MOS管原理_非常详细

合集下载

场效应管的工作原理

场效应管的工作原理

场效应管的工作原理首先,让我们来了解一下场效应管的基本结构。

场效应管由栅极、漏极和源极三个主要部分组成。

其中,栅极位于介质层上,通过栅极与源极之间的电场来控制漏极和源极之间的电流。

漏极和源极则位于半导体材料中,通过控制栅极电场的变化来调节漏极和源极之间的电流。

这种结构使得场效应管具有了高输入电阻、低噪声、低功耗等优点,适用于各种电路设计需求。

其次,让我们来了解一下场效应管的工作原理。

场效应管的工作原理主要是通过控制栅极电场来改变漏极和源极之间的电流。

当栅极施加了一定的电压时,栅极和源极之间形成了电场,这个电场会影响半导体中的载流子分布,从而改变了漏极和源极之间的电流。

当栅极电压为正时,电场会吸引负载流子,使得漏极和源极之间的电流增大;当栅极电压为负时,电场会排斥负载流子,使得漏极和源极之间的电流减小。

通过调节栅极电压的大小,可以实现对漏极和源极之间电流的精确控制,从而实现信号放大、开关控制等功能。

此外,场效应管还具有许多特性,例如高输入电阻、低噪声、低功耗、频率响应快等。

这些特性使得场效应管在各种电子设备中得到了广泛的应用,包括放大器、开关、振荡器、滤波器等。

同时,场效应管还具有很好的温度稳定性和可靠性,能够在各种环境条件下正常工作。

综上所述,场效应管是一种基于电场调控的半导体器件,具有许多优良的特性,被广泛应用于各种电子设备中。

通过控制栅极电场来改变漏极和源极之间的电流,实现了信号放大、开关控制等功能。

它的特性包括高输入电阻、低噪声、低功耗、频率响应快等,使得它在电子领域中具有重要的地位。

希望本文对场效应管的工作原理有所帮助,让读者对这一领域有更深入的了解。

MOS管工作原理基础

MOS管工作原理基础

详细讲解MOSFET管驱动电路在使用MOS管设计开关电源或者马达驱动电路的时候,大部分人都会考虑MOS的导通电阻,最大电压等,最大电流等,也有很多人仅仅考虑这些因素。

这样的电路也许是可以工作的,但并不是优秀的,作为正式的产品设计也是不允许的。

下面是我对MOSFET及MOSFET驱动电路基础的一点总结,其中参考了一些资料,非全部原创。

包括MOS管的介绍,特性,驱动以及应用电路。

1,MOS管种类和结构MOSFET管是FET的一种(另一种是JFET),可以被制造成增强型或耗尽型,P 沟道或N沟道共4种类型,但实际应用的只有增强型的N沟道MOS管和增强型的P沟道MOS管,所以通常提到NMOS,或者PMOS指的就是这两种。

至于为什么不使用耗尽型的MOS管,不建议刨根问底。

对于这两种增强型MOS管,比较常用的是NMOS。

原因是导通电阻小,且容易制造。

所以开关电源和马达驱动的应用中,一般都用NMOS。

下面的介绍中,也多以NMOS为主。

MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的。

寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免,后边再详细介绍。

在MOS管原理图上可以看到,漏极和源极之间有一个寄生二极管。

这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。

顺便说一句,体二极管只在单个的MOS 管中存在,在集成电路芯片内部通常是没有的。

2,MOS管导通特性导通的意思是作为开关,相当于开关闭合。

NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以了。

PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况(高端驱动)。

但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。

3,MOS开关管损失不管是NMOS还是PMOS,导通后都有导通电阻存在,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。

mos管的导通原理

mos管的导通原理

MOS管(MOSFET)是金属-氧化物-半导体场效应晶体管的缩写。

它是一种电子器件,用于控制电流流动的导通和截断。

MOS管的导通原理基于场效应。

它通过控制栅极电压来调节导电层(沟道)中的电荷浓度,进而控制电流的流动。

MOS管由四个主要部分组成:
1. 源极(Source):电流的进入端。

2. 漏极(Drain):电流的流出端。

3. 栅极(Gate):用于控制沟道中的电流的栅极电压。

4. 沟道(Channel):源极和漏极之间的导电区域。

MOS管的导通过程如下:
1. 堆积:当栅极电压高于阈值电压时,栅极和沟道之间的氧化层下方会形成一层带电的正离子区。

这些正离子吸引了电子,并在沟道中形成一个导通通道。

2. 增强:当正离子沉积在沟道上时,它们与直接从源极流向漏极的电子相互作用,形成导电通道。

在这个过程中,电子从源极通过导通通道到达漏极,形成电流的流动。

3. 控制:通过调节栅极电压,可以控制正离子沉积的数量和导通通道的宽度。

增加栅极电压会增加正离子沉积的数量,导通通道变宽,电流流动增加;减少栅极电压则会减小正离子沉积的数量,导通通道变窄,电流流动减少。

总之,MOS管的导通原理是通过控制栅极电压来调节栅极和沟道之间的电荷分布,从而形成一个导通通道,实现电流的控制和流动。

mos管或电路

mos管或电路

mos管或电路MOS管,即金属氧化物半导体场效应晶体管,是一种常用的半导体器件,常用于集成电路中。

MOS管的工作原理是通过调节栅极电压来控制导通沟道的电阻,从而实现信号的放大、开关和放大等功能。

下面将详细介绍MOS管的结构、工作原理和应用。

MOS管的结构包括源极、漏极和栅极三个部分。

源极和漏极之间通过氧化物绝缘层隔开,栅极则通过栅极氧化层与沟道相隔开。

当在栅极上加上正电压时,栅极下方的沟道会形成导通通道,从而使源极和漏极之间产生导通。

当栅极上的电压变化时,沟道的导电性也会相应变化,实现对电流的调节。

MOS管的工作原理是基于场效应的调控。

栅极上的电压改变了栅极下方的场强,从而改变了沟道的导电性。

当栅极电压为正时,沟道导通,电流从源极流向漏极,此时MOS管处于导通状态。

而当栅极电压为零或负时,沟道的导电性减弱或消失,电流无法通过,MOS管处于截止状态。

通过调节栅极电压,可以实现对电流的精确控制,从而实现放大、开关和放大等功能。

MOS管在集成电路中有着广泛的应用。

作为场效应晶体管的一种,MOS管可以用于数字电路、模拟电路和混合电路中。

在数字电路中,MOS管可用作开关,实现逻辑门的功能;在模拟电路中,MOS管可用作放大器,实现信号的放大和处理;在混合电路中,MOS管既可以用于数字信号处理,又可以用于模拟信号处理,实现电路的多功能集成。

总的来说,MOS管作为一种常用的半导体器件,具有结构简单、工作稳定和应用广泛的特点。

通过对栅极电压的调节,可以实现对电流的精确控制,从而实现各种电路功能的实现。

在未来的发展中,MOS管将继续发挥重要作用,推动集成电路的不断进步。

MOS管工作原理详细讲解

MOS管工作原理详细讲解

MOS管工作原理详细讲解MOS管(Metal–Oxide–Semiconductor Field-Effect Transistor,金属-氧化物-半导体场效应晶体管)是一种重要的电子器件,广泛应用于电子领域中。

它采用了金属-氧化物-半导体结构,具有高度的集成度、低功耗和快速开关速度等优点。

下面将详细讲解MOS管的工作原理。

MOS管的结构一般由P型或N型半导体基底、N型或P型沟道、金属栅极和绝缘层构成。

基底扮演着支撑的作用,而绝缘层则用于隔离栅极和沟道之间,通常是用氧化硅(SiO2)材料制备。

当栅极施加正电压时,栅极和沟道之间会形成一个电场。

根据栅极电压的不同,MOS管可以工作在三种模式下:截止区、线性区和饱和区。

1.截止区:在截止区,栅极电压低于沟道引起的阈值电压。

此时,沟道中的电子和空穴不能形成导电通道。

整个沟道的电阻非常大,电流基本上是不流动的。

MOS管处于截止状态,不导电。

2.线性区:当栅极电压高于阈值电压时,沟道中的电子和空穴被弯曲,形成了一个导电通道。

这个导电通道具有可变电阻,称为沟道电阻。

当在沟道两端施加一个电压时,电流会通过沟道流过。

此时,MOS管处于线性状态,电流与电压成正比。

3.饱和区:当栅极电压继续增加,逐渐超过了一定的阈值电压,并且沟道已经完全形成。

这时,栅极电场已经无法影响到沟道中的电子和空穴。

电流的增长不再与栅极电压相关。

MOS管处于饱和状态,电流基本上保持不变,称为饱和电流。

MOS管的控制是通过栅极电压来实现的。

当栅极电压变化时,会引起沟道的电压和电流的变化。

MOS管的沟道电流与栅极电压的平方成正比。

因此,可以通过改变栅极电压来控制电流的大小。

MOS管的开关速度非常快,因为它的结构中不包含PN接头和载流子的注入。

当栅极电压施加或者移除时,沟道不会存在大量的载流子重新注入或排出的时间延迟。

这种快速的开关速度使得MOS管在高频率应用中表现出色。

另外,MOS管还具有低功率消耗的特点。

mos管体效应

mos管体效应

MOS管体效应介绍MOS管(Metal-Oxide-Semiconductor Field-Effect Transistor)是一种常见的场效应晶体管类型,其中MOS管体效应是其工作原理的关键。

本文将详细探讨MOS 管体效应的相关概念、特性以及在电子器件和集成电路中的应用。

MOS管体效应的概念与原理MOS管体效应是指当在P型或N型半导体材料上覆盖一层绝缘物质(通常为二氧化硅)后,通过加在绝缘层上的电压来改变半导体表面电子浓度的现象。

这种电子浓度的变化导致了MOS管的导电性能发生改变。

MOS管体效应原理基于场效应晶体管结构,其中包含一个控制电极(栅极)和两个输运电极(源极和漏极)。

通过在栅极上施加电压,形成了一个由栅极、绝缘层和半导体基底组成的电容。

当施加的栅极电压大于一定阈值电压,绝缘层下方的半导体表面就会形成一个导电层,称为沟道(Channel)。

沟道中载流子的浓度和电荷极性取决于沟道区半导体的类型(P型或N型)。

MOS管体效应特性阈值电压阈值电压是指当栅极电压达到一定水平时,沟道开始形成的电压值。

在MOS管中,阈值电压通常是一个重要参数,决定了MOS管在导通和截断间的临界电压。

沟道电流与栅极电压关系MOS管的工作状态可以通过沟道中的电流来确定。

通常情况下,随着栅极电压的增加,沟道电流也随之增加。

这个关系可以由MOS管的输出特性曲线表示。

沟道调制与电场控制MOS管体效应是通过施加在栅极上的电场来改变沟道中载流子浓度的。

因此,通过调节栅极电压,可以实现对沟道中载流子浓度的精确控制,从而改变MOS管的电导率。

子阻尼与迁移率子阻尼(Subthreshold Swing)和迁移率(Mobility)是描述MOS管体效应特性的重要参数。

子阻尼是指沟道电流对栅极电压的响应速度,迁移率则是沟道电流与沟道电场之间的关系。

两者的数值越小,代表MOS管体效应越优。

MOS管体效应在电子器件和集成电路中的应用开关MOS管在开关电路中被广泛应用。

mos管的放大作用

mos管的放大作用

mos管的放大作用1. 介绍在电子设备中,MOS管(Metal-Oxide-Semiconductor Field-Effect Transistor)是一种非常重要的元件,具有放大信号、开关和调节电压等功能。

它被广泛应用于集成电路、功率放大器和通信系统等领域。

本文将详细探讨MOS管的放大作用。

2. MOS管的基本原理MOS管是一种由金属-氧化物-半导体三层构成的晶体管。

它基于场效应原理工作,通过改变栅极电压来控制电流。

主要包括NMOS管和PMOS管两种类型。

2.1 NMOS管NMOS管由一个P型衬底、一个N型源极和漏极以及一个金属栅极组成。

当栅极电压高于阈值电压时,形成了一个正向偏压的PN结,导致漏极和源极之间形成一个导电通道。

这样,在漏极和源极间的电流就可以通过调节栅极电压来控制。

2.2 PMOS管PMOS管由一个N型衬底、一个P型源极和漏极以及一个金属栅极组成。

当栅极电压低于阈值电压时,形成了一个反向偏压的PN结,阻止了漏极和源极之间的电流通路。

只有当栅极电压高于阈值电压时,PN结被击穿,漏极和源极间的电流才能通过。

3. MOS管的三个工作区域MOS管的工作可以被分为三个区域:截止区、放大区和饱和区。

根据栅极和源极电压的不同,MOS管处于不同的工作区域,具有不同的放大特性。

3.1 截止区当栅极电压低于阈值电压时,MOS管工作于截止区。

此时,漏极和源极之间的电流非常小,可以忽略不计。

当信号输入到栅极时,由于栅极电压不足以形成导电通道,所以输出信号基本上为0。

3.2 放大区当栅极电压高于阈值电压时,MOS管工作于放大区。

在放大区,MOS管可以放大输入信号。

具体来说,当输入信号引起栅极电压变化时,导致漏极和源极之间的电流发生变化。

MOS管会根据栅极和源极电压之间的关系,将输入信号放大并输出。

3.3 饱和区当栅极电压非常高时,MOS管工作于饱和区。

此时,漏极和源极之间的电流达到饱和值,无法再继续增大。

MOS管工作原理和驱动电路的详细讲解

MOS管工作原理和驱动电路的详细讲解

详细讲解MOSFET管驱动电路在使用MOS管设计开关电源或者马达驱动电路的时候,大部分人都会考虑MOS的导通电阻,最大电压等,最大电流等,也有很多人仅仅考虑这些因素。

这样的电路也许是可以工作的,但并不是优秀的,作为正式的产品设计也是不允许的。

下面是我对MOSFET及MOSFET驱动电路基础的一点总结,其中参考了一些资料,非全部原创。

包括MOS管的介绍,特性,驱动以及应用电路。

1,MOS管种类和结构MOSFET管是FET的一种(另一种是JFET),可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,但实际应用的只有增强型的N沟道MOS管和增强型的P沟道MOS管,所以通常提到NMOS,或者PMOS指的就是这两种。

至于为什么不使用耗尽型的MOS管,不建议刨根问底。

对于这两种增强型MOS管,比较常用的是NMOS。

原因是导通电阻小,且容易制造。

所以开关电源和马达驱动的应用中,一般都用NMOS。

下面的介绍中,也多以NMOS为主。

MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的。

寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免,后边再详细介绍。

在MOS管原理图上可以看到,漏极和源极之间有一个寄生二极管。

这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。

顺便说一句,体二极管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的。

2,MOS管导通特性导通的意思是作为开关,相当于开关闭合。

NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V 就可以了。

PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况(高端驱动)。

但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。

3,MOS开关管损失不管是NMOS还是PMOS,导通后都有导通电阻存在,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电路符号
讨论:“不用Q2隔离,或者是Q2被击穿短路时大电流的原因”
电池电压一般是在12V以下,我们就将其看作12V。19V电 源呢,我们也可以当作一个大电池,那么一个19V的电池和一 个12V的电池如下相连,导线中电流会是多少呢?
7V 0V 19V
?A
7V
12V
19V
12V
经过两次等效,就相当于将一根导线两端接到7V电池的两端。
电路符号
再来一个,试看:
哪个脚是S(源极)?
哪个脚是D(漏极)?
G(栅极)呢? 是P沟道还是N沟道MOS? 依据是什么? 如果接入电路, D极和S极,哪一个该接输 入,哪个接输出? 这次怎么样?
电路符号 1 三个极怎么判定 ?
MOS管符号上的三个脚的辨认要抓住关键地方 。
S极
G极,不用说比较好认。 S极, 不论是P沟道还是N沟道, 两根线相交的就是;
假如MOS管表面磨损,或是无法辨认PIN1的标记圆点,你可以用什么 方法确认PIN1脚,以及G极,D极和S极? 拿出万用表,试试吧!
实 物
再来看看相似的DFN封装MOS管:
外形上来看,DNF封装的MOS管仍旧有8个脚,但已经变成贴片形式, 节约了高度,散热性能更好些。 但其PIN脚极性还是一样排列。
5
简单吗?那我们来做个挑错游戏吧
实物:
1
2 3
三个极怎么分辨
它是N沟道还是P沟道的呢 能量出它是好是坏吗
电路符号
电路符号篇
电路符号
开始之前,一个小测试:
请回答: 哪个脚是S(源极)?
哪个脚是D(漏极)? G(栅极)呢? 是P沟道还是N沟道MOS? 如果接入电路, D极和S极,哪一个该接输 入,哪个接输出? 你答对了吗?
回顾前面的例子,你找到它们的规律了吗? 小提示: MOS管中的寄生二极管方向是关键。
电路符号
小结:“MOS管用作开关时在电路中的连接方法”
NMOS管: PMOS管:
D极接输入; S极接输出。
输出端
S极接输入; D极接输出。
输入端
S极 G极
S极 G极
N沟道
D极
P沟道
D极
输入端
输出端
导通时
导通时
电路符号
电路符号
S极 上面方法不太好记, 一个简单的识别方法是: (想像DS边的三节断续线是连通的) D极 S极 不论N沟道还是P沟道MOS管, 中间衬底箭头方向和寄生二极管的箭 头方向总是一致的:
G极
N沟道
G极
P沟道
要么都由S指向D, 要么都由D指向S。
D极
电路符号 4 它能干吗用呢?
此处电压 被拉低
反证:
NMOS管正确接法:
D极接输入;S极接输出。
假如:
PMOS管正确接法:
S极接输入;D极接输出。
假如反接:
S接输入,D接输出呢?
输入
S极 G极
D接输入,S接输出。
输出
S极
G极
N沟道
D极
P沟道
D极
输出
输入 同样失去了开关作用。
由于寄生二极管直接导通,因此 S极电压可以无条件到D极,MOS 管就失去了开关的作用。
电路符号
小测试: 先判断是什么沟道,再判断三个脚极性。
G极 1 D极 2 3 S极 S极
1
2
D极
3
G极
P沟道MOSFET
N沟道MOSFET
电路符号 3 寄生二极管的方向如何判定?
S极
S极
接下来,是寄生二极管的方向判断: 寄生二极管
G极
N沟道
G极
P沟道
D极 它的判断规则就是:
D极 N沟道,由S极指向D极; P沟道,由D极指向S极。
G(栅极)呢? 是P沟道还是N沟道MOS? 呵呵,这个有点难哦。
给你万用表,怎么测量 MOS管是好是坏呢?
实 物 1 如何分辨三个极?
共有八个脚,显然会有几个脚内部是相连的。 第1步: 请确定MOS管PIN1(第一脚) 方法:芯片上会用一个小圆点标示出PIN1, 它一般会在芯片的左下角。 第2步: 请确定MOS管其他脚
AON6428L,AON6718L,AO4496,AO4712,AO6402A,AO3404,SI3456DDV, MDS1660URH,MDS2662URH,RJK0392DPA,RJK03B9DP。
PMOS管则和NMOS条件刚好相反。
电路符号
示例1: NMOS管: 2N7002E 作用: 信号切换(开关) 常用接法: S极接地,US=0V。 截止条件: UG=US=0V。
电路符号
隔离作用: 如果我们想实现线路上电流的单向流通, 比如只让电流由A-B,阻止由B-A 请问可以怎么做?
A B
方法1:加入一个二级管
A B
电路符号
方法2:加入MOS管
A
B
此处MOS管实现的功能就是:隔离作用。 所以,所谓的MOS管的隔离作用,其实质也就是实现电路 的单向导通,它就相当于一个二级管。 但在电路中我们常用隔离MOS,是因为: 使用二级管,导通时会有压降,会损失一些电压。而使用 MOS管做隔离,在正向导通时,在控制极加合适的电压,可以 让MOS管饱和导通,这样通过电流时几乎不产生压降。
Adapter
19V VIN
隔离
1. 只用适配器时
电路符号
隔离
Q1
BAT
12V VIN
12V Q2 2. 只用电池时
问题:为什么在不用适配器时,还要用Q1隔离12V呢?
我找到的一种解释是: 人们在使用笔记本电脑时,经常会同时插上适配器和电池。如果遇到 电网停电,笔记本会自动切换到电池12V供电。这个时候适配器虽然不再 供电,但仍相连在笔记本上。 如果没有Q1隔离,12V电压会直接进入适配器内部的输出电路,有可能 烧毁适配器。 这一解释自己没有做过验证,大家可以讨论一下对与错。
电路符号
示例1:
19V
PMOS管: AOL1413
作用: 隔离
Adapter
19V
接地
6V 19V 5V
导通
截止 导通
19V
隔离
19V
BAT
大家有兴趣可分析一下:拔掉适配器后只用电池供电时AOL1413的工作情况,试试吧!
电路符号
笔记本主板上的隔离,其实质是将适配器电压(+19V) 和电池电压(+12V左右)分隔开来。不让它们直接相通。 但又能在拔除任意一种电源时,保证电脑都有持续的供电,实 现电源无缝切换。 笔记本电脑中用到的隔离MOS管只有两个。 下面我们来分步讨论一下它的原理,为了方便,隔离MOS 管都用二级管代替表示。 19V
电路符号
导线的电阻极小,如果我们认为 它是0.1欧姆。那么在导线中流过的 电流会是多少:
7V
?A
7 70 电流= 0 .1
稳压电源的最大电流一般是6A左右,所以会出现大电流报警。 而正常的电池充电电压是经过芯片精密控制的,一般只比 电池实际电压高出一点点,以保证电流不会过大造成电池过分 发热。 当Q2隔离管击穿短路后,长时间的超负荷工作,极有可能 损坏适配器。
G极
D极
D极, 不论是P沟道还是N沟道, 是单独引线的那边。
电路符号 2 他们是N沟道还是P沟道?
三个脚的极性判断完后,接下就该判断是P沟道还是N沟道了:
S极
N沟道MOSFET
G极
箭头指向G极的是N沟道
D极
电路符号
S极
P沟道MOSFET
G极 箭头背向G极的是P沟道 D极
当然也可以先判断沟道类型,再判断三个脚极性。
还有Ultra SO-8封装的MOS管:
Ultra SO-8封装的MOS管相对DFN封装厚度 上有点增加,PIN1,2,3直接相连成为S极。
实 物
接下来,看看6个脚的TSOP-6封装MOS管:
SI3456
截止
0V
0V
由+1.5V_SUS产生+1.5V电路(1)
电路符号
MOS开关实现电压通断的例子:
导通
+1.5V
+15V
由+1.5V_SUS产生+1.5V电路(2)
电路符号
看过前面的例子,你能总结出“MOS管用做开关时在电路 中的连接方法”吗?
其实关键就是: 确定哪一个极连接输入端;哪个极连接输出端。 控制极电平为“ ?V ” 时MOS管导通(饱和导通)? 控制极电平为“ ?V ” 时MOS管截止?
电路符号
小结:“MOS管的开关条件” 前面解决了MOS管的接法问题,接下来谈谈MOS管的 开关条件: 控制极电平为“ ?V ” 时MOS管导通(饱和导通)? 控制极电平为“ ?V ” 时MOS管截止?
这个问题涉及到MOS管原理,我们这里不谈,只记结果:
不论N沟道还是P沟道MOS管, G极电压都是与S极做比较。 N沟道: UG>US时导通。 (简单认为)UG=US时截止。 P沟道: UG<US时导通。 (简单认为)UG=US时截止。
电路符号
MOS管作用总结: (结合寄生二极管) 如果MOS管用作开关时,(不论N沟道还是P沟道), 一定是寄生二极管的负极接输入边,正极接输出端或接地。 否则就无法实现开关功能了。 所以,N沟道一定是D极接输入,S极接输出或地。 P沟道则相反,一定是S极接输入,D极接输出。 如果MOS管用作隔离时,(不论N沟道还是P沟道), 寄生二极管的方向一定是和主板要实现的单向导通方向 一致。 笔记本主板上用PMOS做隔离管的最常见,但也有极少 的主板用NMOS来实现。
MOS管的那些事儿
2012.11.15
呵呵,让我们来看看MOS管,分辨一下 他们怎么区别,怎么用吧。 我们在笔记本主板维修中见到的MOS管 几乎都是绝缘栅增强型,这里也就只说说它 的那些事儿吧。 而且,我们不谈原理,只谈应用。
相关文档
最新文档