石墨烯及石墨烯光催化复合材料简介

合集下载

石墨烯的光催化性能研究与应用

石墨烯的光催化性能研究与应用

石墨烯的光催化性能研究与应用引言:近年来,石墨烯作为一种新型的二维材料引起了广泛的研究兴趣。

石墨烯具有高导电性、高比表面积和优异的光催化性能等特点,因此,研究和应用石墨烯在光催化领域具有重要的意义。

一、石墨烯的表面修饰石墨烯具有极强的吸附性能,可以通过表面修饰来改善其光催化性能。

例如,通过氧化石墨烯与金属离子复合修饰,可以提高石墨烯的吸光性能和光生电子-空穴对的分离效率。

此外,将石墨烯与半导体纳米材料复合修饰,可以提高石墨烯的光催化活性。

二、石墨烯的光催化机制石墨烯作为催化剂,其光催化机制主要包括光吸收、光生电子-空穴对的分离和光生活性物种的响应等过程。

首先,石墨烯通过吸收可见光或紫外光,产生电子-空穴对。

然后,通过表面修饰或掺杂实现电子-空穴对的分离,使电子和空穴分别参与催化反应。

最后,电子和空穴在催化剂表面与底物发生反应,产生活性物种,进而完成光催化反应。

三、石墨烯光催化应用的研究进展石墨烯作为光催化材料,在环境污染治理、水资源处理、有机废物降解等方面具有广泛的应用前景。

例如,石墨烯可以用于有机废物的降解和水中污染物的去除,具有高效、环境友好、易于回收等特点。

此外,石墨烯复合材料在太阳能电池、光催化水分解等方面的应用也得到了广泛研究。

四、石墨烯光催化应用的前景展望石墨烯的光催化性能及其应用前景受到了广泛关注。

随着石墨烯材料的制备技术不断发展,其催化性能和稳定性将进一步提升。

未来,进一步研究和探索石墨烯光催化材料的制备方法和性能优化策略,将有助于其在环境污染治理和能源领域等方面的应用。

结论:石墨烯作为一种新型的光催化材料,具有优异的性能和广泛的应用前景。

通过表面修饰和复合修饰等手段,可以进一步提升石墨烯的光催化性能。

未来,石墨烯光催化材料的研究和应用将有助于解决环境污染和能源需求等重要问题。

石墨烯的制备方法及发展应用概述

石墨烯的制备方法及发展应用概述

石墨烯的制备方法及发展应用概述一、本文概述石墨烯,一种由单层碳原子紧密排列形成的二维纳米材料,自2004年被科学家首次成功制备以来,便以其独特的物理和化学性质,引发了全球范围内的研究热潮。

本文旨在全面概述石墨烯的制备方法,以及其在各个领域的发展应用。

我们将介绍石墨烯的基本结构和性质,为后续的制备方法和应用探讨提供理论基础。

接着,我们将重点阐述石墨烯的几种主要制备方法,包括机械剥离法、化学气相沉积法、氧化还原法等,并分析各方法的优缺点。

随后,我们将深入探讨石墨烯在能源、电子、生物医学等领域的应用现状和发展前景。

我们将对石墨烯的未来研究方向进行展望,以期为其在实际应用中的进一步推广提供参考。

二、石墨烯的制备方法石墨烯的制备方法多种多样,每一种方法都有其独特的优缺点和适用范围。

目前,石墨烯的主要制备方法包括机械剥离法、化学气相沉积法(CVD)、氧化还原法、碳化硅外延生长法以及液相剥离法等。

机械剥离法:这是最早用于制备石墨烯的方法,由英国科学家Geim和Novoselov在2004年首次报道。

他们使用胶带反复剥离石墨片,最终得到了单层石墨烯。

这种方法虽然简单,但产量极低,且无法控制石墨烯的尺寸和形状,因此只适用于实验室研究,不适用于大规模生产。

化学气相沉积法(CVD):CVD法是目前工业上大规模制备石墨烯最常用的方法。

它通过高温下含碳气体在催化剂表面分解生成石墨烯。

这种方法可以制备出大面积、高质量的石墨烯,且生产效率高,成本低,因此被广泛应用于石墨烯的商业化生产。

氧化还原法:这种方法首先通过化学方法将石墨氧化成石墨氧化物,然后通过还原反应将石墨氧化物还原成石墨烯。

这种方法制备的石墨烯往往含有较多的缺陷和杂质,但其制备过程相对简单,成本较低,因此也被广泛用于石墨烯的大规模制备。

碳化硅外延生长法:这种方法通过在高温和超真空环境下加热碳化硅单晶,使硅原子从碳化硅表面升华,剩余的碳原子重组形成石墨烯。

这种方法制备的石墨烯质量高,但设备成本高,制备过程复杂,限制了其在大规模生产中的应用。

石墨烯复合材料的制备及应用研究进展

石墨烯复合材料的制备及应用研究进展

石墨烯复合材料的制备及应用研究进展一、本文概述石墨烯,作为一种新兴的二维纳米材料,因其独特的电子结构、优异的物理和化学性能,在复合材料领域引起了广泛的关注。

石墨烯复合材料结合了石墨烯和其他材料的优点,使得这种新型复合材料在力学、电学、热学等方面表现出色,因此具有广阔的应用前景。

本文旨在综述石墨烯复合材料的制备方法、性能特点以及在不同领域的应用研究进展,以期为石墨烯复合材料的进一步研究和实际应用提供理论支持和参考。

本文将首先介绍石墨烯及其复合材料的基本概念和特性,然后重点综述石墨烯复合材料的制备方法,包括溶液混合法、原位合成法、熔融共混法等。

接着,文章将探讨石墨烯复合材料在能源、电子、生物医学、航空航天等领域的应用研究进展,分析其在提高材料性能、降低成本、推动相关产业发展等方面的重要作用。

本文还将对石墨烯复合材料未来的研究方向和应用前景进行展望,以期推动这一领域的持续发展和创新。

二、石墨烯复合材料的制备方法石墨烯复合材料的制备方法多种多样,每一种方法都有其独特的优点和适用范围。

以下是几种主要的制备方法:溶液混合法:这是最简单且最常用的方法之一。

首先将石墨烯分散在适当的溶剂中,然后通过搅拌或超声处理使其均匀分散。

接着,将所需的基体材料(如金属氧化物、聚合物等)加入溶液中,通过搅拌或热处理使石墨烯与基体材料充分混合。

通过过滤、干燥等步骤得到石墨烯复合材料。

这种方法操作简便,但石墨烯在溶剂中的分散性和稳定性是关键因素。

原位生长法:这种方法通常在高温或特定气氛下进行,利用石墨烯与基体材料之间的化学反应,使石墨烯在基体材料表面或内部原位生长。

例如,通过化学气相沉积(CVD)或热解等方法,在金属氧化物或聚合物表面生长石墨烯。

这种方法可以得到石墨烯与基体材料结合紧密、性能优异的复合材料,但操作过程较复杂,且需要特殊的设备。

熔融共混法:对于高温稳定的基体材料,如金属或某些聚合物,可以采用熔融共混法制备石墨烯复合材料。

【精品文章】几种石墨烯复合材料制备方法及催化应用介绍

【精品文章】几种石墨烯复合材料制备方法及催化应用介绍

几种石墨烯复合材料制备方法及催化应用介绍
石墨烯具有独特的热、电和光学性能,并以高的比表面积性能,使其非常适于用作复合材料的理想载体。

目前,石墨烯基复合材料广泛应用于传感器、新能源、光催化、电容器、生物材料等领域,特别是在在光催化和电催化领域,具有广阔应用前景。

下面小编介绍石墨烯复合材料在催化领域应用。

 一、石墨烯/TiO2复合材料
 1、石墨烯/TiO2复合材料光催化性能
 石墨烯作为TiO2光催化材料的载体,不仅可以提高催化材料的比表面积和吸附性能,还能够抑制TiO2内部光生载流子的复合,降低了电子-空穴对的重组率,从而促进TiO2的光催化性能,提高其利用效率,因此制备TiO2/石墨烯复合材料可以进一步提高材料的光催化活性。

 石墨烯/TiO2复合材料光催化机理示意图
 2、石墨烯/TiO2复合材料制备方法
 目前,石墨烯/TiO2复合材料的制备方法主要有溶胶-凝胶法和水热法等。

两种方法对于石墨烯的前体准备都是通过Hummers法得到氧化石墨烯,然后通过还原手段一步法得到还原氧化石墨烯/TiO2复合材料。

 左图:石墨烯结构示意图;右图:氧化石墨烯结构示意图
 (1)溶胶-凝胶法
 溶胶-凝胶法通常是将钛的前体与氧化石墨烯溶液混合并搅拌均匀,氧化石墨烯通过氢键作用力与钛的前体结合并发生缩合、聚合反应最终形成具有Ti-O-Ti三维网络结构的凝胶,然后经过干燥、焙烧、研磨得到石墨烯。

石墨烯材料简介

石墨烯材料简介

石墨烯材料简介在构成纳米材料的众多元素中,碳元素值得我们格外重视。

作为自然界中性质最为奇特的元素,碳(C)在原子周期表中的序号为六,属于第Ⅳ族。

碳原子一般是四价的,最外层有4个电子,可与四个原子成键。

但是其基态只有两个单电子,所以成键时总是要进行杂化。

由于较低的原子序数,碳原子对外层电子的结合力强,表现出较高的键能,容易形成共价键,故自然界中碳元素形成的化合物形式丰富多彩。

关于碳与碳原子之间或碳与其它原子间以共价键相结合,有杂化轨道和分子轨道的理论。

在形成共价键过程中,由于原子间的相互影响,同一个原子中参与成键的几个能量相近的原子轨道可以重新组合,重新分配能量和空间方向,组成数目相等的,成键能力更强的新的原子轨道,称为杂化轨道。

在有机化合物中,碳原子的杂化形式有三种:sp3、sp2和sp杂化轨道。

以甲烷分子(CH4)为例,碳原子在基态时的电子构型为1S22S22Px12Py12Pz0按理只有2px和2py可以形成共价键,键角为90°。

但实际在甲烷分子中,是四个完全等同的键,键角均为109°28′。

这是因为在成键过程中,碳的2s轨道有一个电子激发到2Pz轨道,3个p轨道与一个s轨道重新组合杂化,形成4个完全相同的sp3杂化轨道。

每个轨道是由s/4与3P/4轨道杂化组成。

这四个sp3轨道的方向都指向正四面体的四个顶点,轨道间的夹角是109°28´。

得益于碳原子丰富多样的键合方式和强大的键合能力,氧、氢、氮等各种元素被有机的组合在一起,形成碳的化合物,最终构成了令人惊叹的生命体。

碳元素广泛存在于自然界,其独特的物性和多样的形态随着人类文明的进步而逐渐被发现。

由于碳原子之间不同的杂化方式,能形成结构和性质迥异的多种同素异型体,其中最为人知的存在形式是金刚石和石墨。

当每个碳原子与四个近邻碳原子以共价键结合(sp3杂化)时,形成各向同性的金刚石。

此时,四个价电子平均分布在四个轨道中,形成稳定的σ键,而且没有孤电子对的排斥,非常稳定。

石墨烯是什么用途

石墨烯是什么用途

石墨烯是什么用途石墨烯是一种由碳原子构成的二维蜂窝状晶格结构材料,它是由一层厚度仅为一个原子的石墨片剥离而来的。

石墨烯的独特结构和性质使其具有广泛的应用前景,特别是在电子学、能源领域、生物医学、材料科学等领域。

首先,石墨烯在电子学领域有着巨大的应用潜力。

由于石墨烯具有高电子迁移率、高载流子流动速度和高热导率等优异的电学性能,被认为是下一代微电子器件的理想材料。

它可以用于制造高速晶体管、快速电子器件、高频电路和柔性电子器件等。

此外,由于石墨烯是有机材料,可以与有机分子相结合,具有制备新型有机太阳能电池等光电器件的潜力。

其次,石墨烯在能源领域也有重要的应用价值。

石墨烯具有优异的导电性和热导率,可以用作电池、超级电容器和储氢材料等能量存储和转换器件。

此外,石墨烯还可以用于制备太阳能电池、光催化材料和储能材料等,可以提高能量的转化效率和储存密度,并推进清洁能源的开发和利用。

此外,石墨烯还在材料科学领域发挥着重要作用。

石墨烯具有出色的力学性能,是最轻、最坚硬的材料之一,同时又具有良好的柔性和延展性。

因此,石墨烯可以用于制备高强度和轻质复合材料、纳米复合材料和柔性薄膜等。

此外,石墨烯还可以用于制备高性能的传感器、滤膜、分离膜和纳米材料等,可以解决环境污染和能源危机等重大问题。

在生物医学领域,石墨烯也被广泛应用。

石墨烯具有优异的生物相容性和生物安全性,可以作为药物传递系统、生物传感器和光学成像剂等。

石墨烯还可以用于制备生物传感器、基因传递系统和组织工程等,可以促进疾病的早期诊断、药物的靶向输送和组织的再生修复。

总之,石墨烯作为一种新型的纳米材料,具有许多独特的物理、化学和生物学性质,因此在电子学、能源领域、生物医学、材料科学等多个领域具有广泛的应用前景。

未来,石墨烯的研究和开发将继续推动科学技术的发展和社会的进步。

新型无机非金属材料

新型无机非金属材料

新型无机非金属材料新型无机非金属材料是指一类不含金属元素的材料,通常由非金属元素或化合物组成。

这些材料具有独特的物理和化学性质,广泛应用于电子、光电、能源、环境保护等领域。

本文将介绍几种常见的新型无机非金属材料及其应用。

1. 碳纳米管碳纳米管是由碳原子以特定的结构排列而成的纳米级管状结构材料。

它具有极高的强度和导电性能,被广泛应用于电子器件、传感器、储能材料等领域。

碳纳米管还具有良好的导热性能,可用于制备高性能的导热材料。

2. 石墨烯石墨烯是一种由碳原子以二维晶格排列而成的材料,具有极高的导电性和导热性,同时具有优异的机械性能。

石墨烯被广泛应用于电子器件、柔性显示器、传感器等领域,同时也被用于制备高强度的复合材料。

3. 二氧化硅纳米颗粒二氧化硅纳米颗粒是一种由二氧化硅组成的纳米级颗粒材料,具有较大的比表面积和优异的光学性能。

它被广泛应用于光学涂料、生物传感器、纳米药物载体等领域,同时也被用于制备高性能的隔热材料。

4. 氧化锌纳米颗粒氧化锌纳米颗粒是一种由氧化锌组成的纳米级颗粒材料,具有优异的光电性能和光催化性能。

它被广泛应用于太阳能电池、光催化材料、柔性电子器件等领域,同时也被用于制备高性能的抗菌材料。

5. 硼氮化物硼氮化物是一种由硼和氮元素组成的化合物材料,具有极高的硬度和热导率,同时具有优异的化学稳定性。

硼氮化物被广泛应用于超硬刀具、高温陶瓷、热导材料等领域,同时也被用于制备高性能的电子器件。

总的来说,新型无机非金属材料具有独特的物理和化学性质,广泛应用于电子、光电、能源、环境保护等领域。

随着纳米技术和材料科学的发展,新型无机非金属材料的研究和应用将会得到进一步的推动,为各个领域的发展带来新的机遇和挑战。

石墨烯技术的应用及前景展望

石墨烯技术的应用及前景展望

石墨烯技术的应用及前景展望一、石墨烯简介石墨烯是一种单层厚度为纳米级的碳材料,具有极高的导电性、热导率、机械强度和超轻质量等优异性能。

其结构由一层层的强共价键连接而成的六角形碳原子组成,具有较强的化学稳定性和生物相容性。

自2004年石墨烯首次被制备出来以来,其受到了广泛的研究和关注,由此产生了许多的石墨烯应用技术。

二、石墨烯技术的应用领域1. 电子行业石墨烯作为半导体材料,能够极大地提高电子器件的性能和加工效率。

石墨烯晶体管、石墨烯场效应晶体管、石墨烯超快速电路等将成为未来电子技术的核心组成部分。

2. 光电行业石墨烯具有优异的光电性能,能够制备出高效率的光伏电池、高性能的光电传感器、高亮度、高稳定性的LED灯等,在光电行业具有广阔的应用前景。

3. 材料行业石墨烯具有很高的强度、硬度和韧性,可以被制备成各种复合材料,被广泛应用于建筑、汽车工业等领域。

4. 生物医学石墨烯具有极好的生物相容性和生物稳定性,可以用于生物医学材料的制备和医疗器械的研发。

石墨烯的超薄结构和强烈的光电响应性质可以用于制造生物传感器和绿色荧光剂,并在生物光子学中提供全新的解决方案。

三、石墨烯技术的前景石墨烯技术的广泛应用,将深刻地影响人类现代科技的发展方向。

由于石墨烯具有非常高效的导电性和热导率,可以用于新型节能材料、新型锂电池、高效率的热电材料等。

除此之外,石墨烯还可以被制备成高效的催化剂和光催化剂,能够用于环保、化学工业等众多领域。

石墨烯技术将帮助解决许多现代科技所面临的挑战,具有巨大的市场潜力和发展前景。

与此同时,围绕着石墨烯技术的研究也在不断地推进。

人们正在努力探索其应用范围,开发新的石墨烯制备方法和技术。

石墨烯的可控性、可扩展性以及生产成本的降低也成为了研究重点,这将更有利于石墨烯技术的推广和工业化应用。

总之,石墨烯技术将会在未来的科技发展道路中发挥越来越重要的作用。

石墨烯具有不同于其他材料的独特优异性能,其应用领域将逐渐拓展,未来还将会有更多的惊人应用被发掘出来。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

石墨烯及石墨烯光催化复合材料简介1.1 前言碳材料是地球上最普遍也是一类具有无限发展前景的材料,从无定形的碳黑到晶体结构的天然层状石墨;从零维纳米结构的富勒烯到二维结构的石墨烯,近几十年来,碳纳米材料一直备受关注。

而三维网状结构的石墨烯自组装水凝胶的发现[1],不仅极大地充实了碳材料家族,为新材料和凝聚态领域提供了新的增长点,而且由于其所具有的特殊纳米结构和性能,使得石墨烯无论是在理论上还是实验研究方面都已展现出了重大的科学意义和应用价值.从而为碳基材料的研究提供了新的目标和方向。

从石墨发现至今,关于石墨烯的研究已经铺满各种期刊杂志,此外,人们对石墨烯衍生物也进行了深入研究,如氧化石墨烯、石墨烯纳米带、石墨烷、磁性石墨烯衍生物等。

其中对氧化石墨烯和石墨烯纳米带的研究更为深入。

氧化石墨烯是单一的碳原子层,可以随时在横向尺寸上扩展到数十微米,因此,其结构跨越了一般化学和材料科学的典型尺度。

氧化石墨烯可视为一种非传统型态的软性材料,具有聚合物、胶体、薄膜,以及两性分子的特性。

由于它在水中具有优越的分散性,长久以来被视为亲水性物质,然而,相关实验结果显示,氧化石墨烯实际上具有两亲性,从石墨烯薄片边缘到中央呈现亲水至疏水的性质分布。

因此,氧化石墨烯可如同界面活性剂一般存在界面,并降低界面间的能量。

根据不同的碳取材来源和不同的结构,石墨烯纳米带有不同的特性,有些有金属的性质,有的具有半导体性能,从而也使得石墨烯纳米带成为未来半导体候选材料。

此外,在挖掘石墨烯潜在的性能和应用方面,石墨烯的复合材料也受到了极大的关注,并且这类复合材料已在生物医学、能量储存、液晶器件、传感材料、电子器件、催化剂等领域显示出了优异的性能和潜在的应用。

总之,不断发现新的性质、衍生物、复合材料以及功能器件,极大地丰富了石墨烯的研究方向、开拓了人们的视野、拓展了石墨烯的应用领域,使得基于石墨烯的材料成为了一个充满魅力与无限可能的研究对象。

1.2石墨烯自2004年石墨烯发现以来,由于其独一无二的电学性质,良好的化学稳定性和导热性以及优异的机械强度,迅速成为电子学、光学、材料学、生物医学、物理学、化学和储能领域的研究热点。

石墨烯纳米材料更是由于其独特的孔隙结构、巨大的表面积、安全无污染、成本低廉、寿命长久等优点而被广泛的用于各能源行业。

1.2.1 石墨烯的结构及性质石墨烯是由一层密集的、包裹在蜂巢晶体点阵上的碳原子以SP2杂化轨道组成的二维周期蜂窝状结构,它可以翘曲成零维的富勒烯也可以卷成一维的碳纳米管或者堆垛成三维的网状石墨。

石墨烯的基本结构单元是有机材料中最稳定的苯六元环,可想象为由碳原子和其他共价键所形成的原子尺寸网,它是目前最理想的二维纳米材料。

理想的石墨烯结构只包括平面六边形点阵,可以看作是一层被剥离的石墨分子,每个碳原子均为SP2杂化,并贡献剩余一个p轨道上的电子形成大π键,π电子可以自由移动,这赋予石墨烯良好的导电性。

如果结构中有五边形和七边形存在,则会构成石墨烯的缺陷,12个五角形石墨烯会共同形成富勒烯石墨烯是当今世界上已经发现的最薄、最坚硬、最具强度的物质。

其厚度仅为0.35nm,杨氏模量达到1000GPa以上,具有很高的结晶度和稳定性。

此外,石墨烯还具有许多其他优异的性能:如良好的导电性、较高的载流子迁移率(约2.105 cm2·V-1·s-1)、较高的热导率(约5000 W·In-1·K-1)、巨大的比表面积(理论计算值为2630 m2.g-1)、铁磁性等。

石墨烯结构极其稳定,各碳原子之间排列非常紧密,并且碳原子层会随着外界条件而变化,如当施加外部机械力时,碳原子面就弯曲变形,从而使碳原子不必重新排列来适应外力,也就保持了结构稳定。

这种稳定的结构使碳原子具有优异的导电性。

并且它的电导率极低,电子迁移的速度非常快,常温下它的电子迁移速率比纳米碳管高,但电导率比铜或银更低,只有6-10Ω·cm。

此外,石墨烯还有另外一个特征,能够在常温下观察到量子霍尔效应。

即当电流垂直于外磁场通过导体时,在导体的垂直于磁场和电流方向的两个端面之间会出现电势差,通常情况下量子霍尔效应需要在低温的条件下实现,而在石墨烯中,由于其载流子异常的特性,表现地像无质量的相对论粒子,因而石墨烯的量子霍尔效应可以在室温下观察到。

1.2.2 石墨烯的制备方法目前,制作石墨烯的方法主要有: 微机械剥离法、晶体外延生长法、过渡金属催化的化学气相沉积法、氧化还原法等。

在这几种方法中,微机械剥离法比较费时、制备成本高,并且精度难以控制,只适合在实验室制备。

但袁等人改进后,以石墨为原料,先采用Hummers法在不超过20℃的低温下制备氧化石墨,再通过高真空(2.533×106Pa)低温剥离法得到了高比表面积的石墨烯材料。

并采用X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)、扫描电子显微镜(SEM)等表征所得石墨烯,结果显示,石墨烯基本已经被还原,而且其孔道结构丰富,比表面积高达908.3m2/g。

此方法操作简便,安全环保,适用于大规模生产。

晶体外延生长法是指利用晶格匹配,在一个晶体结构上生长出另一个晶体,这种方法可制得较大表面积、高质量的石墨烯,但是石墨烯的生长机理并未探明,并且和微机械剥离法相比,晶体外延生长法制备的石墨烯具有很高的载流子迁移率,却观测不到量子霍尔效应。

化学气相沉积法以金属为衬底,石墨烯与衬底的相互作用对石墨烯制备生长及各种性质影响非常明显,因此,可通过衬底的选择、生长温度、前驱物的量等参数对其进行调控,但过程繁琐。

氧化还原法是先将石墨氧化得到层状氧化石墨,再将氧化石墨片剥离开而形成石墨烯片,但由于石墨烯单片之间有较强的范德华力,在没有任何保护剂的条件下,石墨烯之间容易产生团聚和堆砌。

氧化还原法主要包括Standenmaier 法,Brodie法,Hummers 法等,其中Hummers 法受到了广泛的应用,科研工作者利用改进的Hummers 法制备不同要求的石墨烯材料。

例如,黄等人利用改进的Hummers 法,以石墨粉为原料,控制合适的温度和其他实验条件制备氧化石墨,再将得到的氧化石墨置于微波炉内,用微波还原法制备了具有很高还原程度和比表面积的石墨烯。

并且通过改变不同的温度发现,当高温阶段氧化温度为90℃时,氧化石墨被氧化的最完全,得到的石墨烯还原程度也最大,但该方法还处于理论研究阶段并未用于大规模工业生产。

由于微机械剥离法、晶体外延生长法、气相沉积法以及氧化还原法都具有一定的局限性,难以实现石墨烯的大尺寸可控制备。

所以目前急需一种可以实现石墨烯的大规模可控制备方法,光催化法还原法通过选择特定的催化金属及实验条件,满足了可控制备石墨烯的要求。

1.2.3 石墨烯的功能化石墨烯制备技术的不断完善为石墨烯的基础研究和应用开发提供了有力保障。

但是石墨烯在应用方面还面临着另一个重要的挑战,即如何实现其可控功能化,功能化是实现石墨烯分散、溶解和成型加工的最重要手段。

结构完整的石墨烯表面呈惰性状态与其他介质(如溶剂等)的相互作用较弱、化学稳定性极高,并且石墨烯的片与片之间有较强的范德华力,容易产生聚集,使其在水和乙醇等常用的有机溶剂中难于分散。

这给石墨烯的进一步研究和应用造成了很大的困难。

为了充分发挥其优良性质,必须对石墨烯进行有效的功能化,就是利用石墨烯在制备时表面产生的基团和缺陷通过非共价、共价和掺杂等方法,改变石墨烯的表面性质。

石墨烯的功能化包括石墨烯的共价键功能化和非共价键功能化。

而石墨烯的共价键功能化是现今较为广泛的方法,它包括石墨烯的有机小分子功能化、聚合物功能化、石墨烯杂化等。

共价键修饰的优点是在增加石墨烯的可加工性的同时,给石墨烯赋予新的功能。

如Stankovich等用异氰酸酯与氧化石墨上的羧基和羟基反应,通过有机小分子功能化,得到了具有异氰酸酯功能化的石墨烯。

该功能化石墨烯不仅可以在N,N-二甲基甲酰胺等多种极性非质子溶剂中实现均匀分散,而且能够长时间保持稳定。

除了石墨烯共价键功能化外,还可以根据石墨烯∏键功能化、离子键功能化、氢键功能化等进行非共价键功能化。

非共价键功能化的优点是能保持石墨烯本身的结构和性质。

例如,Penicaud等将制备的碱金属石墨层间化合物在溶剂中剥离,利用钾离子和石墨烯上羧基离子间的作用,通过离子键功能化使石墨烯稳定均匀地分散到极性溶剂中。

近年来,石墨烯的功能化已经取得了较大进展,但是要真正实现其可控功能化和产业化应用,还需进一步加以研究。

1.2.4 石墨烯的应用石墨烯材料及其功能化材料可广泛的应用于场效应晶体管(FET)、光伏电池、超级电容器等光电功能材料与器件、聚合物纳米材料、生物医药、能源、环境等领域。

如在乙二醇中机械混合石墨烯与SnO2,制备出的石墨烯化合物具有很好的放电容量,且其充放电的循环性很好,即使经过30次的充放电循环后,依旧具有很大的比容量,这种石墨烯复合材料已经逐渐被应用于光电材料行业。

再如,具有生物相容性的聚乙二醇功能化石墨烯的制备,开启了石墨烯在生物医学方面的应用。

这种石墨烯材料能够在血浆中保持稳定分散,并且利用∏-∏相互作用可以将抗肿瘤药物负载到石墨烯上。

此外,由于石墨烯的层状结构,石墨烯化合物也被用于生物膜方面。

如利用稳定的石墨烯单片为衬底,通过银镜反应制备的纳米粒子膜具有非常柔软的性质、很高的反射率还具有拉曼增强的效果,因此,这种纳米银离子膜可以加工成具有很高反射率的宏观膜。

随着生物技术的不断发展,研究发现石墨烯的厚度小于DNA链中相邻碱基之间的距离以及DNA四种碱基之间存在电子指纹,因此,石墨烯有望实现直接的,快速的,低成本的基因电子测序技术,并且研究人员发现细菌的细胞在石墨烯上无法生长,而人类的细胞却不会受损,利用这一点石墨烯可以用来做绷带,食品包装甚至抗菌T恤。

石墨烯基复合材料不但在电子器件、超级电容器以及传感器方面具有巨大应用前景,而且在环境污染控制领域具有很大应用潜力,如光催化降解有机污染物、减少噪音等。

如通过重叠2层石墨烯层使之产生强电子结合,得到的新型晶体管,可以大幅度降低纳米元件特有的1/f,从而能够控制噪音。

将石墨烯与半导体光催化剂结合,石墨烯的比表面积能极大地促进有机污染物的吸附,从而控制环境污染。

当然,随着对石墨烯材料的不断深入研究,其越来越多的应用将被逐渐展开,未来社会对石墨烯的依赖将会大大加深。

1.3 石墨烯光催化复合材料纳米材料被广泛认为是“二十一世纪最具前途的材料”。

由于石墨烯优异的物理和化学性能以及石墨烯稳定的制备方法为石墨烯复合材料的研究奠定了坚实的基础,石墨烯的复合材料已经在电子学、高分子、光学、储能、磁学、生物医学、催化等诸多领域显示出了巨大的应用潜能,这些复合材料的制备也拓宽了石墨烯材料的研究领域,使得石墨烯材料往实际应用方面跨了更大一步。

相关文档
最新文档