2.1 无理数的认识(第1课时)

合集下载

北师大版八年级上册 2.1 认识无理数 第一课时 教案

北师大版八年级上册 2.1 认识无理数 第一课时 教案

2.1认识无理数〔第一课时〕一、教学目的叙写1.学生通过预习教材21页,并考虑情景引入中的问题1.2.学生通过合作探究局部,初步感知数不够用了,让学生充分感受“新数〞〔无理数〕的存在.3.学生通过交流知识点、易错点和思想方法,培养学生归纳才能和有条理的表达才能.4.学生通过完成“五、当堂评价〞,能正确地进展判断某些数是否为有理数,加深对有理数和无理数的理解.二、教学重难点1.重点:让学生经历无理数的发现过程.2.难点:会判断一个数是否为无理数.三、教学过程〔一〕、情景引入[师]同学们,我们上了好多年的学,学过不计其数的数,概括起来我们都学过哪些数呢?[生]在小学我们学过自然数、小数、分数.[生]在初一我们还学过负数.[师]对,我们在小学学了非负数,在初一发现数不够用了,引入了负数,即把从小学学过的正数、零扩大到有理数范围,有理数包括整数和分数,那么有理数范围是否就能满足我们实际生活的需要呢?下面我们就来共同研究这个问题.1、考虑:⑴一个整数的平方一定是整数吗?⑵一个分数的平方一定是分数吗?2、一个直角三角形的两条直角边长分别为1和2,算一算斜边长x的平方,并提出问题:x是整数〔或分数〕吗?〔二〕、自主探究[师]请大家四个人为一组,拿出自己准备好的两个边长为1的正方形和剪刀,认真讨论之后,动手剪一剪,拼一拼,设法得到一个大的正方形,好吗?[生]好.(学生非常快乐地投入活动中).[师]经过大家的共同努力,每个小组都完成了任务,请同学们把自己拼的图展示一下.同学们非常踊跃地呈现自己的作品给教师.[师]如今我们一齐把大家的做法总结一下:下面再请大家共同考虑一个问题,假设拼成大正方形的边长为a,那么a应满足什么条件呢?[生甲]a是正方形的边长,所以a肯定是正数.[生乙]因为两个小正方形面积之和等于大正方形面积,所以根据正方形面积公式可知a2=2.[生丙]由a2=2可判断a应是1点几.[师]大家说得都有道理,前面我们已经总结了有理数包括整数和分数,那么a是整数吗?a是分数吗?请大家分组讨论后答复.[生甲]我们组的结论是:因为12=1,22=4,32=9,…整数的平方越来越大,所以a 应在1和2之间,故a不可能是整数.[生乙]因为913131,943232,412121=⨯=⨯=⨯,…两个一样因数的乘积都为分数,所以a 不可能是分数.[师]经过大家的讨论可知,在等式a 2=2中,a 既不是整数,也不是分数,所以a 不是有理数,但在现实生活中确实存在像a 这样的数,由此看来,数又不够用了.活动内容:【议一议】→【释一释】→【忆一忆】→【找一找】将两个边长为1的小正方形,剪一剪、拼一拼,设法得到一个大的正方形.设这个大的正方形的边长为a,a 满足什么条件?【议一议】:22a =,请问:①a 可能是整数吗?②a 可能是分数吗? 【释一释】:释1.满足22a =的a 为什么不是整数?释2.满足22a =的a 为什么不是分数?【忆一忆】:让学生回忆“有理数〞概念,既然a 不是整数也不是分数,那么a 一定不是有理数,这说明:有理数不够用了,为“新数〞〔无理数〕的学习奠定了根底【找一找】:在以下正方形网格中,先找出长度为有理数的线段,再找出长度不是有理数的线段〔三〕、合学应用例:在数轴上表示满足()220x x =>的x .解:〔四〕、整理反思1.通过本课学习,感受有理数又不够用了, 请问你有什么收获与体会?2.客观世界中,确实存在不是有理数的数,你能列举几个吗?3.除了本课所认识的非有理数的数以外,你还能找到吗?〔五〕、当堂评价1、如图,答复以下问题:〔1〕以直角三角形的斜边为边的正方形的面积是多少?〔2〕设正方形的边长为b,b 满足什么条件?〔3〕b 是有理数吗?2、如图,等边三角形ABC 的边长为2,高为h,h 可能是整数吗?可能是分数吗? 〔六〕、变练拓展1.请你在方格纸上按照如下要求设计直角三角形:〔1〕使它的三边中有一边边长不是有理数;〔2〕使它的三边中有两边边长不是有理数;〔3〕使它的三边边长都不是有理数.2. 以下图是由16个边长为1的小正方形拼成的,任意连结这些小正方形的假设干个顶点,可得到一些线段,试分别找出两条长度是有理数的线段和三条长度不是有理数的线段.解:如图,AB =2,BE =1,AB 、BE 是有理数.AD 2=AB 2+BD 2=22+32=13,AC 2=1+1=2.AE 2=AB 2+BE 2=22+12=5.AC 、AD 、AE 既不是整数,也不是分数,所以不是有理数.。

2.1认识无理数-八年级上册初二数学(北师大版)

2.1认识无理数-八年级上册初二数学(北师大版)
3.重点难点解析:在讲授过程中,我会特别强调无理数的定义和表示方法这两个重点。对于难点部分,如无限不循环小数和近似计算,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与无理数相关的实际问题,如√2在直角三角形中的应用。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用计算器计算π的近似值,并讨论如何选择合适的近似精度。
d.无理数在实际中的应用,如圆周率π在计算圆的周长和面积中的应用。
e.无理数与图形的关系,如勾股定理中涉及的根号2。
-举例:通过具体数值示例(如√2、π)来解释无理数的概念和表示方法,强调其在数学和科学中的重要性。
2.教学难点
-难点内容:无理数的理解和近似计算。
-难点解析:
a.理解无理数的无限不循环性质,学生可能难以接受无理数无法精确表示的概念。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解无理数的基本概念。无理数是不能表示为两个整数比的数,如√2、π等。它们在数学、科学和工程等领域具有重要地位。
2.案例分析:接下来,我们来看一个具体的案例。以圆周率π为例,讲解其在计算圆的周长和面积中的应用,以及无理数如何帮助我们精确描述自然界中的现象。
1.关注学生的认知水平,从生活实际出发,让学生更好地理解无理数;
2.优化教学方法,注重引导学生深入思考,提高学生的逻辑思维能力;
3.设计更多具有挑战性的练习题,提高学生的实际操作能力;
4.加强课堂互动,关注学生的个体差异,提高教学质量。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)

《认识无理数(第1课时)》教案 (公开课)2022年

《认识无理数(第1课时)》教案 (公开课)2022年

第二章实数1. 认识无理数〔第1课时〕一、学生起点分析通过前一章?勾股定理?的学习,学生已经明白什么是勾股数,但也发现并不是所有的直角三角形的边长都是勾股数,甚至有些直角三角形的边长连有理数都不是,例如:①腰长为1的等腰直角三角形的底边长不是有理数,②两条直角边分别为1,2的直角三角形的斜边长不是有理数,这为引入“新数〞奠定了必要性.二、教学任务分析?认识无理数?是义务教育课程标准北师大版实验教科书新秋版八年级〔上〕第二章?实数?的第一节,原标题为“数怎么又不够用了〞,但在内容设置上除了个别习题的增删,几乎没有其他改动〔习题2.1删掉一题,习题2.2删改一题,新增一题〕.本节内容安排了2个课时完成,第1课时让学生感受无理数的存在,初步建立无理数的印象,结合勾股定理知识,会根据要求画线段;第2课时借助计算器感受无理数是无限不循环小数,会判断一个数是无理数.本课是第1课时,学生将在具体的实例中,通过操作、估算、分析等活动,感受无理数的客观存在性和引入的必要性,并能判断一个数是不是有理数.本节课的教学目标是:①通过拼图活动,让学生感受客观世界中无理数的存在;②能判断三角形的某边长是否为无理数;③学生亲自动手做拼图活动,培养学生的动手能力和探索精神;④能正确地进行判断某些数是否为有理数,加深对有理数和无理数的理解;三、教学过程设计本节课设计了6个教学环节:第一环节:置疑;第二环节:课题引入;第三环节:获取新知;第四环节:应用与稳固;第五环节:课堂小结;第六环节:作业布置.第一环节:质疑内容:【想一想】①一个整数的平方一定是整数吗?②一个分数的平方一定是分数吗?目的:作必要的知识回忆,为第二环节埋下伏笔,便于后续问题的说理.效果:为后续环节的进行起了很好的铺垫的作用第二环节:课题引入内容:1.【算一算】一个直角三角形的两条直角边长分别为1和2,算一算斜边长x的平方,并提出问题:x是整数〔或分数〕吗?2.【剪剪拼拼】把边长为1的两个小正方形通过剪、拼,设法拼成一个大正方形,你会吗?目的:选取客观存在的“无理数“实例,让学生深刻感受“数不够用了〞.效果:巧设问题背景,顺利引入本节课题.第三环节:获取新知内容:【议一议】→【释一释】→【忆一忆】→【找一找】【议一议】:22a=,请问:①a可能是整数吗?②a可能是分数吗?【释一释】:释1.满足22a=的a为什么不是整数?释2.满足22a=的a为什么不是分数?【忆一忆】:让学生回忆“有理数〞概念,既然a不是整数也不是分数,那么a一定不是有理数,这说明:有理数不够用了,为“新数〞〔无理数〕的学习奠定了根底【找一找】:在以下正方形网格中,先找出长度为有理数的线段,再找出长度不是有理数的线段目的:创设从感性到理性的认知过程,让学生充分感受“新数〞〔无理数〕的存在,从而激发学习新知的兴趣效果:学生感受到无理数产生的过程,确定存在一种数与以往学过的数不同,产生了学习新数的必要性.第四环节:应用与稳固内容:【画一画1】→【画一画2】→【仿一仿】→【赛一赛】【画一画1】:在右1的正方形网格中,画出两条线段:1.长度是有理数的线段 2.长度不是有理数的线段【画一画2】:在右2的正方形网格中画出四个三角形 〔右1〕1.三边长都是有理数 2.只有两边长是有理数3.只有一边长是有理数 4.三边长都不是有理数【仿一仿】:例:在数轴上表示满足()220x x =>的x解: 〔右2〕仿:在数轴上表示满足()250x x =>的x【赛一赛】:右3是由五个单位正方形组成的纸片,请你把它剪成三块,然后拼成一个正方形,你会吗?试试看! 〔右3〕目的:进一步感受“新数〞的存在,而且能把“新数〞表示在数轴上效果:加深了对“新知〞的理解,稳固了本课所学知识.第五环节:课堂小结内容:1.通过本课学习,感受有理数又不够用了, 请问你有什么收获与体会?2.客观世界中,确实存在不是有理数的数,你能列举几个吗?3.除了本课所认识的非有理数的数以外,你还能找到吗?目的:引导学生自己小结本节课的知识要点及数学方法,使知识系统化. 效果:学生总结、相互补充,学会进行概括总结.第六环节:布置作业习题2.1四、教学设计反思〔一〕生活是数学的源泉,兴趣是学习的动力大量事实都证明一点,与生活贴得越近的东西最容易引起学习者的浓厚兴趣,才能激发学习者的学习积极性,学习才可能是主动的.本节课中教师首先用拼图游戏引发学生学习的欲望,把课程内容通过学生的生活经验呈现出来,然后进行大胆置疑,生活中的数并不都是有理数,那它们究竟是什么数呢?从而引发了学生的好奇心,为获取新知,创设了积极的气氛.在教学中,不要盲目的抢时间,让学生能够充分的思考与操作.〔二〕化抽象为具体常言道:“数学是锻炼思维的体操〞,数学教师应通过一系列数学活动开启学生的思维,因此对新数的学习不能仅仅停留于感性认识,还应要求学生充分理解,并能用恰当数学语言进行解释.正是基于这个原因,在教学过程中,刻意安排了一些环节,加深对新数的理解,充分感受新数的客观存在,让学生觉得新数并不抽象.〔三〕强化知识间联系,注意纠错既然称之为“新数〞,那它当然不是有理数,亦即不是整数,也不是分数,所以“新数〞不可以用分数来表示,这为进一步学习“新数〞,即第二课时教学埋下了伏笔,在教学中,要着重强调这一点:“新数〞不能表示成分数,为无理数的教学奠好根底.1.8 完全平方公式(一)●教学目标(一)教学知识点1.完全平方公式的推导及其应用.2.完全平方公式的几何背景.(二)能力训练要求1.经历探索完全平方公式的过程,进一步开展符号感和推理能力.2.重视学生对算理的理解,有意识地培养他们有条理的思考和表达能力.(三)情感与价值观要求1.了解数学的历史,激发学习数学兴趣.2.鼓励学生自己探索算法的多样化,有意识地培养学生的创新能力.●教学重点1.完全平方公式的推导过程、结构特点、语言表述、几何解释.2.完全平方公式的应用.●教学难点1.完全平方公式的推导及其几何解释.2.完全平方公式结构特点及其应用.●教学方法自主探索法学生在教师的引导下自主探索完全平方公式的几何解释、代数运算角度的推理,揭示其结构特点,然后到达合理、熟练地应用.●教具准备投影片四张第一张:试验田的改造,记作(§1.8.1 A)第二张:想一想,记作(§1.8.1 B)第三张:例题,记作(§1.8.1 C)第四张:补充练习,记作(§1.8.1 D)●教学过程Ⅰ.创设问题情景,引入新课[师]去年,一位老农在一次“科技下乡〞活动中得到启示,将一块边长为a米的正方形农田改成试验田,种上了优质的杂交水稻,一年来,收益很大.今年,又一次“科技下乡〞活动,使老农铁了心,要走科技兴农的路子,于是他想把原来的试验田,边长增加b米,形成四块试验田,种植不同的新品种.同学们,谁来帮老农实现这个愿望呢?(同学们开始动手在练习本上画图,寻求解决的途径)[生]我能帮这位爷爷.[师]你能把你的结果展示给大家吗?[生]可以.如图1-25所示,这就是我改造后的试验田,可以种植四种不同的新品种.图1-25[师]你能用不同的方式表示试验田的面积吗?[生]改造后的试验田变成了边长为(a+b)的大正方形,因此,试验田的总面积应为(a+b)2.[生]也可以把试验田的总面积看成四局部的面积和即边长为a的正方形面积,边长为b的正方形的面积和两块长和宽分别为a和b的面积的和.所以试验田的总面积也可表示为a2+2ab+b2.[师]很好!同学们用不同的形式表示了这块试验田的总面积,进行比较,你发现了什么?[生]可以发现它们虽形式不同,但都表示同一块试验田的面积,因此它们应该相等.即(a+b)2=a2+2ab+b2[师]我们这节课就来研究上面这个公式——完全平方公式.Ⅱ.讲授新课1.推导完全平方公式[师]我们通过比照试验田的总面积得出了完全平方公式(a+b)2=a2+2ab+b2.其实,据有关资料说明,古埃及、古巴比伦、古印度和古代中国人也是通过类似的图形认识了这个公式.我们姑且把这种方法看作对完全平方公式的一个几何解释.能不能从代表运算的角度也能推导出这样的公式呢?(出示投影片§1.8.1 A)想一想:(1)(a+b)2等于什么?你能用多项式乘法法那么说明理由吗?(2)(a-b)2等于什么?你是怎样想的.(同学们可先在自己的练习本上推导,教师巡视推导的情况,对较困难的学生以启示)[生]用多项式乘法法那么可得(a+b)2=(a+b)(a+b)=a(a+b)+b(a+b)=a2+ab+ab+b2=a2+2ab+b2所以(a+b)2=a2+2ab+b2 (1)[师]上面的几何解释和代数推导各有什么利弊?[生]几何解释完全平方公式给我们以非常直观的认识,但几何解释(a+b)2=a2+2ab+b2,受到了条件限制:a>0且b>0;代数推导完全平方公式虽然不直观,但在推导的过程中,a,b可以是正数,可以是负数,零,也可以是单项式,多项式.[师]同学们分析得很有道理.接下来,我们来完成第(2)问.[生]也可利用多项式乘法法那么,那么(a-b)2=(a-b)(a-b)=a2-ab-ba+b2=a2-2ab+b2.[生]我是这样想的,因(a+b)2=a2+2ab+b2中的a、b可以是任意数或单项式、多项式.我们用“-b〞代替公式中的“b〞,利用上面的公式就可以得到(a-b)2=[a+(-b)]2.[师]这位同学的想法很好.因为他很留心我们表述的每一句话的含义,你能继续沿着这个思路做下去吗?我们一块试一下.[师生共析](a-b)2=[a+(-b)]2=a2+2·a·(-b)+(-b)2↓↓↓↓ ↓ ↓(a +b)2=a2+2·a ·b + b2=a2-2ab+b2.于是,我们得到又一个公式:(a-b)2=a2-2ab+b2(2)[师]你能用语言描述上述公式(1)、(2)吗?[生]公式(1)用语言描述为:两个数的和的平方等于这两个数的平方和与它们积的2倍的和;公式(2)用语言描述为:两个数的差的平方等于这两个数的平方和与它们积的2倍的差.这两个公式为完全平方公式.它们和平方差公式一样可以使整式的运算简便.2.应用、升华出示投影片(§1.8.1 B)[例1]利用完全平方公式计算:(1)(2x-3)2;(2)(4x+5y)2;(3)(mn-a)2.分析:利用完全平方公式计算,第一步先选择公式;第二步,准确代入公式;第三步化简.解:(1)方法一:[例2]利用完全平方公式计算(1)(-x+2y)2;(2)(-x-y)2;(3)(x+y-z)2;(4)(x+y)2-(x-y)2;(5)(2x-3y)2(2x+3y)2.分析:此题需灵活运用完全平方公式,(1)题可转化为(2y-x)2或(x-2y)2,再运用平方差公式;(2)题需转化为(x+y)2,利用和的完全平方公式;(3)题利用加法结合律变形为[(x+y)-z]2(或[x+(y-z)]2、[(x-z)+y]2),再用完全平方公式计算;(4)题可利用完全平方公式,再合并同类项,也可逆用平方差公式进行计算.(5)题可先逆用幂的运算性质变形,再用平方差公式和完全平方公式.解:(1)方法一:(-x+2y)2=(2y-x)2=4y 2-4xy+x 2;方法二:(-x+2y)2=[-(x -2y)]2=(x -2y)2=x 2-4xy+4y 2.(2)(-x -y)2=[-(x+y)]2=(x+y)2=x 2+2xy+y 2.(3)(x+y -z)2=[(x+y)-z ]2=(x+y)2-2(x+y)·z+z 2=x 2+y 2+z 2+2xy -2zx -2yz.(4)方法一:(x+y)2-(x -y)2=(x 2+2xy+y 2)-(x 2-2xy+y 2)=4xy.方法二:(x+y)2-(x -y)2=[(x+y)+(x -y)][(x+y)-(x -y)]=4xy.(5)(2x -3y)2(2x+3y)2=[(2x -3y)(2x+3y)]2=[4x 2-9y 2]2=16x 4-72x 2y 2+81y 4.Ⅲ.随堂练习课本1.计算: (1)(21x -2y)2;(2)(2xy+51x)2; (3)(n+1)2-n 2.解:(1)(21x -2y)2=(21x)2-2·21x·2y+(2y)2=41x 2-2xy+4y 2 (2)(2xy+51x)2=(2xy)2+2·2xy·51x+(51x)2=4x 2y 2+54x 2y+251x 2(3)方法一:(n+1)2-n 2=n 2+2n+1-n 2=2n+1.方法二:(n+1)2-n 2=[(n+1)+n ][(n+1)-n ]=2n+1.Ⅳ.课后作业1.课本习题1.13的第1、2、3题.2.阅读“读一读〞,并答复文章中提出的问题.Ⅴ.活动与探究甲、乙两人合养了n 头牛,而每头牛的卖价恰为n 元.全部卖完后两人分钱方法如下:先由甲拿10元,再由乙拿10元,如此轮流,拿到最后剩下缺乏十元,轮到乙拿去,为了平均分配,甲应该补给乙多少元钱?[过程]因牛n头,每头卖n元,故共卖得n2元.令a表示n的十位以前的数字,b表示n的个位数字.即n=10a+b,于是n2=(10a+b)2=100a2+20ab+b2=10×2a(5a+b)+b2.因甲先取10元,而乙最后一次取钱时缺乏10元,所以n2中含有奇数个10元,以及最后剩下缺乏10元.但10×2a(5a+b)中含有偶数个10元,因此b2中必含有奇数个10元,且b<10,所以b2只可能是1、4、9、16、25、36、49、64、81,而这九个数中,只有16和36含有奇数个10,因此b2只可能是16或36,但这两个数的个位数都是6,这就是说,乙最后所拿的是6元(即剩下缺乏10元).[结果]甲比乙多拿了4元,为了平均分配甲必须补给乙2元.●板书设计1.8. 完全平方公式(一)一、几何背景试验田的总面积有两种表示形式:①a2+2ab+b2②(a+b)2比照得:(a+b)2=a2+2ab+b2二、代数推导(a+b)2=(a+b)(a+b)=a2+2ab+b2(a-b)2=[a+(-b)]2=a2-2ab+b2三、例题讲例例1.利用完全平方公式计算:(1)(2x-3)2(2)(4x+5y)2(3)(mn-a)2四、随堂练习(略)●备课资料一、杨辉杨辉,中国南宋时期杰出的数学家和数学教育家.在13世纪中叶活动于苏杭一带,其著作甚多.他著名的数学书共五种二十一卷.著有?详解九章算法?十二卷(1261年)、?日用算法?二卷(1262年)、?乘除通变本末?三卷(1274年)、?田亩比类乘除算法?二卷(1275年)、?续古摘奇算法?二卷(1275年).杨辉的数学研究与教育工作的重点是在计算技术方面,他对筹算乘除捷算法进行总结和开展,有的还编成了歌诀,如九归口诀。

2.1认识无理数(1)

2.1认识无理数(1)

§2.1认识无理数(1)主备:原李晓 审批: 班级: 学习小组: 姓名: 【学习目标】通过拼图活动,感受无理数产生的实际背景和引入的必要性。

【学习重难点】重难点:通过拼图活动,感受客观世界中无理数的存在,进而判断某些数是否为有理数。

【自主预习】 一、旧知回顾:1、有理数的分类:有理数2、有限小数和无限循环小数也是 .二、应知应会:1、满足22a =的数a 是整数吗?是分数吗?是有理数吗?2、有六个数:0.1427,59,0,-π,0.3∙,-15,3)2.0(-,722,7π是有理数的有____________________________;若其中不是有理数的个数为x ,整数的个数为y ,非正数的个数为z ,那么x y z ++等于________________. 【合作探究】探究活动:现实生活中存在不是有理数的数准备两个边长为1的小正方形,剪一剪,拼一拼,设法得到一个大正方形,将拼得的大正方形贴到下面两个方框里。

设计1: 设计2: (1) 设大正方形的边长为a ,a 满足什么条件? 答: :(2) a 可能是整数吗?说说你的理由.答:(3)a 可能是分数吗?说说你的理由.答:事实上,在等式22a 中,a 既不是整数,也不是分数,所以a (填“是” 或“不是” )有理数.想一想:(1)图1—1中,以直角三角形的斜边为边的正方形的面积是多少?答:(2)设该正方形的边长为b ,b 满足什么条件?答:(3) b 是有理数吗?答: 在上面的两个问题中,数a ,b 确实存在,但都不是 。

例1 如图,正三角形ABC 的边长为2,高为h ,h 可能是整数吗?可能是分数吗?1-1【达标测评】1、下图是16个边长为1的小正方形拼成的,任意连接这些小正方形的若干个顶点,可得到一些线段.试分别找出两条长度是有理数的线段和两条长度不是有理数的线段.2、以下各正方形的边长不是有理数的是()A.面积为49的正方形B. 面积为916的正方形C.面积为8的正方形D. 面积为1.21的正方形【课堂小结】1、本节课学到的数学知识:2、本节课学到的数学方法:家长签字:【课后反思】【今日作业】1.下列各数3.14,π,0,237,3.14∙∙,3.1414414441···中(1)是有理数,不是有理数。

2.1认识无理数-(教案)

2.1认识无理数-(教案)
(3)无理数在实际问题中的应用:将无理数知识应用于实际问题,学生可能感到困惑。
突破方法:设计贴近生活的实际问题,引导学生将无理数知识应用于解题过程,提高应用能力。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《认识无理数》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过无法用整数或分数表示的长度、面积或体积?”(如:一张纸的对角线长度)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索无理数的奥秘。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如测量并计算正方形对角线的长度,演示无理数的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“无理数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
3.重点难点解析:在讲授过程中,我会特别强调无理数的定义和性质、无理数的表示方法这两个重点。对于难点部分,如无理数的无限不循环性质,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与无理数相关的实际问题,如:生活中哪些地方会用到无理数?
二、核心素养目标
本节课的核心素养目标主要包括以下几个方面:一是培养学生数学抽象能力,通过无理数的学习,让学生理解数学概念背后的抽象意义,提升数学思维水平;二是发展学生逻辑推理能力,使学生能够运用所学知识对无理数的性质、运算规律进行推理和证明;三是提高学生数学建模能力,学会将实际问题中的无理数问题转化为数学模型,进行求解;四是增强学生数学运算能力,熟练掌握无理数的四则运算,并能解决实际问题;五是培养学生数学应用意识,将所学无理数知识应用于解决生活实际问题,体会数学在生活中的价值。通过本节课的学习,旨在全面提升学生的数学学科核心素养,为学生的终身发展奠定基础。

【教案】2.1认识无理数-2021-2022学年八年级数学上册同步备课学案教案(北师大版)

【教案】2.1认识无理数-2021-2022学年八年级数学上册同步备课学案教案(北师大版)
(五)总结回顾(用时5分钟)
今天的学习,我们了解了无理数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对无理数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在《认识无理数》这一节课的教学过程中,我发现了一些值得注意的地方。首先,学生在理解无理数概念时,普遍存在一定难度。这可能是因为无理数与有理数的概念有所区别,学生需要时间来消化和吸收这一新知识。在今后的教学中,我需要更加注重概念的讲解,通过生动形象的事例来帮助学生理解。
二、核心素养目标
《认识无理数》一课的核心素养目标主要包括:
1.培养学生的数学抽象能力,使其能够从具体实例中抽象出无理数的概念,理解无理数的内涵及其与有理数的区别。
2.培养学生的逻辑推理能力,通过探讨无理数的性质和运算规律,提高学生运用数学知识进行推理的能力。
3.培养学生的数学建模能力,让学生学会用无理数解决实际问题,建立数学模型,体会数学在生活中的应用。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与无理数相关的实际问题,如如何估算π的值。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如测量三角形边长,计算√3的近似值。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
其次,无理数的运子来说明无理数的乘除运算,但仍有部分学生表示困惑。我考虑在下一节课中,增加一些实际操作环节,让学生亲自动手计算,以便更好地掌握这些运算规律。
此外,实践活动环节,学生们对无理数在实际生活中的应用表现出浓厚兴趣。他们积极参与讨论和实验操作,这让我深感欣慰。但同时,我也注意到部分学生在讨论过程中过于依赖同伴,缺乏独立思考。在今后的教学中,我将鼓励学生独立思考,培养他们解决问题的能力。

1.1_认识无理数(第1课时)教学设计

1.1_认识无理数(第1课时)教学设计

八年级数学2.1 认识无理数主备人:李敏一、教学目标1. 通过拼图活动,让学生感受客观世界中无理数的存在;2.能判断三角形的某边长是否为无理数;3.学生亲自动手做拼图活动,培养学生的动手能力和探索精神;4.能正确地进行判断某些数是否为有理数,加深对有理数和无理数的理解;二、教学重点与难点重点:1、让学生经历无理数的发现过程2、会判断一个数是否为无理数三、教学过程设计本节课设计了5教学环节:第一环节:置疑;第二环节:课题引入;第三环节:获取新知;第四环节:应用与巩固;第五环节:课堂小结;第一环节:质疑⑴一个整数的平方一定是整数吗?⑵一个分数的平方一定是分数吗?第二环节:课题引入1.一个直角三角形的两条直角边长分别为1和2,算一算斜边长x的平方,并提出问题:x是整数(或分数)吗?2.两个边的两个小正方形通过剪、拼,设法拼成一个大正方形,你会吗?目的:选取客观存在的“无理数“实例,让学生深刻感受“数不够用了”.第三环节:获取新知议一议:a可能是整数吗?②a可能是分数吗?让学生回顾“有理数”概念,既然a不是整数也不是分数,那么a一定不是有理数,这表明:有理数不够用了,为“新数”(无理数)的学习奠定了基础做一做下列正方形网格中,先找出长度为有理数的线段,再找出长度不是有理数的线段第四环节:应用与巩固课本P21 随堂练习,P22 习题2.1 练习并讲解第五环节:课堂小结1.通过本课学习,感受有理数又不够用了,请问你有什么收获与体会?2.客观世界中,的确存在不是有理数的数,你能列举几个吗?3.除了本课所认识的非有理数的数以外,你还能找到吗?六、教学设计反思大量事实都证明一点,与生活贴得越近的东西最容易引起学习者的浓厚兴趣,才能激发学习者的学习积极性,学习才可能是主动的.本节课中教师首先用拼图游戏引发学生学习的欲望,把课程内容通过学生的生活经验呈现出来,然后进行大胆置疑,生活中的数并不都是有理数,那它们究竟是什么数呢?从而引发了学生的好奇心,为获取新知,创设了积极的氛围.在教学中,不要盲目的抢时间,让学生能够充分的思考与操作.。

2.1认识无理数(教案)

2.1认识无理数(教案)
.理论介绍:首先,我们要了解无理数的基本概念。无理数是不能表示为两个整数比的数,如π、√2等。无理数在数学和科学领域具有重要地位,它们帮助我们更准确地描述世界。
2.案例分析:接下来,我们来看一个具体的案例。通过分析√2为什么是无理数,了解无理数在实际中的应用,以及它如何帮助我们解决问题。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“无理数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
举例:解释为什么√2是无理数,可以通过反证法来证明,假设√2是有理数,可以表示为两个整数之比,然后通过一系列数学推导,得出矛盾,从而证明√2是无理数。在运算方面,讲解如何计算√2与√3的和、差、积、商,并提供具体例题,让学生通过实际操作掌握运算方法。在联系实际问题时,可以设计测量不规则图形面积等题目,让学生将无理数应用于实际问题求解。
3.重点难点解析:在讲授过程中,我会特别强调无理数的定义和表示这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解如何判断一个数是否为无理数。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与无理数相关的实际问题,如无理数在生活中的应用。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如测量不同图形的边长和面积,演示无理数的基本原理。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档