪些元件,它们的作用是什么?6. 常见的扩展模块有几类?扩展模块的具体作用是什么?7. PLC需要几个外电源?说明各自的作用?第三章习题1. 如何建立项目?2. 如何在LAD中输入程序注解?3. 如何下载程序?4. 如何在程序编辑器中显示程序状态?5. 如何建立状态图表?6. 如何执行有限次数扫描?7. 如何打开交叉引用表?交叉引用表的作用是什么?第四章习题1. 填空1)通电延时定时器(TON)的输入(IN)时开始定时,当前值大于等于设定值时其定时器位变为,其常开触点,常闭触点。
2)通电延时定时器(TON)的输入(IN)电路时被复位,复位后其常开触点,常闭触点,当前值等于。
3)若加计数器的计数输入电路(CU),复位输入电路(R),计数器的当前值加1。
当前值大于等于设定值(PV)时,其常开触点,常闭触点。
复位输入电路时计数器被复位,复位后其常开触点,常闭触点,当前值为。
4)输出指令(=)不能用于映像寄存器。
5)SM 在首次扫描时为1,SM0.0一直为。
6)外部的输入电路接通时,对应的输入映像寄存器为状态,梯形图中对应的常开接点,常闭接点。
7)若梯形图中输出Q的线圈“断电”,对应的输出映像寄存器为状态,在输出刷新后,继电器输出模块中对应的硬件继电器的线圈,其常开触点。
plc模拟量原理

plc模拟量原理PLC(可编程逻辑控制器)是一种用于自动化控制系统的电子设备。
它通过接收和处理来自传感器的模拟量信号来监测和控制不同的生产过程。
模拟量是指可以连续变化的物理量,例如温度、压力、流量等。
PLC的模拟量输入模块被用于将模拟信号转换为数字信号,以便PLC可以处理它们。
它通常包括一个模拟到数字转换器(ADC),用于将连续的模拟信号转换为离散的数字信号。
ADC将模拟信号分为许多小的离散级别,然后将每个级别映射到一个数字值。
PLC的模拟量输出模块被用于将数字信号转换为模拟信号,以便控制外部设备。
它通常包括一个数字到模拟转换器(DAC),用于将数字信号转换为相应的模拟信号。
DAC通过将数字值映射到一系列离散电压或电流级别来完成这个转换。
PLC通过读取和写入模拟量信号来实现对控制系统的监测和控制。
当PLC读取模拟量输入信号时,它会根据预设的条件和参数来判断是否需要采取相应的控制行动。
然后,PLC将处理后的控制信号发送到模拟量输出模块,以控制外部设备的行为。
例如,在一个温控系统中,PLC可以通过读取温度传感器的模拟量输入信号来监测当前的温度。
如果温度超过了预设的上限,PLC可以发送一个控制信号给加热器来降低温度。
相反,如果温度低于预设的下限,PLC可以发送一个控制信号给冷却器来提高温度。
总而言之,PLC的模拟量原理涉及将模拟信号转换为离散的数字信号,并将数字信号转换为相应的模拟信号,以实现对自动化控制系统的监测和控制。
这种技术使得PLC能够处理和控制各种实际物理量,使得生产过程更加稳定和可靠。
电气控制与PLC原理及应用(第二版)周亚军章 (5)

第5章 可编程控制器概述
第5章 可编程控制器概述
(5) 定时与计数功能不同。继电接触器控制系统采用的定 时器体积大、精度低、调整困难,一般不具备计数功能;PLC 则有大量的软定时器和计数器,精度高、范围宽、调整 方便。
(6) 设计与调试方式不同。继电接触器系统设计方法有限, 对于复杂继电接触器系统缺少通用的解决办法,设计完成的线 路硬件元件和连线众多,施工工作量大,调试过程中发现问题 所需修改周期长。
3.闭环过程控制 目前,PLC都具有模拟量输入/输出功能及PID控制功能, 可以对温度、压力、流量等模拟量实现闭环控制。解决方案也 非常灵活,既可以采用软件PID指令实现控制功能,也可以采 用硬件PID模块,后者通过增加硬件成本减轻了软件设计工作 量,实时性好,更适合对象比较复杂的生产设备。
第5章 可编程控制器概述
另外,在数字量I/O点数、模拟量I/O点数及各类模块的数 量上都朝着大容量发展,如西门子S7-400可扩展到32 KB DI/DO。由于控制系统规模上去了,用户程序量必然也会增加, 所以PLC大型化也包含存储容量的增加。
第5章 可编程控制器概述
2.微型化、多功能化趋势 大型化是为了拓展PLC的应用领域,而在PLC的强项——小 型设备的控制上,则需要在降低成本、提高速度、改善结构方 面作出努力。微型化、多功能化可以使控制系统体积减小、成 本下降、结构趋于模块化,配置灵活,易于改造。目前,超小 型PLC的I/O点数少则几个,多则数百个,甚至个别的超小型 PLC可以扩展到上千个。如此规模即便是复杂对象也能胜任。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.2.2 FX-4AD与FX-2DA模拟量模块
• 缓冲寄存器(BFM)分配: • FX系列PLC基本单元与FX-4AD、FX-2DA 等之间的数据通信是由FROM指令和TO指令 来执行的,FROM是基本单元从FX-4AD、 FX-2DA读数据的指令,TO是从基本单元将 数据写到FX-4AD、FX-2DA的指令。实际上 读、写操作都是对FX-4AD、FX-2DA的缓冲 寄存器BFM进行的。这一缓冲寄存器区由32 个l 6位的寄存器组成,编号为BFM#0~#31。 FX-4AD模块BFM的分配表详见表5-2。
• 与F1、F2系列PLC配合 输入通道编号12种表示法 CH010~CH013 CH410~CH413 CH510~CH513 输出通道编号6种表示法 CH000~CH001 CH400~CH401 CH500~CH501
5.2.1模拟量输入/输出单元 F2-6A-E
• 与F1、F2系列PLC配合 • 编写指令时的通道编号 输入通道编号12种表示法 K010~K013 K410~K413 K510~K513 输出通道编号6种表示法 K000~K001 K400~K401 K500~K501
5.2.1模拟量输入/输出单元 F2-6A-E
3、通道编号 • 与F1、F2系列PLC配合 • F1、F2系列PLC中有3个扩展接口,分别编号为000、 • 400、500。F2-6A-E直接与相应接口相连即可。 • 电气连接时的通道编号(见图5-6) • 输入/输出的通道号由3位数字组成。
5.2.1模拟量输入/输出单元 F2-6A-E
第5章 可编程控制器的模拟量 控制与编程
• 5.1模拟量的基本概念 • 5.2模拟量模块及其编程 • 5.3模拟量控制的应用
5.1模拟量的基本概念
• 模拟量:在时间上、数值上都连续变化的物理量。 1、初始性 • 模拟量大部分是自然界中的初始变量。
• 对非电量进行测量、处理、控制时,要把非电量转化 成模拟电信号。 • 标准的模拟电压信号:0~10V。 • 标准的模拟电流信号:4~20mA或0~20mA • 模拟电信号的产生过程:见图5-1
在图5-14中, X40、Y30为扩展口号, D310为数据 源;K00为数据传送目标;ANWR指明模拟量写操作; 程序段含义:当X0得电时,PLC将D310中的4位 BCD码处理为8位二进制数后写到连接X40,Y30扩展 口的F2-6A-E中,转换成模拟量后从输出第0号通道输出。
5.2.1模拟量输入/输出单元 F2-6A-E
5.1模拟量的基本概念
5.1模拟量的基本概念
2、连续性 • 模拟量随时间的变化曲线是光滑而连续的,没有间断 点。 • 变化曲线见图5-2 3、转换性 • A/D转换;D/A转换。 4、过程性 • 模拟量控制系统=过程控制系统:输入信号和输出信号 都是模拟量的控制系统。 • 模拟量控制系统框图:图5-4
5.2.1模拟量输入/输出单元 F2-6A-E
5、编程方法 • FX2系列PLC: 向F2-6A-E写数据用功能指令ANWR。此时数据源为 PLC的数据寄存器D000~D512、 D1000 ~ D2999 ; 数据目标为F2-6A-E的输出通道。 在图5-14中, X40、Y30为扩展口号, D310为数据 源;K00为数据传送目标;ANWR指明模拟量写操作; 程序段含义:当X0得电时,PLC将D310中的4位BCD 码处理为8位二进制数后写到连接X40,Y30扩展口的F26A-E中,转换成模拟量后从输出第0号通道输出。
5.2.1模拟量输入/输出单元 F2-6A-E
5、编程方法 • FX2系列PLC: 从F2-6A-E读数据用功能指令ANRD。此时数据源为 F2-6A-E的输入通道;数据目标为PLC的数据 寄存器D000~D512、 D1000~D2999 。 在图5-13中,X40、Y30为扩展口号, K10为数据 来源; D300为数据传送目标;ANRD指明模拟量读操 作; 程序段含义:当X0得电时,PLC将连接X40,Y30 扩展口的F2-6A-E的输入第0号通道中的模拟量,转换成 8位二进制数后读入PLC,被处理为4位BCD码存入PLC 的D300中。
5.2 模拟量模块及其编程
• FX2系列PLC的模拟量控制模块主要有:4路 输入、2路输出模块F2-6A-E;4路输入模块 FX-4AD; 2路输出模块FX-2DA 等。 • 常用的模拟量模块外形图见图5-5
5.2.1模拟量输入/输出单元 F2-6A-E
• F2-6A-E模拟量输入输出单元功能模块既可用 于Fl、F2系列PLC,也适用于FX2和FX2C系 列PLC。 • F2-6A-E是8位4通道输入、2通道输出的模拟 量输人输出模块。 • F2-6A-E输入输出特性如表5-1所示。
在图5-13中,X40、Y30为扩展口号, K10为数据 来源; D300为数据传送目标;ANRD指明模拟量读操 作; 程序段含义:当X0得电时,PLC将连接X40,Y30 扩展口的F2-6A-E的输入第0号通道中的模拟量,转换成 8位二进制数后读入PLC,被处理为4位BCD码存入PLC 的D300中。
5.2.2 FX-4AD与FX-2DA模拟量模块
• ①在BFM#0中写入十六进制4位数字H□□□□使各通 道初始化,最低位数字控制通道1,最高位控制通道4, 各位数字的意义如下: • □=0:设定输入范围-1OV~+l0V • □=1:设定输入范围+4mA~+20mA • □=2:设定输入范围-20mA~+20mA • □=3:关闭该通道 • 例如BFM#0=H3310时,则 CH1:设定输入范围-10V~+10V CH2:设定输入范围+4mA~+20mA CH3、CH4:关闭该通道
5.2.2 FX-4AD与FX-2DA模拟量模块
• ⑤若BFM#21的b1、b0分别置为1、0,则增 益和零点的设定值禁止改动。要改动零点和增 益的设定值时必须令b1、b0的值分别为0、l。 零点:数字量输出为0时的输入值。 增益:数字输出为+l000时的输入值。
5.2.2 FX-4AD与FX-2DA模拟量模块
5.2.2 FX-4AD与FX-2DA模拟量模块
• ⑦BFM#23和#24中设定值以mV或μA为单位, 但受FX-4AD的分辨力的影响,其实际响应以 5mV/20μA为步距。 • ⑧BFM#30中存的是特殊功能模块的识别码。 PLC可用FROM指令读入。FX-4AD的识别码 为K2010。用户在程序中可以方便地利用这一 识别码传送数据前先确认该特殊功能模块。 ⑨BFM#29中各位的状态是FX-4AD运行正常 与否的信息。例如,b2为OFF时,表示 DC24V电源正常,b2为哦ON时,则电源有 故障。用FROM指令将其读入,即可作相应处 理。 • BFM#3l不能使用
• 综合编程方法(P129图5-15、图5-16)
读入
读
求和
加
加
加 求平均值F
除
求平均值F
除
平均值 F输出 写
求绝对值 求绝对值
f= F1-F 求压力差
减 减 压力差2f 保存
K78
乘 乘
压力差2f 输出
5.2.2 FX-4AD与FX-2DA模拟量模块
• 1、FX-4AD模拟量输入模块 • FX-4AD为4通道12位A/D转换模块,根据 外部连接方法及PLC指令,可选择电压输入或 电流输入,是一种具有高精确度的输入模块。 通过简易的调整或根据PLC的指令可改变模拟 量输入的范围。瞬时值和设定值等数据的读出 和写入用FROM/TO指令进行。FX-4AD的 技术指标如表5-2所示 。
5.2.1模拟量输入/输出单元 F2-6A-E
• 与FX2系列PLC配合 • 电气连接时的通道编号(见图5-9) 输入通道编号表示法 X□□,Y□□010~ X□□,Y□□013 输出通道编号表示法 X□□,Y□□000~ X□□,Y□□001
5.2பைடு நூலகம்1模拟量输入/输出单元 F2-6A-E
• 与FX2系列PLC配合
• ⑥在BFM#23和BFM#24内的增益和零点设定 值会被送到指定的输入通道的增益和零点寄存 器中。需要调整的输入通道由BFM#22的G、 0(增益-零点)位的状态来指定。 例如,若BFM#22的G1、01位置1,则 BFM#23和24的设定值即可送入通道l的增益 和零点寄存器。各通道的增益和零点既可统一 调整,也可独立调整。
5.2.2 FX-4AD与FX-2DA模拟量模块
• 表中带*号的缓冲寄存器中的数据可由PLC通过 TO指令改写。改写带*号的BFM的设定值即可 改变FX-4AD模块的运行参数,调整其输入方 式,输入增益和零点等。 • 从指定的模拟量输入模块读人数据前应先将设 定值写人,否则按缺省设定值执行。 • PLC用FROM指令可将不带*号的BFM内的数 据读入。
5.2.1模拟量输入/输出单元 F2-6A-E
• 与FX2系列PLC配合 • 与FX2系列PLC配合时,它们之间必须加一个FX224EI接口单元。每个FX2系列PLC最多可接3个FX224EI。每个FX2-24EI可提供16个输入点,8个输出点。 • FX2-24EI与FX2基本单元相接时,由近到远依次编号 为NO.1、 NO.2、 NO.3。地址用输入输出的首元件号 表示。X40,Y30(实际地址X40~X57, Y30~Y37);X60,Y40 (实际地址X60~X77, Y40~Y47) ;X100,Y50 (实际地址X100~X117, Y50~Y57) 。(见图5-8)
5.2.1模拟量输入/输出单元 F2-6A-E
5、编程方法 • F1、F2系列PLC: 向F2-6A-E写数据用功能指令F670 K86。此时数据 源为PLC的数据寄存器D700~D777;数据目标为F26A-E的输出通道。 在图5-12中,F671为设定线圈,用于指明数据源; F672为设定线圈,用于指明数据传送目标;F670为功 能线圈,K86指明模拟量写操作; 程序段含义:当X400得电时,PLC将D740中的3位 BCD码处理为8位二进制数后转换成模拟量写到连接000 扩展口的F2-6A-E的输出第1号通道中。