认识无理数(1)剖析

合集下载

2.1.1 认识无理数

2.1.1 认识无理数

二、探究新知
情景二:
(1)如图,以直角三角形的斜边为边的正方形的面积
是多少?
S=22+12=5
(2)设该正方形的边长为b,b满足什么条件?
(3)b是有理数吗?
b2=5
∵b2=5,4<b2<9 ,∴ 2<b<3, ∴b不是整数; ∵b2=5,∴b不是分数
b既不是整数,也不是分数,那么一定不是有理数
二、探究新知
北师大版八年级上册
第二章
实数
2.1 认识无理数(一)
学习目标
1.通过拼图活动,发现生活中存在既不是 整数也不是分数的数 2.会判断给出的数是否为有理数
一、知识回顾
(1)什么是有理数?
整数和分数统称为有理数
(2)有理数的分类
有理数
整数 分数
有理数
正有理数 0 负有理数
二、探究新知 情景一:如图是两个边长为1的小正方形,通过剪一 剪、拼一拼,设法得到一个大正方形,你会吗?
1 1
1 1
二、探究新知
拼法一:
拼法二:
二、探大正方形的边长为 a , a满足什么条件? a2=2
(2) a可能是整数吗?可能是分数吗?
∵a2=2,1<a2<4 ,∴ 1<a <2,∴a不是整数;
∵a2=2,1/2、2/3等分数的平方仍然是分数
∴a不是分数 a既不是整数,也不是分数,那么一定不是有理数
x不是整数,也不是分数, 不是有理数.
3
x
2
三、典例讲解
3.在下面的正方形网格中,画出一条长度是有理数的 线段和一条长度不是有理数的线段
四、课堂检测
1.已知a2=16.5,则正数a是( D )

北师大版数学八年级上册1《认识无理数》教案5

北师大版数学八年级上册1《认识无理数》教案5

北师大版数学八年级上册1《认识无理数》教案5一. 教材分析《认识无理数》是人教版八年级数学上册的一章,本章主要让学生了解无理数的概念、性质和应用。

无理数是实数的一个重要组成部分,与有理数相比,无理数具有无限不循环的小数特点。

本章内容在数学系统中占有重要地位,为学生深入学习三角函数、复数等数学知识打下基础。

二. 学情分析学生在学习本章内容前,已经掌握了有理数、实数等基础知识,对数的运算和性质有一定的了解。

但学生对无理数的概念、性质和应用可能较为陌生,因此,在教学过程中,需要注重引导学生从已有知识出发,逐步理解和掌握无理数的相关概念。

三. 教学目标1.了解无理数的概念,掌握无理数的性质;2.能够对无理数进行简单的运算和估计;3.理解无理数在实际生活中的应用,提高数学素养。

四. 教学重难点1.无理数的概念及其与有理数的区别;2.无理数的性质,如无限不循环小数、不能表示为分数等;3.无理数在实际生活中的应用。

五. 教学方法1.采用情境教学法,以生活实例引导学生认识无理数;2.采用探究教学法,让学生通过小组合作、讨论,探索无理数的性质;3.采用实践教学法,让学生通过实际操作,体会无理数在生活中的应用。

六. 教学准备1.准备相关的生活实例和图片,用于导入和巩固环节;2.准备无理数的性质和运算练习题,用于操练和家庭作业环节;3.准备PPT或黑板,用于呈现和板书。

七. 教学过程1.导入(5分钟)利用生活实例,如测量物体长度、计算圆的周长等,引导学生认识无理数。

让学生感受无理数在实际生活中的存在,激发学生的学习兴趣。

2.呈现(10分钟)通过PPT或黑板,呈现无理数的概念和性质。

详细解释无理数的定义,阐述无理数与有理数的区别,展示无理数的性质,如无限不循环小数、不能表示为分数等。

3.操练(10分钟)让学生进行无理数的运算练习,如求无理数的和、差、积、商等。

通过实际操作,让学生加深对无理数的理解,巩固所学知识。

4.巩固(10分钟)通过小组合作、讨论,让学生探究无理数的性质。

认识无理数(1)

认识无理数(1)

试分别画出一条长度 是有理数的
线段和一条长度不是有理数的线
段.
B
C
A
G
E
D
F
1. 通过拼图活动,感受有理数又不够用了。 谈谈本节课你有什么收获与体会?有哪些困 难需要别人帮你解决?
2. 感受数不够用了,会确定一个数是有理数或 不是有理数。
3 . 本节课用到基本方法:动手、操作、观察、 思考,猜想验证,推理,归纳等过程,获取数 学知识。
学习目标
1、通过拼图活动引出无理数,并借助计 算其说出无理数的特征,引出无理数的 定义并认识;
2、举出无理数例子,并从一组数据中辨 认无理数。
自主学习
目标:通过自主学习,亲自动手操作, 让学生感受到无理数产生的实际背景;
内容:课本21页 方法:先自主学习,再分组合作交流 时间:10分钟
检测题
作业
课本 22页:问题解决2
面积为3的正方形边长可能是整数 吗?可能是分数吗?可能是有理数吗? 说明理由。
C
b
1
A1
1B
b是有理吗?
a,b不是有理数。
质疑探究之师生合作交流
活动1:面积为2,5的正方形的边长a,b究竟是多少呢?
结论:a,b既不是整数,也不是 分数,则a,b 一定不是有理数.
用16个边长为1的小正方形拼成 了如图的网格,任意连接两个格点, 就得到一条线段,

北师版数学八年级上册1 认识无理数(1课时)教案与反思

北师版数学八年级上册1 认识无理数(1课时)教案与反思

1 认识无理数祸兮福之所倚,福兮祸之所伏。

《老子·五十八章》涵亚学校陈冠宇一、基本目标【知识与技能】1.通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性.2.能判断给出的数是否为有理数,并能说出理由.【过程与方法】1.让学生亲自动手实践,感受无理数存在的必要性和合理性,培养学生的动手能力和合作精神.2.通过回顾有理数的有关知识,能正确地进行推理和判断,识别某些数是否为有理数,训练学生的思维判断能力.【情感态度与价值观】1.激励学生积极参与教学活动,提高大家学习数学的热情.2.引导学生充分进行交流,讨论与探索等教学活动,培养合作与钻研精神.3.了解有关无理数发现的知识,鼓励学生大胆质疑,培养为真理而奋斗的献身精神.二、重难点目标【教学重点】无理数的概念.【教学难点】判断一个数是有理数还是无理数.环节1 自学提纲,生成问题【5 min阅读】阅读教材P21~P23的内容,完成下面练习.【3 min反馈】1.无限不循环小数称为无理数.2.下列实数中,是无理数的是( B )A.13B.πC.0 D.9环节2 合作探究,解决问题活动1 小组讨论(师生对学)【例1】下列各数中,哪些是有理数?哪些是无理数?3.14,-53,,-0.125,-5π,0.35,227,5.313 113 111 3…(相邻两个3之间1的个数逐次加1).【互动探索】(引发学生思考)有理数和无理数的区别是什么?【解答】有理数:3.14,-53,,-0.125,0.35,227;无理数:-5π,5.313 113 111 3…(相邻两个3之间1的个数逐次加1).【互动总结】(学生总结,老师点评)有理数与无理数的主要区别:(1)无理数是无限不循环小数,而有理数可以用有限小数或无限循环小数表示.(2)任何一个有理数都可以化为分数形式,而无理数则不能.活动2 巩固练习(学生独学)1.下列说法正确的是( B )A.有理数只是有限小数.无理数是无限小数C.无限小数是无理数D.π3是分数2.在13,3.141 592 6,0.707 007 000 7…(每两个7之间0的个数逐次加1),0.6,π中,无理数有( B )A.1个B.2个C .3个D .4个3.已知半径为1的圆. (1)它的周长l 是有理数还是无理数?说说你的理由;(2)估计l 的值(结果精确到十分位);(3)如果结果精确到百分位呢?解:(1)它的周长l =2π是无理数,理由如下:2π是无限不循环小数.(2)果精确到十分位,2π≈6.28≈6.3.(3)结果精确到百分位,2π≈6.282≈6.28.活动3 拓展延伸(学生对学)【例2】正数x 满足x 2=17,则x 精确到十分位的值是________.【互动探索】哪个正整数的平方最接近17,下一步该怎么办呢?【解答】已知x 2=17,所以4<x <5,4.12=16.81<17,4.22=17.64>17,所以4.1<x <4.2.又因为4.12=16.9744<17,4.132=17.0569>17,所以4.12<x <4.13.故x 精确到十分位是4.1.互动总结】(学生总结,老师点评)估计x 2=a (a >0)中的正数x 各位上的数字的方法:(1)估计x 的整数部分,看它在哪两个连续整数之间,较小数即为整数部分;(2)确定x 的十分位上的数,同样寻找它在哪两个连续整数之间;(3)按照上述方法可以依次确定x 的百分位、千分位…上的数,从而确定x 值.环节3 课堂小结,当堂达标(学生总结,老师点评)无理数⎩⎨⎧ 定义:无限不循环小数识别请完成本课时对应练习!【素材积累】阿达尔切夫说过:“生活如同一根燃烧的火柴,当你四处巡视以确定自己的位置时,它已经燃完了。

北师大版数学八年级上册2.1认识无理数第1课时优秀教学案例

北师大版数学八年级上册2.1认识无理数第1课时优秀教学案例
在教学过程中,我注重启发式教学,引导学生主动探究、积极思考,培养他们的创新精神。同时,关注学生的个体差异,实施差异化教学,使每个学生都能在课堂上得到有效的锻炼。
二、教学目标
(一)知识与技能
1.让学生理解无理数的概念,知道无理数的特点,能够识别生活中的无理数实例。
2.使学生掌握无理数的性质,了解无理数与有理数的区别,能够运用性质进行简单的论证和判断。
2.教师对学生的学习情况进行评价,关注他们的个体差异,实施差异化教学,使每个学生都能得到有效的锻炼。
3.总结本节课的主要内容,强调无理数的概念、性质和运算方法。
(五)作业小结
1.布置课后作业,让学生运用所学知识解决实际问题,提高他们的实践能力。
2.通过作业的完成情况,了解学生对课堂所学知识的掌握程度,为今后的教学提供参考。
五、案例亮点
(二)讲授新知
1.引导学生提出问题:“无理数有什么特点?”,“无理数与有理数有什么区别?”等,激发他们的思考。
2.组织学生进行小组讨论,鼓励他们发表自己的观点和看法,培养他们的团队合作精神。
3.教师通过讲解,引导学生自主探究无理数的性质,如不能表示为两个整数的比值,不能精确表示等。
4.利用多媒体课件展示无理数的性质,让学生直观地感受无理数的特点。
3.鼓励学生在课后进行深入研究,拓展知识面,提高他们的创新能力。
五、教学反思
本节课通过生活实例引入无理数的概念,引导学生探究无理数的性质和运算方法,注重培养学生的实践能力和创新能力。在教学过程中,关注学生的个体差异,实施差异化教学,使每个学生都能得到有效的锻炼。同时,注重启发式教学,培养学生主动探究、积极思考的能力。但在时间安排上,可以更加合理,确保学生有足够的时间进行小组讨论和作业练习。

八年级数学上册第2章《认识无理数(1)》优质教案(北师大版)

八年级数学上册第2章《认识无理数(1)》优质教案(北师大版)

第二章实数1. 认识无理数(1)一、学情与教材分析1.学情分析通过前一章《勾股定理》的学习,学生已经明白什么是勾股数,但也发现并不是所有的直角三角形的边长都是勾股数,甚至有些直角三角形的边长连有理数都不是,例如:①腰长为1的等腰直角三角形的底边长不是有理数,②两条直角边分别为1,2的直角三角形的斜边长不是有理数,这为引入“新数”奠定了必要性.2.教材分析《认识无理数》是义务教育课程标准北师大版实验教科书新秋版八年级(上)第二章《实数》的第一节,原标题为“数怎么又不够用了”,但在内容设置上除了个别习题的增删,几乎没有其他改动(习题2.1删掉一题,习题2.2删改一题,新增一题).本节内容安排了2个课时完成,第1课时让学生感受无理数的存在,初步建立无理数的印象,结合勾股定理知识,会根据要求画线段;第2课时借助计算器感受无理数是无限不循环小数,会判断一个数是无理数.本课是第1课时,学生将在具体的实例中,通过操作、估算、分析等活动,感受无理数的客观存在性和引入的必要性,并能判断一个数是不是有理数.以及学生亲自动手做拼图活动,培养学生的动手能力和探索精神.二、教学目标1.通过拼图活动,让学生感受客观世界中无理数的存在;2.能判断三角形的某边长是否为无理数;3.能正确地进行判断某些数是否为有理数,加深对有理数和无理数的理解.三、教学重难点教学重点:①让学生经历无理数发现的过程.感知生活中确实存在着不同于有理数的数. ②会判断一个数是否为有理数.教学难点:①把两个边长为1的正方形拼成一个大正方形的动手操作过程.②判断一个数是否为有理数.四、教法建议合作探究法五、教学设计(一)课前设计1.预习任务用两张颜色不同的纸做出如图的两个边长为1分米的小正方形,剪一剪,拼一拼,设法得到一个大的正方形,思考下列问题?1)大正方形的面积为 ________________平方分米.2)设大正方形的边长是a分米,则a满足什么条件?3)想一下,a是整数么?a是分数么?2.预习自测一、选择题1.下列说法正确的是()A.非负数包括零和整数 B.正整数包括自然数和零C.零是最小的整数 D.整数和分数统称为有理数答案:D解析:非负数包括零和正数,A错误;正整数指大于0的整数,B错误;没有最小的整数,C错误;整数和分数统称为有理数,这是概念,D正确.故选D.点拨:根据有理数的分类,利用排除法求解.二、填空题2. 在数+8.5,﹣4,﹣0.8,﹣,0,90,﹣,﹣|﹣24|中,___________________________不是整数.答案:+8.5,﹣0.8,﹣,﹣解析:+8.5,﹣0.8,﹣,﹣不是整数.点拨:根据整数的概念进行判断即可.3. 下列说法正确的有__________.(填序号)①﹣a是负数.②0既不是正数,也不是负数③一个有理数不是整数就是分数.④0是最小的有理数.⑤有理数的绝对值是正数.⑥如果两个数的绝对值相等,则这两个数互为相反数.答案:②③解析:①﹣a可能是负数、零、正数,故①说法错误;②零既不是正数也不是负数,故②说法正确;③有理数包括整数和分数,故③说法正确;④没有最小的有理数,故④说法错误;⑤有理数的绝对值是非负数,故⑤说法错误;⑥两个数的绝对值相等,这两个数相等或互为相反数,故⑥说法错误;故答案为:②③.点拨:根据小于零的数是负数,可判断①;根据零的意义,可判断②;根据有理数的分类,可判断③;根据有理数的意义,可判断④;根据绝对值的意义,可判断⑤;根据相反数的性质,可判断⑥.(二)课堂设计本节课设计了五个教学环节:第一环节:情境引入;第二环节:探究发现;第三环节:知识运用;第四环节:随堂检测;第五环节:课堂小结.第一环节:情境引入问题情景:同学们,我们上了好多年的学,学过不计其数的数,概括起来我们都学过哪些数呢?(在小学我们学过自然数、小数、分数,在初一我们还学过负数.)对,我们在小学学了非负数,在初一发现数不够用了,引入了负数,即把从小学学过的正数、零扩充到有理数范围,有理数包括整数和分数,那么有理数范围是否就能满足我们实际生活的需要呢?下面我们就来共同研究这个问题.意图:通过情景引导学生思考学过哪些数,进而进行下一步的探究.第二环节:探究发现活动1:请大家四个人为一组,拿出自己准备好的两个边长为1的正方形和剪刀,认真讨论之后,动手剪一剪,拼一拼,设法得到一个大的正方形.(学生高兴地投入活动中)经过大家的共同努力,每个小组都完成了任务,请同学们把自己拼的图展示一下. 现在我们一起把大家的做法总结一下:活动2:再请大家共同思考一个问题,假设拼成大正方形的边长为a,则a应满足什么条件呢?[生甲]a是正方形的边长,所以a肯定是正数.[生乙]因为两个小正方形面积之和等于大正方形面积,所以根据正方形面积公式可知22a=.a=可判断a应是1点几.[生丙]由22大家说得都有道理,前面我们已经总结了有理数包括整数和分数,那么a 是整数吗?a是分数吗?请大家分组讨论后回答.=,…整数的平方越来[生甲]我们组的结论是:因为211=,224=,239越大,所以a应在1和2之间,故a不可能是整数.[生乙]因为111224339,,224339224⨯=⨯=⨯=,…两个相同因数的乘积都为分数,所以a不可能是分数.经过大家的讨论可知,在等式22a=中,a既不是整数,也不是分数,所以a不是有理数,但在现实生活中确实存在像a这样的数,由此看来,数又不够用了.做一做:(1)在下图中,以直角三角形的斜边为边的正方形的面积是多少?(2)设该正方形的边长为b,则b应满足什么条件?(3)b是有理数吗?请大家先回忆一下勾股定理的内容.[生]在直角三角形中,若两条直角边长为a,b,斜边为c,则有a2+b2=c2.在这个题中,两条直角边分别为1和2,斜边为b,根据勾股定理得b2=12+22,即b2=5,则b是有理数吗?请举手回答.[生甲]因为22=4,32=9,4<5<9,所以b不可能是整数.[生乙]没有两个相同的分数相乘得5,故b不可能是分数.[生丙]因为没有一个整数或分数的平方为5,所以5不是有理数.大家分析得很准确,像上面讨论的数a,b都不是有理数,而是另一类数---无理数.关于无理数的发现是发现者付出了昂贵的代价的.早在公元前,古希腊数学家毕达哥拉斯认为万物皆“数”,即“宇宙间的一切现象都能归结为整数或整数之比”,也就是一切现象都可用有理数去描述.后来,这个学派中的一个叫希伯索斯的成员发现边长为1的正方形的对角线的长不能用整数或整数之比来表示,这个发现动摇了毕达哥拉斯学派的信条,据说为此希伯索斯被投进了大海,他为真理而献出了宝贵的生命,但真理是不可战胜的,后来古希腊人终于正视了希伯索斯的发现.也就是我们前面谈过的a2=2中的a不是有理数.我们现在所学的知识都是前人给我们总结出来的,我们一方面应积极地学习这些经验,另一方面我们也不能死搬教条,要大胆质疑,如不这样科学就会永远停留在某处而不前进,要向古希腊的希伯索斯学习,学习他为捍卫真理而勇于献身的精神.第三环节:知识运用1.如图,正三角形ABC的边长为2,高为h,h可能是整数吗?可能是分数吗?解:由正三角形的性质可知BD=1,在Rt△ABD中,由勾股定理得h2=3,h 不可能是整数,也不可能是分数.2.下图是由16个边长为1的小正方形拼成的,任意连结这些小正方形的若干个顶点,可得到一些线段,试分别找出两条长度是有理数的线段和三条长度不是有理数的线段.解:如图,AB=2,BE=1,AB、BE是有理数.AD2=AB2+BD2=22+32=13,AC2=1+1=2.AE2=AB2+BE2=22+12=5.AC、AD、AE既不是整数,也不是分数,所以不是有理数.第四环节:随堂检测一、选择题1. 在数下列各数:+3、+(﹣2.1)、﹣、﹣π、0、﹣0.1010010001…、﹣|﹣9|中,负有理数有()个.A.1个 B.2 个 C.3个 D.4个答案:C解析:在+3、+(﹣2.1)、﹣、﹣π、0、﹣0.1010010001…、﹣|﹣9|中,负有理数有+(﹣2.1)、﹣、﹣|﹣9|,只有3个.故选C.点拨:根据有理数的定义,在给定的数中找出负有理数,查出其个数,此题得解.二、填空题2. 在,0,﹣30,,+20,π,﹣2.6这7个数中,整数有________________,负分数有________________.答案:0,﹣30,+20;,﹣2.6.解析:在,0,﹣30,,+20,π,﹣2.6这7个数中,整数有0,﹣30,+20,负分数有,﹣2.6.点拨:有理数分为整数和分数,据此填空.3. 将下列各数填在相应的集合里﹣3.8,﹣10,10π,﹣|﹣|,4,0,﹣(﹣)整数集合:____________________;分数集合:____________________;正数集合:____________________;有理数集合:________________________________.答案:见解析解析:整数集合:﹣10,4,0;分数集合,﹣|﹣|,﹣(﹣);正数集合:10π,4,﹣(﹣);有理数集合:﹣3.8,﹣10,﹣|﹣|,4,0,﹣(﹣); 点拨:可按照有理数的分类填写:有理数; 有理数. 第五环节:课堂小结教师提问:通过这节课的学习,你有什么样的收获?师生共同畅谈收获.师生相互交流总结:1.通过拼图活动,感受有理数又不够用了,经历无理数产生的实际背景和引入的必要性.2.能判断一个数是否为有理数.布置作业:1.课本习题2.1 T22.边长分别为2、3的长方形,它的对角线长可能是整数吗?可能是分数吗?若边长分别为1.5、2呢?解:①设长、宽分别为3、2的长方形的对角线长为a ,得2223213a =+=,a不可能是整数,也不可能是分数;②边长分别为1.5、2时,根据勾股定理可知,对角线长为2.5,是分数,也是有理数.。

北师大版数学八年级上册1《认识无理数》说课稿5

北师大版数学八年级上册1《认识无理数》说课稿5

北师大版数学八年级上册1《认识无理数》说课稿5一. 教材分析《认识无理数》这一节内容是北师大版数学八年级上册的教学重点,旨在让学生了解无理数的概念、性质和应用。

通过本节课的学习,学生能够掌握无理数的定义,了解无理数在实际生活中的应用,以及学会运用无理数解决一些实际问题。

二. 学情分析学生在学习这一节内容之前,已经学习了实数的概念,对有理数有一定的了解。

但是,对于无理数的概念和性质,学生可能较为陌生。

因此,在教学过程中,需要引导学生从已有的知识出发,逐步理解和掌握无理数的相关概念和性质。

三. 说教学目标1.知识与技能目标:让学生掌握无理数的概念,了解无理数的性质,能够运用无理数解决一些实际问题。

2.过程与方法目标:通过观察、分析、归纳等方法,让学生自主探索无理数的性质,培养学生的逻辑思维能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的应用。

四. 说教学重难点1.教学重点:无理数的概念和性质。

2.教学难点:无理数在实际生活中的应用。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作法等,引导学生主动探究无理数的性质。

2.教学手段:利用多媒体课件、实物模型等辅助教学,提高学生的学习兴趣和效果。

六. 说教学过程1.导入新课:通过展示生活中的实例,引发学生对无理数的思考,导入新课。

2.自主探究:让学生通过观察、分析、归纳等方法,自主探索无理数的性质,引导学生发现无理数的定义和特点。

3.合作交流:学生分组讨论,分享各自的学习心得和体会,共同总结无理数的性质。

4.教师讲解:针对学生自主探究和合作交流的结果,教师进行讲解,强调无理数的概念和性质。

5.应用拓展:让学生运用无理数解决一些实际问题,巩固所学知识。

6.课堂小结:教师引导学生总结本节课的学习内容,加深学生对无理数的理解和记忆。

7.布置作业:布置一些有关无理数的练习题,巩固所学知识,提高学生的实际应用能力。

2.1 认识无理数(第1课时)

2.1 认识无理数(第1课时)

探究新知
2.1 认识无理数
归纳总结
有理数包括:整数和分数. 如果一个数既不是整数也不是分数, 那么这个数不是有理数. 在a2=2中,a不是有理数.
探究新知
2.1 认识无理数
素养考点 1 非有理数的识别
例 如图,有一个由五个边长为1的小正方形组成的图形,我
们可以把它剪拼成一个正方形.则拼成的正方形的面积是多
数学 八年级 上册
2.1 认识无理数(第1课时)
导入新知
2.1 认识无理数
已知一个直角三角形的两条直角边长分别为1和2, 算一算斜边长x的平方 ,x是整数(或分数)吗?
x 1
2
素养目标
2.1 认识无理数
2.能判断一个数是否为有理数.
1.通过拼图活动和勾股定理的应用感受无理 数产生的实际背景和引入的必要性.
非有理数的识别
课后作业
作业 内容
2.1 认识无理数
教材作业 从课后习题中选取 自主安排 配套练习册练习
谢谢
方形,则大正方形的面积是___2___,它的边长_不__是__有
理数(填写“是”或“不是”)
课堂检测
2.1 认识无理数
能力提升题
请你在方格纸上按照如下要求设计直角三角形.(所作三 角形的各个顶点均在格点上) (1)使它的一边为有理数,另两边边长不是有理数; (2)使它的三边边长都是有理数.
课堂检测
探究新知
2.1 认识无理数
归纳总结
用生命换来的新数
像上面讨论的数a,b都不是有理数,而是另一类数—无理数.
早在公元前,古希腊数学家毕达哥拉斯认为万物皆“数”,即“宇宙 间的一切现象都能归结为整数或整数之比”.但是这个学派中的一个叫希 伯索斯的成员却发现边长为1的正方形的对角线的长不能用整数或整数之 比来表示,这个发现动摇了毕达哥拉斯学派的信条,据说为此希伯索斯 被投进了大海,他为真理而献出了宝贵的生命,但真理是不可战胜的, 后来古希腊人终于正视了希伯索斯的发现.也就是a2=2中的a不是有理数.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章实数
1.认识无理数(一)
基于对课程标准的设计
一、学生起点分析
八年级学生已经在学习《有理数》的过程中体会到数不够用了,刚刚学完《勾股定理》,再次感受到需要研究新的数了.在此基础上,学生能在“需要—探究—发现—论证”式的课堂中积极参与讨论问题,大胆发表自己的见解和看法,从非常直观的操作中发现问题,实现数的发展.
二、教材任务分析
《数怎么不够用了》是义务教育课程标准北师大版实验教科书八年级(上)第二章《实数》的第一节. 本节内容安排了2个课时完成,第1课时让学生感受数的发展,建立无理数的概念,第2课时借助计算器感受无理数是无限不循环小数,会判断一个数是无理数.这是第1课时,学生将在具体的背景中,通过操作、估算、分析等活动,感受无理数的产生的实际背景和引入的必要性,并能判断一个数是无理数,并能说出理由.
三、教学目标分析
(一)教学目标
知识与技能目标
1.通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性.
2.能判断给出的数是否为无理数,并能说出理由.
过程与方法目标
1.学生亲自动手做拼图活动,感受无理数存在的必要性和合理性,培养学生的动手能力和合作精神.
2.通过回顾有理数的有关知识,能正确地进行推理和判断识别某些数是否为有理数、无理数,训练他们的思维判断力.
3.借助计算器进行估算,培养学生的估算能力,发展学生的抽象概括能力,并在活动中进一步发展学生独立思考、合作交流的意识和能力.
情感与态度目标
1.激励学生积极参与教学活动,提高大家学习数学的热情.
2.引导学生充分进行交流,讨论与探索等教学活动,培养他们的合作精神与钻研精神,借助计算器进行估算.
3.了解有关无理数发现的知识,鼓励学生大胆质疑,培养他们为真理而奋半的献身精神.
(二)教学重点
1.让学生经历无理数发现的过程,感知生活中确实存在着不同于有理数的数.
2.会判断一个数是否为有理数,是否不是有理数.
3.用计算器进行无理数的估算.
(三)教学难点
1.把两个边长为1的正方形拼成一个大正方形的动手操作过程.
2.无理数概念的建立及估算.
3.判断一个数是否为有理数.
四、教学学法
1.教学方法:引导、探究、发现与合作交流相结合.
2.课前准备:多媒体,两个边长为1的正方形,剪刀,短绳.
五、教学过程:
本节课设计六个教学环节;第一环节:章节引入;第二环节:本节引入;第三环节:活动探究;第四环节:献身科学,执着追求;第五环节:课时小结;第六环节:作业布置.
第一环节:章节引入
内容:a.小红是刚升入八年级的新生,一个周末的上午,当工程师的爸爸给小红出了两个数学题:(1)两个数3.252525……与3.252252225……一样吗?它们有什么不同?
(2)一个边长为6cm的正方形木板,按如图的痕迹锯掉四个一样的直角三角
形.请计算剩下的正方形木板的面积是多少?剩下的正方形木板的边长
又是多少厘米呢?
你能帮小红解决这个问题吗?
b .你能求出面积为2的正方形的边长吗?你知道圆周率 的
精确值吗?它们能用整数或分数(即有理数)来表示吗?
意图:通过这些问题,学生将发现,现实生活中存在不同于有理数的数,从而感受到需要学习新的数,激发学生的求知识欲望.
效果:通过对实际问题的了解、解决,感受实际生活中需解决的问题,激发学生的好奇心和求知欲,引出本章课题《第二章实数》.
第二环节:复习引入
内容:a .阅读下面的资料,在数学中,有理数的定义为:形如p q 的数(p 、q 为互质的整数,且p ≠0)叫做有理数,当p =1,q 为任意整数时,有理数p q 就是指所有的整数,如:
12
=-2等,当p ≠1时,由p 、q 互质可知,有理数p q 就是指所有的分数,如711,-71,-235等,综上所述,有理数就是整数和分数的统称.
请用上述材料中所涉及的知识证明下面的问题:
a .直角边长分别为3和1的直角三角形的斜边长是不是有理数?
b.复习前面学过的数,有理数包括整数和分数,有理数范围是否满足实际生活的需要呢? 意图:回顾前面学过的数和范围,为数的扩充和发展做好铺垫,也可由问题a 直接进入本课的学习.
效果:学生通过知识回顾,再次感受数的扩充和发展的必要,为学习本节课在知识上、情感上作好准备.
第三环节:活动探究
(一)发现新数
内容:将课前已准备好的两个边长为1的小正方形剪一剪,拼一拼,设法得到一个大正方形.
在学生活动的基础上,教师利用多媒体展示其中一种剪拼过程,并抛出下面的议一议:
(1)设大正方形的边长为a ,a 应满足什么条件?
(2)满足:a 2
=2的数a 是一个什么样的数?a 可能是整数吗?说明你的理由? (3)a 可能是分数吗?说说你的理由?
引出课题《数怎么又不够用了》
意图:让学生通过分析,探索发现问题,感受数不够用了,感受无理数的产生的现实背景
和必然性,培养学生严密的逻辑性推理能力.
效果:学生拿出课前准备好的两个边长为1的小正方形 ,通过师生互动、生生互动,调
动学生学习的自主意识,在此基础上进行分组讨论,a 2
=2中的a 既不是整数,也不是分数,本环节通过独立思考和小组讨论,培养学生的动手能力、合作能力、推理能力,初步感受a 既不是整数也不是分数.
(二)感受新数的广泛性
内容: 面积为5的正方形,它的边长b 可能是有理数吗?说说你的理由。

意图:进一步感受不是有理数的数,感受新数的广泛性。

同时,也是对内容1 的巩固与发展。

效果:学生感受到无理数产生的过程,确定存在一种数与以往学过的数不同,产生了学习新数的必要性。

(三)巩固验证,应用拓展
内容:a. B,C是一个生活小区的两个路口,BC长为2千米,A处是一个花园,从A 到B,C两路口的距离都是2千米,现要从花园到生活小区修一条最短的路,这条路的
长可能是整数吗?可能是分数吗?说明理由.
b.如图(1)是由16个边长为1的小正方形拼成的,试从连接这些
小正方形的两个顶点所得的线段中,分别找出两条长度是有理数的线
段,两条长度不是有理数的线段.
意图:通过练习,巩固新知,同时也让学生感受到新数的运用。

第四环节:介绍历史,开阔视野
内容:早在公元前,古希腊数学家毕达哥拉斯认为万物皆“数”,即“宇宙间的一切现象都能归结为整数或整数之比”,也就是一切现象都可用有理数去描述.后来,这个学派中的一个叫希伯索斯的成员发现边长为1的正方形的对角线的长不能用整数或整数之比来表示,这个发现动摇了毕达哥拉斯学派的信条,据说,为此希伯斯被投进了大海,他为真理而献出了宝贵的生命,但真理是不可战胜的,后来,古希腊人终于正视了希伯索斯的发现.
意图:进一步丰富无理数的背景,通过史料,培养学生为捍卫真理而勇于献身的精神,鼓励学生敢于对问题质疑、挑战.
效果:开阔了学生的视野,激发了学生的学习兴趣,产生了很好的教育效果。

第五环节:课时小结
内容a.谈谈本节课你有什么收获与体会?有哪些困难需要别人帮你解决?
b.感受数不够用了,会确定一个数是有理数或不是有理数.
c.本节课用到基本方法:动手、操作、观察、思考,猜想验证,推理,归纳等过程,获取数学知识.
意图:引导学生自己小结本节课的知识要点及数学方法,使知识系统化.
效果:学生总结、相互补充,学会进行概括总结.
第六环节:布置作业
习题2.1
六、反思
附:板书设计
基础训练
一.说说谁“有理”,谁“无理”
以下各数:-1,23,3.14,-π,3. 3,0,2,27,2
4,-0.2020020002……(相邻两个2之间0的个数逐次加1)
其中,是有理数的是_____________,是无理数的是_______________.
在上面的有理数中,分数有______________,整数有______________.
二.请你辨别:
如图1是面积分别为1,2,3,4,5,6,7,8,9的正方形
图1
边长是有理数的正方形有________个,边长是无理数的正方形有________个.
三、我国国旗旗面为长方形,长与宽之比为3∶2,国旗通用制作尺寸为长24dm ,宽16dm ,国旗对角线的长可能是整数吗?可能是分数吗?可能是有理数吗?学学老师怎么分析的。

四.请你算一算:
在某项工程中,需要一块面积为3平方米的正方形钢板.应该如何划线、下料呢?要解决这个问题,必须首先求出正方形的边长,那么,请你算一算:
(1)如果精确到十分位,正方形的边长是多少?
(2)如果精确到百分位呢?
参考答案
一.有理数:-1,23,3.14, 3.⋅3,0,2,27,2
4. 无理数:-π,-0.2020020002…… 分数:23,3.⋅3 ,2
7 整数:-1,0,2,2
4
二.边长为有理数的正方形有 3 个,边长为无理数的有 6 个
三、解:a 2=2402+1602=83200
故a 不可能是整数,也不可能是分数,更不可能是有理数.
四.(1)1.7米 (2)1.73米。

相关文档
最新文档