多边形与平行四边形HOMEWORK解析版
中考数学题型归类与解析18---多边形与平行四边形(解析版)

中考数学题型归类与解析专题18 多边形与平行四边形一、单选题1.(2021·湖南岳阳市·中考真题)下列命题是真命题的是()A.五边形的内角和是720︒B.三角形的任意两边之和大于第三边C.内错角相等D.三角形的重心是这个三角形的三条角平分线的交点【答案】B【分析】根据相关概念逐项分析即可.【解析】A、五边形的内角和是540︒,故原命题为假命题,不符合题意;B、三角形的任意两边之和大于第三边,原命题是真命题,符合题意;C、两直线平行,内错角相等,故原命题为假命题,不符合题意;D、三角形的重心是这个三角形的三条中线的交点,故原命题为假命题,不符合题意;故选:B.【小结】本题考查命题判断,涉及多边形的内角和,三角形的三边关系,平行线的性质,以及三角形的重心等,熟记基本性质和定理是解题关键.2.(2021·四川眉山市·中考真题)正八边形中,每个内角与每个外角的度数之比为()A.1:3B.1:2C.2:1D.3:1【答案】D【分析】根据正八边形的外角和等于360°,求出每个外角的度数,再求出每个内角的度数,进而即可求解.【解析】解:正八边形中,每个外角=360°÷8=45°,每个内角=180°-45°=135°,∴每个内角与每个外角的度数之比=135°:45°=3:1, 故选D .【小结】本题主要考查正多边形的内角和外角,熟练掌握正多边形的外角和等于360°,是解题的关键. 3.(2021·湖南衡阳市·中考真题)下列命题是真命题的是( ).A .正六边形的外角和大于正五边形的外角和B .正六边形的每一个内角为120︒C .有一个角是60︒的三角形是等边三角形D .对角线相等的四边形是矩形【答案】B【分析】根据多边形外角和、正多边形内角和、等边三角形、矩形的性质,对各个选项逐个分析,即可得到答案.【解析】正六边形的外角和,和正五边形的外角和相等,均为360︒∴选项A 不符合题意;正六边形的内角和为:()62180720-⨯︒=︒∴每一个内角为7201206︒=︒,即选项B 正确; 三个角均为60︒的三角形是等边三角形∴选项C 不符合题意;对角线相等的平行四边形是矩形∴选项D 不正确;故选:B .【小结】本题考查了多边形外角和、正多边形内角和、等边三角形、矩形的知识;解题的关键是熟练掌握多边形外角和、正多边形内角和、等边三角形、矩形的性质,从而完成求解.4.(2021·四川自贡市·中考真题)如图,AC 是正五边形ABCDE 的对角线,ACD ∠的度数是( )A .72°B .36°C .74°D .88°【答案】A【分析】根据正五边形的性质可得108B BCD ∠=∠=︒,AB BC =,根据等腰三角形的性质可得36BCA BAC ∠=∠=︒,利用角的和差即可求解.【解析】解:∵ABCDE 是正五边形,∴108B BCD ∠=∠=︒,AB BC =,∴36BCA BAC ∠=∠=︒,∴1083672ACD ∠=︒-︒=︒,故选:A .【小结】本题考查正五边形的性质,求出正五边形内角的度数是解题的关键.5.(2021·江苏扬州市·中考真题)如图,点A 、B 、C 、D 、E 在同一平面内,连接AB 、BC 、CD 、DE 、EA ,若100BCD ∠=︒,则A B D E ∠+∠+∠+∠=( )A .220︒B .240︒C .260︒D .280︒【答案】D【分析】连接BD ,根据三角形内角和求出∠CBD +∠CDB ,再利用四边形内角和减去∠CBD 和∠CDB 的和,即可得到结果.【解析】解:连接BD ,∵∠BCD =100°,∴∠CBD +∠CDB =180°-100°=80°,∴∠A +∠ABC +∠E +∠CDE =360°-∠CBD -∠CDB =360°-80°=280°,故选D .【小结】本题考查了三角形内角和,四边形内角和,解题的关键是添加辅助线,构造三角形和四边形. 6.(2021·四川资阳市·中考真题)下列命题正确的是( )A .每个内角都相等的多边形是正多边形B .对角线互相平分的四边形是平行四边形C .过线段中点的直线是线段的垂直平分线D .三角形的中位线将三角形的面积分成1∶2两部分【答案】B【分析】分别根据正多边形的判定、平行四边形的判定、线段垂直平分线的判定以及三角形中线的性质逐项进行判断即可得到结论.【解析】解:A .每个内角都相等,各边都相等的多边形是正多边形,故选项A 的说法错误,不符合题意;B . 对角线互相平分的四边形是平行四边形,说法正确,故选项B 符合题意;C . 过线段中点且垂直这条线段的直线是线段的垂直平分线,故选项C 的说法错误,不符合题意;D . 三角形的中位线将三角形的面积分成1∶3两部分,故选项D 的说法错误,不符合题意. 故选:B .【小结】此题主要考查了对正多边形、平行四边形、线段垂直平分线的判断以及三角形中线性质的认识,熟练掌握正多边形、平行四边形、线段垂直平分线的判断是解答此题的关键.7.(2021·安徽中考真题)在ABC 中,90ACB ∠=︒,分别过点B ,C 作BAC ∠平分线的垂线,垂足分别为点D ,E ,BC 的中点是M ,连接CD ,MD ,ME .则下列结论错误的是( )A .2CD ME =B .//ME ABC .BD CD =D .ME MD =【答案】A【分析】设AD 、BC 交于点H ,作HF AB ⊥于点F ,连接EF .延长AC 与BD 并交于点G .由题意易证()CAE FAE SAS ≅,从而证明ME 为CBF 中位线,即//ME AB ,故判断B 正确;又易证()AGD ABD ASA ≅,从而证明D 为BG 中点.即利用直角三角形斜边中线等于斜边一半即可求出CD BD =,故判断C 正确;由90HDM DHM ∠+∠=︒、90HCE CHE ∠+∠=︒和DHM CHE ∠=∠可证明HDM HCE ∠=∠.再由90HEM EHF ∠+∠=︒、EHC EHF ∠=∠和90EHC HCE ∠+∠=︒可推出 HCE HEM ∠=∠,即推出HDM HEM ∠=∠,即MD ME =,故判断D 正确;假设2CD ME =,可推出2CD MD =,即可推出30DCM ∠=︒.由于无法确定DCM ∠的大小,故2CD ME =不一定成立,故可判断A 错误.【解析】如图,设AD 、BC 交于点H ,作HF AB ⊥于点F ,连接EF .延长AC 与BD 并交于点G .∵AD 是BAC ∠的平分线,HF AB ⊥,HC AC ⊥,∴HC =HF ,∴AF =AC .∴在CAE 和FAE 中,AF AC CAE FAE AE AE =⎧⎪∠=∠⎨⎪=⎩,∴()CAE FAE SAS ≅,∴CE FE =,∠AEC =∠AEF =90°,∴C 、E 、F 三点共线,∴点E 为CF 中点.∵M 为BC 中点,∴ME 为CBF 中位线,∴//ME AB ,故B 正确,不符合题意;∵在AGD △和ABD △中,90GAD BAD AD AD ADG ADB ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴()AGD ABD ASA ≅, ∴12GD BD BG ==,即D 为BG 中点. ∵在BCG 中,90BCG ∠=︒, ∴12CD BG =, ∴CD BD =,故C 正确,不符合题意;∵90HDM DHM ∠+∠=︒,90HCE CHE ∠+∠=︒,DHM CHE ∠=∠,∴HDM HCE ∠=∠.∵HF AB ⊥,//ME AB ,∴HF ME ⊥,∴90HEM EHF ∠+∠=︒.∵AD 是BAC ∠的平分线,∴EHC EHF ∠=∠.∵90EHC HCE ∠+∠=︒,∴HCE HEM ∠=∠,∴HDM HEM ∠=∠,∴MD ME =,故D 正确,不符合题意;∵假设2CD ME =,∴2CD MD =,∴在Rt CDM 中,30DCM ∠=︒.∵无法确定DCM ∠的大小,故原假设不一定成立,故A 错误,符合题意.故选A .【小结】本题考查角平分线的性质,三角形全等的判定和性质,直角三角形的性质,三角形中位线的判定和性质以及含30角的直角三角形的性质等知识,较难.正确的作出辅助线是解答本题的关键. 8.(2021·四川遂宁市·中考真题)如图,在△ABC 中,点D 、E 分别是AB 、AC 的中点,若△ADE 的面积是3cm 2,则四边形BDEC 的面积为( )A .12cm 2B .9cm 2C .6cm 2D .3cm 2【答案】B【分析】由三角形的中位线定理可得DE =12BC ,DE ∥BC ,可证△ADE ∽△ABC ,利用相似三角形的性质,即可求解.【解析】 解:∵点D ,E 分别是边AB ,AC 的中点,∴DE =12BC ,DE ∥BC , ∴△ADE ∽△ABC ,∴21()4ADE ABC S DE S BC ∆∆==, ∵S △ADE =3,∴S △ABC =12,∴四边形BDEC 的面积=12-3=9(cm 2),故选:B .【小结】本题考查了相似三角形的判定和性质,三角形中位线定理,掌握相似三角形的性质是解题的关键. 9.(2021·天津中考真题)如图,ABCD 的顶点A ,B ,C 的坐标分别是()()()2,0,1,2,2,2---,则顶点D 的坐标是( )A .()4,1-B .()4,2-C .()4,1D .()2,1【答案】C【分析】根据平行四边形性质以及点的平移性质计算即可.【解析】解:∵四边形ABCD 是平行四边形,点B 的坐标为(-2,-2),点C 的坐标为(2,-2),∴点B 到点C 为水平向右移动4个单位长度,∴A 到D 也应向右移动4个单位长度,∵点A 的坐标为(0,1),则点D 的坐标为(4,1),故选:C .【小结】本题主要考查平行四边形的性质,以及平移的相关知识点,熟知点的平移特点是解决本题的关键. 10.(2021·四川泸州市·中考真题)如图,在平行四边形ABCD 中,AE 平分∠BAD 且交BC 于点E ,∠D =58°,则∠AEC 的大小是( )A .61°B .109°C .119°D .122°【答案】C【分析】根据四边形ABCD 是平行四边形,得到对边平行,再利用平行的性质求出180122BAD D ∠=︒-∠=︒,根据角平分线的性质得:AE 平分∠BAD 求DAE ∠,再根据平行线的性质得AEC ∠,即可得到答案.解:∵四边形ABCD 是平行四边形∴//AB CD ,//AD BC∴180********BAD D ∠=︒-∠=︒-︒=︒∵AE 平分∠BAD ∴111226122DAE BAD ∠=∠=⨯︒=︒ ∵//AD BC∴180********AEC DAE ∠=︒-∠=︒-︒=︒故选C .【小结】本题考查了平行四边形的性质,角平分线的性质,能利用平行四边形的性质找到角与角的关系,是解答此题的关键.11.(2021·四川南充市·中考真题)如图,点O 是ABCD 对角线的交点,EF 过点O 分別交AD ,BC 于点E ,F .下列结论成立的是( )A .OE OF =B .AE BF =C .DOC OCD ∠=∠D .CFE DEF ∠=∠【答案】A【分析】首先可根据平行四边形的性质推出△AEO ≌△CFO ,从而进行分析即可.∵点O 是ABCD 对角线的交点,∴OA =OC ,∠EAO =∠CFO ,∵∠AOE =∠COF ,∴△AEO ≌△CFO (ASA ),∴OE =OF ,A 选项成立;∴AE =CF ,但不一定得出BF =CF ,则AE 不一定等于BF ,B 选项不一定成立;若DOC OCD ∠=∠,则DO =DC ,由题意无法明确推出此结论,C 选项不一定成立;由△AEO ≌△CFO 得∠CFE =∠AEF ,但不一定得出∠AEF =∠DEF ,则∠CFE 不一定等于∠DEF ,D 选项不一定成立;故选:A .【小结】本题考查平行四边形的性质,理解基本性质,利用全等三角形的判定与性质是解题关键. 12.(2021·浙江宁波市·中考真题)如图是一个由5张纸片拼成的ABCD ,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为1S ,另两张直角三角形纸片的面积都为2S ,中间一张矩形纸片EFGH 的面积为3S ,FH 与GE 相交于点O .当,,,AEO BFO CGO DHO 的面积相等时,下列结论一定成立的是( )A .12S SB .13S S =C .AB AD =D .EH GH =【答案】A【分析】根据△AED 和△BCG 是等腰直角三角形,四边形ABCD 是平行四边形,四边形HEFG 是矩形可得出AE =DE =BG =CG =a , HE =GF ,GH =EF ,点O 是矩形HEFG 的中心,设AE =DE =BG =CG =a , HE =GF = b ,GH =EF = c ,过点O 作OP ⊥EF 于点P ,OQ ⊥GF 于点Q ,可得出OP ,OQ 分别是△FHE 和△EGF 的中位线,从而可表示OP ,OQ 的长,再分别计算出1S ,2S ,3S 进行判断即可【解析】解:由题意得,△AED 和△BCG 是等腰直角三角形,∴45ADE DAE BCG GBC ∠=∠=∠=∠=︒∵四边形ABCD 是平行四边形,∴AD =BC ,CD =AB ,∠ADC =∠ABC ,∠BAD =∠DCB∴∠HDC =∠FBA ,∠DCH =∠BAF ,∴△AED ≌△CGB ,△CDH ≌ABF∴AE =DE =BG =CG∵四边形HEFG 是矩形∴GH =EF ,HE =GF设AE =DE =BG =CG =a , HE =GF = b ,GH =EF = c过点O 作OP ⊥EF 于点P ,OQ ⊥GF 于点Q ,∴OP //HE ,OQ //EF∵点O 是矩形HEFG 的对角线交点,即HF 和E G 的中点,∴OP ,OQ 分别是△FHE 和△EGF 的中位线, ∴1122OP HE b ==,1122OQ EF c == ∵1111()()2224BOF S BF OQ a b c a b c ∆==-⨯=- 11112224AOE S AE OP a b ab ∆==⨯= ∵BOF AOE S S ∆∆=∴11()44a b c ab -=,即ac bc ab -= 而211122AED S S AE DE a ∆===, 222211111()()()()22222AFB S S AF BF a c a b a ab ac bc a ab ab a ∆===+-=-+-=-+= 所以,12S S ,故选项A 符合题意,2223=()()S HE EF a b a c a bc ab ac a ab ab a =-+=--+=+-=∴13S S ≠,故选项B 不符合题意,而AB AD =于EH GH =都不一定成立,故,C D 都不符合题意,故选:A【小结】本题考查平行四边形的性质、直角三角形的面积等知识,解题的关键是求出S1,S2,S3之间的关系.第II卷(非选择题)请点击修改第II卷的文字说明二、填空题13.(2021·浙江丽水市·中考真题)一个多边形过顶点剪去一个角后,所得多边形的内角和为720 ,则原多边形的边数是__________.【答案】6或7【分析】求出新的多边形为6边形,则可推断原来的多边形可以是6边形,可以是7边形.【解析】解:由多边形内角和,可得(n-2)×180°=720°,∴n=6,∴新的多边形为6边形,∵过顶点剪去一个角,∴原来的多边形可以是6边形,也可以是7边形,故答案为6或7.【小结】本题考查多边形的内角和;熟练掌握多边形的内角和与多边形的边数之间的关系是解题的关键.14.(2021·湖北黄冈市·中考真题)正五边形的一个内角是_____度.【答案】108【分析】根据正多边形的定义、多边形的内角和公式即可得.【解析】解:正五边形的一个内角度数为180(52)1085︒⨯-=︒,故答案为:108.【小结】本题考查了正多边形的内角,熟练掌握多边形的内角和公式是解题关键.15.(2021·陕西中考真题)正九边形一个内角的度数为______.【答案】140°【分析】正多边形的每个内角相等,每个外角也相等,而每个内角等于180︒减去一个外角,求出外角即可求解.【解析】正多边形的每个外角360=n︒(n为边数),所以正九边形的一个外角360==409︒︒∴正九边形一个内角的度数为18040140︒-︒=︒故答案为:140°.【小结】本题考查的是多边形的内角和,多边形的外角和为360︒,正多边形的每个内角相等,通过计算1个外角的度数来求得1个内角度数是解题关键.16.(2021·湖南中考真题)一个多边形的每个外角的度数都是60°,则这个多边形的内角和为______.【答案】720°【分析】多边形的外角和计算公式为:边数×外角的度数=360°,根据公式即可得出多边形的边数,然后再根据多边形的内角和公式求出它的内角和,n边形内角和等于(n-2) ×180°.【解析】解:∵任何多边形的外角和是360°,此正多边形每一个外角都为60°,边数×外角的度数=360°,∴n=360°÷60°=6,∴此正多边形的边数为6,则这个多边形的内角和为(n-2) ×180°,(6-2)×180°=720°,故答案为720°.【小结】本题主要考查了多边形内角和及外角和定理,熟知“任何多边形的外角和是360°,n边形内角和等于(n-2) ×180°”是解题的关键.17.(2021·四川广安市·中考真题)若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.【答案】8【解析】解:设边数为n,由题意得,180(n-2)=360 3解得n=8.所以这个多边形的边数是8.18.(2021·浙江中考真题)为庆祝中国共产党建党100周年,某校用红色灯带制作了一个如图所示的正五角星(,,,,A B C D E 是正五边形的五个顶点),则图中A ∠的度数是_______度.【答案】36【分析】根据题意,得五边形(,,,,F G H J K 是正五边形的五个顶点)为正五边形,且AF AK =;根据多边形内角和性质,得正五边形FGHJK 内角和,从而得4∠;再根据补角、等腰三角形、三角形内角和性质计算,即可得到答案.【解析】∵正五角星(,,,,A B C D E 是正五边形的五个顶点)∴五边形(,,,,F G H J K 是正五边形的五个顶点)为正五边形,且AF AK =∴正五边形FGHJK 内角和为:()52180540-⨯︒=︒∴54041085︒∠==︒∴3180472∠=︒-∠=︒∵AF AK=∴2372∠=∠=︒∴11802336∠=︒-∠-∠=︒故答案为:36.【小结】本题考查了正多边形、多边形内角和、补角、等腰三角形、三角形内角和的知识;解题的关键是熟练掌握正多边形、多边形内角和、等腰三角形、三角形内角和的性质,从而完成求解.19.(2021·江苏扬州市·中考真题)如图,在ABCD中,点E在AD上,且EC平分BED∠,若30EBC∠=︒,10BE=,则ABCD的面积为________.【答案】50【分析】过点E作EF⊥BC,垂足为F,利用直角三角形的性质求出EF,再根据平行线的性质和角平分线的定义得到∠BCE=∠BEC,可得BE=BC=10,最后利用平行四边形的面积公式计算即可.【解析】解:过点E作EF⊥BC,垂足为F,∵∠EBC=30°,BE=10,∴EF=12BE=5,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DEC=∠BCE,又EC平分∠BED,即∠BEC=∠DEC,∴∠BCE=∠BEC,∴BE=BC=10,∴四边形ABCD的面积=BC EF⨯=105⨯=50,故答案为:50.【小结】本题考查了平行四边形的性质,30度的直角三角形的性质,角平分线的定义,等角对等边,知识点较多,但难度不大,图形特征比较明显,作出辅助线构造直角三角形求出EF的长是解题的关键.20.(2021·云南中考真题)如图,在ABC中,点D,E分别是,BC AC的中点,AD与BE相交于点F,若6BF=,则BE的长是______.【答案】9根据中位线定理得到DE =12AB ,DE ∥AB ,从而证明△DEF ∽△ABF ,得到12DE EF AB BF ==,求出EF ,可得BE .【解析】解:∵点D ,E 分别为BC 和AC 中点,∴DE =12AB ,DE ∥AB , ∴△DEF ∽△ABF ,∴12DE EF AB BF ==, ∵BF =6,∴EF =3,∴BE =6+3=9,故答案为:9.【小结】本题考查了三角形中位线定理,相似三角形的判定和性质,解题的关键是根据中位线的性质证明△DEF ∽△ABF .21.(2021·重庆中考真题)如图,ABC 中,点D 为边BC 的中点,连接AD ,将ADC 沿直线AD 翻折至ABC 所在平面内,得ADC ',连接CC ',分别与边AB 交于点E ,与AD 交于点O .若AE BE =,2BC '=,则AD 的长为__________.【答案】3利用翻折的性质可得,OC OC '=推出OD 是CC B '的中位线,得出1OD =,再利用OD BC '//得出AO 的长度,即可求出AD 的长度.【解析】由翻折可知,OC OC '=∴O 是CC '的中点,∵点D 为边BC 的中点,O 是CC '的中点,∴OD 是CC B '的中位线, ∴11,2OD BC OD BC ''==// , ∴AO AE BC BE =', ∵AE BE =, ∴1AE BE=, ∴1AO BC =', ∴2AO BC '==,∴213AD AO OD =+=+=.故答案为:3.【小结】本题考查了翻折的性质,三角形的中位线的判定和性质,以及平行线分线段成比例的性质,掌握三角形的中位线的判定和性质,以及平行线分线段成比例的性质是解题的关键.22.(2021·湖南邵阳市·中考真题)如图,点D 、E 、F 分别是△ABC 各边的中点,连接DE 、EF 、DF ,若△ABC 的周长为10,则△DEF 的周长为_______________.【答案】5 【解析】解:根据三角形的中位线定理可得DE=12AC,EF=12AB,DF=12BC所以△DEF的周长为△ABC的周长的一半,即△DEF的周长为5故答案为:5.【小结】本题考查三角形的中位线定理.23.(2021·浙江嘉兴市·中考真题)如图,在ABCD中,对角线AC,BD交于点O,AB AC⊥,AH BD⊥于点H,若AB=2,23BC=,则AH的长为__________________.23【分析】根据勾股定理求得AC的长,结合平行四边形的性质求得AO的长,然后利用相似三角形的判定和性质求解.【解析】解:∵AB AC ⊥,BC =AB =2∴在Rt △ABC 中,AC =∴在ABCD 中,AO =12AC =在Rt △ABO 中,BO ∵AB AC ⊥,AH BD ⊥∴90AHB OAB ∠=∠=︒又∵ABO HBA ∠=∠∴ABO HBA △∽△ ∴AH ABAO BO ==解得:AH【小结】本题考查相似三角形的判定和性质以及勾股定理解直角三角形,掌握相关性质定理正确推理计算是解题关键.24.(2021·山东临沂市·中考真题)在平面直角坐标系中,ABCD 的对称中心是坐标原点,顶点A 、B 的坐标分别是(1,1)-、(2,1),将ABCD 沿x 轴向右平移3个单位长度,则顶点C 的对应点1C 的坐标是___.【答案】(4,-1)【分析】根据平行四边形的性质得到点C 坐标,再根据平移的性质得到C 1坐标.【解析】解:在平行四边形ABCD 中,∵对称中心是坐标原点,A (-1,1),B (2,1),∴C (1,-1),将平行四边形ABCD 沿x 轴向右平移3个单位长度,∴C 1(4,-1),故答案为:(4,-1).【小结】本题考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.25.(2021·浙江丽水市·中考真题)小丽在“红色研学”活动中深受革命先烈事迹的鼓舞,用正方形纸片制作成图1的七巧板,设计拼成图2的“奔跑者”形象来激励自己.已知图1正方形纸片的边长为4,图2中2FM EM ,则“奔跑者”两脚之间的跨度,即,AB CD 之间的距离是__________.【答案】133【分析】先根据图1求EQ 与CD 之间的距离,再求出BQ ,即可得到,AB CD 之间的距离= EQ 与CD 之间的距离+BQ .【解析】解:过点E 作EQ ⊥BM ,则//EQ CD根据图1图形EQ 与CD 之间的距离=1114+4=3222⨯⨯⨯ 由勾股定理得:2224EF =,解得:22EF =221242AM ⎛⎫=⨯⨯ ⎪⎝⎭,解得:22AM =∵2FM EM = ∴11==33EM FM AM ∵EQ ⊥BM ,90B ∠=︒∴//EQ AB ∴2242=333BQ BM ==⨯ ∴,AB CD 之间的距离= EQ 与CD 之间的距离+BQ 413=3+=33故答案为133. 【小结】本题考查了平行线间的距离、勾股定理、平行线所分得线段对应成比例相关知识点,能利用数形结合法找到需要的数据是解答此题的关键.26.(2021·浙江金华市·中考真题)如图,在平面直角坐标系中,有一只用七巧板拼成的“猫”,三角形①的边BC及四边形②的边CD都在x轴上,“猫”耳尖E在y轴上.若“猫”尾巴尖A的横坐标是1,则“猫”爪尖F的坐标是___________.【答案】122244⎛++-⎝⎭【分析】设大正方形的边长为2a2a,中等腰直角三角形的腰长为a,小等腰直角三角形的腰长为2a2,小正方形的边长为2a2,平行四边形的长边为a,短边为2a2,用含有a的代数式表示点A的横坐标,表示点F的坐标,确定a值即可.【解析】设大正方形的边长为2a2a,中等腰直角三角形的腰长为a,小等腰直角三角形的腰长为2a2,小正方形的边长为2a2,平行四边形的长边为a,短边为2a2,如图,过点F作FG⊥x轴,垂足为G, 点F作FH⊥y轴,垂足为H, 过点A作AQ⊥x轴,垂足为Q,延长大等腰直角三角形的斜边交x轴于点N,交FH于点M,根据题意,得OC2a22=1a2,CD=a,DQ=1a2,∵点A的横坐标为1,∴1a2+a+1a2=1,∴a=12;根据题意,得FM=PM 2a,MH=1a2,∴FH=(2+1)a2=2+14;∴MT=2a 2a,BT=2a2a,∴TN2a-a,∴MN=MT+TN=2a 2a2a-a(2+2)a2+2,∵点F在第二象限,∴点F的坐标为(-2+14,2+24)故答案为:(2+12+2).【小结】本题考查了七巧板的意义,合理设出未知数,用未知数表示各个图形的边长,点AA的横坐标,点F的坐标是解题的关键.三、解答题27.(2021·四川广安市·中考真题)下图是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点为格点,线段AB 的端点都在格点上.要求以AB 为边画一个平行四边形,且另外两个顶点在格点上.请在下面的网格图中画出4种不同的设计图形.【答案】见解析【分析】将点A 沿任意方向平移到另一格点处,然后将点B 也按相同的方法平移,最后连接点A 、B 及其对应点即可.【解析】解:如图,四边形ABCD 是平行四边形.【小结】本题主要考查作图-应用与设计作图,熟练掌握平行四边形的判定是解题的关键.28.(2021·重庆中考真题)如图,四边形ABCD 为平行四边形,连接AC ,且2AC AB =.请用尺规完成基本作图:作出BAC ∠的角平分线与BC 交于点E .连接BD 交AE 于点F ,交AC 于点O ,猜想线段BF 和线段DF 的数量关系,并证明你的猜想.(尺规作图保留作图痕迹,不写作法)【答案】作图见解析,猜想:DF =3BF ,证明见解析.【分析】根据角平分线的作法作出BAC ∠的角平分线即可;由平行四边形的性质可得出AO CO =.BO DO =,由AC =2AB 得出AO =AB ,由等腰三角形的性质得出12BF OF BO ==,从而可得出结论. 【解析】解:如图,AE 即为BAC ∠的角平分线,猜想:DF =3BF证明:∵四边形ABCD 是平行四边形∴AO =CO ,BO =DO∴2AC AO =∵AC =2AB∴AO =AB∵AE 是BAC ∠的角平分线∴12BF OF BO ==∴12BF OF DO == ∴23DF BO OF BF BF BF =+=+=.【小结】此题主要考查了基本作图,等腰三角形的性质以及平行四边形的性质,熟练掌握相关性质是解答此题的关键.29.(2021·浙江丽水市·中考真题)如图,在55⨯的方格纸中,线段AB 的端点均在格点上,请按要求画图.(1)如图1,画出一条线段AC ,使,AC AB C =在格点上;(2)如图2,画出一条线段EF ,使,EF AB 互相平分,,E F 均在格点上;(3)如图3,以,A B 为顶点画出一个四边形,使其是中心对称图形,且顶点均在格点上.【答案】(1)见解析;(2)见解析;(3)见解析【分析】(1)根据“矩形对角线相等”画出图形即可;(2)根据“平行四边形对角线互相平分”,找出以AB 对角线的平行四边形即可画出另一条对角线EF ; (3)画出平行四边形ABPQ 即可.【解析】解:(1)如图1,线段AC即为所作;(2)如图2,线段EF即为所作;(3)四边形ABPQ为所作;【小结】本题考查作图-复杂作图,矩形的性质以及平行四边形的判定与性质等知识,解题的关键是灵活运用所学知识解决问题.30.(2021·重庆中考真题)如图,在ABCD中,AB>AD.(1)用尺规完成以下基本作图:在AB上截取AE,使得AE=AD;作∠BCD的平分线交AB于点F.(保留作图痕迹,不写作法)(2)在(1)所作的图形中,连接DE交CF于点P,猜想△CDP按角分类的类型,并证明你的结论.【答案】(1)见解析;(2)直角三角形,理由见解析【分析】(1)直接利用角平分线的作法得出符合题意的答案;(2)先证明∠ADE=∠CDE,再利用平行线的性质“同旁内角互补”,得出∠CPD=90 即可得出答案.【解析】解:(1)解:如图所示:E,F即为所求;(2)△CDP是直角三角形.∵四边形ABCD是平行四边形,∴AB∥DC,AD∥BC.∴∠CDE=∠AED,∠ADC+∠BCD=180°,∵AD=AE,∴∠ADE=∠AED.∴∠CED=∠ADE=12∠ADC.∵CP平分∠BCD,∴∠DCP=12∠BCD,∴∠CDE+∠DCP=90°.∴∠CPD=90°.∴△CDP是直角三角形.【小结】本题主要考查了基本作图以及平行四边形的性质,三角形内角和定理,解题的关键是灵活运用所学知识解决问题.31.(2021·四川成都市·中考真题)在Rt ABC 中,90,5,3ACB AB BC ∠=︒==,将ABC 绕点B 顺时针旋转得到A BC ''△,其中点A ,C 的对应点分别为点A ',C '.(1)如图1,当点A '落在AC 的延长线上时,求AA '的长;(2)如图2,当点C '落在AB 的延长线上时,连接CC ',交A B '于点M ,求BM 的长;(3)如图3,连接,AA CC '',直线CC '交AA '于点D ,点E 为AC 的中点,连接DE .在旋转过程中,DE 是否存在最小值?若存在,求出DE 的最小值;若不存在,请说明理由.【答案】(1)8AA '=;(2)511BM =;(3)存在,最小值为1 【分析】(1)根据题意利用勾股定理可求出AC 长为4.再根据旋转的性质可知AB A B '=,最后由等腰三角形的性质即可求出AA '的长.(2)作CD AC '⊥交AC '于点D ,作//CE A B '交AC '于点E .由旋转可得A BC ABC ''∠=∠,3BC BC '==.再由平行线的性质可知CEB A BC ''∠=∠,即可推出CEB ABC ∠=∠,从而间接求出3CE BC BC '===,DE DB =.由三角形面积公式可求出125CD =.再利用勾股定理即可求出185BE =,进而求出335C E '=.最后利用平行线分线段成比例即可求出BM 的长.(3)作//AP A C ''且交C D '延长线于点P ,连接A C '.由题意易证明BCC BC C ''∠=∠, 90ACP BCC '∠=︒-∠,90A C D BC C '''∠=︒-∠,即得出ACP A C D ''∠=∠.再由平行线性质可知APC A C D ''∠=∠,即得出ACP APC ∠=∠,即可证明AP AC A C ''==,由此即易证()APD A C D AAS ''≅,得出AD A D '=,即点D 为AA '中点.从而证明DE 为ACA '的中位线,即12DE A C '=.即要使DE 最小,A C '最小即可.根据三角形三边关系可得当点A C B '、、三点共线时A C '最小,且最小值即为=A C A B BC ''-,由此即可求出DE 的最小值.【解析】(1)在Rt ABC 中,2222534AC AB BC =-=-=.根据旋转性质可知AB A B '=,即ABA '△为等腰三角形.∵90ACB ∠=︒,即BC AA '⊥,∴4A C AC '==,∴8AA '=.(2)如图,作CD AC '⊥交AC '于点D ,作//CE A B '交AC '于点E .由旋转可得A BC ABC ''∠=∠,3BC BC '==.∵//CE A B ',∴CEB A BC ''∠=∠,∴CEB ABC ∠=∠,∴3CE BC BC '===,DE DB =. ∵1122ABC S AB CD AC BC ==,即543CD ⨯=⨯, ∴125CD =. 在Rt BCD 中,95DB ==, ∴185BE =. ∴335C E BE BC ''=+=. ∵//CE A B ', ∴BM BC CE C E '=',即33335BM =, ∴1511BM =. (3)如图,作//AP A C ''且交C D '延长线于点P ,连接A C '.∵BC BC '=,∴BCC BC C ''∠=∠,∵180ACP ACB BCC '∠=︒-∠-∠,即90ACP BCC '∠=︒-∠,又∵90A C D BC C '''∠=︒-∠,∴ACP A C D ''∠=∠.∵//AP A C '',∴APC A C D ''∠=∠,∴ACP APC ∠=∠,∴AP AC =,∴AP A C ''=.∴在APD △和AC D ''中ADP A DC APD A C D AP A C '''∠=∠⎧⎪∠=∠'''⎨⎪=⎩,∴()APD A C D AAS ''≅,∴AD A D '=,即点D 为AA '中点.∵点E 为AC 中点,∴DE 为ACA '的中位线, ∴12DE A C '=, 即要使DE 最小,A C '最小即可.根据图可知A C A B BC ''≤-,即当点A C B '、、三点共线时A C '最小,且最小值为==53=2A C A B BC ''--.∴此时1=12DE A C '=,即DE 最小值为2.【小结】本题为旋转综合题.考查旋转的性质,勾股定理,等腰三角形的判定和性质,平行线的性质,平行线分线段成比例,全等三角形的判定和性质,中位线的判定和性质以及三角形三边关系,综合性强,为困难题.正确的作出辅助线为难点也是解题关键.32.(2021·四川遂宁市·中考真题)如图,在平行四边形ABCD中,对角线AC与BD相交于点O,过点O的直线EF与BA、DC的延长线分别交于点E、F.(1)求证:AE=CF;(2)请再添加一个条件,使四边形BFDE是菱形,并说明理由.【答案】(1)见解析;(2)EF⊥BD或EB=ED,见解析【分析】≌,则可得到AE=CF;(1)根据平行四边形的性质和全等三角形的证明方法证明AOE COF≌,得到OE= OF,又AO=CO,所以四边形AECF是平行四边(2)连接BF,DE,由AOE COF形,则根据EF⊥BD可得四边形BFDE是菱形.【解析】证明:(1)∵四边形ABCD是平行四边形∴OA=OC,BE∥DF∴∠E=∠F在△AOE和△COF中。
中考数学《多边形和平行四边形》专题含解析

多边形和平行四边形一、填空题1.如图,□ABCD中,∠B=50°,AB=5cm,BC=7cm,则∠D=度,□ABCD的周长为cm.2.如图:□ABCD的周长是28cm,△ABC的周长是22cm,则AC的长为cm.3.如图,在□ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则EC的长为.二、选择题4.如图,已知□ABCD的两条对角线AC与BD交于平面直角坐标系的原点,点A的坐标为(﹣2,3),则点C的坐标为()A.(﹣3,2)B.(﹣2,﹣3)C.(3,﹣2)D.(2,﹣3)5.在四边形ABCD中,O是对角线交点,下列条件中,不能判定四边形ABCD是平行四边形的是()A.AD∥BC,AD=BC B.AB=DC,AD=BC C.AB∥DC,AD=BC D.OA=OC,OD=OB 6.如图,一个四边形花坛ABCD,被两条线段MN,EF分成四个部分,分别种上红、黄、紫、白四种花卉,种植面积依次是S1,S2,S3,S4,若MN∥AB∥DC,EF∥DA∥CB,则有()A.S1=S4B.S1+S4=S2+S3C.S1S4=S2S3D.都不对7.如图,在□ABCD中,E是BC的中点,且∠AEC=∠DCE,则下列结论不正确的是()A.S△AFD=2S△EFB B.BF=DFC.四边形AECD是等腰梯形D.∠AEB=∠ADC三、解答题8.如图,在□ABCD中,∠DAB=60°,点E、F分别在CD、AB的延长线上,且AE=AD,CF=CB.(1)求证:四边形AFCE是平行四边形;(2)若去掉已知条件的“∠DAB=60°”,上述的结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由.9.已知:□ABCD的对角线交于点O,点P是直线BD上任意一点(异于B、O、D三点),过P点作平行于AC的直线,交直线AD于E,交直线AB于F.(1)若点P在线段BD上(如图所示),试说明:AC=PE+PF;(2)若点P在BD或DB的延长线上,试探究AC、PE、PF满足的等量关系式(只写出结论,不作证明).10.如图,ABCD是矩形纸片,翻折∠B,∠D,使BC,AD恰好落在AC上.设F,H分别是B,D落在AC上的两点,E,G分别是折痕CE,AG与AB,CD的交点.(1)求证:四边形AECG是平行四边形;(2)若AB=4cm,BC=3cm,求线段EF的长.11.如图,在平行四边形ABCD中,AD=4cm,∠A=60°,BD⊥AD.一动点P从A出发,以每秒1cm的速度沿A→B→C的路线匀速运动,过点P作直线PM,使PM⊥AD.(1)当点P运动2秒时,设直线PM与AD相交于点E,求△APE的面积;(2)当点P运动2秒时,另一动点Q也从A出发沿A→B→C的路线运动,且在AB上以每秒1cm的速度匀速运动,在BC上以每秒2cm的速度匀速运动.过Q作直线QN,使QN∥PM.设点Q运动的时间为t秒(0≤t≤10),直线PM与QN截平行四边形ABCD 所得图形的面积为Scm2.①求S关于t的函数关系式;②(附加题)求S的最大值.12.我们给出如下定义:如果四边形中一对顶点到另一对顶点所连对角线的距离相等,则把这对顶点叫做这个四边形的一对等高点.例如:如图1,平行四边形ABCD中,可证点A、C到BD的距离相等,所以点A、C是平行四边形ABCD的一对等高点,同理可知点B、D也是平行四边形ABCD的一对等高点.(1)如图2,已知平行四边形ABCD,请你在图2中画出一个只有一对等高点的四边形ABCE(要求:画出必要的辅助线);(2)已知P是四边形ABCD对角线BD上任意一点(不与B、D点重合),请分别探究图3、图4中S1,S2,S3,S4四者之间的等量关系(S1,S2,S3,S4分别表示△ABP,△CBP,△CDP,△ADP的面积):①如图3,当四边形ABCD只有一对等高点A、C时,你得到的一个结论是;②如图4,当四边形ABCD没有等高点时,你得到的一个结论是.13.四边形一条对角线所在直线上的点,如果到这条对角线的两端点的距离不相等,但到另一对角线的两个端点的距离相等,则称这点为这个四边形的准等距点.如图1,点P为四边形ABCD对角线AC所在直线上的一点,PD=PB,PA≠PC,则点P为四边形ABCD 的准等距点.(1)如图2,画出菱形ABCD的一个准等距点.(2)如图3,作出四边形ABCD的一个准等距点.(尺规作图,保留作图痕迹,不要求写作法)(3)如图4,在四边形ABCD中,P是AC上的点,PA≠PC,延长BP交CD于点E,延长DP交BC于点F,且∠CDF=∠CBE,CE=CF.试说明点P是四边形ABCD的准等距点.(4)试研究四边形的准等距点个数的情况.(说出相应四边形的特征及此时准等距点的个数,不必证明)14.如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB边中点.操作:以PA、PC为邻边作平行四边形PADC,连续PM并延长到点E,使ME=PM,连接DE.探究:(1)请猜想与线段DE有关的三个结论;(2)请你利用图2,图3选择不同位置的点P按上述方法操作;(3)经历(2)之后,如果你认为你写的结论是正确的,请加以证明;如果你认为你写的结论是错误的,请用图2或图3加以说明;(注意:错误的结论,只要你用反例给予说明也得分)(4)若将“Rt△ABC”改为“任意△ABC”,其他条件不变,利用图4操作,并写出与线段DE有关的结论(直接写答案).多边形和平行四边形参考答案与试题解析一、填空题1.如图,□ABCD中,∠B=50°,AB=5cm,BC=7cm,则∠D=50度,□ABCD的周长为24cm.【考点】平行四边形的性质.【分析】根据平行边形性质中对角、对边相等可知,∠B=∠D=50°,平行四边形的周长=2(AB+BC).【解答】解:①∵四边形ABCD是平行四边形,∴∠D=∠B∵∠B=50°∴∠D=50°②∵四边形ABCD是平行四边形,∴AD=BC,AB=CD∵AB=5cm,BC=7cm∴□ABCD的周长为:2(AB+BC)=24cm.故答案为50、24.【点评】本题主要考查了平行四边形的基本性质,并利用性质解题.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.2.如图:□ABCD的周长是28cm,△ABC的周长是22cm,则AC的长为8cm.【考点】平行四边形的性质.【分析】平行四边形的周长为相邻两边之和的2倍,即2(AB+BC)=28,则AB+BC=14cm,而△ABC的周长=AB+BC+AC=22,所以AC=22﹣14=8cm.【解答】解:∵□ABCD的周长是28 cm∴AB+AD=14cm∵△ABC的周长是22cm∴AC=22﹣(AB+AC)=8cm故答案为8.【点评】在应用平行四边形的性质解题时,要根据具体问题,有选择地使用,避免混淆性质,以致错用性质.3.如图,在□ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则EC的长为2.【考点】菱形的判定;全等三角形的判定与性质;平行四边形的性质.【专题】计算题.【分析】作EF∥AB,交AD于F,可证ABEF、CDFE为平行四边形,又AE平分∠BAD,可进一步证明AB=BE,ABEF为菱形,则AF=AB=3,DF=5﹣3=2,则EC=2.【解答】解:过点E作EF∥AB,交AD于F∵在□ABCD,EF∥AB∴AB=EF,AF=BE∵∠FAE=∠BAE∴△AFE≌△ABE∴AB=BE=EF=AF∴ABEF为菱形∴EC=AD﹣AB=2.故答案为:2.【点评】此题综合性较强,考查了平行四边形的判定及性质、菱形的判定、角平分线的定义等知识点.二、选择题(共4小题,每小题4分,满分16分)4.如图,已知□ABCD的两条对角线AC与BD交于平面直角坐标系的原点,点A的坐标为(﹣2,3),则点C的坐标为()A.(﹣3,2)B.(﹣2,﹣3)C.(3,﹣2)D.(2,﹣3)【考点】平行四边形的性质;坐标与图形性质.【分析】根据平行四边形是中心对称的特点可知,点A与点C关于原点对称,所以C的坐标为(2,﹣3).【解答】解:∵在平行四边形ABCD中,A点与C点关于原点对称∴C点坐标为(2,﹣3).故选D.【点评】主要考查了平行四边形的性质和坐标与图形的关系.要会根据平行四边形的性质得到点A与点C关于原点对称的特点,是解题的关键.5.在四边形ABCD中,O是对角线交点,下列条件中,不能判定四边形ABCD是平行四边形的是()A.AD∥BC,AD=BC B.AB=DC,AD=BC C.AB∥DC,AD=BC D.OA=OC,OD=OB【考点】平行四边形的判定.【分析】根据平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.不能判定四边形ABCD是平行四边形的是C【解答】解:A、根据一组对边平行且相等的四边形是平行四边形,可以判定,故正确;B、根据平行四边形的定义即可判定,故正确;C、一组对边平行,另一组对边相等的四边形,等腰梯形满足条件.故该选项错误.D、根据对角线互相平分的四边形是平行四边形可以判定.故正确.故选C.【点评】此题主要考查对平行四边形的判定掌握的熟练程度.平行四边形共有五种判定方法,记忆时要注意技巧;这五种方法中,一种与对角线有关,一种与对角有关,其他三种与边有关.6.如图,一个四边形花坛ABCD,被两条线段MN,EF分成四个部分,分别种上红、黄、紫、白四种花卉,种植面积依次是S1,S2,S3,S4,若MN∥AB∥DC,EF∥DA∥CB,则有()A.S1=S4B.S1+S4=S2+S3C.S1S4=S2S3D.都不对【考点】平行四边形的性质.【专题】应用题;压轴题.【分析】由于在平行四边形中,已给出条件MN∥AB∥DC,EF∥DA∥CB,因此,MN、EF把一个平行四边形分割成四个小平行四边形,所以红、紫四边形的高相等,由此可证明S1S4=S2S3.【解答】解:设红、紫四边形的高相等为h1,黄、白四边形的高相等,高为h2,则S1=DE•h1,S2=AF•h2,S3=EC•h1,S4=FB•h2,因为DE=AF,EC=FB,故A错误;S1+S4=DE•h1+FB•h2=AF•h1+FB•h2,S2+S3=AF•h2+EC•h1=AF•h2+FB•h1,故B错误;S1S4=DE•h1•FB•h2=AF•h1•FB•h2,S2S3=AF•h2•EC•h1=AF•h2•FB•h1,所以S1S4=S2S3,故C正确;故选:C.【点评】本题考查的是平行四变形的性质,平行四边形两组对边分别平行且相等,同时充分利用等量相加减原理解题,否则容易从直观上判断B是正确的.7.如图,在□ABCD中,E是BC的中点,且∠AEC=∠DCE,则下列结论不正确的是()A.S△AFD=2S△EFB B.BF=DFC.四边形AECD是等腰梯形D.∠AEB=∠ADC【考点】平行四边形的性质;相似三角形的判定与性质.【专题】压轴题.【分析】本题要综合分析,但主要依据都是平行四边形的性质.【解答】解:A、∵AD∥BC∴△AFD∽△EFB∴====4S△EFB;故S△AFDB、由A中的相似比可知,BF=DF,正确.C、由∠AEC=∠DCE可知正确.D、利用等腰三角形和平行的性质即可证明.故选:A.【点评】解决本题的关键是利用相似求得各对应线段的比例关系.三、解答题8.如图,在□ABCD中,∠DAB=60°,点E、F分别在CD、AB的延长线上,且AE=AD,CF=CB.(1)求证:四边形AFCE是平行四边形;(2)若去掉已知条件的“∠DAB=60°”,上述的结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由.【考点】平行四边形的判定与性质;全等三角形的判定与性质.【专题】证明题;探究型.【分析】(1)由已知条件可得△AED,△CFB是正三角形,可得∠AEC=∠BFC=60°,∠EAF=∠FCE=120°,所以四边形AFCE是平行四边形.(2)上述结论还成立,可以证明△ADE≌△CBF,可得∠AEC=∠BFC,∠EAF=∠FCE,所以四边形AFCE是平行四边形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴DC∥AB,∠DCB=∠DAB=60°.∴∠ADE=∠CBF=60°.∵AE=AD,CF=CB,∴△AED,△CFB是正三角形.∴∠AEC=∠BFC=60°,∠EAF=∠FCE=120°.∴四边形AFCE是平行四边形.(2)解:上述结论还成立.证明:∵四边形ABCD是平行四边形,∴DC∥AB,∠CDA=∠CBA,∠DCB=∠DAB,AD=BC,DC=AB.∴∠ADE=∠CBF.∵AE=AD,CF=CB,∴∠AED=∠ADE,∠CFB=∠CBF.∴∠AED=∠CFB.又∵AD=BC,在△ADE和△CBF中.,∴△ADE≌△CBF(AAS).∴∠AED=∠BFC,∠EAD=∠FCB.又∵∠DAB=∠BCD,∴∠EAF=∠FCE.∴四边形EAFC是平行四边形.【点评】本题考查了等边三角形的性质及平行四边形的判定.多种知识综合运用是解题中经常要遇到的.9.已知:□ABCD的对角线交于点O,点P是直线BD上任意一点(异于B、O、D三点),过P点作平行于AC的直线,交直线AD于E,交直线AB于F.(1)若点P在线段BD上(如图所示),试说明:AC=PE+PF;(2)若点P在BD或DB的延长线上,试探究AC、PE、PF满足的等量关系式(只写出结论,不作证明).【考点】平行线分线段成比例;平行四边形的判定与性质.【专题】证明题;探究型.【分析】(1)先判定四边形AFGC是平行四边形,再根据平行四边形的对边相等的性质知AC=FG;然后由被平行线所截的线段对应成比例(==)求出PE与PG的数量关系,解答到此,来证明AC=PE+PF的问题就迎刃而解了.(2)推理类同于(1).【解答】证明:(1)延长FP交DC于点G,∵AB∥CD,AC∥FG,∴四边形AFGC是平行四边形,∴AC=FG(平行四边形的对边相等),∵EG∥AC,∴==(被平行线所截的线段对应成比例);又∵OA=OC,∴PE=PG,∴AC=FG=PF+PG=PE+PF;(2)若点P在BD延长线上,AC=PF﹣PE.如下图所示若点P在DB延长线上,AC=PE﹣PF.如下图所示..【点评】本题主要考查了平行四边形的判定与性质.10.如图,ABCD是矩形纸片,翻折∠B,∠D,使BC,AD恰好落在AC上.设F,H分别是B,D落在AC上的两点,E,G分别是折痕CE,AG与AB,CD的交点.(1)求证:四边形AECG是平行四边形;(2)若AB=4cm,BC=3cm,求线段EF的长.【考点】翻折变换(折叠问题);解一元二次方程﹣公式法;勾股定理;平行四边形的判定;相似三角形的判定与性质.【专题】几何综合题.【分析】(1)根据:两组对边分别平行的四边形是平行四边形,证明AG∥CE,AE∥CG 即可;(2)解法1:在Rt△AEF中,运用勾股定理可将EF的长求出;解法2,通过△AEF∽△ACB,可将线段EF的长求出.【解答】(1)证明:在矩形ABCD中,∵AD∥BC,∴∠DAC=∠BCA.由题意,得∠GAH=∠DAC,∠ECF=∠BCA.∴∠GAH=∠ECF,∴AG∥CE.又∵AE∥CG,∴四边形AECG是平行四边形.(2)解法1:在Rt△ABC中,∵AB=4,BC=3,∴AC=5.∵CF=CB=3,∴AF=2.在Rt△AEF中,设EF=x,则AE=4﹣x.根据勾股定理,得AE2=AF2+EF2,即(4﹣x)2=22+x2.解得x=,即线段EF长为cm.解法2:∵∠AFE=∠B=90°,∠FAE=∠BAC,∴△AEF∽△ACB,∴.∴,解得,即线段EF长为cm.【点评】本题考查图形的折叠变化,关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.11.如图,在平行四边形ABCD中,AD=4cm,∠A=60°,BD⊥AD.一动点P从A出发,以每秒1cm的速度沿A→B→C的路线匀速运动,过点P作直线PM,使PM⊥AD.(1)当点P运动2秒时,设直线PM与AD相交于点E,求△APE的面积;(2)当点P运动2秒时,另一动点Q也从A出发沿A→B→C的路线运动,且在AB上以每秒1cm的速度匀速运动,在BC上以每秒2cm的速度匀速运动.过Q作直线QN,使QN∥PM.设点Q运动的时间为t秒(0≤t≤10),直线PM与QN截平行四边形ABCD 所得图形的面积为Scm2.①求S关于t的函数关系式;②(附加题)求S的最大值.【考点】二次函数综合题;平行四边形的性质.【专题】压轴题.【分析】(1)在三角形AEP中,AP=2,∠A=60°,利用三角函数可求出AE和PE,即可求出面积;(2)①此题应分情况讨论,因为两个动点运动速度不同,所以有点P与点Q都在AB 上运动、点P在BC上运动点Q仍在AB上运动、点P和点Q都在BC上运动三种情况,在每种情况下可利用三角函数分别求出我们所需要的值,进而求解.②在①的基础上,首先①求出函数关系式之后,根据t的取值范围不同函数最大值也不同.【解答】解:(1)当点P运动2秒时,AP=2cm,由∠A=60°,知AE=1,PE=.(2分)=;∴S△APE(2)①当0≤t<6时,点P与点Q都在AB上运动,如图所示:设PM与AD交于点G,QN与AD交于点F,则AQ=t,AF=,QF=t,AP=t+2,AG=1+,PG=+t.∴此时两平行线截平行四边形ABCD的面积为S=t+;②当6≤t<8时,点P在BC上运动,点Q仍在AB上运动.如图所示:设PM与DC交于点G,QN与AD交于点F,则AQ=t,AF=,DF=4﹣,QF=t,BP=t﹣6,CP=10﹣t,PG=(10﹣t),而BD=4,故此时两平行线截平行四边形ABCD的面积为S=﹣t2+10t﹣34,③当8≤t≤10时,点P和点Q都在BC上运动.如图所示:设PM与DC交于点G,QN与DC交于点F,则CQ=20﹣2t,QF=(20﹣2t),CP=10﹣t,PG=(10﹣t).∴此时两平行线截平行四边形ABCD的面积为S=.(14分)故S关于t的函数关系式为;②(附加题)当0≤t<6时,S的最大值为,(1分)当6≤t<8时,S的最大值为6,(舍去),(2分)当8≤t≤10时,S的最大值为6,(3分)所以当t=8时,S有最大值为6.(如正确作出函数图象并根据图象得出最大值,同样给4分)【点评】此题解答需数形结合,把函数知识和几何知识紧密联系在一起,难易程度适中.12.我们给出如下定义:如果四边形中一对顶点到另一对顶点所连对角线的距离相等,则把这对顶点叫做这个四边形的一对等高点.例如:如图1,平行四边形ABCD中,可证点A、C到BD的距离相等,所以点A、C是平行四边形ABCD的一对等高点,同理可知点B、D也是平行四边形ABCD的一对等高点.(1)如图2,已知平行四边形ABCD,请你在图2中画出一个只有一对等高点的四边形ABCE(要求:画出必要的辅助线);(2)已知P是四边形ABCD对角线BD上任意一点(不与B、D点重合),请分别探究图3、图4中S1,S2,S3,S4四者之间的等量关系(S1,S2,S3,S4分别表示△ABP,△CBP,△CDP,△ADP的面积):①如图3,当四边形ABCD只有一对等高点A、C时,你得到的一个结论是S1+S4=S2+S3,S1+S3=S2+S4或S1×S3=S2×S4或;②如图4,当四边形ABCD没有等高点时,你得到的一个结论是S1×S3=S2×S4或.【考点】作图—应用与设计作图.【专题】压轴题;新定义;开放型.【分析】(1)在BD上任选一点E(不与B、D重合),连接AE、CE即可;(2)根据等底等高,可得结论:①S1+S4=S2+S3,S1+S3=S2+S4或S1×S3=S2×S4或等.②S1×S3=S2×S4或等.【解答】解:(1)比如:(2)①S1+S4=S2+S3,S1+S3=S2+S4或S1×S3=S2×S4或等.②∵分别作△ABD与△BCD的高,h1,h2,则=,=,∴S1×S3=S2×S4或等.【点评】此题主要考查学生的阅读理解能力和对等底等高知识的灵活应用.13.四边形一条对角线所在直线上的点,如果到这条对角线的两端点的距离不相等,但到另一对角线的两个端点的距离相等,则称这点为这个四边形的准等距点.如图1,点P为四边形ABCD对角线AC所在直线上的一点,PD=PB,PA≠PC,则点P为四边形ABCD 的准等距点.(1)如图2,画出菱形ABCD的一个准等距点.(2)如图3,作出四边形ABCD的一个准等距点.(尺规作图,保留作图痕迹,不要求写作法)(3)如图4,在四边形ABCD中,P是AC上的点,PA≠PC,延长BP交CD于点E,延长DP交BC于点F,且∠CDF=∠CBE,CE=CF.试说明点P是四边形ABCD的准等距点.(4)试研究四边形的准等距点个数的情况.(说出相应四边形的特征及此时准等距点的个数,不必证明)【考点】作图—复杂作图;全等三角形的判定.【专题】压轴题;新定义.【分析】(1)根据菱形的对角线互相垂直平分,根据线段垂直平分线的性质,则只需要在其中一条对角线上找到和对角线的交点不重合的点即可;(2)根据到线段两个端点距离相等的点在线段的垂直平分线上,则可作对角线BD的垂直平分线和另一条对角线所在的直线的交点即为所求作;(3)只需说明PD=PB即可.根据已知的条件可以根据AAS证明△DCF≌△BCE,则∠CDB=∠CBD,进而得到∠PDB=∠PBD,证明结论即可;(4)根据上述确定准等距点的方法:即作其中一条对角线的垂直平分线和另一条对角线所在的直线的交点.所以分析讨论的时候,主要是根据两条对角线的位置关系进行分析讨论.【解答】解:(1)如图2,点P即为所画点;(1分)(2)如图3,点P即为所作点(作法不唯一);(2分)(3)连接DB.在△DCF与△BCE中,∠DCF=∠BCE,∠CDF=∠CBE,CF=CE.∴△DCF≌△BCE(AAS),∴CD=CB,∴∠CDB=∠CBD,∴∠PDB=∠PBD,∴PD=PB,∵PA≠PC,∴点P是四边形ABCD的准等距点.(4)①当四边形的对角线互相垂直且任何一条对角线不平分另一对角线或者对角线互相平分且不垂直时,准等距点的个数为0个;②当四边形的对角线不互相垂直,又不互相平分,且有一条对角线的中垂线经过另一对角线的中点时,准等距点的个数为1个;③当四边形的对角线既不互相垂直又不互相平分,且任何一条对角线的中垂线都不经过另一条对角线的中点时,准等距点的个数为2个;④四边形的对角线互相垂直且至少有一条对角线平分另一对角线时,准等距点有无数个.(7分)【点评】关键是熟悉菱形的性质,能够根据线段垂直平分线的性质的逆定理进行分析作图,能够根据找准等距点的方和四边形中两条对角线的位置关系判断准等距点的个数.14.如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB边中点.操作:以PA、PC为邻边作平行四边形PADC,连续PM并延长到点E,使ME=PM,连接DE.探究:(1)请猜想与线段DE有关的三个结论;(2)请你利用图2,图3选择不同位置的点P按上述方法操作;(3)经历(2)之后,如果你认为你写的结论是正确的,请加以证明;如果你认为你写的结论是错误的,请用图2或图3加以说明;(注意:错误的结论,只要你用反例给予说明也得分)(4)若将“Rt△ABC”改为“任意△ABC”,其他条件不变,利用图4操作,并写出与线段DE有关的结论(直接写答案).【考点】平行四边形的性质;全等三角形的判定与性质.【专题】压轴题;探究型.【分析】连接BE,根据边角边可证△PAM和△EBM全等,可得EB和PA既平行又相等,而PA和CD既平行且相等,所以DE和BC平行相等,又因为BC⊥AC,所以DE也和AC 垂直.以下几种情况虽然图象有所变化,但是证明方法一致.【解答】解:(1)DE∥BC,DE=BC,DE⊥AC.(2)如图4,如图5.(3)方法一:如图6,连接BE,∵PM=ME,AM=MB,∠PMA=∠EMB,∴△PMA≌△EMB.∵PA=BE,∠MPA=∠MEB,∴PA∥BE.∵平行四边形PADC,∴PA∥DC,PA=DC.∴BE∥DC,BE=DC,∴四边形DEBC是平行四边形.∴DE∥BC,DE=BC.∵∠ACB=90°,∴BC⊥AC,∴DE⊥AC.方法二:如图7,连接BE,PB,AE,∵PM=ME,AM=MB,∴四边形PAEB是平行四边形.∴PA∥BE,PA=BE,余下部分同方法一:方法三:如图8,连接PD,交AC于N,连接MN,∵平行四边形PADC,∴AN=NC,PN=ND.∵AM=BM,AN=NC,∴MN∥BC,MN=BC.又∵PN=ND,PM=ME,∴MN∥DE,MN=DE.∴DE∥BC,DE=BC.∵∠ACB=90°,∴BC⊥AC.∴DE⊥AC.(4)如图9,DE∥BC,DE=BC.【点评】此题主要考查了平行四边形的性质和判定,以及全等的应用,难易程度适中.。
2022-2023 数学浙教版新中考 考点21多边形与平行四边形(解析版)

考点21多边形与平行四边形考点总结1.n 边形以及四边形的性质:(1)n 边形的内角和为(n -2)×180°(n ≥3),外角和为360°,对角线条数为n (n -3)2.(2)四边形的内角和为360°,外角和为360°,对角线条数为 2 .(3)正多边形的定义:各边相等、各内角也相等的多边形叫做正多边形.2.平行四边形的性质及判定:(1)性质:①平行四边形的两组对边分别平行且相等.②平行四边形的对角相等,邻角互补.③平行四边形的对角线互相平分.④平行四边形是中心对称图形.(2)判定:①定义:两组对边分别平行的四边形是平行四边形.②一组对边平行且相等的四边形是平行四边形.③两组对边分别相等的四边形是平行四边形.④两组对角分别相等的四边形是平行四边形.⑤对角线互相平分的四边形是平行四边形.3.三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半.4.在两条平行线中,一条直线上任意一点到另一条直线的距离,叫做两条平行线之间的距离.夹在两条平行线间的平行线段相等.真题演练一、单选题1.(2021·浙江衢州·中考真题)如图,在ABC 中,4AB =,5AC =,6BC =,点D ,E ,F 分别是AB ,BC ,CA 的中点,连结DE ,EF ,则四边形ADEF 的周长为( )A .6B .9C .12D .15【答案】B【分析】 根据中点的定义可得AD 、AF 的长,根据三角形中位线的性质可得DE 、EF 的长,即可求出四边形ADEF 的周长.【详解】∵4AB =,5AC =,6BC =,点D ,E ,F 分别是AB ,BC ,CA 的中点,∵AD =12AB =2,AF =1522AC =,DE 、EF 为∵ABC 的中位线, ∵EF =12AB =2,DE ==1522AC =, ∵四边形ADEF 的周长=2+2+5522+=9, 故选:B .2.(2021·浙江·中考真题)如图,已知在ABC 中,90ABC ∠<︒,,AB BC BE ≠是AC 边上的中线.按下列步骤作图:①分别以点,B C 为圆心,大于线段BC 长度一半的长为半径作弧,相交于点,M N ;①过点,M N 作直线MN ,分别交BC ,BE 于点,D O ;①连结,CO DE .则下列结论错误的是( )A .OB OC =B .BOD COD ∠=∠C .//DE ABD .DB DE =【答案】D【分析】 首先根据题意可知道MN 为线段BC 的中垂线,然后结合中垂线与中线的性质逐项分析即可.【详解】由题意可知,MN 为线段BC 的中垂线,∵O 为中垂线MN 上一点,∵OB =OC ,故A 正确;∵OB =OC ,∵∵OBC =∵OCB ,∵MN ∵BC ,∵∵ODB =∵ODC ,∵∵BOD =∵COD ,故B 正确;∵D 为BC 边的中点,BE 为AC 边上的中线,∵DE 为∵ABC 的中位线,∵DE ∵AB ,故C 正确;由题意可知DB =DC ,假设DB =DE 成立,则DB =DE =DC ,∵BEC =90°,而题干中只给出BE 是中线,无法保证BE 一定与AC 垂直,∵DB 不一定与DE 相等,故D 错误;故选:D .3.(2021·浙江宁波·中考真题)如图是一个由5张纸片拼成的ABCD ,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为1S ,另两张直角三角形纸片的面积都为2S ,中间一张矩形纸片EFGH 的面积为3S ,FH 与GE 相交于点O .当,,,AEO BFO CGO DHO 的面积相等时,下列结论一定成立的是( )A .12S SB .13S S =C .AB AD = D .EH GH =【答案】A【分析】 根据∵AED 和∵BCG 是等腰直角三角形,四边形ABCD 是平行四边形,四边形HEFG是矩形可得出AE =DE =BG =CG =a , HE =GF ,GH =EF ,点O 是矩形HEFG 的中心,设AE =DE =BG =CG =a , HE =GF = b ,GH =EF = c ,过点O 作OP ∵EF 于点P ,OQ ∵GF 于点Q ,可得出OP ,OQ 分别是∵FHE 和∵EGF 的中位线,从而可表示OP ,OQ 的长,再分别计算出1S ,2S ,3S 进行判断即可【详解】解:由题意得,∵AED 和∵BCG 是等腰直角三角形,∵45ADE DAE BCG GBC ∠=∠=∠=∠=︒∵四边形ABCD 是平行四边形,∵AD =BC ,CD =AB ,∵ADC =∵ABC ,∵BAD =∵DCB∵∵HDC =∵FBA ,∵DCH =∵BAF ,∵∵AED ∵∵CGB ,∵CDH ∵ABF∵AE =DE =BG =CG∵四边形HEFG 是矩形∵GH =EF ,HE =GF设AE =DE =BG =CG =a , HE =GF = b ,GH =EF = c过点O 作OP ∵EF 于点P ,OQ ∵GF 于点Q ,∵OP //HE ,OQ //EF∵点O 是矩形HEFG 的对角线交点,即HF 和E G 的中点,∵OP ,OQ 分别是∵FHE 和∵EGF 的中位线, ∵1122OP HE b ==,1122OQ EF c == ∵1111()()2224BOF S BF OQ a b c a b c ∆==-⨯=- 11112224AOE S AE OP a b ab ∆==⨯= ∵BOF AOE S S ∆∆=∵11()44a b c ab -=,即ac bc ab -= 而211122AED S S AE DE a ∆===,222211111()()()()22222AFB S S AF BF a c a b a ab ac bc a ab ab a ∆===+-=-+-=-+= 所以,12S S ,故选项A 符合题意,2223=()()S HE EF a b a c a bc ab ac a ab ab a =-+=--+=+-=∵13S S ≠,故选项B 不符合题意, 而AB AD =于EH GH =都不一定成立,故,C D 都不符合题意, 故选:A 4.(2021·浙江宁波·中考真题)如图,在ABC 中,45,60,B C AD BC ∠=︒∠=︒⊥于点D ,BD =E ,F 分别为AB ,BC 的中点,则EF 的长为( )A B C .1 D 【答案】C【分析】根据条件可知∵ABD 为等腰直角三角形,则BD =AD ,∵ADC 是30°、60°的直角三角形,可求出AC 长,再根据中位线定理可知EF =2AC 。
2022中考数学试题分类多边形与平行四边形(含解析)

2022中考数学试题分类多边形与平行四边形(含解析)多边形与平行四边形1.(2022衡阳,第9题3分)下列命题是真命题的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的四边形是菱形D.对角线互相垂直的四边形是正方形考点:命题与定理.专题:计算题.分析:根据平行线四边形的判定方法对A进行判定;根据矩形的判定方法,对角线相等的平行四边形是矩形,则可对B进行判定;根据菱形的判定方法,对角线互相垂直的平行四边形是菱形,则可对C进行判定;根据正方形的判定方法,对角线互相垂直的矩形是正方形,则可对对D进行判定.解答:解:A、对角线互相平分的四边形是平行四边形,所以A选项为真命题;B、对角线相等的平行四边形是矩形,所以B选项为假命题;C、对角线互相垂直的平行四边形是菱形,所以C选项为假命题;D、对角线互相垂直的矩形是正方形,所以D选项为假命题.故选A.点评:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果那么”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.3.(2022宜昌,第8题3分)下列图形具有稳定性的是()A.正方形B.矩形C.平行四边形D.直角三角形考点:三角形的稳定性;多边形..分析:根据三角形具有稳定性,四边形具有不稳定性进行判断.解答:解:直角三角形具有稳定性.故选:D.点评:此题考查了三角形的稳定性和四边形的不稳定性,正确掌握三角形的性质是解题关键.4.(2022江苏常州第5题2分)如图,□ABCD的对角线AC、BD相交于点O,则下列说法一定正确的是AOBDA.AO=ODB.AO⊥ODC.AO=OCD.AO⊥AB5.(2022江苏连云港第5题3分)已知四边形ABCD,下列说法正确的是A.当AD=BC,AB∥DC时,四边形ABCD是平行四边形B.当AD=BC,AB=DC时,四边形ABCD是平行四边形CC.当AC=BD,AC平分BD时,四边形ABCD是矩形D.当AC=BD,AC⊥BD时,四边形ABCD是正方形【思路分析】平行四边形的判定,分别有两组对边分别平行,两组分别相等,一组对边平行且相等,或对角线互相平分的四边形是平行四边形,所以B选项是正确的【答案】B【点评】本题考查平行四边形及特殊的平行四边形的判定.6、(2022年陕西省,9,3分)在ABCD中,AB=10,BC=14,E,F分别为边BC,AD上的点,若四边形AECF为正方形,则AE的长为()A.7B.4或10C.5或9D.6或8考点:平行四边形的性质;勾股定理;正方形的性质..专题:分类讨论.分析:设AE的长为某,根据正方形的性质可得BE=14﹣某,根据勾股定理得到关于某的方程,解方程即可得到AE的长.解答:解:如图:设AE的长为某,根据正方形的性质可得BE=14﹣某,222在△ABE中,根据勾股定理可得某+(14﹣某)=10,解得某1=6,某2=8.故AE的长为6或8.故选:D.点评:考查了平行四边形的性质,正方形的性质,勾股定理,关键是根据勾股定理得到关于AE的方程.7.(2022山东莱芜,第9题3分)一个多边形除一个内角外其余内角的和为1510°,则这个多边形对角线的条数是()A.27B.35C.44D.54考点:多边形内角与外角..分析:设出题中所给的两个未知数,利用内角和公式列出相应等式,根据边数为整数求解即可,再进一步代入多边形的对角线计算方法,即可解答.解答:解:设这个内角度数为某,边数为n,∴(n﹣2)某180°﹣某=1510,180n=1870+某,∵n为正整数,∴n=11,∴=44,故选:C.点评:此题考查多边形的内角和计算公式以及多边形的对角线条数的计算方法,属于需要识记的知识.8.(2022怀化,第6题4分)一个多边形的内角和是360°,这个多边形是()A.三角形B.四边形C.六边形D.不能确定考点:多边形内角与外角.分析:本题根据多边形的内角和定理和多边形的内角和等于360°,列出方程,解出即可.解答:解:设这个多边形的边数为n,则有(n﹣2)180°=360°,解得:n=4,故这个多边形是四边形.故选:B.点评:本题主要考查多边形的内角和定理,解题的关键是根据已知等量关系列出方程从而解决问题.9.(2022娄底,第5题3分)下列命题中错误的是()A.平行四边形的对角线互相平分B.菱形的对角线互相垂直C.同旁内角互补D.矩形的对角线相等考点:命题与定理.分析:根据平行四边形的性质对A进行判断;根据菱形的性质对B进行判断;根据平行线的性质对C进行判断;根据矩形的性质对D进行判断.解答:解:A、平行四边形的对角线互相平分,所以A选项为真命题;B、菱形的对角线互相垂直,所以B选项为真命题;C、两直线平行,同旁内角互补,所以C选项为假命题;D、矩形的对角线相等,所以D选项为真命题.故选C.点评:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果那么”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.10.(2022长沙,第5题3分)下列命题中,为真命题的是()A.六边形的内角和为360度B.多边形的外角和与边数有关C.矩形的对角线互相垂直D.三角形两边的和大于第三边考点:命题与定理.分析:根据六边形的内角和、多边形的外角和、矩形的性质和三角形三边关系判断即可.解答:解:A、六边形的内角和为720°,错误;B、多边形的外角和与边数无关,都等于360°,错误;C、矩形的对角线相等,错误;D、三角形的两边之和大于第三边,正确;故选D.点评:本题考查命题的真假性,是易错题.注意对六边形的内角和、多边形的外角和、矩形的性质和三角形三边关系的准确掌握11.(2022本溪,第8题3分)如图,ABCD的周长为20cm,AE平分∠BAD,若CE=2cm,则AB的长度是()A.10cmB.8cmC.6cmD.4cm考点:平行四边形的性质..分析:根据平行四边形的性质得出AB=CD,AD=BC,AD∥BC,推出∠DAE=∠BAE,求出∠BAE=∠AEB,推出AB=BE,设AB=CD=某cm,则AD=BC=(某+2)cm,得出方程某+某+2=10,求出方程的解即可.解答:解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,AD∥BC,∴∠DAE=∠BAE,∵AE平分∠BAD,∴∠DAE=∠BAE,∴∠BAE=∠AEB,∴AB=BE,设AB=CD=某cm,则AD=BC=(某+2)cm,∵ABCD的周长为20cm,∴某+某+2=10,解得:某=4,即AB=4cm,故选D.点评:本题考查了平行四边形的在,平行线的性质,等腰三角形的判定的应用,解此题的关键是能推出AB=BE,题目比较好,难度适中.12.(2022营口,第4题3分)ABCD中,对角线AC与BD交于点O,∠DAC=42°,∠CBD=23°,则∠COD是()A.61°B.63°C.65°D.67°考点:平行四边形的性质.分析:由平行四边形的性质可知:AD∥BC,进而可得∠DAC=∠BCA,再根据三角形外角和定理即可求出∠COD的度数.解答:解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠BCA=42°,∴∠COD=∠CBD+∠BCA=65°,故选C.点评:本题考查了平行四边形的性质以及三角形的外角和定理,题目比较简单,解题的关键是灵活运用平行四边形的性质,将四边形的问题转化为三角形问题.13.(2022年浙江衢州第4题3分)如图,在YABCD中,已知AD12cm,AB8cm,AE平分BAD交BC于点E,则CE的长等于【】A.8cmB.6cmC.4cmD.2cm【答案】C.【考点】平行线分线段成比例的性质.【分析】∵四边形ABCD是平行四边形,∴AD//BC,ADBC.∴DAEAEB.又∵AE平分BAD,∴DAEEAB.∴EABAEB.∴ABBE.∵AD12cm,AB8cm,∴BC12cm,BE8cm.∴CEBCCE4cm.故选C.5.(2022江苏连云港第5题3分)已知四边形ABCD,下列说法正确的是A.当AD=BC,AB∥DC时,四边形ABCD是平行四边形B.当AD=BC,AB=DC时,四边形ABCD是平行四边形C.当AC=BD,AC平分BD时,四边形ABCD是矩形D.当AC=BD,AC⊥BD时,四边形ABCD是正方形【思路分析】平行四边形的判定,分别有两组对边分别平行,两组分别相等,一组对边平行且相等,或对角线互相平分的四边形是平行四边形,所以B选项是正确的【答案】B【点评】本题考查平行四边形及特殊的平行四边形的判定.6、(2022年陕西省,9,3分)在ABCD中,AB=10,BC=14,E,F分别为边BC,AD上的点,若四边形AECF为正方形,则AE的长为()A.7B.4或10C.5或9D.6或8考点:平行四边形的性质;勾股定理;正方形的性质..专题:分类讨论.分析:设AE的长为某,根据正方形的性质可得BE=14﹣某,根据勾股定理得到关于某的方程,解方程即可得到AE的长.解答:解:如图:设AE的长为某,根据正方形的性质可得BE=14﹣某,222在△ABE中,根据勾股定理可得某+(14﹣某)=10,解得某1=6,某2=8.故AE的长为6或8.故选:D.点评:考查了平行四边形的性质,正方形的性质,勾股定理,关键是根据勾股定理得到关于AE的方程.7.(2022山东莱芜,第9题3分)一个多边形除一个内角外其余内角的和为1510°,则这个多边形对角线的条数是()A.27B.35C.44D.54考点:多边形内角与外角..分析:设出题中所给的两个未知数,利用内角和公式列出相应等式,根据边数为整数求解即可,再进一步代入多边形的对角线计算方法,即可解答.解答:解:设这个内角度数为某,边数为n,∴(n﹣2)某180°﹣某=1510,180n=1870+某,∵n为正整数,∴n=11,∴=44,故选:C.点评:此题考查多边形的内角和计算公式以及多边形的对角线条数的计算方法,属于需要识记的知识.3.(2022江苏镇江,第8题,2分)如图,ABCD中,E为AD的中点,BE,CD的延长线相交于点F,若△DEF的面积为1,则ABCD的面积等于4.考点:平行四边形的性质;全等三角形的判定与性质..分析:通过△ABE≌△DFE求得△ABE的面积为1,通过△FBC∽△FED,求得四边形BCDE的面积为3,然后根据ABCD的面积=四边形BCDE的面积+△ABE的面积即可求得.解答:解:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AD=BC,∵AB∥CD,∴∠A=∠EDF,在△ABE和△DFE中,,∴△ABE≌△DFE(SAS),∵△DEF的面积为1,∴△ABE的面积为1,∵AD∥BC,∴△FBC∽△FED,∴=()2∵AE=ED=AD.∴ED=BC,∴=,∴四边形BCDE的面积为3,∴ABCD的面积=四边形BCDE的面积+△ABE的面积=4.故答案为4.点评:本题考查了平行四边形的性质,三角形全等的判定和性质,三角形相似的判定和性质,熟练掌握三角形全等的性质和三角形相似的性质是解题的关键.24.(2022营口,第14题3分)圆内接正六边形的边心距为2,则这个正六边形的面积为24cm.考点:正多边形和圆.分析:根据正六边形的特点,通过中心作边的垂线,连接半径,结合解直角三角形的有关知识解决.解答:解:如图,连接OA、OB;过点O作OG⊥AB于点G.在Rt△AOG中,OG=2,∠AOG=30°,∵OG=OAco30°,∴OA===4,∴这个正六边形的面积为6某某4某2=24cm.2故答案为:24.点评:此题主要考查正多边形的计算问题,根据题意画出图形,再根据正多边形的性质即锐角三角函数的定义解答即可.5.(2022江苏连云港第5题3分)已知四边形ABCD,下列说法正确的是A.当AD=BC,AB∥DC时,四边形ABCD是平行四边形B.当AD=BC,AB=DC时,四边形ABCD是平行四边形C.当AC=BD,AC平分BD时,四边形ABCD是矩形D.当AC=BD,AC⊥BD时,四边形ABCD是正方形【思路分析】平行四边形的判定,分别有两组对边分别平行,两组分别相等,一组对边平行且相等,或对角线互相平分的四边形是平行四边形,所以B选项是正确的【答案】B【点评】本题考查平行四边形及特殊的平行四边形的判定.6、(2022年陕西省,9,3分)在ABCD中,AB=10,BC=14,E,F分别为边BC,AD上的点,若四边形AECF为正方形,则AE的长为()A.7B.4或10C.5或9D.6或8考点:平行四边形的性质;勾股定理;正方形的性质..专题:分类讨论.分析:设AE的长为某,根据正方形的性质可得BE=14﹣某,根据勾股定理得到关于某的方程,解方程即可得到AE的长.解答:解:如图:设AE的长为某,根据正方形的性质可得BE=14﹣某,222在△ABE中,根据勾股定理可得某+(14﹣某)=10,解得某1=6,某2=8.故AE的长为6或8.故选:D.点评:考查了平行四边形的性质,正方形的性质,勾股定理,关键是根据勾股定理得到关于AE的方程.7.(2022山东莱芜,第9题3分)一个多边形除一个内角外其余内角的和为1510°,则这个多边形对角线的条数是()A.27B.35C.44D.54考点:多边形内角与外角..分析:设出题中所给的两个未知数,利用内角和公式列出相应等式,根据边数为整数求解即可,再进一步代入多边形的对角线计算方法,即可解答.解答:解:设这个内角度数为某,边数为n,∴(n﹣2)某180°﹣某=1510,180n=1870+某,∵n为正整数,∴n=11,∴=44,故选:C.点评:此题考查多边形的内角和计算公式以及多边形的对角线条数的计算方法,属于需要识记的知识.14.(2022湖北,第17题3分)在ABCD中,AD=BD,BE是AD边上的高,∠EBD=20°,则∠A的度数为55°或35°.考点:平行四边形的性质.分析:首先求出∠ADB的度数,再利用三角形内角和定理以及等腰三角形的性质,得出∠A的度数.解答:解:情形一:当E点在线段AD上时,如图所示,∵BE是AD边上的高,∠EBD=20°,∴∠ADB=90°﹣20°=70°,∵AD=BD,∴∠A=∠ABD==55°.情形二:当E点在AD的延长线上时,如图所示,∵BE是AD边上的高,∠EBD=20°,∴∠BDE=70°,∵AD=BD,∴∠A=∠ABD=∠BDE=70°=35°.故答案为:55°或35°.点评:此题主要考查了平行四边形的性质以及等腰三角形的性质等知识,得出∠ADB的度数是解题关键.解答:解:(1)如图①,过A作AE⊥BC,∴四边形AECD为矩形,∴EC=AD=8,BE=BC﹣EC=12﹣8=4,在Rt△ABE中,∠ABE=60°,BE=4,∴AB=2BE=8,AE=则S△BMC=BCAE=24;=4,故答案为:24;(2)如图②,作点C关于直线AD的对称点C′,连接C′N,C′D,C′B交AD于点N′,连接CN′,则BN+NC=BN+NC′≥BC′=BN′+CN′,∴△BNC周长的最小值为△BN′C的周长=BN′+CN′+BC=BC′+BC,∵AD∥BC,AE⊥BC,∠ABC=60°,∴过点A作AE⊥BC,则CE=AD=8,∴BE=4,AE=BEtan60°=4,∴CC′=2CD=2AE=8,∵BC=12,∴BC′==4,∴△BNC周长的最小值为4+12;(3)如图③所示,存在点P,使得co∠BPC的值最小,作BC的中垂线PQ交BC于点Q,交AD于点P,连接BP,CP,作△BPC的外接圆O,圆O与直线PQ交于点N,则PB=PC,圆心O在PN上,∵AD∥BC,∴圆O与AD相切于点P,∵PQ=DC=4>6,∴PQ>BQ,∴∠BPC<90°,圆心O在弦BC的上方,在AD上任取一点P′,连接P′B,P′C,P′B交圆O于点M,连接MC,∴∠BPC=∠BMC≥∠BP′C,∴∠BPC最大,co∠BPC的值最小,连接OB,则∠BON=2∠BPN=∠BPC,∵OB=OP=4﹣OQ,222在Rt△BOQ中,根据勾股定理得:OQ+6=(4﹣OQ),解得:OQ=∴OB=,,=,∴co∠BPC=co∠BOQ=则此时co∠BPC的值为.点评:此题属于四边形综合题,涉及的知识有:勾股定理,矩形的判定与性质,对称的性质,圆的切线的判定与性质,以及锐角三角函数定义,熟练掌握定理及性质是解本题的关键.3、(2022年四川省广元市中考,5,3分)一个多边形的内角和是外角和的2倍,这个多边形的边数为()A.5B.6C.7D.8考点:多边形内角与外角..分析:多边形的外角和是360°,则内角和是2某360=720°.设这个多边形是n边形,内角和是(n﹣2)180°,这样就得到一个关于n的方程组,从而求出边数n的值.解答:解:设这个多边形是n边形,根据题意,得(n﹣2)某180°=2某360,解得:n=6.即这个多边形为六边形.故选:B.点评:本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.4、(2022年四川省广元市中考,18,7分)求证:平行四边形的对角线互相平分(要求:根据题意先画出图形并写出已知、求证,再写出证明过程).考点:平行四边形的性质;全等三角形的判定与性质..专题:证明题.分析:首先根据题意画出图形,再写出命题的已知和求证,最后通过证明三角形全等即可证明命题是正确的.解答:已知:平行四边形ABCD的对角线AC,BD相交于点O,求证:OA=OC,OB=OD证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠1=∠2,在△AOD和△COB中,∴△AOD≌△COB(AAS),∴OA=OC,OB=OD.点评:此题主要考查了平行四边形的性质以及全等三角形的判定和性质,解题的关键是熟记平行四边形的各种性质以及全等三角形的各种判定的各种方法.5、(2022年浙江省义乌市中考,24,14分)在平面直角坐标系中,O为原点,四边形OABC的顶点A在某轴的正半轴上,OA=4,OC=2,点P,点Q分别是边BC,边AB上的点,连结AC,PQ,点B1是点B关于PQ的对称点。
专题22多边形和平行四边形(基础巩固练习)解析版

2021年中考数学专题22 多边形和平行四边形(基础巩固练习,共40个小题)一、选择题(共12小题):1.(2020•广安)如图,在五边形ABCDE中,若去掉一个30°的角后得到一个六边形BCDEMN,则∠1+∠2的度数为()A.210°B.110°C.150°D.100°【答案】A【解析】解:解法一:∵∠A+∠B+∠C+∠D+∠E=(5﹣2)×180°=540°,∠A=30°,∴∠B+∠C+∠D+∠E=510°,∵∠1+∠2+∠B+∠C+∠D+∠E=(6﹣2)×180°=720°,∴∠1+∠2=720°﹣510°=210°,解法二:在△ANM中,∠ANM+∠AMN=180°﹣∠A=180°﹣30°=150°,∴∠1+∠2=360°﹣(∠AMN+∠ANM)=360°﹣150°=210°;故选:A.2.(2020秋•黄石港区校级期中)如图,五边形ABCDE是正五边形,则x为()A.30°B.35°C.36°D.45°【答案】C【解析】解:因为五边形ABCDE是正五边形,所以∠E=∠CDE=180°×(5−2)5=108°,AE=DE,所以∠1=∠3=180°−108°2=36°,所以x=∠CDE﹣∠1﹣∠3=36°.故选:C.3.(2020•无锡)正十边形的每一个外角的度数为()A.36°B.30°C.144°D.150°【答案】A【解析】解:正十边形的每一个外角都相等,因此每一个外角为:360°÷10=36°,故选:A.4.(2020秋•东莞市校级期中)七边形共有几条对角线()A.6 B.7 C.10 D.14【答案】D【解析】解:七边形的对角线的条数是:n(n−3)2=7×(7−3)2=14,故选:D.5.(2020春•长春期末)学校购买一种正多边形形状的瓷砖来铺满教室的地面,所购买的瓷砖形状不可能是()A.等边三角形B.正五边形C.正六边形D.正方形【答案】B【解析】解:A、等边三角形的每个内角是60°,能整除360°,能密铺;B、正五边形的每个内角为:180°﹣360°÷5=108°,不能整除360°,不能密铺;C、正六边形的每个内角是120°,能整除360°,能密铺;D、正方形的每个内角是90°,4个能密铺.故选:B.6.(2020•河池)如图,在▱ABCD中,CE平分∠BCD,交AB于点E,EA=3,EB=5,ED=4.则CE的长是()A.5√2B.6√2C.4√5D.5√5【答案】C【解析】解:∵CE平分∠BCD,∴∠BCE=∠DCE,∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,AB∥CD,∴∠BEC=∠DCE,∴∠BEC=∠BCE,∴BC=BE=5,∴AD=5,∵EA=3,ED=4,在△AED中,32+42=52,即EA2+ED2=AD2,∴∠AED=90°,∴CD=AB=3+5=8,∠EDC=90°,在Rt△EDC中,CE=2+DC2=√42+82=4√5.故选:C.7.(2020•益阳)如图,▱ABCD的对角线AC,BD交于点O,若AC=6,BD=8,则AB的长可能是()A .10B .8C .7D .6【答案】D【解析】解:∵四边形ABCD 是平行四边形,∴OA =12AC =3,OB =12BD =4,在△AOB 中:4﹣3<AB <4+3,即1<AB <7,∴AB 的长可能为6.故选:D .8.(2020•温州)如图,在△ABC 中,∠A =40°,AB =AC ,点D 在AC 边上,以CB ,CD 为边作▱BCDE ,则∠E 的度数为( )A .40°B .50°C .60°D .70°【答案】D【解析】解:∵在△ABC 中,∠A =40°,AB =AC ,∴∠C =(180°﹣40°)÷2=70°, ∵四边形BCDE 是平行四边形,∴∠E =70°.故选:D .9.(2020•自贡)如图,在平行四边形ABCD 中,AD =2,AB =√6,∠B 是锐角,AE ⊥BC 于点E ,F 是AB 的中点,连结DF 、EF .若∠EFD =90°,则AE 长为( )A.2 B.√C.3√22D.3√32【答案】B【解析】解:如图,延长EF交DA的延长线于Q,连接DE,设BE=x,∵四边形ABCD是平行四边形,∴DQ∥BC,∴∠Q=∠BEF,∵AF=FB,∠AFQ=∠BFE,∴△QFA≌△EFB(AAS),∴AQ=BE=x,QF=EF,∵∠EFD=90°,∴DF⊥QE,∴DQ=DE=x+2,∵AE⊥BC,BC∥AD,∴AE⊥AD,∴∠AEB=∠EAD=90°,∵AE2=DE2﹣AD2=AB2﹣BE2,∴(x+2)2﹣4=6﹣x2,整理得:2x2+4x﹣6=0,解得x=1或﹣3(舍弃),∴BE=1,∴AE=√AB2−BE2=√6−1=√5,故选:B.10.(2019•遂宁)如图,▱ABCD中,对角线AC、BD相交于点O,OE⊥BD交AD于点E,连接BE,若▱ABCD的周长为28,则△ABE的周长为()A.28 B.24 C.21 D.14【答案】D【解析】解:∵四边形ABCD是平行四边形,∴OB=OD,AB=CD,AD=BC,∵平行四边形的周长为28,∴AB+AD=14∵OE⊥BD,∴OE是线段BD的中垂线,∴BE=ED,∴△ABE的周长=AB+BE+AE=AB+AD=14,故选:D.11.(2020秋•苏州期末)如图,四边形ABCD中,以对角线AC为斜边作Rt△ACE,连接BE、DE,BE⊥DE,AC,BD互相平分.若2AB=BC=4,则BD的值为()A.2√5B.√5C.3 D.4【答案】A【解析】解:连接OE,如图所示:∵2AB=BC=4,∴AB=2,∵AC,BD互相平分,∴OA=OC,OB=OD,四边形ABCD是平行四边形,∵以AC为斜边作Rt△ACE,AC,∴OE=OA=OC=12∵BE⊥DE,∴OE=OB=OD=1BD,2∴AC=BD,∴四边形ABCD是矩形,∴AD=BC=4,∠BAD=90°,∴BD=2+AD2=√22+42=2√5,故选:A.12.(2020•陕西)如图,在▱ABCD中,AB=5,BC=8.E是边BC的中点,F是▱ABCD内一点,且∠BFC=90°.连接AF并延长,交CD于点G.若EF∥AB,则DG的长为()A .52B .32C .3D .2【答案】D 【解析】解:如图,延长BF 交CD 的延长线于H ,∵四边形ABCD 是平行四边形,∴AB =CD =5,AB ∥CD ,∴∠H =∠ABF ,∵EF ∥AB ,∴EF ∥CD ,∵E 是边BC 的中点,∴EF 是△BCH 的中位线,∴BF =FH ,∵∠BFC =90°,∴CF ⊥BF ,∴CF 是BH 的中垂线,∴BC =CH =8,∴DH =CH ﹣CD =3,在△ABF 和△GHF 中,{∠ABF =∠H∠AFB =∠GFH BF =FH,∴△ABF ≌△GFH (AAS ),∴AB =GH =5,∴DG =GH ﹣DH =2,故选:D .二、填空题(共13小题):13.(2020•陕西)如图,P为正五边形ABCDE的边AE上一点,过点P作PQ∥BC,交DE于点Q,则∠EPQ的度数为.【答案】36°【解析】解:连接AD,∵五边形ABCDE是正五边形,∴∠B=∠BAE=∠E=∠EDC=∠C=108°,AE=DE,∴∠EAD=∠EDA=36°,∴∠BAD=72°,∵∠BAD+∠ABC=180°,∴BC∥AD,∵PQ∥BC,∴AD∥PQ,∴∠EPQ=∠EAD=36°,故答案为:36°.14.(2020•福建)如图所示的六边形花环是用六个全等的直角三角形拼成的,则∠ABC=度.【答案】30=120°,【解析】解:正六边形的每个内角的度数为:(6−2)×180°6所以∠ABC=120°﹣90°=30°,故答案为:30.15.(2020•陕西)如图,在正五边形ABCDE中,DM是边CD的延长线,连接BD,则∠BDM的度数是.【答案】144°【解析】解:因为五边形ABCDE是正五边形,=108°,BC=DC,所以∠C=(5−2)×180°5=36°,所以∠BDC=180°−108°2所以∠BDM=180°﹣36°=144°,故答案为:144°.16.(2020•包头)如图,在▱ABCD中,AB=2,∠ABC的平分线与∠BCD的平分线交于点E,若点E恰好在边AD上,则BE2+CE2的值为.【答案】16【解析】解:∵BE 、CE 分别平分∠ABC 和∠BCD∴∠EBC =12∠ABC ,∠ECB =12∠BCD ,∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB =CD =2,BC =AD ,∴∠ABC+∠BCD =180°,∴∠EBC+∠ECB =90°,∴∠BEC =90°,∴BE 2+CE 2=BC 2 ,∵AD ∥BC ,∴∠EBC =∠AEB ,∵BE 平分∠ABC ,∴∠EBC =∠ABE ,∴∠AEB =∠ABE ,∴AB =AE =2,同理可证 DE =DC =2,∴DE+AE =AD =4,∴BE 2+CE 2=BC 2=AD 2=16.故答案为:16.17.(2020•武汉)在探索数学名题“尺规三等分角”的过程中,有下面的问题:如图,AC是▱ABCD的对角线,点E在AC上,AD=AE=BE,∠D=102°,则∠BAC的大小是.【答案】26°【解析】解:∵四边形ABCD是平行四边形,∴∠ABC=∠D=102°,AD=BC,∵AD=AE=BE,∴BC=AE=BE,∴∠EAB=∠EBA,∠BEC=∠ECB,∵∠BEC=∠EAB+∠EBA=2∠EAB,∴∠ACB=2∠CAB,∴∠CAB+∠ACB=3∠CAB=180°﹣∠ABC=180°﹣102°,∴∠BAC=26°,故答案为:26°.18.(2020•天津)如图,▱ABCD的顶点C在等边△BEF的边BF上,点E在AB的延长线上,G为DE的中点,连接CG.若AD=3,AB=CF=2,则CG的长为.【答案】32【解析】解:∵四边形ABCD 是平行四边形,∴AD =BC ,CD =AB ,DC ∥AB ,∵AD =3,AB =CF =2,∴CD =2,BC =3,∴BF =BC+CF =5,∵△BEF 是等边三角形,G 为DE 的中点,∴BF =BE =5,DG =EG ,延长CG 交BE 于点H ,∵DC ∥AB ,∴∠CDG =∠HEG ,在△DCG 和△EHG 中,{∠CDG =∠HEGDG =EG ∠DGC =∠EGH,∴△DCG ≌△EHG (ASA ),∴DC =EH ,CG =HG ,∵CD =2,BE =5,∴HE =2,BH =3,∵∠CBH =60°,BC =BH =3,∴△CBH 是等边三角形,∴CH =BC =3,∴CG =12CH =32,故答案为:32.19.(2020•甘孜州)如图,在▱ABCD 中,过点C 作CE ⊥AB ,垂足为E ,若∠EAD =40°,则∠BCE 的度数为 .【答案】50°【解析】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠B =∠EAD =40°,∵CE ⊥AB ,∴∠BCE =90°﹣∠B =50°;故答案为:50°.20.(2020•德阳)如图,在平行四边形ABCD 中,BE 平分∠ABC ,CF ⊥BE ,连接AE ,G 是AB 的中点,连接GF ,若AE =4,则GF = .【答案】2【解析】解:在平行四边形ABCD中,AB∥CD,∴∠ABE=∠BEC.∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠CBE=∠BEC,∴CB=CE.∵CF⊥BE,∴BF=EF.∵G是AB的中点,∴GF是△ABE的中位线,AE,∴GF=12∵AE=4,∴GF=2.故答案为2.21.(2020•鞍山)如图,在平行四边形ABCD中,点E是CD的中点,AE,BC的延长线交于点F.若△ECF的面积为1,则四边形ABCE的面积为.【答案】3【解析】解:∵在▱ABCD中,AB∥CD,点E是CD中点,∴EC是△ABF的中位线;∵∠B=∠DCF,∠F=∠F(公共角),∴△ABF∽△ECF,∵ECAB =EFAF=CFBF=12,∴S△ABF :S△CEF=4:1;又∵△ECF的面积为1,∴S△ABF=4,∴S四边形ABCE =S△ABF﹣S△CEF=3.故答案为:3.22.(2020•沈阳)如图,在平行四边形ABCD中,点M为边AD上一点,AM=2MD,点E,点F分别是BM,CM中点,若EF=6,则AM的长为.【答案】8【解析】解:∵点E,点F分别是BM,CM中点,∴EF是△BCM的中位线,∵EF=6,∴BC=2EF=12,∵四边形ABCD是平行四边形,∴AD=BC=12,∵AM=2MD,∴AM=8,故答案为:8.23.(2020•凉山州)如图,▱ABCD的对角线AC、BD相交于点O,OE∥AB交AD于点E,若OA=1,△AOE的周长等于5,则▱ABCD的周长等于.【答案】16【解析】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,OB=OD,∵OE∥AB,∴OE是△ABD的中位线,∴AB=2OE,AD=2AE,∵△AOE的周长等于5,∴OA+AE+OE=5,∴AE+OE=5﹣OA=5﹣1=4,∴AB+AD=2AE+2OE=8,∴▱ABCD的周长=2×(AB+AD)=2×8=16;故答案为:16.24.(2020•株洲)如图所示,点D、E分别是△ABC的边AB、AC的中点,连接BE,过点C作CF∥BE,交DE的延长线于点F,若EF=3,则DE的长为.【答案】32【解析】解:∵D、E分别是△ABC的边AB、AC的中点,∴DE为△ABC的中位线,∴DE∥BC,DE=12BC,∵CF∥BE,∴四边形BCFE为平行四边形,∴BC=EF=3,∴DE=12BC=32.故答案为:32.25.(2020•黔东南州)以▱ABCD对角线的交点O为原点,平行于BC边的直线为x轴,建立如图所示的平面直角坐标系.若A点坐标为(﹣2,1),则C点坐标为.【答案】(2,﹣1)【解析】解:方法一:∵▱ABCD对角线的交点O为原点,A点坐标为(﹣2,1),∴点C的坐标为(2,﹣1),故答案为:(2,﹣1).方法二:∵四边形ABCD为平行四边形,∴点A和C关于对角线的交点O对称,又∵O为原点,∴点A和C关于原点对称,∵点A(﹣2,1),∴点C的坐标为(2,﹣1),故答案为:(2,﹣1).三、解答题(共15小题):26.(2020•济南)如图,在▱ABCD中,对角线AC,BD相交于点O,过点O的直线分别交AD,BC于点E,F.求证:AE=CF.【答案】见解析。
(沪科版)中考数学总复习课件【第21讲】多边形与平行四边形

AB=CD,∠ABE=∠CDF,BE=DF,
∴△ABE≌△CDF(SAS), ∴AE=CF.
第21讲┃多边形与平行四边形
A.AE=CF B.BE=FD C.BF=DE D.∠1=∠2
图 21 -8
第21讲┃多边形与平行四边形
11. [2014·徐州 ] 已知:如图 21-9,在 在 AC 上,且 AE=CF. 求证:四边形 BEDF 是平行四边形.
ABCD 中,点 E ,F
图 21 -9
第21讲┃多边形与平行四边形
7 180 °,则它的边数是________ .
[解析] 设该多边形的边数是n,根据题意,得
180×(n-2)=360×3-180, 解得n=7.
第21讲┃多边形与平行四边形
核心考点二
相关知识
定义
平行四边形的定义和性质
平行 的四边形叫做平行四边形 两组对边分别______ 平行 . (1)平行四边形的对边________ 相等 . (2)平行四边形的对边________ 相等 . (3)平行四边形的对角________ 互相平分 (4)平行四边形的对角线________ . 中心 (5)平行四边形是________ 对称图形,但不一定是轴对称图形.它 两条对角线的交点 的对称中心是________
ABCD 为平行四边形 (不添加任何辅助线). 2.如图 21-10,四边形 ABCD 是平行四边形,点 E ,B,D,F 在 同一直线上,且 BE= DF. 求证: AE=CF.
图21-10 第21讲┃多边形与平行四边形
证明:∵四边形ABCD是平行四边形, ∴AB∥CD,AB=CD, ∴∠ABD=∠CDB, ∴∠ABE=∠CDF. 在△ABE与△CDF中,
图 21-1
中考数学总复习《45多边形与平行四边形》试题训练及解析.doc

第五节多边形与平行四边形基础训练1.(2017苏州中考)如图,在正五边形ABCDE中,连接BE,贝iJZABE的度数为(B)A.30°B.36°C.54°D.72°“(第1题图)2.(湘西屮考)下列说法错误的是(D)A.对角线互相平分的四边形是平行四边形2两组对边分别相等的四边形是平行四边形C 一组对边平行冃相等的四边形是平行四边形D.一组对边相等,另一组对边平行的四边形是平行四边形3・(2015石家屮四十三屮模拟)如图,在口ABCD屮,延长AB到点E,使BE = AB,连接DE交BC于点F,则下列结论不一定成立的是(D)A. ZE=ZCDF B・ EF=DFC. AD = 2BFD. BE=2CF4.(2017 丽水中考)如图,在口ABCD 中,连接AC, ZABC= ZCAD=45° , AB =2,则BC的长是(C)A.y[2B. 2C. 2^2 D・ 45.(荷泽中考)在口ABCD中,AB = 3, BC=4,当口ABCD的面积最大时,下列结论正确的有(B)①AC = 5;②ZA+ZC=180° ;③AC丄BD;④AC=BD.A.①②③B.①②④C.②③④D.①③④6・(孝感中考)在口ABCD中,AD = 8, AE平分ZBAD交BC于点E” DF平分ZADC 交BC于点F,且EF=2,则AB的长为(D)儿 3 B. 5C 2或3 〃・3或57.平行四边形ABCD与等边AAEF如图放置,如果ZB = 45° ,那么ZBAE 的大小是(A)A.75°B.70°C.65°D.60°8.(北京中考)如图是由射线AB, BC, CD, DE, EA组成的平面图形,则Z1 + Z2+Z3+Z4+Z5= 360°9・(江西中考)如图所示,在oABCD中,ZC = 40° ,过点D作AD的垂线,交AB于点E,交CB的延长线于点F,则ZBEF的度数为§0。
自学初中数学资料 多边形与平行四边形(资料附答案)

自学资料一、多边形【错题精练】例1.一个多边形剪去一个角后(剪痕不过任何一个其它顶点),内角和为1980°,则原多边形的边数为()A. 11B. 12C. 13D. 11或12【解答】解:设新多边形为n边形,(n-2)•180°=1980°,解得n=13,n-1=12.故选:B.【答案】B第1页共29页自学七招之日计划护体神功:每日计划安排好,自学规划效率高非学科培训例2.一个多边形的内角和为1620°,则这个多边形的边数是______,这个多边形共可连______条对角线.【解答】解:设所求正n边形边数为n,则1620°=(n-2)•180°,解得n=11;=44条.11边形的对角线共有11×(11−3)2故答案为:11;44.【答案】1144【举一反三】1.多边形的内角和与外角和多边形的内角和是______;多边形的外角和是______.(1)若一个多边形的内角和是1440°,则这个多边形的边数是______.(2)如图:∠A+∠B+∠C+∠D+∠E+∠F=______.【解答】解:多边形的内角和是(n-2)•180°;多边形的外角和是360°.(1)1440÷180+2=10.故这个多边形的边数是10.(2)如图:∠A+∠B+∠C+∠D+∠E+∠F=(∠A+∠B)+(∠C+∠D)+(∠E+∠F)=∠1+∠2+∠3=360°.故答案为:(n-2)•180°;360°.(1)10;(2)360°.【答案】(n-2)•180°360°第2页共29页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训360°二、平行四边形(包括矩形、菱形、正方形)【知识探索】年份题量分值考点题型201527平行四边形及多边形性质;选择、填空2016122正方形性质;菱形性质简答2017210正方形性质简答2018319矩形的性质,正方形的性质选择,填空,简答2019214矩形的性质,正方形的性质填空,简答【错题精练】例1.如图,已知M是平行四边形ABCD中AB边的三等分点,BD与CM 交于E,则阴影部分面积与平行四边形面积比为______.【答案】7:24例2.如图,在平行四边形ABCD中,E为CD上一点,连结AE,BD,且AE,BD交于点F,S△DEF:S△ABF=4:25,求DE:DC的值为()A. 4:25B. 2:5C. 2:7D. 4:29【解答】解:∵四边形ABCD为平行四边形,∴DE∥AB,∴△DEF∽△BAF,∴S△DEF:S△ABF=(DE第3页共29页自学七招之以背代诵掌:高效记忆有妙招,以背代诵效果好非学科培训)2=4:25,∴DEAB=DECD=25,故选:B.【答案】B例3.如图,在▱ABCD中,DF平分∠ADC交AB于点E,交CB的延长线于点F,AD=5,CD=12,则BF的长为______.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,BC=AD=5,∴∠F=∠ADE,∵∠ADC平分线为DE,∴∠ADE=∠CDF,∴∠F=∠CDF,∴CF=CD=12,∴BF=CF-BC=12-5=7.故答案为:7.【答案】7第4页共29页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训例4.如图,▱ABCD中,AB=4,AD=6,∠ABC=60°,点P是射线AD上的一个动点(与点A不重合),BP与AC相交于点E.设AP=x,当x=______时,△ABP与△EBC相似.【答案】8例5.如图,在平行四边形ABCD中,以对角线AC为直径的圆O分别交BC,CD于点E,F.若AB=13,BC=14,CE=9,则线段EF的长为______.18013例6.如图,E,F分别是▱ABCD的边AD、BC上的点,EF=6,∠DEF=60°,将四边形EFCD沿EF翻折,得到EFC′D′,ED′交BC于点G,则△GEF的周长为()A. 6B. 12C. 18D. 24【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEG=∠EGF,∵将四边形EFCD沿EF翻折,得到EFC′D′,∴∠GEF=∠DEF=60°,∴∠AEG=60°,∴∠EGF=60°,第5页共29页自学七招之以背代诵掌:高效记忆有妙招,以背代诵效果好非学科培训∴△EGF是等边三角形,∵EF=6,∴△GEF的周长=18,故选:C.【答案】C例7.四边形ABCD的对角线AC、BD相交于点O,给出下列4个条件:①AB∥CD;②OB=OD;③AD=BC;④AD∥BC.从中任取两个条件,能推出四边形ABCD是平行四边形的概率是()A. 12B. 13C. 23D. 56【解答】解:有①与②,①与③,①与④,②与③,②与④,③与④六种情况,①与④根据两组对边分别平行的四边形是平行四边形,能推出四边形ABCD为平行四边形;③与④根据一组对边平行且相等的四边形是平行四边形,能推出四边形ABCD为平行四边形;①与②,②与④通过证明全等得到四边形的对角线互相平分,能推出四边形ABCD为平行四边形;所以能推出四边形ABCD为平行四边形的有4组,所以能推出四边形ABCD是平行四边形的概率是46=2 3.故选:C.【答案】C例8.如图,在▱ABCD中,点E是BC边上的动点,已知AB=4,BC=6,∠B=60°,现将△ABE沿AE 折叠,点B′是点B的对应点,设CE长为x.(1)如图1,当点B′恰好落在AD边上时,x=______;(2)如图2,若点B′落在△ADE内(包括边界),则x的取值范围是______【解答】解:(1)点B′恰好落在AD边上时,四边形ABEB′是边长为4的菱形,∴EC=BC-BE=6-4=2.(2)作AH⊥DE于H.第6页共29页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训在Rt△AHB′中,∵∠AB′H=60°,AB′=4,AB′=2,AH=√3HB′=2√3,∴HB′=12在Rt△ADH中,DH=√62−(2√3)2=2√6,∵AD∥BC,∴∠DAE=∠AEB=∠AED,∴DA=DE=6,∴EB′=BE=6-(2√6-2)=8-2√6,∴EC=BC-BE=6-(8-2√6)=2√6-2.∴若点B′落在△ADE内(包括边界),则x的取值范围是2≤x≤2√6-2.故答案为:2,2≤x≤2√6-2.【答案】22≤x≤2√6-2【举一反三】1.如图,点A、B、C、D都在⊙O上,且四边形OABC是平行四边形,则∠D的度数为()A. 45°B. 60°C. 75°D. 不能确定∠AOC,【解答】解:∠D=12∵四边形OABC是平行四边形,∴∠B=∠AOC,∵四边形ABCD是圆内接四边形,∴∠B+∠D=180°,3∠D=180°,∴∠D=60°,故选:B.【答案】B第7页共29页自学七招之以背代诵掌:高效记忆有妙招,以背代诵效果好非学科培训2.如图,▱ABCD中,E是CD的延长线上一点,BE与AD交于点F,CD=2DE.若△DEF的面积为1,则▱ABCD的面积为______.【答案】123.如图在▱ABCD中,AB=6,BC=8,∠C的平分线交AD于E,交BA的延长线于F,则AE+AF的值等于______【解答】解:∵四边形ABCD是平行四边形∴AB∥CD,AD∥BC,AB=CD=6,BC=AD=8∴∠F=∠ECD,∠DEC=∠ECB∵CE平分∠BCD∴∠ECD=∠BCE∴∠F=∠BCE=∠ECD=∠DEC=∠AEF∴DE=DC=6,AE=AF∴AE=AD-DE=2∴AE+AF=4故答案为:4【答案】44.四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC.其中一定能判断这个四边形是平行四边形的条件共有()A. 1组B. 2组C. 3组D. 4组第8页共29页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训【解答】解:①根据平行四边形的判定定理:两组对边分别平行的四边形是平行四边形,可知①能判断这个四边形是平行四边形;②根据平行四边形的判定定理:两组对边分别相等的四边形是平行四边形,可知②能判断这个四边形是平行四边形;③根据平行四边形的判定定理:两条对角线互相平分的四边形是平行四边形,可知③能判断这个四边形是平行四边形;④根据平行四边形的判定定理:一组对边平行,一组对边相等的四边形不一定是平行四边形,可知④错误;故给出下列四组条件中,①②③能判断这个四边形是平行四边形,故选:C.【答案】C5.已知:如图,在四边形ABCD中,AB=DC,AD=BC,点E在BC上,点F在AD上,AF=CE,EF 与对角线BD相交于点O.求证:O是BD的中点.【答案】证明:连接FB、DE,∵AB=DC,AD=BC,∴四边形ABCD是平行四边形.∴FD∥BE.又∵AD=BC,AF=CE,∴FD=BE.∴四边形FBED是平行四边形.∴BO=OD.即O是BD的中点.6.如图,在▱ABCD中,∠ABC,∠BCD的平分线分别交AD于点E,F,BE,CF相交于点G.(1)求证:BE⊥CF;(2)若AB=a,CF=b,写出求BE的长的思路.第9页共29页自学七招之以背代诵掌:高效记忆有妙招,以背代诵效果好非学科培训【答案】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ABC+∠BCD=180°,∵BE,CF分别是∠ABC,∠BCD的平分线,∴∠EBC=12∠ABC,∠FCB=12∠BCD,∴∠EBC+∠FCB=90°,∴∠BGC=90°.即BE⊥CF.(2)求解思路如下:a.如图,作EH∥AB交BC于点H,连接AH交BE于点P.b.由BE平分∠ABC,可证AB=AE,进而可证四边形ABHE是菱形,可知AH,BE互相垂直平分;c.由BE⊥CF,可证AH∥CF,进而可证四边形AHCF是平行四边形,可求AP=b2;d.在Rt△ABP中,由勾股定理可求BP,进而可求BE的长.7.如图,在平行四边形ABCD中,点E为边BC上一点,联结AE并延长交DC的延长线于点M,交BD于点G,过点G作GF∥BC交DC于点F,DFFC =3 2.(1)若BD=20,求BG的长;(2)求CMCD的值.【答案】解:(1)∵GF∥BC,∴DFFC =DG BG,第10页共29页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训∵BD=20,DFFC =32∴BG=8.(2)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴DMAB =DG GB,∴DMAB =3 2,∴DMCD =3 2,∴CMCD =1 2.三、三角形、梯形中位线【知识探索】1.联结三角形两边的中点的线段叫做三角形的中位线.2.三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.【说明】三角形有三条中位线,这三条中位线将原三角形分为4个全等的三角形.【错题精练】例1.如图,在△ABC中,AD是BC边上的中线,E在AC边上,且AE:EC=1:2,BE交AD于P,则AP:PD等于()A. 1:1B. 1:2C. 2:3D. 4:3【解答】解:过点D作DF∥BE,交AC于F,∴AD是BC边上的中线,即BD=CD,∴EF=CF,∵AE:EC=1:2,∴AE=EF=FC,∴AE:EF=1:1,∴AP:PD=AE:EF=1:1.故选:A.【答案】A例2.如图,DE是△ABC的中位线,F是DE的中点,CF的延长线交AB于点G,若△CEF的面积为18cm2,则S△DGF的值为()A. 4cm2B. 5cm2C. 6cm2D. 7cm2【解答】解:作GH⊥BC于H交DE于M,∵DE是△ABC的中位线,∴DE∥BC,DE=12BC,∵F是DE的中点,∴DF=14BC,∵DF∥BC,∴△GDF∽△GBC,∴GMGH=DFBC=14,∴GMMH=13,∵DF=FE,∴S△DGF=13×△CEF的面积=6cm2,故选:C.【答案】C例3.如图,在△ABC中,点D,E分别是边AC,AB的中点.BD与CE交于点O,连接DE.下列结论:①OE•OB=OD•OC;②DEBC =12;③S△DOES△BOC =1 4;④S△DOES△DBE =1 3.其中正确的个数有()A. 4个B. 3个C. 2个D. 1个【解答】解:∵点D,E分别是边AC,AB的中点.∴DE=12BC,DE∥BC∴△DEO∽△BCO∴DEBC =EOCO=DOBO=12∴OE•OB=OD•OC,BO=2DO,CO=2EO 故①②正确∵△DEO∽△BCO∴S△DOES△BOC =(DEBC)2=14故③正确∵BO=2DO ∴BD=3OD∴S△DOES△DBE =1 3故④正确故选:A.【答案】A例4.如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点,若⊙O的半径为10,则GE+FH的最大值为()A. 5B. 10C. 15D. 20【解答】解:如图1,连接OA、OB,,∵∠ACB=30°,∴∠AOB=2∠ACB=60°,∵OA=OB,∴△AOB为等边三角形,∵⊙O的半径为10,∴AB=OA=OB=10,∵点E,F分别是AC、BC的中点,∴EF=12AB=5,要求GE+FH的最大值,即求GE+FH+EF(弦GH)的最大值,∵当弦GH是圆的直径时,它的最大值为:10×2=20,∴GE+FH的最大值为:20-5=15.故选:C.【答案】C例5.如图,在矩形ABCD中,P、R分别是BC和DC上的点,E、F分别是AP和RP的中点,当点P 在BC上从点B向点C移动,而点R不动时,下列结论正确的是()A. 线段EF的长逐渐增长B. 线段EF的长逐渐减小C. 线段EF的长始终不变D. 线段EF的长与点P的位置有关【解答】解:连接AR,∵矩形ABCD固定不变,R在CD的位置不变,∴AD和DR不变,∵由勾股定理得:AR=√AD2+DR2,∴AR的长不变,∵E、F分别为AP、RP的中点,∴EF=1AR,2即线段EF的长始终不变,故选:C.【答案】C例6.如图,半径为5的⊙A中,弦BC、ED所对的圆心角分别是∠BAC,∠EAD,已知DE=6,∠BAC+∠EAD=180°.求点A到弦BC的距离.【答案】解:作AH⊥BC于H,作直径CF,连结BF,如图,∵∠BAC+∠EAD=180°,而∠BAC+∠BAF=180°,∴∠DAE=∠BAF,̂=BF̂,∴DE∴DE=BF=6,∵AH⊥BC,∴CH=BH,∵CA=AF,∴AH为△CBF的中位线,BF=3.∴AH=12∴点A到弦BC的距离为:3.例7.如图,在△ABC中,BD,CE分别是边AC,AB上的中线,BD与CE相交于点O,BO与OD的长度有什么关系?BC边上的中线是否一定过点O?为什么?(提示:分别作BO,CO的中点M,N,连接ED,EM,MN,ND)【答案】解:BO=2OD ,理由如下:分别作BO ,CO 的中点M ,N ,连接ED ,EM ,MN ,ND ,∵点D ,E 分别是边AC ,AB 上的中点,∴DE=12BC ,DE ∥BC ,∵点M ,N 分别是BO ,CO 的中点,∴MN=12BC ,MN ∥BC ,∴DE=MN ,DE ∥MN ,∴四边形EMND 为平行四边形,∴OM=OD ,∵OM=MB ,∴OB=2OD ;BC 边上的中线一定过点O ,理由如下:作BC 边上的中线AG 交BD 于D′,由以上解答过程可知,O′B=2O′D ,∴点O 与点O′重合,∴BC 边上的中线一定过点O .例8.如图所示,在平行四边形ABCD 中,M ,N 分别在AD ,BC 上,AN 和BM 交于点E ,CM 和DN 交于点F ,连结EF .(1)当M ,N 分别为AD ,BC 的中点时,试判断四边形MENF 的形状,并说明理由;(2)试探求:①当AM ,BN 满足什么条件时,一定有EF =∥12AD ?并说明理由; ②当AM ,BN 满足什么条件时,一定有四边形MENF 为平行四边形?并说明理由.【答案】(1)解:四边形MENF 是平行四边形.理由如下:在平行四边形ABCD 中,AD=BC ,∵M ,N 分别为AD ,BC 的中点,∴AM=12AD ,CN=12BC ,∴AM=CN ,又∵AD ∥BC ,∴四边形ANCM 是平行四边形,∴AN ∥CM ,同理可得BM ∥DN ,∴四边形MENF 是平行四边形;(2)解:①当AM=BN 时,一定有EF =∥12AD . 理由如下:∵AM=BN ,∴DM=NC ,在△AEM 和△NEB 中∵{∠MAE =∠ENBAM =BN ∠AME =∠NBE,∴△AEM ≌△NEB (ASA ),∴ME=BE ,同理可得出:DF=NF ,∴EF 是△AND 的中位线,∴EF =∥12AD ;②当AM+BN=AD 时,四边形MENF 为平行四边形.理由如下:在平行四边形ABCD 中,AD=BC ,∵AM+BN=AD ,BN+CN=BC ,∴AM=CN ,又∵AD ∥BC ,∴四边形ANCM 是平行四边形,∴AN ∥CM ,同理可得BM ∥DN ,∴四边形MENF 是平行四边形.【举一反三】1.如图,已知AB 为圆的直径,C 为半圆上一点,D 为半圆的中点,AH ⊥CD ,垂足为H ,HM 平分∠AHC ,HM 交AB 于M .若AC=3,BC=1,则MH 长为( )A. 1B. 1.5C. 0.5D. 0.7【解答】解:延长HM 交AC 于K .∵AB 是直径,∴∠ACB=90°∵AD̂=BD ̂, ∴∠ACD=∠BCD=45°,∵AH ⊥CD ,∴∠AHC=90°,∴∠HAC=∠HCA=45°,∴HA=HC ,∵HM 平分∠AHC ,∴HK⊥AC,AK=KC ∴点M就是圆心,∵AK=KC,AM=MB,∴KM=12BC=12,在RT△ACH中,∵AC=3,AK=KC,∠AHC=90°,∴HK=12AC=32,∴HM=HK-KM=32-12=1.故选:A.【答案】A2.如图,C是以AB为直径的半圆O上一点,连结AC,BC,分别以AC,BC为边向外作正方形ACDE,BCFG.DE,FG,AĈ,BĈ的中点分别是M,N,P,Q.若MP+NQ=14,AC+BC=18,则AB的长为()A. 9√2B. 907C. 13D. 16【解答】解:连接OP,OQ,∵DE,FG,AĈ,BĈ的中点分别是M,N,P,Q,∴OP⊥AC,OQ⊥BC,∴H、I是AC、BD的中点,∴OH+OI=12(AC+BC)=9,∵MH+NI=AC+BC=18,MP+NQ=14,∴PH+QI=18-14=4,∴AB=OP+OQ=OH+OI+PH+QI=9+4=13,故选:C.3.如图,AB、AC是⊙O的弦,OM⊥AB,ON⊥AC,垂足分别为M、N.如果MN=2.5,那么BC=______.【解答】解:∵AB,AC都是⊙O的弦,OM⊥AB,ON⊥AC,∴N、M分别为AC、AB的中点,即MN为△ABC的中位线,∵MN=2.5,∴BC=2MN=5.故答案为5.【答案】54.如图,在△ABC中,D、E分别是AB和AC的中点,F是BC延长线上一点,DF平分CE于点G,CF=1,则BC=______,△ADE与△ABC的周长之比为______,△CFG与△BFD 的面积之比为______.【解答】解:∵D、E分别是AB和AC的中点∴DE∥BC,DE=12BC∴△ADE∽△ABC,△GED≌△GCF∴CF=12BC,∴△ADE与△ABC的周长之比为DE:BC=1:2;∵△ADE与△ABC的面积之比为1:4;∴△ADE与四边形DECB的面积之比为1:3;∵△ADE与△DEG的面积之比为2:1;∴△CFG与△BFD的面积之比为1:6.【答案】21:21:65.如图所示,在三角形ABC中,点D、E分别是边AB、AC的中点,DF过EC的中点G并与BC的延长线交于点F,BE与DE交于点O.若△ADE的面积为2,则四边形BOGC的面积为______.【解答】解:∵点D、E分别是边AB、AC的中点,∴DE∥BC,DE=12BC,∴△ADE∽△ABC,∴S△ADES△ABC (DEBC)2=14,∵△ADE的面积为S,∴S△ABC=4S,∵DE∥BC,∴△ODE∽△OFB,∠EDG=∠F,∠DEG=∠GCF,∴DEBF =OE OB,又EG=CG,∴△DEG≌△FCG(AAS),∴DE=CF,∴BF=3DE,∵DE∥BC,∴△ODE∽△OFB,∴OEOB =DEBF=13,∵AD=BD,∴S△BDE=S△ADE=S,∵AE=CE=2EG,∴S△DEG=12S△ADE=12×2=1,∵OEOB ═1 3,∴S△ODE=14S△BDE=14×2=12,∴S△OEG=S△DEG-S△ODE=14×2=12,∵S四边形DBCE=S△ABC-S△ADE=6,∴S四边形OBCG=S四边形DBCE-S△BDE-S△OEG=6-2-12=7 2,故答案为:72.【答案】726.已知,在四边形ABCD中,AB=CD,E是BC的中点,G是AD的中点,EG交AC于点F,∠ACD=30°,∠CAB=70°,则∠AFG的度数是______.【解答】解:取AC的中点M,连接GM、EM,∵G是AD的中点,E是BC 的中点,∴GM是△ADC的中位线,EM是△ABC的中位线,∴GM=12DC,EM=12AB,GM∥CD,EM∥AB,∵AB=CD,∴GM=EM,∴∠GEM=∠EGM,∵EM∥AB,∴∠EMC=∠BAC=70°,∴∠AME=180°-70°=110°,∵GM∥CD,∴∠AMG=∠ACD=30°,∴∠EMG=110°+30°=140°,∴∠EGM=180°−140°2=20°,∴∠AFG=∠EGM+∠AMG=20°+30°=50°,故答案为50°.【答案】50°7.如图,在△ABC中,E、F、G分别是AB、BC、AC边的中点,连接GE、GF,BD是AC边上的高,连接DE、DF.(1)试判断四边形BFGE是怎样的特殊四边形?证明你的结论;(2)求证:∠EDF=∠EGF.【答案】解:(1)四边形BFGE是平行四边形,∵E、F、G分别是AB、BC、AC边的中点,∴EG、GF是△ABC的中位线,∴EG∥BC、GF∥AB,∴四边形BFGE是平行四边形;(2)∵四边形BFGE是平行四边形,∴∠ABC=∠EGF(6分)∵BD是AC边上的高,∴∠ADB=∠BDC=90°又∵E、F分别是AB、BC边的中点,∴DE=BE=12AB,DF=BF=12BC(直角三角形斜边上的中线等于斜边的一半),∴∠EDB=∠EBD,∠DBF=∠BDF(8分)∴∠EDB+∠BDF=∠EBD+∠DBF,∴∠EDF=∠ABC,∴∠EDF=∠EGF(10分).8.在△ABC中,∠C=90°,D是AC的中点,E是AB的中点,作EF⊥BC于F,延长BC至G,使CG=BF,连接CE、DE、DG.(1)如图1,求证:四边形CEDG是平行四边形;(2)如图2,连接EG交AC于点H,若EG⊥AB,请直接写出图2中所有长度等于√2GH的线段.【答案】(1)证明:如图1中,∵∠ACB=90°,AE=EB,∴EC=EA=EB,∵EF⊥BC,∴CF=FB,∵AD=DC,AE=EB,∴DE∥BC,DE=12BC=BF,∵CG=BF,∴DE=CG,DE∥CG,∴四边形四边形CEDG是平行四边形;(2)解:如图2中,∵四边形四边形CEDG是平行四边形,∴DH=CH,GH=HE,设DH=CH=a,则AD=CD=2a,∵∠A=∠A,∠AEH=∠ADE=90°,∴△ADE∽△AEH,∴AE2=AD•AH=2a•3a=6a2,∴AE=√6a,在Rt△AEH中,HE=√AH2−AE2=√(3a)2−(√6a)2=√3a,∴AE=√2HE,∵GH=HE,AE=EB=CE=GD,∴线段AE、EB、EC、GD都是线段GH的√2倍.1.如图,在▱ABCD中,AE⊥BC于点E,AF⊥CD于点F,若AE=4,AF=6,且▱ABCD的周长为40,则▱ABCD的面积为()A. 24B. 36C. 40D. 48【解答】解:∵▱ABCD的周长=2(BC+CD)=40,∴BC+CD=20①,∵AE⊥BC于E,AF⊥CD于F,AE=4,AF=6,∴S▱ABCD=4BC=6CD,CD②,整理得,BC=32联立①②解得,CD=8,∴▱ABCD的面积=AF•CD=6CD=6×8=48.故选:D.【答案】D2.如图,在▱ABCD中,已知AD=8cm,AB=6cm,DE平分∠ADC交BC边于点E,则BE的长为()A. 2cmB. 3cmC. 6cmD. 8cm【解答】解:根据平行四边形的性质得AD∥BC,∴∠EDA=∠DEC,又∵DE平分∠ADC,∴∠EDC=∠ADE,∴∠EDC=∠DEC,∴CD=CE=AB=6,即BE=BC-EC=8-6=2cm.故选:A.【答案】A3.如图,在△ABC中,D,E分别是AB,AC的中点,AC=10,F是DE上一点,连接AF,CF,DF=1.若∠AFC=90°,则BC的长度为()A. 10B. 12C. 14D. 16【解答】解:如图,∵∠AFC=90°,AE=CE,∴EF=1AC=5,2∴DE=1+5=6;∵D,E分别是AB,AC的中点,∴DE为△ABC的中位线,∴BC=2DE=12,故选:B.【答案】B4.已知,如图,四边形ABCD是菱形,过AB的中点E作EF⊥AC于点M,交AD于点F,求证:AF=DF.【答案】证明:如图,连接BD,∵四边形ABCD是菱形,∴AC⊥BD.又∵EF⊥AC,∴EF∥BD.又∵点E是AB的中点,∴EF是△ABD的中位线,∴点F是AD的中点,∴AF=DF.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多边形与平行四边形作业
一、选择题
1.(2013•资阳)一个正多边形的每个外角都等于36°,那么它是()
A.正六边形B.正八边形C.正十边形D.正十
1.C
2.(2013•湛江)已知一个多边形的内角和是540°,则这个多边形是()
A.四边形B.五边形C.六边形D.七边形
2.B
3.(2013•六盘水)下列图形中,单独选用一种图形不能进行平面镶嵌的是()
A.正三角形B.正六边形C.正方形D.正五边形
3.D
4.(2013•襄阳)如图,平行四边形ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是()
A.18 B.28 C.36 D.46
4.C
5.(2013•湘西州)如图,在▱ABCD中,E是AD边上的中点,连接BE,并延长BE交CD延长线于点F,则△EDF与△BCF的周长之比是()
A.1:2 B.1:3 C.1:4 D.1:5
5.A
6.(2013•云南)如图,平行四边形ABCD的对角线AC、BD相交于点O,下列结论正确的是()A.S▱ABCD=4S△AOB B.AC=BD
C.AC⊥BD D.▱ABCD是轴对称图形
6.A
7.(2013•无锡)如图,平行四边形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,且AE:EB=1:2,F是BC的中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,则DP:DQ等于()
A.3:4 B C D.
7.D
二、填空题
8.(2013•无锡)六边形的外角和等于度.
8.360
9.(2013•遂宁)若一个多边形内角和等于1260°,则该多边形边数是.
9.9
10.(2013•三明)如图,在四边形ABCD中,AB∥CD,请你添加一个条件,使得四边形ABCD成为平行四边形,你添加的条件是.
10.答案不唯一,如:AB=CD或AD∥BC或∠A=∠C或∠B=∠D或∠A+∠B=180°或∠C+∠D=180°等11.(2013•乐山)如图,在四边形ABCD中,∠A=45°.直线l与边AB,AD分别相交于点M,N,则∠1+∠2= .
11.225°
12.(2013•江西)如图,▱ABCD与▱DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为.
12.25°
13.(2013•安徽)如图,P为平行四边形ABCD边AD上一点,E、F分别为PB、PC的中点,△PEF、△PDC、△PAB的面积分别为S、S1、S2,若S=2,则S1+S2= .
15.1
三、解答题
16.(2013•大连)如图,▱ABCD中,点E、F分别在AD、BC上,且AE=CF.求证:BE=DF.
16.证明:∵四边形ABCD 是平行四边形,
∴AD ∥BC ,AD=BC ,
∵AE=CF ,
∴DE=BF ,DE ∥BF ,
∴四边形DEBF 是平行四边形,
∴BE=DF .
17.(2013•郴州)如图,已知BE ∥DF ,∠ADF=∠CBE ,AF=CE ,求证:四边形DEBF 是平行四边形.
17.证明:∵BE ∥DF ,
∴∠BEC=∠DFA ,
在△ADF 和△CBE 中ADF CBE AFD CEB AF CE ∠=∠⎧⎪∠=∠⎨⎪=⎩
,
∴△ADF ≌△CBE (AAS ),
∴BE=DF ,
又∵BE ∥DF ,
∴四边形DEBF 是平行四边形.
18.(2013•广安)如图,在平行四边形ABCD 中,AE ∥CF ,求证:△ABE ≌△CDF .
18.证明:∵四边形ABCD 是平行四边形,
∴AE ∥CF ,AD=BC ,AB=CD ,
∵AE ∥CF ,
∴四边形AECF 是平行四边形,
∴AE=CF ,AF=CF ,
∴BE=DE ,
在△ABE 和△CDF 中,
AB CD BE DF AE CF =⎧⎪=⎨⎪=⎩
,
∴△ABE ≌△CDF (SSS ).
19.(2013•鞍山)如图,E ,F 是四边形ABCD 的对角线AC 上两点,AF=CE ,DF=BE ,DF ∥BE . 求证:
(1)△AFD ≌△CEB ;
(2)四边形ABCD 是平行四边形.
19.证明:(1)∵DF ∥BE ,
∴∠DFE=∠BEF .
又∵AF=CE ,DF=BE ,
∴△AFD ≌△CEB (SAS ).
(2)由(1)知△AFD ≌△CEB ,
∴∠DAC=∠BCA ,AD=BC ,
∴AD ∥BC .
∴四边形ABCD 是平行四边形(一组对边平行且相等的四边形是平行四边形).
20.(2013•台州)如图,在▱ABCD 中,点E ,F 分别在边DC ,AB 上,DE=BF ,把平行四边形沿直线EF 折叠,使得点B ,C 分别落在B′,C′处,线段EC′与线段AF 交于点G ,连接DG ,B′G .
求证:(1)∠1=∠2;
(2)DG=B′G .。