平行四边形的性质与判定典型例题

合集下载

(完整版)平行四边形的性质判定练习题

(完整版)平行四边形的性质判定练习题

第一部分 平行四边形的性质练习题 例题1、平行四边形得周长为50cm ,两邻边之差为5cm,求各边长。

变题1.平行四边形ABCD 的周长为40cm,两邻边AB 、AC 之比为2:3,则AB=_______,BC=________. 变题2.四边形ABCD 是平行四边形,∠BAC=90°,AB=3,AC=4,求AD 的长。

例题2.平行四边形ABCD 中,∠A-∠B=20°,求平行四边形各内角的度数。

变题3.平行四边形ABCD 中,AE 平分∠DAB, ∠DEA=20°,则∠C=_________,∠B_________. 变题4.如图,在平行四边形ABCD 中,∠BAC=34°, ∠ACB=26°,求∠DAC 与∠D 的度数。

例题3.如图,在平行四边形ABCD 中,CE ⊥AD,CF ⊥BA 交BA 的延长线于F ,∠FBC=30°,CE=3cm,CF=5cm,求平行四边形ABCD 的周长。

变题5.如图,平行四边形ABCD 的周长为50,其中AB=15,∠ABC=60°,求平行四边形面积。

1、如图,四边形ABCD 是平行四边形,AB=6cm,BC=8cm ,∠B=70°,则AD=________,CD=______,∠D=_______,∠A=______,∠C=_______.2、平行四边形ABCD 的周长为40cm,两邻边AB 、AC 之比为2:3,则AB=_______,BC=________.3、平行四边形得周长为50cm ,两邻边之差为5cm,则长边是________ ,短边是__________.4、平行四边形ABCD 中,∠A-∠B=20°, 则∠A=_______ ∠B=________5、.平行四边形ABCD 中,AE 平分∠DAB, ∠DEA=20°,则∠C=____,∠B_____.6、平行四边形 ABCD 中,∠A+∠C=200°.则:∠A= _______,∠B= _________ .7、如图,平行四边形ABCD 的周长为50,其中AB=15,∠ABC=60°,求平行四边形面积。

平行四边形的性质与判定经典例题练习

平行四边形的性质与判定经典例题练习

平行四边形的性质与判定经典例题练习一、平行四边形的性质1. 定义:平行四边形是一种具有两对对边平行的四边形。

定义:平行四边形是一种具有两对对边平行的四边形。

2. 性质1:平行四边形的对边相等。

性质1:平行四边形的对边相等。

3. 性质2:平行四边形的对角线相等。

性质2:平行四边形的对角线相等。

4. 性质3:平行四边形的内角和为180度(即任意两个相邻内角之和为180度)。

性质3:平行四边形的内角和为180度(即任意两个相邻内角之和为180度)。

5. 性质4:平行四边形的两组对边分别互相平行并且相互等长。

性质4:平行四边形的两组对边分别互相平行并且相互等长。

二、平行四边形的判定1. 判定方法1:若一个四边形的对边分别平行且相等,则它是一个平行四边形。

判定方法1:若一个四边形的对边分别平行且相等,则它是一个平行四边形。

2. 判定方法2:若一个四边形的对角线互相相等,则它是一个平行四边形。

判定方法2:若一个四边形的对角线互相相等,则它是一个平行四边形。

三、经典例题练1. 例题1:已知四边形ABCD,AB = BC,且AD与BC互相平行,证明四边形ABCD是平行四边形。

例题1:已知四边形ABCD,AB = BC,且AD与BC互相平行,证明四边形ABCD是平行四边形。

2. 例题2:已知四边形EFGH,EF = GH,且EG与FH互相垂直,证明四边形EFGH是平行四边形。

例题2:已知四边形EFGH,EF = GH,且EG与FH互相垂直,证明四边形EFGH是平行四边形。

3. 例题3:判定以下四边形是否为平行四边形:(a)四边形ABCD,AB = CD,且AD与BC互相垂直;(b)四边形PQRS,PQ = SR,且PS与QR互相平行。

例题3:判定以下四边形是否为平行四边形:(a)四边形ABCD,AB = CD,且AD与BC互相垂直;(b)四边形PQRS,PQ = SR,且PS与QR互相平行。

- (a)根据对边平行和相等的判定方法,若AB = CD且AD与BC互相垂直,则四边形ABCD是平行四边形。

平行四边形的性质与判定练习题

平行四边形的性质与判定练习题

平行四边形的性质与判定练习题平行四边形的性质及判定练习1.如图,o是平行四边形abcd的对角线ac的中点,e是ao的中点,f是oc的中点,连结de并延长交ab于点m,连结bf并延长交cd于点n。

求证:四边形dmbn是平行四边形。

2.例如图,在平行四边形abcd中,未知ae,cf分别就是∠dab,∠bcd的角平分线,先行证明四边形afce就是平行四边形.3.如图,在平行四边形abcd中,e、g、f、h分别是各条边上的一点,且de=bf,ag=ch,求证:ef与gh互相平分。

4.例如图,abcd,ae、cf分别与直线db平行于e和f,且ae//cf,澄清:ce//af。

5.如图,口abcd中,点m、n是对角线ac上的点,且am=cn,de=bf。

求证:四边形mfne是平行四边形。

demncafb6.例如图:ad就是△abc的角平分线,de∥ab,如果bf=ae.试说明:ef=bdfaebdc7.平行四边形abcd中,e,f分别就是cd,ab上的点,若af=ce,那么bd和ef能够互相平分吗?表明理由。

bofa8.例如图,在平行四边形abcd中,ae⊥bc于点e,af⊥cd交dc的延长线于点f,ae=3cm,af=7cm,∠eaf=30°,谋平行四边形abcd各内角的度数和周长。

9.如图,在平行四边形abcd中,ae⊥bc于点e,af⊥cd于f,be=3cm,df=4cm,∠eaf=60°,求平行四边形abcd的各内角的度数及边长。

10.未知:平行四边形abcd中,ab=8,?c=60?,?a的平分线与?b的平分线平行于点e,ef⊥ab,求ef的长。

cedafbecddeafb c。

平行四边形的性质与判定,附练习题含答案

平行四边形的性质与判定,附练习题含答案

平行四边形的性质与判定(讲义)一、知识梳理1.平行四边形的定义:两组对边分别平行的四边形叫做平行四边形.2.平行四边形的性质边:平行四边形的对边相等;角:平行四边形的对角相等;对角线:平行四边形的对角线互相平分.3.平行四边形的判定两组对边分别相等的四边形是平行四边形一组对边平行且相等的四边形是平行四边形对角线:两组对角分别相等的四边形是平行四边形.对角线互相平分的四边形是平行四边形4.夹在平行线之间的平行线段相等.例:已知:如图,在□ABCD中,E,F分别为AD,BC的中点.求证:四边形BFDE是平行四边形.【思路分析】①读题标注:②梳理思路:要证四边形BFDE是平行四边形,根据题目中已有的条件选择判定定理:一组对边平行且相等的四边形是平行四边形.在□ABCD中:AD∥BC,且AD=BC,根据条件E,F分别为AD,BC的中点,得ED=12AD,BF=12BC,从而可以得到ED=BF.又因为AD∥BC,即ED∥BF,所以四边形BFDE是平行四边形.【过程书写】证明:如图,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵E,F分别为AD,BC的中点,∴ED=12AD,BF=12BC,∴ED=BF,∴四边形BFDE是平行四边形.FE DCBAFE DCBA二、练习题1. 已知□ABCD 的周长是100,且AB :BC =4:1,则AB 的长为______________.2. 如图,在□ABCD 中,∠DAB 的平分线AE 交CD 于点E ,若AB =5,BC =3,则EC 的长为( ) A .1B .1.5C .2D .33. 在□ABCD 中,∠A :∠B :∠C :∠D 的值可以是( )A .1:2:3:4B .1:2:2:1C .1:1:2:2D .2:1:2:14. 在□ABCD 中,对角线AC ,BD 相交于点O ,若△ABO 的周长为15,AB =6,则AC +BD =____________.5. 在周长为20cm 的□ABCD 中,AB <AD ,AC ,BD 相交于点O ,OE ⊥BD ,交线段AD 于点E ,连接BE ,则△ABE 的周长为_______.6. 如图,四边形ABCD 是平行四边形,已知AD =12,AB =13,BD ⊥AD ,求BC ,CD ,OB 的长以及□ABCD 的面积.7. 如图,已知四边形ABDE 是平行四边形,延长BD 至点C ,使AC=AB ,连接AD ,CE .(1)求证:△BAD ≌△ACE ;(2)若∠B =30°,∠ADC =45°,BD =10,求□ABDE 的面积.8. 下列说法:①如果一个四边形任意相邻的两个内角都互补,那么这个四边形是平行四边形; ②一组对边平行,另一组对边相等的四边形是平行四边形;③如果AC ,BD 是四边形ABCD 的对角线,且AC 平分BD ,那么四边形ABCD 是平行四边形;BCED AABCD O A BCD E④一组对边平行,一组对角相等的四边形是平行四边形. 其中正确的有( ) A .1个B .2个C .3个D .4个9. 已知四边形ABCD 是平行四边形,下列选项中,按照所给条件得到的四边形EFGH 不一定是平行四边形的是( )A .EF ⊥BC ,GH ⊥ADB .E ,F ,G ,H 分别是□ABCD 各边的中点C .AF ,BH ,CH ,DF 分别是D .EG ,FH 是过□ABCD□ABCD 各内角的角平分线 对角线交点的两条线段10. 如图,AB ∥CD ,AB =CD ,点E ,F 在BC 上,且BE =CF .试证明:以A ,F ,D ,E 为顶点的四边形是平行四边形.11. 上的两点,12. 如图,在□ABCD 中,点E ,F 分别在CD ,AB 的延长线上,且AE =AD ,CF =CB .求证:四边形AFCE 是平行四边形.13. 在□ABCD 中,若∠A :∠B =5:4,则∠C 的度数为( )A .80°B .120°C .100°D .110°H A CD E FGBHA CDE FG BFH A CDEG BHE FGA CDBABCDEF OABC DEF14. 在□ABCD 中,∠A :∠B :∠C :∠D 的值可以是( )A .1:2:3:4B .1:2:2:1C .1:1:2:2D .2:1:2:1 15. 若□ABCD 的周长为40,△ABC 的周长为25,则对角线AC 的长为( )A .5B .15C .6D .1616. 已知平行四边形的一边长为10,则其两条对角线的长可能是( )A .3,8B .20,30C .6,8D .8,1217. 已知四边形ABCD 的对角线相交于点O ,以下条件能判定四边形ABCD 为平行四边形的是( )A .AB ∥CD ,BC =ADB .AB ∥CD ,AO =COC .AB ∥CD ,∠DAC =∠CAB D .AB =CD ,∠B =∠C18. 如图,在平行四边形ABCD 中,EF ∥AD ,HN ∥AB ,则图中的平行四边形共有( )A .12个B .9个C .7个D .5个19. 已知平行四边形的周长为56,两邻边长之比为3:1,则这个平行四边形较长的边长为____________.20. 在□ABCD 中,已知AB ,BC ,CD 三条边的长度分别为3x +,4x -,16,则这个平行四边形的周长为___________.21. 如图,在□ABCD 中,CE ⊥AB 于点E ,CF ⊥AD 于点F .若∠B =60°,则∠ECF =___________.22. 若□ABCD 的周长为22,AC ,BD 相交于点O ,△AOD 的周长比△AOB 的周长小3,则AD =_________,AB =_________.F ED C B A N HFEDC B A参考答案1.402.C3.D4.185.10cm6.BC=12,CD=13,OB52=,□ABCD的面积为607.(1)证明(2)50+8.B9.A10.提示:证明△ABE≌△DCF11.提示:方法①,证明△AED≌△CFB,得到DE=BF,∠AED=∠CFB,则∠DEC=∠BF A,所以DE∥BF,进而可证明四边形EBFD是平行四边形方法②,连接BD,利用对角线互相平分可以证得四边形EBFD是平行四边形12.提示:证明△EAD≌△FCB13.C14.D15.A16.B17.B18.B19.2120.5021.60°22.4,7。

平行四边形的判定与性质

平行四边形的判定与性质

平行四边形的性质与判定一、平行四边形定义及其性质:1、两组对边分别平行的四边形是平行四边形,平行四边形对边平行且相等。

定义的几何语言表述 ∵ AB ∥CD AD ∥BC ∴四边形ABCD 是平行四边形 。

∵四边形ABCD 是平行四边形(或在 ABCD 中) ∴ AB=CD ,AD=BC 。

例题1、如图5,AD ∥BC ,AE ∥CD ,BD 平分∠ABC ,求证AB=CE2、平行四边形除了对边平行且相等外,其对角也相等。

∵四边形ABCD 是平行四边形(或在ABCD 中) ∴ ∠A=∠C ,∠B=∠D 。

例题2、在平行四边形ABCD 中,若∠A :∠B=2:3,求∠C 、∠D 的度数。

3、平行四边形的对角线互相平分。

例题3.已知O 是平行四边形ABCD 的对角线的交点,AC=24cm ,BD=38 cm ,AD= 28cm ,求三角形OBC 的周长。

5.如图,平行四边形ABCD 中,AC 交BD 于O ,AE ⊥BD 于E ,∠EAD=60°,AE=2cm,AC+BD=14cm, 求三角形BOC 的周长。

例题4:已知平行四边形ABCD ,AB=8cm ,BC=10cm,∠B=30°, 求平行四边形平行四边形ABCD 的面积。

对边分别平行 边 对边分别相等 对角线互相平分 平行四边形角 对角相等 邻角互补图(5)DCB AA B C D二、平行四边形的判定 方法一(定义法):两组对边分别平行的四边形的平边形。

几何语言表达定义法:∵AB ∥CD ,AD ∥BC ,∴四边形ABCD 是平行四边形方法二:两组对边分别相等的四边形是平行四边形。

∵AB=CD ,AD=BC ,∴四边形ABCD 是平行四边形 方法三:对角线互相平分的四边形是平行四边形。

∵OA=OC , OB= OD ∴四边形ABCD 是平行四边形 方法四:有一组对边平行且相等的四边形是平行四边形 ∵AB=CD ,AB ∥CD ,∴四边形ABCD 是平行四边形方法五:两组对角分别相等的四边形是平行四边形∵ ∠A =∠C ,∠B=∠D ,∴四边形ABCD 例1:已知:E 、F 分别为平行四边形ABCD 两边AD 、BC 的中点,连结BE 、DF 求证:2∠1∠=三、三角形中位线:三角形两边的中点连线线段(即中位线)与三角形的第三边平行,并且等于第三边的一半。

平行四边形性质和判定(含答案)

平行四边形性质和判定(含答案)

平行四边形性质和判定综合习题精选一.解答题(共26小题)1.(2011•资阳)如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD于F.(1)求证:BE=DF;(2)若M、N分别为边AD、BC上的点,且DM=BN,试判断四边形MENF的形状(不必说明理由).2.(2011•昭通)如图所示,平行四边形AECF的对角线相交于点O,DB经过点O,分别与AE,CF交于B,D.求证:四边形ABCD是平行四边形.3.(2011•徐州)如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.4.(2011•铜仁地区)已知:如图,在△ABC中,∠BAC=90°,DE、DF是△ABC的中位线,连接EF、AD.求证:EF=AD.5.(2011•泸州)如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,并加以证明.6.(2010•恩施州)如图,已知,平行四边形ABCD中,AE=CF,M、N分别是DE、BF的中点.求证:四边形MFNE是平行四边形.8.(2009•来宾)在平行四边形ABCD中,分别以AD、BC为边向内作等边△ADE和等边△BCF,连接BE、D F.求证:四边形BEDF是平行四边形.9.(2006•黄冈)如图所示,DB∥AC,且DB=AC,E是AC的中点,求证:BC=DE.10。

(2002•三明)如图:已知D、E、F分别是△ABC各边的中点,求证:AE与DF互相平分.11.已知:如图,在平行四边形ABCD中,对角线AC交BD于点O,四边形AODE是平行四边形.求证:四边形A BOE、四边形DCOE都是平行四边形.12.如图,已知四边形ABCD中,点E,F,G,H分别是AB、CD、AC、BD的中点,并且点E、F、G、H有在同一条直线上.求证:EF和GH互相平分.13.如图:平行四边形ABCD中,MN∥AC,试说明MQ=NP.14.已知:如图所示,平行四边形ABCD的对角线AC,BD相交于点O,EF经过点O并且分别和AB,CD相交于点E,F,点G,H分别为OA,OC的中点.求证:四边形EHFG是平行四边形.15.如图,已知在平行四边形ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上,且AG=CH,连接GE、EH、HF、FG.(1)求证:四边形GEHF是平行四边形;(2)若点G、H分别在线段BA和DC上,其余条件不变,则(1)中的结论是否成立?(不用说明理由)16.如图,在△ABC中,D是AC的中点,E是线段BC延长线一点,过点A作BE的平行线与线段ED的延长线交于点F,连接AE、CF.(1)求证:AF=CE;(2)如果AC=EF,且∠ACB=135°,试判断四边形AFCE是什么样的四边形,并证明你的结论.17.如图平行四边形ABCD中,∠ABC=60°,点E、F分别在CD、BC的延长线上,AE∥BD,EF⊥BF,垂足为点F,DF=2(1)求证:D是EC中点;(2)求FC的长.18.(2010•厦门)如图,已知△ABC是等边三角形,点D、F分别在线段BC、AB上,∠EFB=60°,DC=EF.(1)求证:四边形EFCD是平行四边形;(2)若BF=EF,求证:AE=AD.19.(2010•滨州)如图,四边形ABCD,E、F、G、H分别是AB、BC、CD、DA的中点.(1)请判断四边形EFGH的形状?并说明为什么;(2)若使四边形EFGH为正方形,那么四边形ABCD的对角线应具有怎样的性质?23.已知平行四边形的三个顶点的坐标分别为O(0,0)、A(2,0)、B(1,1),则第四个顶点C的坐标是多少?20.(2008•佛山)如图,△ACD、△ABE、△BCF均为直线BC同侧的等边三角形.(1)当AB≠AC时,证明:四边形ADFE为平行四边形;(2)当AB=AC时,顺次连接A、D、F、E四点所构成的图形有哪几类?直接写出构成图形的类型和相应的条件.21.(2007•黑龙江)在△ABC中,AB=AC,点P为△ABC所在平面内一点,过点P分别作PE∥AC交AB于点E,PF∥AB交BC于点D,交AC于点F.若点P在BC边上(如图1),此时PD=0,可得结论:PD+PE+PF=AB.请直接应用上述信息解决下列问题:当点P分别在△ABC内(如图2),△ABC外(如图3)时,上述结论是否成立?若成立,请给予证明;若不成立,PD,PE,PF与AB之间又有怎样的数量关系,请写出你的猜想,不需要证明。

【精编版】数学中考专题训练——平行四边形的判定和性质

【精编版】数学中考专题训练——平行四边形的判定和性质

中考专题训练——平行四边形的判定和性质1.如图,在▱ABCD中,点E、F分别在边BC和AD上,且BE=DF.(1)求证:△ABE≌△CDF.(2)求证:四边形AECF是平行四边形.2.如图,在▱ABCD中,E是AD的中点,F是BC延长线上一点,且CF=BC,连接CE、DF.(1)求证:四边形CEDF是平行四边形;(2)若AB=4,AD=6,∠B=60°,求DF的长.3.如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF =BC,连接CD和EF.(1)求证:四边形DCFE是平行四边形;(2)求EF的长.4.如图,E、F是▱ABCD对角线AC上两点,且AE=CF.(1)求证:四边形BFDE是平行四边形.(2)如果把条件AE=CF改为BE⊥AC,DF⊥AC,试问四边形BFDE是平行四边形吗?为什么?(3)如果把条件AE=CF改为BE=DF,试问四边形BFDE还是平行四边形吗?为什么?5.如图,平行四边形ABCD中,∠ABC=60°,点E,F分别在CD和BC的延长线上,AE ∥BD,EF⊥BC,CF=.(1)求证:四边形ABDE是平行四边形;(2)求AB的长.6.在△ABC中,AD为BC边上的中线,E为AD的中点,过点A作AF∥BC,交BE的延长线于点F,连接CF.(1)如图1,求证:四边形ADCF是平行四边形;(2)如图2,连接DF交AC于点G,连接EG,当∠BAC=90°,在不添加任何辅助线和字母的情况下,直接写出图中所有长度为2EG的线段.7.如图,四边形ABCD为平行四边形,E为AD上的一点,连接EB并延长,使BF=BE,连接EC并延长,使CG=CE,连接FG.H为FG的中点,连接DH.(1)求证:四边形AFHD为平行四边形;(2)若CB=CE,∠BAE=70°,∠DCE=20°,求∠CBE的度数.8.如图,过△ABC的顶点C作CD∥AB,E是AC的中点,连接DE并延长,交线段AB于点F,连接AD,CF.(1)求证:四边形AFCD是平行四边形.(2)若AB=4,∠BAC=60°,∠DCB=135°,求AC的长.9.如图,△ABC是等边三角形,AD是BC边上的高.点E在AB的延长线上,连接ED,∠AED=30°,过A作AF⊥AB与ED的延长线交于点F,连接BF,CF,CE.(1)求证:四边形BECF为平行四边形;(2)若AB=6,请直接写出四边形BECF的周长.10.如图,四边形ABCD中,点E在AD上,且EA=EB,∠ADB=∠CBD=90°,∠AEB+∠C=180°.(1)求证:四边形BCDE是平行四边形.(2)若AB=,DB=4.求四边形ABCD的面积.11.如图所示,在△ABC中,点D为边AB的中点,点E为AC边上一点,延长ED交AE 的平行线于点F,连接AF、BE.(1)猜想四边形AEBF的形状,并证明你的结论.(2)若BE⊥CE,CE=2AE=4,BC=9,求DE的长.12.已知:在△ABC中,∠ACB=90°,点D,E分别为BC,AB的中点,连接DE,CE,点F在DE的延长线上,连接AF,且AF=AE.(1)如图1,求证:四边形ACEF是平行四边形;(2)如图2,当∠B=30°时,连接CF交AB于点G,在不添加任何辅助线的情况下,请直接写出图2中的四条线段,使每条线段的长度都等于线段DE的长度的倍.13.如图,四边形ABCD为平行四边形,E为AD上的一点,连接EB并延长到点F,使BF =BE,连接EC并延长到点H,使CH=CE,连接FH,点G在FH上,∠ADG=∠AFG,连接DG.(1)求证:四边形AFGD为平行四边形;(2)在不添加任何辅助线的情况下,直接写出图中长度为FH的一半的所有线段.14.已知,如图1,D是△ABC的边上一点,CN∥AB,DN交AC于点M,MA=MC.(1)求证:四边形ADCN是平行四边形.(2)如图2,若∠AMD=2∠MCD,∠ACB=90°,AC=BC.请写出图中所有与线段AN相等的线段(线段AN除外).15.如图,在▱ABCD中,∠DAB=60°,点E,F分别在CD,AB的延长线上,且AE=AD,CF=CB.(1)求证:四边形AFCE是平行四边形;(2)若去掉已知条件“∠DAB=∠60°”,(1)中的结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由.16.如图,在▱ABCD中,对角线AC,BD相交于点O,AB⊥AC,AB=3cm,BC=5cm.点P从A点出发沿AD方向匀速运动,速度为1cm/s,连接PO并延长交BC于点Q.设运动时间为t(s)(0<t<5)(1)当t为何值时,四边形ABQP是平行四边形?(2)设四边形OQCD的面积为y(cm2),当t=4时,求y的值.17.如图1,在△ABC中,D是BC边上一点,且CD=BD,E是AD的中点,过点A作BC 的平行线交CE的延长线于F,连接BF.(1)求证:四边形AFBD是平行四边形;(2)如图2,若AB=AC=13,BD=5,求四边形AFBD的面积.18.如图,在四边形ABCD中,AD=BC=8,AB=CD,BD=12,点E从D点出发,以每秒1个单位的速度沿DA向点A匀速移动,点F从点C出发,以每秒3个单位的速度沿C→B→C作匀速移动,两个点同时出发,当有一个点到达终点时,另一点也随之停止运动.点G为BD上的一点,假设移动时间为t秒,BG的长度为y.(1)证明:AD∥BC;(2)在移动过程中,小明发现有△DEG与△BFG全等的情况出现,请你探究这样的情况会出现几次?并分别求出此时的移动时间t和BG的长度y.19.在△ABC中,AB=AC,点P为△ABC为所在平面内一点,过点P分别作PF∥AC交AB于点F,PE∥AB交BC于点D,交AC于点E.(1)当点P在BC边上(如图1)时,请探索线段PE,PF,AB之间的数量关系式为.(2)当点P在△ABC内(如图2)时,线段PD,PE,PF,AB之间有怎样的数量关系,请说明理由.(3)当点P在△ABC外(如图3)时,线段PD,PE,PF,AB之间有怎样的数量关系,直接写出结论.20.如图,四边形ABCD是平行四边形,AD=AC,AD⊥AC,E是AB的中点,F是AC延长线上的一点.(1)若ED⊥EF,求证:ED=EF;(2)在(1)的条件下,若DC的延长线与FB交于点P,试判断四边形ACPE是否为平行四边形?并证明你的结论(请先补全图形,再解答);(3)在(1)的条件下,若BC的延长线交DF于点Q,连接QA与QE.试说明QA=QE.参考答案与试题解析1.如图,在▱ABCD中,点E、F分别在边BC和AD上,且BE=DF.(1)求证:△ABE≌△CDF.(2)求证:四边形AECF是平行四边形.【分析】(1)根据平行四边形的性质得出AB=CD,∠B=∠D,根据SAS证出△ABE≌△CDF;(2)根据全等三角形的对应边相等即可证得.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,在△ABE和△CDF中,∴△ABE≌△CDF(SAS);(2)∵BE=DF,∴AF=CE,∵AF∥CE,∴四边形AECF是平行四边形.2.如图,在▱ABCD中,E是AD的中点,F是BC延长线上一点,且CF=BC,连接CE、DF.(1)求证:四边形CEDF是平行四边形;(2)若AB=4,AD=6,∠B=60°,求DF的长.【分析】(1)只要证明DE=CF,DE∥CF即可解决问题;(2)过D作DH⊥BE于H,想办法求出DH、HF即可解决问题;【解答】解:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,又∵E是AD的中点,∴DE=AD,∵CF=BC∴DE=CF,又∵AD∥BC,∴四边形CEDF是平行四边形.(2)过D作DH⊥BE于H,在▱ABCD中,∵∠B=60°,AB∥CD,∴∠DCF=60°,∵AB=4,∴CD=4,∴CH=2,DH=2,∴FH=1,在Rt△DHF中,DF==.3.如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF =BC,连接CD和EF.(1)求证:四边形DCFE是平行四边形;(2)求EF的长.(1)直接利用三角形中位线定理得出DE∥BC,DE=BC,进而得出DE=FC;【分析】(2)利用平行四边形的判定与性质得出DC=EF,进而利用等边三角形的性质以及勾股定理得出EF的长.【解答】(1)证明:∵D、E分别为AB、AC的中点,∴DE为△ABC的中位线,∴DE∥BC,DE=BC∵延长BC至点F,使CF=BC,∴DE=FC,∵DE∥FC,∴四边形DCFE是平行四边形.(2)解:∵DE∥FC,DE=FC∴四边形DEFC是平行四边形,∴DC=EF,∵D为AB的中点,等边△ABC的边长是2,∴AD=BD=1,CD⊥AB,BC=2,∴DC=EF==.4.如图,E、F是▱ABCD对角线AC上两点,且AE=CF.(1)求证:四边形BFDE是平行四边形.(2)如果把条件AE=CF改为BE⊥AC,DF⊥AC,试问四边形BFDE是平行四边形吗?为什么?(3)如果把条件AE=CF改为BE=DF,试问四边形BFDE还是平行四边形吗?为什么?【分析】(1)方法一:证明△BAE≌△DCF,推出BE=DF,BE∥DF即可.方法二:连接BD,交AC于点O.只要证明OE=OF,OB=OD即可;(2)是平行四边形.只要证明△BAE≌△DCF即可解决问题;(3)四边形BFDE不是平行四边形.因为把条件AE=CF改为BE=DF后,不能证明△BAE与△DCF全等;【解答】(1)证法一:∵ABCD是平行四边形∴AB=CD且AB∥CD(平行四边形的对边平行且相等)∴∠BAE=∠DCF又∵AE=CF∴△BAE≌△DCF(SAS)∴BE=DF,∠AEB=∠CFD∴∠BEF=180°﹣∠AEB∠DFE=180°﹣∠CFD即:∠BEF=∠DFE∴BE∥DF,而BE=DF∴四边形BFDE是平行四边形(一组对边平行且相等的四边形是平行四边形)证法二:连接BD,交AC于点O.∵ABCD是平行四边形∴OA=OC OB=OD(平行四边形的对角线互相平分)又∵AE=CF∴OA﹣AE=OC﹣CF,即OE=OF∴四边形BFDE是平行四边形(对角线互相平分的四边形是平行四边形)(2)四边形BFDE是平行四边形∵ABCD是平行四边形∴AB=CD且AB∥CD(平行四边形的对边平行且相等)∴∠BAE=∠DCF∵BE⊥AC,DF⊥AC∴∠BEA=∠DFC=90°,BE∥DF∴△BAE≌△DCF(AAS)∴BE=DF∴四边形BFDE是平行四边形(一组对边平行且相等的四边形是平行四边形)(3)四边形BFDE不是平行四边形因为把条件AE=CF改为BE=DF后,不能证明△BAE与△DCF全等.5.如图,平行四边形ABCD中,∠ABC=60°,点E,F分别在CD和BC的延长线上,AE ∥BD,EF⊥BC,CF=.(1)求证:四边形ABDE是平行四边形;(2)求AB的长.【分析】(1)根据平行四边形的判定定理即可得到结论;(2)由(1)知,AB=DE=CD,即D是CE的中点,在直角△CEF中利用三角函数即可求得到CE的长,则求得CD,进而根据AB=CD求解.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,即AB∥DE,∵AE∥BD,∴四边形ABDE是平行四边形;(2)解:∵EF⊥BC,∴∠EFC=90°.∵AB∥EC,∴∠ECF=∠ABC=60°,∴∠CEF=30°∵CF=,∴CE=2CF=2,∵四边形ABCD和四边形ABDE都是平行四边形,∴AB=CD=DE,∴CE=2AB,∴AB=.6.在△ABC中,AD为BC边上的中线,E为AD的中点,过点A作AF∥BC,交BE的延长线于点F,连接CF.(1)如图1,求证:四边形ADCF是平行四边形;(2)如图2,连接DF交AC于点G,连接EG,当∠BAC=90°,在不添加任何辅助线和字母的情况下,直接写出图中所有长度为2EG的线段.【答案】(1)证明见解析;(2)CD,AF,BD,AD,CF.【分析】(1)由E是AD的中点,过点A作AF∥BC,易证得△AFE≌△DBE,然后证得AF=BD=CD,即可证得四边形ADCF是平行四边形;(2)根据平行四边形的性质和直角三角形的性质解答即可.【解答】(1)证明:∵E是AD的中点,∴AE=ED,∵AF∥BC,∴∠AFE=∠DBE,∠F AE=∠BDE,在△AFE和△DBE中,,∴△AFE≌△DBE(AAS),∴AF=BD,∵AD是BC边中线,∴CD=BD,∴AF=CD,∴四边形CDAF是平行四边形;(2)解:∵四边形CDAF是平行四边形,∴AG=GC,AD=CF,∵E为AD的中点,∴EG是△ADC的中位线,∴2EG=DC,∵∠BAC=90°,AD为BC边上的中线,∴BD=DC=AD,由(1)可知,CD=AF=BD=2EG,即所有长度为2EG的线段是CD,AF,BD,AD,CF.7.如图,四边形ABCD为平行四边形,E为AD上的一点,连接EB并延长,使BF=BE,连接EC并延长,使CG=CE,连接FG.H为FG的中点,连接DH.(1)求证:四边形AFHD为平行四边形;(2)若CB=CE,∠BAE=70°,∠DCE=20°,求∠CBE的度数.(1)由平行四边形的性质得出AD=BC,AD∥BC;证明BC是△EFG的中位线,【分析】得出BC∥FG,BC=FG,证出AD∥FH,AD=FH,由平行四边形的判定方法即可得出结论;(2)由平行四边形的性质得出∠BCE=50°,再由等腰三角形的性质得出∠CBE=∠CEB,根据三角形内角和定理即可得出结果.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∠BAE=∠BCD,∵BF=BE,CG=CE,∴BC是△EFG的中位线,∴BC∥FG,BC=FG,∵H为FG的中点,∴FH=FG,∴BC∥FH,BC=FH,∴AD∥FH,AD=FH,∴四边形AFHD是平行四边形;(2)解:∵∠BAE=70°,∴∠BCD=70°,∵∠DCE=20°,∴∠BCE=70°﹣20°=50°,∵CB=CE,∴∠CBE=∠CEB=(180°﹣50°)=65°.8.如图,过△ABC的顶点C作CD∥AB,E是AC的中点,连接DE并延长,交线段AB于点F,连接AD,CF.(1)求证:四边形AFCD是平行四边形.(2)若AB=4,∠BAC=60°,∠DCB=135°,求AC的长.【分析】(1)先证△AEF≌△CED(AAS),得AF=CD,再由CD∥AB,即AF∥CD,即可得出结论;(2)过C作CM⊥AB于M,先证△BCM是等腰直角三角形,得BM=CM,再由含30°角的直角三角形的性质得AC=2AM,BM=CM=AM,由AM+BM=AB求出AM=2﹣2,即可求解.【解答】(1)证明:∵E是AC的中点,∴AE=CE,∵CD∥AB,∴∠AFE=∠CDE,在△AEF和△CED中,,∴△AEF≌△CED(AAS),∴AF=CD,又∵CD∥AB,即AF∥CD,∴四边形AFCD是平行四边形;(2)解:过C作CM⊥AB于M,如图所示:则∠CMB=∠CMA=90°,∵CD∥AB,∴∠B+∠DCB=180°,∴∠B=180°﹣135°=45°,∴△BCM是等腰直角三角形,∴BM=CM,∵∠BAC=60°,∴∠ACM=30°,∴AC=2AM,BM=CM=AM,∵AM+BM=AB,∴AM+AM=4,解得:AM=2﹣2,∴AC=2AM=4﹣4.9.如图,△ABC是等边三角形,AD是BC边上的高.点E在AB的延长线上,连接ED,∠AED=30°,过A作AF⊥AB与ED的延长线交于点F,连接BF,CF,CE.(1)求证:四边形BECF为平行四边形;(2)若AB=6,请直接写出四边形BECF的周长.【分析】(1)根据等边三角形的性质可得BD=DC,∠BAD=∠CAD=30°,然后证明△ADF为等边三角形,可得ED=DF,进而可以证明四边形BECF为平行四边形;(2)根据AB=6和勾股定理可得BF的长,然后证明BE=BD,进而可得四边形BECF 的周长.【解答】(1)证明:∵AD是等边△ABC的BC边上的高,∴BD=DC,∠BAD=∠CAD=30°,∵∠AED=30°,∴ED=AD,∠ADF=∠AED+∠EAD=60°,∵AF⊥AB,∴∠DAF=90°﹣∠EAD=90°﹣30°=60°,∴△ADF为等边三角形,∴AD=DF,∵ED=AD,∴ED=DF,∵BD=DC,∴四边形BECF为平行四边形;(2)∵AB=6,∴BD=3,AD=3,∵△ADF为等边三角形,∴AF=AD=3,∴BF===3,∵∠ABC=60°,∠AED=30°,∴∠BDE=30°,∴BE=BD=3,∴四边形BECF的周长为:2(BF+BE)=2(3+3)=6+6.10.如图,四边形ABCD中,点E在AD上,且EA=EB,∠ADB=∠CBD=90°,∠AEB+∠C=180°.(1)求证:四边形BCDE是平行四边形.(2)若AB=,DB=4.求四边形ABCD的面积.【分析】(1)根据∠ADB=∠CBD=90°,可得DE∥CB,由∠AEB+∠C=180°.证明BE∥CD,进而可得四边形BEDC是平行四边形;(2)根据勾股定理先求出AD的长,再设DE=x,则EA=AD﹣DE=8﹣x,EB=EA=8﹣x.根据勾股定理列式计算得x的值,进而可以求出四边形ABCD的面积.【解答】解:(1)∵∠ADB=∠CBD=90°,∴DE∥CB,∵∠AEB+∠C=180°,∵∠AEB+∠BED=180°,∴∠C=∠BED,∴∠CDB=∠EBD,∴BE∥CD,∴四边形BEDC是平行四边形;(2)∵四边形BEDC是平行四边形.∴BC=DE,在Rt△ABD中,由勾股定理得,AD===8.设DE=x,则EA=AD﹣DE=8﹣x,∴EB=EA=8﹣x.在Rt△BDE中,由勾股定理得,DE2+DB2=EB2,∴x2+42=(8﹣x)2.解得x=3.∴BC=DE=3,∴S四边形ABCD=S△ABD+S△BDC=AD•DB+DB•BC=16+6=22.11.如图所示,在△ABC中,点D为边AB的中点,点E为AC边上一点,延长ED交AE 的平行线于点F,连接AF、BE.(1)猜想四边形AEBF的形状,并证明你的结论.(2)若BE⊥CE,CE=2AE=4,BC=9,求DE的长.【分析】(1)根据已知条件证明△AED≌△BFD,可得ED=FD,可得四边形AEBF是平行四边形;(2)根据BE⊥CE,可得四边形AEBF是矩形,根据CE=2AE=4,BC=9,再利用勾股定理即可求DE的长.【解答】解:(1)四边形AEBF是平行四边形,证明:∵点D为边AB的中点,∴AD=BD,∵AE∥BF,∴∠AED=∠BFD,在△AED和△BFD中,,∴△AED≌△BFD(AAS),∴ED=FD,∵AD=BD,∴四边形AEBF是平行四边形;(2)∵BE⊥CE,∴∠AEB=90°,∴平行四边形AEBF是矩形,∴EF=AB,DE=AB,在Rt△BEC中,CE=4,BC=9,根据勾股定理,得BE2=BC2﹣CE2=92﹣42=65,在Rt△ABE中,AE=2,BE2=65,根据勾股定理,得AB===,∴DE=AB=.12.已知:在△ABC中,∠ACB=90°,点D,E分别为BC,AB的中点,连接DE,CE,点F在DE的延长线上,连接AF,且AF=AE.(1)如图1,求证:四边形ACEF是平行四边形;(2)如图2,当∠B=30°时,连接CF交AB于点G,在不添加任何辅助线的情况下,请直接写出图2中的四条线段,使每条线段的长度都等于线段DE的长度的倍.【分析】(1)由三角形的中位线定理可证得DE∥AC,由直角三角形斜边中线定理得到CE=AB,根据平行线的性质定理和等腰三角形的性质证得∠F=∠CED,进而得到AF∥CE,根据平行四边形的判定即可证得四边形ACEF是平行四边形;(2)根据直角三角形的性质得到AC=AB,由(1)知CE=AB,求得AC=CE,推出四边形ACEF为菱形,得到AE⊥CF,根据直角三角形的性质即可得到结论.【解答】(1)证明:∵BD=CD,BE=AE,∴DE∥AC,∴∠AEF=∠EAC,∠CED=∠ECA,∵∠ACB=90°,BE=AE,∴CE=AE,∴∠EAC=∠ECA,∵AF=AE,∴∠F=∠AEF,∴∠F=∠CED,∴AF∥CE,∴四边形ACEF是平行四边形;(2)解:∵∠ACB=90°,∠B=30°,∴AC=AB,由(1)知CE=AB,∴AC=CE=BE,又∵四边形ACEF为平行四边形∴四边形ACEF为菱形,∴AE⊥CF,∵CE=BE,∴∠B=∠DCE=30°,∴∠BED=∠BAC=60°,∵DF∥AC,∠BDE=∠ACB=∠CDE=90°,∴BD=CD=DE,∵∠DEB=∠FEG=∠CEG=60°,∴∠CED=60°,∴∠FEG=∠CED,∵EF=CE,∠EGF=∠CDE=90°,∴△EFG≌△CED(AAS),∴EG=DE,FG=CD,∴FG=DE,∵CG=FG,∴CG=DE,∴等于线段DE的长度的倍的线段是FG,CG,CD,DB.13.如图,四边形ABCD为平行四边形,E为AD上的一点,连接EB并延长到点F,使BF =BE,连接EC并延长到点H,使CH=CE,连接FH,点G在FH上,∠ADG=∠AFG,连接DG.(1)求证:四边形AFGD为平行四边形;(2)在不添加任何辅助线的情况下,直接写出图中长度为FH的一半的所有线段.【分析】(1)只要证明AD∥FG,AF∥DG即可;(2)根据三角形的中位线的性质和平行四边形的性质即可得到结论.【解答】(1)证明:如图,∵EB=BF,EC=CH,∴BC∥FH,BC=FH,∵四边形ABCD是平行四边形,∴AD∥BC,∴AD∥FH,∴∠DAF+∠AFG=180°,∵∠ADG=∠AFG,∴∠DAF+∠ADG=180°,∴AF∥CD,∴四边形AFHD是平行四边形;(2)∵四边形ABCD为平行四边形,∴AD=BC,∵BF=BE,CH=CE,∴BC=FH,∴AD=FH,∵四边形AFHD是平行四边形,∴FG=AD=FH,∴HG=FH,∴长度为FH的一半的所有线段为:AD,BC,FG,HG.14.已知,如图1,D是△ABC的边上一点,CN∥AB,DN交AC于点M,MA=MC.(1)求证:四边形ADCN是平行四边形.(2)如图2,若∠AMD=2∠MCD,∠ACB=90°,AC=BC.请写出图中所有与线段AN相等的线段(线段AN除外).【分析】(1)由CN∥AB,MA=MC,易证得△AMD≌△CMN,则可得MD=MN,即可证得:四边形ADCN是平行四边形.(2)由∠AMD=2∠MCD,可证得四边形ADCN是矩形,又由∠ACB=90°,AC=BC,可得四边形ADCN是正方形,继而求得答案.【解答】(1)证明:∵CN∥AB,∴∠DAM=∠NCM,在△ADM和△CNM中,,∴△AMD≌△CMN(ASA),∴MD=MN,∴四边形ADCN是平行四边形.(2)解:∵∠AMD=2∠MCD,∠AMD=∠MCD+∠MDC,∴∠MCD=∠MDC,∴MC=MD,∴AC=DN,∴▱ADCN是矩形,∵AC=BC,∴AD=BD,∵∠ACB=90°,∴CD=AD=BD=AB,∴▱ADCN是正方形,∴AN=AD=BD=CD=CN.15.如图,在▱ABCD中,∠DAB=60°,点E,F分别在CD,AB的延长线上,且AE=AD,CF=CB.(1)求证:四边形AFCE是平行四边形;(2)若去掉已知条件“∠DAB=∠60°”,(1)中的结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由.【分析】(1)由已知条件可得△AED,△CFB是正三角形,可得∠AEC=∠BFC=60°,∠EAF=∠FCE=120°,所以四边形AFCE是平行四边形.(2)上述结论还成立,可以证明△ADE≌△CBF,可得∠AEC=∠BFC,∠EAF=∠FCE,所以四边形AFCE是平行四边形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴DC∥AB,∠DCB=∠DAB=60°.∴∠ADE=∠CBF=60°.∵AE=AD,CF=CB,∴△AED,△CFB是正三角形.∴∠AEC=∠BFC=60°,∠EAF=∠FCE=120°.∴四边形AFCE是平行四边形.(2)解:上述结论还成立.证明:∵四边形ABCD是平行四边形,∴DC∥AB,∠CDA=∠CBA,∠DCB=∠DAB,AD=BC,DC=AB.∴∠ADE=∠CBF.∵AE=AD,CF=CB,∴∠AED=∠ADE,∠CFB=∠CBF.∴∠AED=∠CFB.又∵AD=BC,在△ADE和△CBF中.,∴△ADE≌△CBF(AAS).∴∠AED=∠BFC,∠EAD=∠FCB.又∵∠DAB=∠BCD,∴∠EAF=∠FCE.∴四边形EAFC是平行四边形.16.如图,在▱ABCD中,对角线AC,BD相交于点O,AB⊥AC,AB=3cm,BC=5cm.点P从A点出发沿AD方向匀速运动,速度为1cm/s,连接PO并延长交BC于点Q.设运动时间为t(s)(0<t<5)(1)当t为何值时,四边形ABQP是平行四边形?(2)设四边形OQCD的面积为y(cm2),当t=4时,求y的值.【分析】(1)求出AP=BQ和AP∥BQ,根据平行四边形的判定得出即可;(2)求出高AM和ON的长度,求出△DOC和△OQC的面积,再求出答案即可.【解答】解:(1)当t=2.5s时,四边形ABQP是平行四边形,理由是:∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD=3cm,AD=BC=5cm,AO=CO,BO=OD,∴∠P AO=∠QCO,在△APO和△CQO中∴△APO≌△CQO(ASA),∴AP=CQ=2.5cm,∵BC=5cm,∴BQ=5cm﹣2.5cm=2.5cm=AP,即AP=BQ,AP∥BQ,∴四边形ABQP是平行四边形,即当t=2.5s时,四边形ABQP是平行四边形;(2)过A作AM⊥BC于M,过O作ON⊥BC于N,∵AB⊥AC,AB=3cm,BC=5cm,∴在Rt△ABC中,由勾股定理得:AC=4cm,∵由三角形的面积公式得:S△BAC==,∴3×4=5×AM,∴AM=2.4(cm),∵ON⊥BC,AM⊥BC,∴AM∥ON,∵AO=OC,∴MN=CN,∴ON=AM=1.2cm,∵在△BAC和△DCA中∴△BAC≌△DCA(SSS),∴S△DCA=S△BAC==6cm2,∵AO=OC,∴△DOC的面积=S△DCA=3cm2,当t=4s时,AP=CQ=4cm,∴△OQC的面积为 1.2cm×4cm=2.4cm2,∴y=3cm2+2.4cm2=5.4cm2.17.如图1,在△ABC中,D是BC边上一点,且CD=BD,E是AD的中点,过点A作BC 的平行线交CE的延长线于F,连接BF.(1)求证:四边形AFBD是平行四边形;(2)如图2,若AB=AC=13,BD=5,求四边形AFBD的面积.【分析】(1)根据全等三角形的性质和判定求出AF=CD,求出AF=BD,根据平行四边形的判定推出即可;(2)求出四边形AFBD的矩形,根据勾股定理求出AD,根据矩形的面积公式求出即可.【解答】(1)证明:∵AF∥BC,∴∠AFE=∠DCE,∵E是AD的中点,∴AE=DE,在△AFE和△DCE中∴△AFE≌△DCE(AAS),∴AF=CD,∵BD=CD,∴BD=AF,∵AF∥BC,∴四边形AFBD是平行四边形;(2)解:∵AB=AC,CD=BD,∴AD⊥BC,∴∠ADB=90°,∵四边形AFBD是平行四边形,∴四边形AFBD是矩形,∵AB=AC=13,BD=5,∴由勾股定理得:AD==12,∴四边形AFBD的面积是12×5=60.18.如图,在四边形ABCD中,AD=BC=8,AB=CD,BD=12,点E从D点出发,以每秒1个单位的速度沿DA向点A匀速移动,点F从点C出发,以每秒3个单位的速度沿C→B→C作匀速移动,两个点同时出发,当有一个点到达终点时,另一点也随之停止运动.点G为BD上的一点,假设移动时间为t秒,BG的长度为y.(1)证明:AD∥BC;(2)在移动过程中,小明发现有△DEG与△BFG全等的情况出现,请你探究这样的情况会出现几次?并分别求出此时的移动时间t和BG的长度y.【分析】(1)利用平行四边形得判定和性质证明;(2)利用全等三角形的判定求解.【解答】解:(1)∵AD=BC,AB=CD,∴四边形ABCD是平行四边形,∴AD∥BC;(2)BG=y,DE=t,当0≤t≤时,CF=3t,则BF=8﹣3t,∵AD∥BC,∴∠DBC=∠ADB,若△DEG与△BFG全等,则BF=DE且BG=DG,或者BF=DG且BG=DE,即:或,解得:或(不合题意,舍去),当<t≤时,则BF=3t﹣8,若△DEG与△BFG全等,则BF=DE且BG=DG,或者BF=DG且BG=DE,即:或,解得:或,所以△DEG与△BFG全等的情况出现了三次,第一次是2秒时,y=6,第二次是4秒时,y=6,第三次是5秒时,y=5.19.在△ABC中,AB=AC,点P为△ABC为所在平面内一点,过点P分别作PF∥AC交AB于点F,PE∥AB交BC于点D,交AC于点E.(1)当点P在BC边上(如图1)时,请探索线段PE,PF,AB之间的数量关系式为PE+PF=AB.(2)当点P在△ABC内(如图2)时,线段PD,PE,PF,AB之间有怎样的数量关系,请说明理由.(3)当点P在△ABC外(如图3)时,线段PD,PE,PF,AB之间有怎样的数量关系,直接写出结论.【分析】(1)先求出四边形PF AE是平行四边形,根据平行四边形对边相等可得PF=AE,再根据两直线平行,同位角相等可得∠BPE=∠C,然后求出∠B=∠BPE,利用等角对等边求出PE=BE,然后求解即可;(2)根据等边对等角可得∠B=∠C,再根据两直线平行,同位角相等可得∠B=∠CDE,然后求出∠C=∠CDE,再根据等角对等边可得CE=PD+PE,然后求出四边形PF AE是平行四边形,根据平行四边形对边相等可得PE=AF,然后求出PD+PE+PF=AC,等量代换即可得证;(3)证明思路同(2).【解答】解:(1)答:PE+PF=AB.证明如下:∵点P在BC上,∴PD=0,∵PE∥AC,PF∥AB,∴四边形PF AE是平行四边形,∴PF=AE,∵PE∥AC,∴∠BPE=∠C,∴∠B=∠BPE,∴PE=BE,∴PE+PF=BE+AE=AB,∵PD=0,∴PE+PF=AB;故答案为:PE+PF=AB(2)证明:∵AB=AC,∴∠B=∠C,∵PE∥AB,∴∠B=∠CDE,∴∠C=∠CDE,∴CE=PD+PE,∵PF∥AC,PE∥AB,∴四边形PF AE是平行四边形,∴PE=AF,∴PD+PE+PF=AC,∴PD+PE+PF=AB;(3)证明:同(2)可证DE=CE,PE=AF,∵AE+CE=AC,∴PF+PE﹣PD=AC,∴PE+PF﹣PD=AB.20.如图,四边形ABCD是平行四边形,AD=AC,AD⊥AC,E是AB的中点,F是AC延长线上的一点.(1)若ED⊥EF,求证:ED=EF;(2)在(1)的条件下,若DC的延长线与FB交于点P,试判断四边形ACPE是否为平行四边形?并证明你的结论(请先补全图形,再解答);(3)在(1)的条件下,若BC的延长线交DF于点Q,连接QA与QE.试说明QA=QE.【分析】(1)根据平行四边形的想知道的AD=AC,AD⊥AC,连接CE,根据全等三角形的判定和性质即可得到结论;(2)根据全等三角形的性质得到CF=AD,等量代换得到AC=CF,于是得到CP=AB =AE,根据平行四边形的判定定理即可得到四边形ACPE为平行四边形;(3)由(1)知AC=CF,根据三角形的中位线的性质得到DQ=FQ,根据直角三角形的性质即可得到结论.【解答】(1)证明:在▱ABCD中,∵AD=AC,AD⊥AC,∴AC=BC,AC⊥BC,连接CE,∵E是AB的中点,∴AE=EC,CE⊥AB,∴∠ACE=∠BCE=45°,∴∠ECF=∠EAD=135°,∵ED⊥EF,∴∠CEF=∠AED=90°﹣∠CED,在△CEF和△AED中,,∴△CEF≌△AED,∴ED=EF;(2)解:由(1)知△CEF≌△AED,CF=AD,∵AD=AC,∴AC=CF,∵DP∥AB,∴FP=PB,∴CP=AB=AE,∴四边形ACPE为平行四边形;(3)由(1)知AC=CF,∵CQ∥AD,∴DQ=FQ,∵在Rt△DAF与Rt△DEF中,∴AQ=EQ=DF.。

平行四边形的性质与判定经典题

平行四边形的性质与判定经典题

平行四边形的性质与判定经典题一、填空题:1.平行四边形长边是短边的2倍,一条对角线与短边垂直,则这个平行四边形各角的度数分别为______.2.从平行四边形的一个锐角顶点作两条高线,如果这两条高线夹角为135°,则这个平行四边形的各内角的度数为______.3.在 ABCD中,BC=2AB,若E为BC的中点,则∠AED=______.4.在 ABCD中,如果一边长为8cm,一条对角线为6cm,则另一条对角线x 的取值范围是______.5. ABCD中,对角线AC、BD交于O,且AB=AC=2cm,若∠ABC=60°,则△OAB的周长为______cm.6.如图,在 ABCD中,M是BC的中点,且AM=9,BD=12,AD=10,则 ABCD 的面积是______.7. ABCD中,对角线AC、BD交于点O,若∠BOC=120°AD=7,BD=10,则 ABCD的面积为______.8.如图,在 ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,AF=5,2BG,则△CEF的4周长为______.9.如图,BD为□ABCD的对角线,M、N分别在AD、AB上,且MN∥BD,则S△DMC______S△BNC.(填“<”、“=”或“>”)一、解答题10.已知:如图,△EFC中,A是EF边上一点,AB∥EC,AD∥FC,若∠EAD =∠FAB.AB=a,AD=b.(1)求证:△EFC是等腰三角形;(2)求EC+FC.11.已知:如图,△ABC中,∠ABC=90°,BD⊥AC于D,AE平分∠BAC,EF∥DC,交BC于F.求证:BE=FC.12.已知:如图,在 ABCD中,E为AD的中点,CE、BA的延长线交于点F.若BC=2CD,求证:∠F=∠BCF.13.如图,已知:在 ABCD中,∠A=60°,E、F分别是AB、CD的中点,且AB=2AD.求证:BF∶BD=3∶3.14.如图1,已知正比例函数和反比例函数的图象都经过点M(-2,-1),且P(-1,-2)是双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB 垂直于y轴,垂足分别是A、B.图1(1)写出正比例函数和反比例函数的关系式;(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ 与△OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;(3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.图2参考答案1.60°,120°,60°,120°. 2.45°,135°,45°,135°.3.90°. 4.10cm <x <22cm . 5..33+6.72.提示:作DE ∥AM 交BC 延长线于E ,作DF ⊥BE 于F ,可得△BDE 是直角三角形,⋅=536DF 7.315 提示:作CE ⊥BD 于E ,设OE =x ,则BE 2+CE 2=BC 2,得(x +5)2+27)3(=x .解出23=x .S □=2S △BCD =BD ×CE =.315 8.7. 9.=.提示:连结BM ,DN .10.(1)提示:先证∠E =∠F ; (2)EC +FC =2a +2b .11.提示:过E 点作EM ∥BC ,交DC 于M ,证△AEB ≌△AEM .12.提示:先证DC =AF .13.提示:连接DE ,先证△ADE 是等边三角形,进而证明∠ADB =90°,∠ABD =30°.14.(1)设正比例函数解析式为y =kx ,将点M (-2,-1)坐标代入得21=k ,所以正比例函数解析式为x y 21=,同样可得,反比例函数解析式为xy 2=; (2)当点Q 在直线MO 上运动时,设点Q 的坐标为)21,(m m Q ,于是S △OBQ =21|OB ·BQ |=21·21m ·m =41m 2而S OAP =21|(-1)(-2)|=1,所以有,1412=m , 解得m =±2所以点Q 的坐标为Q 1(2,1)和Q 2(-2,-1);(3)因为四边形OPCQ 是平行四边形,所以OP =CQ ,OQ =PC ,而点P (-1,-2)是定点,所以OP 的长也是定长,所以要求平行四边形OPCQ 周长的最小值就只需求OQ 的最小值.因为点Q 在第一象限中双曲线上,所以可设点Q 的坐标Q (n ,n 2), 由勾股定理可得OQ 2=n 2+24n =(n -n 2)2+4,所以当(n -n 2)2=0即n -n2=0时,OQ 2有最小值4, 又因为OQ 为正值,所以OQ 与OQ 2同时取得最小值, 所以OQ 有最小值2.由勾股定理得OP =5,所以平行四边形OPCQ 周长的最小值是2(OP +OQ )=2(5+2)=25+4.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《平行四边形的性质》典型例题
例1一个平行四边形的一个内角是它邻角的3倍,那么这个平行四边形的四个内角各是多少度
例2已知:如图,ABCD的周长为60cm,对角线AC、BD相交于点O,AOB

的周长比BOC
∆的周长多8cm,求这个平行四边形各边的长.
例3 已知:如图,在ABCD中,BD
AC、交于点O,过O点作EF交AB、CD于E、F,那么OE、OF是否相等,说明理由.
例4 已知:如图,
ABCD 的周长是cm 36,由钝角顶点D 向AB ,BC 引两
条高DE ,DF ,且cm DE 34=,cm DF 35=.求这个平行四边形的面积.
例5 如图,已知:ABCD 中,BC AE ⊥于E ,CD AF ⊥于F ,若︒=∠60EAF ,
cm BE 2=,cm FD 3=.
求:AB 、BC 的长和ABCD 的面积.
《平行四边形的判定》典型例题
例1如图,△DAB、△EBC、△FAC都是等边三角形,试说明四边形AFED是平行四边形.
例2如图,E、F分别是ABCD边AD和BC上的点,并且AE=CF,AF和BE相交于G,CE 和DF相交于H、EF与GH是否互相平分,请说明理由.
例3如图,在平行四边形ABCD中,A1、A2、A3、A4和B1、B2、B3、B4分别是AB和DC的五等分点,C1、C2和D1、D2分别是AD和BC的三等分点,若四边形C1A4D2B1的面积为1,求S平行四边形ABCD.
例4已知:如图,E,F分别为ABCD的边CD,AB上一点,AE∥CF,BE,CF分别交CF,AE于H,G.
求证:EG=FH.
例5如图,已知:四边形ABCD中,AE⊥BD,CF⊥BD,E,F为垂足,且AE=CF,∠BAC=∠DCA.
求证:四边形ABCD是平行四边形.。

相关文档
最新文档