立体几何表面积和体积习题(一)
空间几何体表面积和体积练习题

一、 知识回顾(1)棱柱、棱锥、棱台得表面积 = 侧面积 + ______________; (2)圆柱:r 为底面半径,l为母线长侧面积为_______________;表面积为_______________。
圆锥:r 为底面半径,l 为母线长侧面积为_______________;表面积为_______________。
圆台:r ’、r 分别为上、下底面半径,l为母线长侧面积为_______________;表面积为_______________.(3)柱体体积公式:________________________;(S 为底面积,h 为高)锥体体积公式:________________________;(S 为底面积,h为高) 台体体积公式:________________________;(S ’、S 分别为上、下底面面积,h为高) 二、 例题讲解题1:如图(1)所示,直角梯形ABC D绕着它得底边AB 所在得直线旋转一周所得得几何体得表面 积就是______________;体积就是______________、 图(1)题2:若一个正三棱柱得三视图如图(2)所示,求这个正三棱柱得表面积与体积图(2) 题3:如图(3)所示,在多面体ABCDE F中,已知ABCD 就是边长为1得正方形,且,均为正三角形,EF//AB,EF=2,则该多面体得体积为( )A 。
B. C. D.图(3)1、若圆柱得侧面积展开图就是长为6c m,宽为4cm 得矩形,则该圆柱得体积为 2、如图(4),在正方体中, 棱长为2,E为得中点,则三棱锥得体积就是____________. 图(4)3、已知某几何体得俯视图就是如图(5)所示得矩形,正视图(或称主视图)就是一个底边长为8、高为4得等腰三E A B D CF 左视图 俯视图 主视图 2 CB AD C 1 B 1E A 1 D 1 4 8 3 A D C B角形,侧视图(或称左视图)就是一个底边长为6、高为4得等腰三角形。
湖南省2020年高考数学第二轮复习 专题五 立体几何第1讲 空间几何体的三视图、表面积及体积 文

专题五立体几何第1讲空间几何体的三视图、表面积及体积真题试做1.(2020·湖南高考,文4)某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是( ).图12.(2020·天津高考,文10)一个几何体的三视图如图所示(单位:m),则该几何体的体积为__________ m3.3.(2020·湖北高考,文15)已知某几何体的三视图如图所示,则该几何体的体积为______.4.(2020·湖北高考,文19)某个实心零部件的形状是如图所示的几何体,其下部是底面均是正方形,侧面是全等的等腰梯形的四棱台A1B1C1D1ABCD,上部是一个底面与四棱台的上底面重合,侧面是全等的矩形的四棱柱ABCDA2B2C2D2.(1)证明:直线B1D1⊥平面ACC2A2;(2)现需要对该零部件表面进行防腐处理.已知AB=10,A1B1=20,AA2=30,AA1=13(单位:厘米),每平方厘米的加工处理费为0.20元,需加工处理费多少元?考向分析通过对近几年高考试题的分析可看出,空间几何体的命题形式比较稳定,多为选择题或填空题,有时也出现在解答题的某一问中,题目常为中、低档题.考查的重点是直观图、三视图、面积与体积等知识,此类问题多为考查三视图的还原问题,且常与空间几何体的表面积、体积等问题交会,是每年的必考内容.预计在2020年高考中:对空间几何体的三视图的考查有难度加大的趋势,通过此类题考查考生的空间想象能力;对表面积和体积的考查,常见形式为蕴涵在两几何体的“切”或“接”形态中,或以三视图为载体进行交会考查,此块内容还要注意强化几何体的核心——截面以及补形、切割等数学思想方法的训练.热点例析热点一空间几何体的三视图与直观图【例1】(1)将长方体截去一个四棱锥,得到的几何体如下图所示,则该几何体的侧(左)视图为( ).(2)若某几何体的三视图如下图所示,则这个几何体的直观图可以是( ).规律方法 (1)三视图的正(主)视图、侧(左)视图、俯视图分别是从物体的正前方、正左方、正上方看到的物体轮廓线的正投影围成的平面图形,反映了一个几何体各个侧面的特点.正(主)视图反映物体的主要形状特征,是三视图中最重要的视图;俯视图要和正(主)视图对正,画在正(主)视图的正下方;侧(左)视图要画在正(主)视图的正右方,高度要与正(主)视图平齐;(2)要注意到在画三视图时,能看到的轮廓线画成实线,看不到的轮廓线画成虚线; (3)A .32B .16+16 2C .48 D.16+32 2(2)一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则这个平面图形的面积是( ).A.12+22 B .1+22 C .1+ 2 D .2+ 2 热点二 空间几何体的表面积与体积【例2】(2020·福建高考,文20)如图,在四棱锥P ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,点E 在线段AD 上,且CE ∥AB .(1)求证:CE ⊥平面PAD ;(2)若PA =AB =1,AD =3,CD =2,∠CDA =45°,求四棱锥P ABCD 的体积.规律方法 (1)求几何体的体积问题,可以多角度、多方位地考虑.对于规则的几何体的体积,如求三棱锥的体积,采用等体积转化是常用的方法,转化的原则是其高与底面积易求;对于不规则几何体的体积常用割补法求解,即将不规则几何体转化为规则几何体,以易于求解.(2)求解几何体的表面积时要注意S 表=S 侧+S 底.(3)对于给出几何体的三视图,求其体积或表面积的题目关键在于要还原出空间几何体,并能根据三视图的有关数据和形状推断出空间几何体的线面关系及相关数据,至于体积或表面积的求解套用对应公式即可.变式训练2 已知某几何体的三视图如下图所示,其中正(主)视图中半圆的半径为1,则该几何体的体积为( ).A .24-32πB .24-13πC .24-πD .24-12π热点三 多面体与球【例3】已知正四棱锥的底面边长为a ,侧棱长为2a . (1)求它的外接球的体积; (2)求它的内切球的表面积.规律方法 (1)涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点或线作截面,把空间问题化归为平面问题,再利用平面几何知识寻找几何体中元素间的关系.(2)若球面四点P ,A ,B ,C 构成的线段PA ,PB ,PC 两两垂直,且PA =a ,PB =b ,PC =c ,则4R 2=a 2+b 2+c 2,把有关元素“补形”成为一个球内接正方体(或其他图形),从而显示出球的数量特征,这种方法是一种常用的好方法.变式训练3 如图所示,在四棱锥P ABCD 中,底面ABCD 是边长为a 的正方形,PD ⊥底面ABCD ,且PD =a ,PA =PC =2a .若在这个四棱锥内放一球,则此球的最大半径是__________.思想渗透立体几何中的转化与化归思想求空间几何体的体积时,常常需要对图形进行适当的构造和处理,使复杂图形简单化,非标准图形标准化,此时转化与化归思想就起到了至关重要的作用.利用转化与化归思想求空间几何体的体积主要包括割补法和等体积法,具体运用如下:(1)补法是指把不规则的(不熟悉或复杂的)几何体延伸或补成规则(熟悉的或简单的)的几何体,把不完整的图形补成完整的图形;(2)割法是指把复杂的(不规则的)几何体切割成简单的(规则的)几何体;(3)等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件转化为易求的面积(体积)问题.【典型例题】如图,在直三棱柱ABC A 1B 1C 1中,AB =AC =5,BB 1=BC =6,D ,E 分别是AA 1和B 1C 的中点.(1)求证:DE ∥平面ABC ; (2)求三棱锥E BCD 的体积.(1)证明:取BC 中点G ,连接AG ,EG .因为E 是B 1C 的中点,所以EG ∥BB 1,且EG =12BB 1.由直棱柱知,AA 1BB 1.而D 是AA 1的中点,所以EG AD ,所以四边形EGAD 是平行四边形,所以ED ∥AG . 又DE 平面ABC ,AG ⊂平面ABC , 所以DE ∥平面ABC .(2)解:因为AD ∥BB 1,所以AD ∥平面BCE , 所以V E BCD =V D BCE =V A BCE =V E ABC .由(1)知,DE ∥平面ABC ,所以V E ABC =V D ABC =13AD ·12BC ·AG =16×3×6×4=12.1.(2020·山东济南三月模拟,4)如图,正三棱柱ABC A 1B 1C 1的各棱长均为2,其正(主)视图如图所示,则此三棱柱侧(左)视图的面积为( ).A .2 2B .4 C. 3 D .2 32.(2020·安徽安庆二模,7)一空间几何体的三视图如图所示(正(主)、侧(左)视图是两全等图形,俯视图是圆及圆的内接正方形),则该几何体的表面积是( ).A .7π cm 2B .(5π+43)cm 2C .(5π+23)cm 2D .(6π+27-2)cm 23.(2020·北京丰台区三月月考,4)若某空间几何体的三视图如图所示,则该几何体的体积是( ).A .20-2πB .20-23πC .40-23πD .40-43π4.(2020·湖南株洲下学期质检,14)一个三棱锥的正(主)视图、侧(左)视图、俯视图如下,则这个三棱锥的体积为__________,其外接球的表面积为__________.5.已知正四面体的外接球半径为1,则此正四面体的体积为__________.6.正六棱锥P ABCDEF 中,G 为PB 的中点,则三棱锥D GAC 与三棱锥P GAC 体积之比为__________.7.如图,在等腰梯形ABCD 中,AB =2DC =2,∠DAB =60°,E 为AB 的中点,将△ADE 与△BEC 分别沿ED ,EC 向上折起,使A ,B 重合,求形成三棱锥的外接球的体积.参考答案命题调研·明晰考向真题试做1.C 解析:若为C 选项,则主视图为:故不可能是C 选项.2.30 解析:由几何体的三视图可知:该几何体的上部为平放的直四棱柱,底部为长、宽、高分别为4 m,3 m,2 m 的长方体.∴几何体的体积V =V 直四棱柱+V 长方体=(1+2)×12×4+4×3×2=6+24=30(m 3).3.12π 解析:该几何体是由3个圆柱构成的几何体,故体积V =2×π×22×1+π×12×4=12π.4.解:(1)因为四棱柱ABCD A 2B 2C 2D 2的侧面是全等的矩形,所以AA 2⊥AB ,AA 2⊥AD .又因为AB ∩AD =A ,所以AA 2⊥平面ABCD . 连接BD ,因为BD ⊂平面ABCD ,所以AA 2⊥BD . 因为底面ABCD 是正方形,所以AC ⊥BD .又已知平面ABCD ∥平面A 1B 1C 1D 1,且平面BB 1D 1D ∩平面ABCD =BD , 平面BB 1D 1D ∩平面A 1B 1C 1D 1=B 1D 1,所以B 1D 1∥BD .于是由AA 2⊥BD ,AC ⊥BD ,B 1D 1∥BD ,可得AA 2⊥B 1D 1,AC ⊥B 1D 1. 又因为AA 2∩AC =A ,所以B 1D 1⊥平面ACC 2A 2.(2)因为四棱柱ABCD A 2B 2C 2D 2的底面是正方形,侧面是全等的矩形,所以S 1=S 四棱柱上底面+S四棱柱侧面=(A 2B 2)2+4AB ·AA 2=102+4×10×30=1 300(cm 2).又因为四棱台A 1B 1C 1D 1ABCD 的上、下底面均是正方形,侧面是全等的等腰梯形(其高为h ),所以S 2=S 四棱台下底面+S 四棱台侧面=(A 1B 1)2+4×12(AB +A 1B 1)h=202+4×12×(10+20)132-⎣⎢⎡⎦⎥⎤12×(20-10)2=1 120(cm 2).于是该实心零部件的表面积为S =S 1+S 2=1 300+1 120=2 420(cm 2), 故所需加工处理费为0.2S =0.2×2 420=484(元). 精要例析·聚焦热点热点例析【例1】 (1)D (2)B 解析:(1)被截去的四棱锥的三条可见侧棱中有两条为正方体的面对角线,它们在右侧面上的投影与右侧面(正方形)的两条边重合,另一条为正方体的对角线,它在右侧面上的投影与右侧面的对角线重合,对照各图及对角线方向,只有选项D 符合.(2)由正(主)视图可排除A ,C ;由侧(左)视图可判断该几何体的直观图是B.【变式训练1】 (1)B (2)D 解析:(1)由三视图知原几何体是一个底面边长为4,高是2的正四棱锥.如图:∵AO =2,OB =2,∴AB =2 2.又∵S 侧=4×12×4×22=162,S 底=4×4=16,∴S 表=S 侧+S 底=16+16 2.(2)如图,设直观图为O ′A ′B ′C ′,建立如图所示的坐标系,按照斜二测画法的规则,在原来的平面图形中,OC ⊥OA ,且OC =2,BC =1,OA =1+2×22=1+2,故其面积为12×(1+1+2)×2=2+ 2.【例2】 (1)证明:因为PA ⊥平面ABCD ,CE ⊂平面ABCD ,所以PA ⊥CE .因为AB ⊥AD ,CE ∥AB ,所以CE ⊥AD . 又PA ∩AD =A ,所以CE ⊥平面PAD . (2)解:由(1)可知CE ⊥AD .在Rt△ECD 中,DE =CD ·cos 45°=1,CE =CD ·sin 45°=1. 又因为AB =CE =1,AB ∥CE , 所以四边形ABCE 为矩形.所以S 四边形ABCD =S 矩形ABCE +S △ECD =AB ·AE +12CE ·DE =1×2+12×1×1=52.又PA ⊥平面ABCD ,PA =1,所以V 四棱锥P ABCD =13S 四边形ABCD ·PA =13×52×1=56.【变式训练2】 A 解析:由三视图可知该几何体为一个长、宽、高分别为4,3,2的长方体,剖去一个半圆柱而得到的几何体,其体积为2×3×4-12π×1×3,即24-32π.【例3】 解:如图所示,△SAC 的外接圆是外接球的一个大圆,∴只要求出这个外接圆的半径即可,而内切球的球心到棱锥的各个面的距离相等,∴可由正四棱锥的体积求出其半径.(1)设外接球的半径为R ,球心为O ,则OA =OC =OS ,∴O 为△SAC 的外心,即△SAC 的外接圆半径就是球的半径. ∵AB =BC =a ,∴AC =2a .∵SA =SC =AC =2a ,∴△SAC 为正三角形.由正弦定理得2R =AC sin∠ASC =2a sin 60°=263a ,因此R =63a ,V 外接球=43πR 3=8627πa 3. (2)如图,设内切球的半径为r ,作SE ⊥底面于E ,作SF ⊥BC 于F ,连接EF , 则有SF =SB 2-BF 2=(2a )2-⎝ ⎛⎭⎪⎫a 22=72a ,S △SBC =12BC ·SF =12a ×72a =74a 2, S 棱锥全=4S △SBC +S 底=(7+1)a 2.又SE =SF 2-EF 2=⎝ ⎛⎭⎪⎫72a 2-⎝ ⎛⎭⎪⎫a 22=62a ,∴V 棱锥=13S 底·SE =13a 2×62a =66a 3,∴r =3V 棱锥S 棱锥全=3×66a 3(7+1)a 2=42-612a ,S 内切球=4πr 2=4-73πa 2. 【变式训练3】 12(2-2)a 解析:当且仅当球与四棱锥的各个面都相切时,球的半径最大.设放入的球的半径为r ,球心为O ,连接OP ,OA ,OB ,OC ,OD ,则把此四棱锥分割成四个三棱锥和一个四棱锥,这些小棱锥的高都是r ,底面分别为原四棱锥的侧面和底面,则V P ABCD =13r (S △PAB +S △PBC +S △PCD +S △PAD +S 正方形ABCD )=13r (2+2)a 2.由题意知PD ⊥底面ABCD ,∴V P ABCD =13S 正方形ABCD ·PD =13a 3.由体积相等,得13r (2+2)a 2=13a 3,解得r =12(2-2)a .创新模拟·预测演练1.D2.D 解析:据三视图可判断该几何体是由一个圆柱和一个正四棱锥组合而成的,直观图如图所示:易求得表面积为(6π+27-2)cm 2.3.B 解析:由三视图可知该几何体的直观图为一个正四棱柱,从上表面扣除半个内切球.易求出正四棱柱的底面边长为2,内切球的半径为1,故体积为2×2×5-23π=20-2π3.4.4 29π 5.827 3 解析:首先将正四面体补形为一个正方体,设正四面体棱长为a ,则其对应正方体的棱长为22a ,且由球与正方体的组合关系易知3⎝ ⎛⎭⎪⎫22a 2=(1×2)2,解得a 2=83, ∴正四面体的体积为V =⎝ ⎛⎭⎪⎫22a 3-4×13×12×⎝ ⎛⎭⎪⎫22a 3=13⎝ ⎛⎭⎪⎫22a 3=827 3.6.2∶1 解析:由正六棱锥的性质知,点P 在底面内的射影是底面的中心,也是线段AD的中点.又G 为PB 的中点,设P 点在底面内的射影为O ,则G 点在底面内的射影为OB 的中点M ,且GM ∥PO .又M 为AC 的中点,则GM ⊂平面GAC ,所以点P 到平面GAC 的距离等于点O 到平面GAC 的距离.又因为OM ⊥平面GAC ,DC ⊥平面GAC ,且DC =2OM ,则V D GAC V P GAC =13S △GAC ×DC13S △GAC ×OM =2.7.解:由已知条件知,平面图形中AE =EB =BC =CD =DA =DE =EC =1,∴折叠后得到一个棱长为1的正三棱锥(如图). 方法一:作AF ⊥平面DEC ,垂足为F , F 即为△DEC 的中心,取EC 中点G ,连接DG ,AG , 过球心O 作OH ⊥平面AEC , 则垂足H 为△AEC 的中心,∴外接球半径可利用△OHA ∽△AFG 求得. ∵AG =32,AF =1-⎝⎛⎭⎪⎫332=63,AH =33, ∴OA =AG ·AHAF =32×3363=64,∴外接球体积为43π×OA 3=43·π·6643=68π.方法二:如图,把棱长为1的正三棱锥放在正方体中,显然,棱长为1的正三棱锥的外接球就是正方体的外接球.∵正方体棱长为22, ∴外接球直径2R =3·22, ∴R =64,∴体积为43π·⎝ ⎛⎭⎪⎫643=68π.。
(完整版)空间几何体的表面积与体积练习题.及答案

For personal use only in study and research; not forcommercial use空间几何体的表面积与体积专题一、选择题1.棱长为2的正四面体的表面积是( C ).A. 3 B .4 C .4 3 D .16解析 每个面的面积为:12×2×2×32= 3.∴正四面体的表面积为:4 3.2.把球的表面积扩大到原来的2倍,那么体积扩大到原来的 ( B ). A .2倍 B .22倍 C.2倍 D.32倍解析 由题意知球的半径扩大到原来的2倍,则体积V =43πR 3,知体积扩大到原来的22倍.3.如图是一个长方体截去一个角后所得多面体的三视图,则该多面体的体积为( B ). A.1423 B.2843 C.2803D.1403解析 根据三视图的知识及特点,可画出多面体 的形状,如图所示.这个多面体是由长方体截去 一个正三棱锥而得到的,所以所求多面体的体积 V =V 长方体-V 正三棱锥=4×4×6-13×⎝ ⎛⎭⎪⎫12×2×2×2=2843. 4.某几何体的三视图如下,则它的体积是( A) A .8-2π3 B .8-π3C .8-2π D.2π3解析 由三视图可知该几何体是一个边长为2的正方体内部挖去一个底面半径为1,高为2的圆锥,所以V =23-13×π×2=8-2π3.5.已知某几何体的三视图如图,其中正视图中半圆的半径为1,则该几何体的体积为( A)A .24-32π B .24-π3 C .24-π D .24-π2据三视图可得几何体为一长方体内挖去一个半圆柱,其中长方体的棱长分别为:2,3,4,半圆柱的底面半径为1,母线长为3,故其体积V =2×3×4-12×π×12×3=24-3π2.6.某品牌香水瓶的三视图如图 (单位:cm),则该几何体的表面积为( C )A.⎝ ⎛⎭⎪⎫95-π2 cm 2B.⎝ ⎛⎭⎪⎫94-π2 cm 2C.⎝ ⎛⎭⎪⎫94+π2 cm 2D.⎝⎛⎭⎪⎫95+π2 cm 2解析 这个空间几何体上面是一个四棱柱、中间部分是一个圆柱、下面是一个四棱柱.上面四棱柱的表面积为2×3×3+12×1-π4=30-π4;中间部分的表面积为2π×12×1=π,下面部分的表面积为2×4×4+16×2-π4=64-π4.故其表面积是94+π2.7.已知球的直径SC =4,A ,B 是该球球面上的两点,AB =3,∠ASC =∠BSC =30°,则棱锥S-ABC 的体积为( C).A .3 3B .2 3 C. 3 D .1解析 由题可知AB 一定在与直径SC 垂直的小圆面上,作过AB 的小圆交直径SC 于D ,设SD =x ,则DC =4-x ,此时所求棱锥即分割成两个棱锥S-ABD 和C-ABD ,在△SAD 和△SBD 中,由已知条件可得AD =BD =33x ,又因为SC 为直径,所以∠SBC =∠SAC =90°,所以∠DCB =∠DCA =60°,在△BDC 中 ,BD =3(4-x ),所以33x =3(4-x ),所以x =3,AD =BD =3,所以三角形ABD 为正三角形,所以V =13S △ABD ×4= 3.二、填空题8.三棱锥PABC 中,PA ⊥底面ABC ,PA =3,底面ABC 是边长为2的正三角形,则三棱锥PABC 的体积等于__3______.解析 依题意有,三棱锥PABC 的体积V =13S △ABC ·|PA |=13×34×22×3= 3.9.一个圆柱的轴截面是正方形,其侧面积与一个球的表面积相等,那么这个圆柱的体积与这个球的体积之比为_ 3∶2_______.解析 设圆柱的底面半径是r ,则该圆柱的母线长是2r ,圆柱的侧面积是2πr ·2r =4πr 2,设球的半径是R ,则球的表面积是4πR 2,根据已知4πR 2=4πr 2,所以R =r .所以圆柱的体积是πr 2·2r=2πr 3,球的体积是43πr 3,所以圆柱的体积和球的体积的比是2πr 343πr 3=3∶2.10.如图所示,已知一个多面体的平面展开图由一个边长为1的正方形和4个边长为1的正三角形组成,则该多面体的体积是___26_____. 解析 由题知该多面体为正四棱锥,底面边长为1,侧棱长为1,斜高为32,连接顶点和底面中心即为高,可求得高为22,所以体积V =13×1×1×22=26. 11.如图,半径为R 的球O 中有一内接圆柱.当圆柱的侧面积最大时,球的表面积与该圆柱的侧面积之差是____2πR 2____.解析 由球的半径为R ,可知球的表面积为4πR 2.设内接圆柱底面半径为r ,高为2h ,则h 2+r 2=R 2.而圆柱的侧面积为2πr ·2h =4πrh ≤4πr 2+h 22=2πR 2(当且仅当r =h 时等号成立),即内接圆柱的侧面积最大值为2πR 2,此时球的表面积与内接圆柱的侧面积之差为2πR 2.12.如图,已知正三棱柱ABCA 1B 1C 1的底面边长为2 cm ,高为5 cm ,则一质点自点A 出发,沿着三棱柱的侧面绕行两周到达点A 1的最短路线的长为___13_____cm. 解析 根据题意,利用分割法将原三棱柱分割为两个相同的三棱柱,然后将其展开为如图所示的实线部分,则可知所求最短路线的长为52+122=13 (cm). 三、解答题13.某高速公路收费站入口处的安全标识墩如图1所示,墩的上半部分是正四棱锥PEFGH ,下半部分是长方体ABCDEFGH .图2、图3分别是该标识墩的正视图和俯视图. (1)请画出该安全标识墩的侧视图; (2)求该安全标识墩的体积.解析 (1)侧视图同正视图,如图所示:(2)该安全标识墩的体积为V =V PEFGH +V ABCDEFGH =13×402×60+402×20=64 000(cm 3).14 .一个几何体的三视图如图所示.已知正视图是底边长为1的平行四边形,侧视图是一个长为3,宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形.(1)求该几何体的体积V ;(2)求该几何体的表面积S.解析 (1)由三视图可知,该几何体是一个平行六面体(如图),其底面是边长为1的正方形,高为3,所以V =1×1×3= 3.(2)由三视图可知,该平行六面体中,A1D ⊥平面ABCD ,CD ⊥平面BCC1B1, 所以AA1=2,侧面ABB1A1,CDD1C1均为矩形, S =2×(1×1+1×3+1×2)=6+2 3.15.已知某几何体的俯视图是如右图所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形.(1)求该几何体的体积V ;(2)求该几何体的侧面积S .解析 由题设可知,几何体是一个高为4的四棱锥,其底面是长、宽分别为8和6的矩形,正侧面及其相对侧面均为底边长为8,高为h 1的等腰三角形,左、 右侧面均为底边长为6,高为h 2的等腰三角形,如右图所示. (1)几何体的体积为:V =13·S 矩形·h =13×6×8×4=64.(2)正侧面及相对侧面底边上的高为:h 1=42+32=5.左、右侧面的底边上的高为:h 2=42+42=4 2.故几何体的侧面面积为:S =2×⎝ ⎛⎭⎪⎫12×8×5+12×6×42=40+24 2. 1.一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是( ). .解:设展开图的正方形边长为a ,圆柱的底面半径为r ,则2πr =a ,2ar π=,底面圆的面积是24a π,于是全面积与侧面积的比是2221222a a a πππ++=, 2.在棱长为 1 的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去与8个顶点相关的8个三棱锥后 ,剩下的几何体的体积是( ).2.解:正方体的体积为1,过共顶点的三条棱中点的平面截该正方体截得的三棱锥的体积是111111()3222248⨯⨯⨯⨯=,于是8个三棱锥的体积是61,剩余部分的体积是65, 3.一个直棱柱(侧棱垂直于底面的棱柱)的底面是菱形,对角线长分别是6cm 和8cm ,高是5cm ,则这个直棱柱的全面积是 。
体积与表面积之练习题计算几何体的体积和表面积

体积与表面积之练习题计算几何体的体积和表面积在几何学中,计算物体的体积和表面积是非常重要的任务。
对于不同形状的几何体,我们需要掌握不同的计算方法。
本文将通过练习题的方式,帮助读者巩固对体积和表面积的计算方法的理解和掌握。
一、长方体的体积和表面积计算长方体是最基本的几何体之一,其具有长方形的底面和平行于底面的六个矩形侧面。
下面我们来计算一个长方体的体积和表面积。
例题1:一个长方体的长、宽、高分别为6cm、4cm、3cm,求其体积和表面积。
解:首先计算体积。
长方体的体积公式为V = 长 ×宽 ×高。
代入已知的数值,可得V = 6cm × 4cm × 3cm = 72cm³。
接下来计算表面积。
长方体的表面积公式为A = 2(长 ×宽 + 长 ×高+ 宽 ×高)。
代入已知的数值,可得A = 2(6cm × 4cm + 6cm × 3cm +4cm × 3cm) = 120cm²。
所以该长方体的体积为72cm³,表面积为120cm²。
二、圆柱体的体积和表面积计算圆柱体是一个底面为圆,侧面为平行于底面的矩形的几何体。
下面我们来计算一个圆柱体的体积和表面积。
例题2:一个圆柱体的底面直径为10cm,高为8cm,求其体积和表面积(取π ≈ 3.14)。
解:首先计算体积。
圆柱体的体积公式为V = πr²h,其中r为底面半径,h为高。
底面直径为10cm,那么半径为r = 10cm/2 = 5cm。
代入已知的数值,可得V = 3.14 × (5cm)² × 8cm = 628cm³。
接下来计算表面积。
圆柱体的表面积公式为A = 2πrh + 2πr²。
代入已知的数值,可得A = 2 × 3.14 × 5cm × 8cm + 2 × 3.14 × (5cm)² =376cm²。
立体几何练习题及答案

立体几何练习题及答案立体几何练习题及答案立体几何是数学中的一个重要分支,它研究的是空间中的几何形体。
在我们的日常生活中,立体几何无处不在,比如建筑物、雕塑、家具等。
掌握立体几何的基本概念和解题方法,不仅可以提高我们的空间想象能力,还能帮助我们解决实际问题。
下面,我将给大家提供一些立体几何的练习题及答案,希望能对大家的学习有所帮助。
1. 题目:一个正方体的体积是64立方单位,求它的边长。
解答:设正方体的边长为a,则根据正方体的性质可知,它的体积等于边长的立方,即a³=64。
两边开立方根,得到a=4。
所以,这个正方体的边长是4个单位。
2. 题目:一个圆柱的底面半径为3cm,高为8cm,求它的体积和表面积。
解答:圆柱的体积公式为V=πr²h,其中r是底面半径,h是高。
代入已知条件,可得V=π×3²×8=72π。
所以,这个圆柱的体积是72π立方厘米。
圆柱的表面积公式为A=2πrh+2πr²。
代入已知条件,可得A=2π×3×8+2π×3²=48π+18π=66π。
所以,这个圆柱的表面积是66π平方厘米。
3. 题目:一个球的半径为5cm,求它的体积和表面积。
解答:球的体积公式为V=4/3πr³,其中r是半径。
代入已知条件,可得V=4/3π×5³=500/3π。
所以,这个球的体积是500/3π立方厘米。
球的表面积公式为A=4πr²。
代入已知条件,可得A=4π×5²=100π。
所以,这个球的表面积是100π平方厘米。
4. 题目:一个圆锥的底面半径为6cm,高为10cm,求它的体积和表面积。
解答:圆锥的体积公式为V=1/3πr²h,其中r是底面半径,h是高。
代入已知条件,可得V=1/3π×6²×10=120π。
所以,这个圆锥的体积是120π立方厘米。
第8讲立体几何计算(几何体的表面积与体积)

第8讲立体几何计算(几何体的表面积与体积)一.基础知识回顾1.多面体的表面积:(1)设直棱柱高为h ,底面多边形的周长为c ,则S 直棱柱侧=______.(2)设正n 棱锥底面边长为a ,底面周长为c ,斜高为h ′,则S 正棱锥侧=____________(3)设正n 棱台下底面边长为a ,周长为c ,上底面边长为a ′,周长为c ′,斜高为h ′,则 S 正棱台侧=__________(4)设圆柱的母线长为l ,底面圆的半径为r,则S 圆柱侧= (5)设圆锥的母线长为l ,底面圆的半径为r,则S 圆锥侧= (6)设圆台的母线长为l ,上底面圆的半径为r 1, 下底面圆半径为r 2 则S 圆台侧=(4)设球的半径为R ,则S 球=____________.2.几何体的体积公式(1)柱体的体积V 柱体=______(其中S 为柱体的底面面积,h 为高). 特别地,底面半径是r ,高是h 的圆柱体的体积V 圆柱=πr 2h.(2)锥体的体积V 锥体=________(其中S 为锥体的底面面积,h 为高).特别地,底面半径是r ,高是h 的圆锥的体积V 圆锥=13πr 2h. (3)台体的体积V 台体=______________(其中S ′,S 分别是台体上、下底面的面积,h 为高).特别地,上、下底面的半径分别是r ′、r ,高是h 的圆台的体积V 圆台=13πh(r 2+rr ′+r ′2). (4)球的体积V 球=__________(其中R 为球的半径).二.典例精析探究点一:空间中的平行与体积计算例1:如图,直三棱柱ABC -A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点.(1)证明:BC 1∥平面A 1CD ;(2)设AA 1=AC =CB =2,AB =22,求三棱锥C -A 1DE 的体积.变式迁移1:如图四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形,O 是底面中心,A 1O ⊥底面ABCD ,AB =AA 1= 2.(1)证明:平面A 1BD ∥平面CD 1B 1;(2)求三棱柱ABD -A 1B 1D 1的体积.探究点二:空间中的垂直与体积计算例2:如图四棱锥P -ABCD 的底面ABCD 是边长为2的菱形,∠BAD =60°,已知PB =PD =2,PA = 6.(1)证明:PC ⊥BD ;(2)若E 为PA 的中点,求三棱锥P -BCE 的体积.变式迁移2:如图所示,四棱锥P -ABCD 中,PA ⊥底面ABCD ,PA =2 3,BC =CD =2,∠ACB =∠ACD =π3. (1)求证:BD ⊥平面PAC ;(2)若侧棱PC 上的点F 满足PF =7FC ,求三棱锥P -BDF 的体积.探究点三:空间几何体证明计算其他问题例3:如图所示,直四棱柱ABCD -A 1B 1C 1D 1中,AB ∥CD ,AD ⊥AB ,AB =2,AD =2,AA1=3,E 为CD 上一点,DE =1,EC =3.(1)证明:BE ⊥平面BB 1C 1C ;(2)求点B 1到平面EA 1C 1的距离.变式迁移3:如图所示,四棱锥P —ABCD 中,∠ABC =∠BAD =90°,BC =2AD ,△PAB 和△PAD 都是边长为2的等边三角形.(1)证明:PB ⊥CD ;(2)求点A 到平面PCD 的距离.三.课后作业练习1.长方体的三个相邻面的面积分别为2,3,6,这个长方体的顶点都在同一个球面上,则这个球的表面积为( )A.72πB. 56πC. 14πD.64π2.已知两平行平面α,β间的距离为3,P∈α,边长为1的正三角形ABC 在平面β内,则三棱锥P —ABC 的体积为( )A .14B .12C .36D .343.从一个正方体中,如图那样截去4个三棱锥后,得到一个正三棱锥A —BCD ,则它的表面积与正方体表面积的比为( ) A .3∶3 B .2∶2 C .3∶6 D .6∶64.若两个球的表面积之比为1:4,则这两个球的体积之比为( )A .1:2B .1:4C .1:8D .1:165.右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( ) A .9π B .10π C .11π D .12π6.某几何体的三视图如下,则它的体积是( )A .8-2π3B .8-π3C .8-2πD .2π37.表面积为3π的圆锥,它的侧面展开图是一个半圆,则该圆锥的底面直径为________.8.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 为线段B 1C 上的一点,则三棱锥A -DED 1的体积为________.9.一个立方体的棱长为a ,则该立方体的外接球表面积为 ,内切球体积为 。
简单几何体的表面积与体积 测试题

简单几何体的表面积与体积测试题
1、有一个长方体,长为10cm,宽为6cm,高为15cm,求它的表面积和体积?
表面积=2×(10×6+10×15+6×15)=660平方厘米
体积=10×6×15=900立方厘米
2、有一个圆柱体,底面半径为5cm,高为10cm,求它的表面积和体积?
表面积=2×3.14×5×10+2×3.14×52=942.0平方厘米
体积=3.14×52×10=7850.0立方厘米
3、有一个圆锥体,底面半径为3cm,高为8cm,求它的表面积和体积?
表面积=2×3.14×3×8+2×3.14×32=150.72平方厘米
体积=3.14×32×8/3=75.36立方厘米
4、有一个长方体,长为12cm,宽为9cm,高为6cm,求它的表面积和体积?
表面积=2×(12×9+12×6+9×6)=432平方厘米
体积=12×9×6=648立方厘米
5、有一个正方体,边长为10cm,求它的表面积和体积?
表面积=6×102=600平方厘米
体积=103=1000立方厘米。
2020届江苏省镇江市统一高考数学第一轮复习学案(解析答案版):学案4.立体几何(1)表面积与体积

立体几何复习(1)空间几何体的表面积与体积教学目标:1.掌握锥、台、柱、球体的表面积公式及表面积的求法;2.掌握锥、台、柱、球体的体积公式及体积的求法.教学重点:掌握锥体、台体、柱体、球体的表面积与体积的计算方法,能计算简单组合体的表面积与体积,以便从量的角度认识空间几何体.教学难点:锥体、台体、柱体、球体的表面积与体积公式的应用.【知识清单】 1.空间几何体的表面积球的表面积2=4S R π球,其中R 为球的半径.2.空间几何体的体积球的体积34=3V R π球,R 为球的半径. 【例题精讲】类型1:空间几何体的表面积与侧面积例1:1.若圆锥底面半径为1,高为2,则圆锥的侧面积为 .【解析】根据圆锥底面半径、高、母线长构成一个直角三角形,所以母线长l,在根据圆锥的侧面积公式S rl π=.2.将一个正方形绕着它的一边所在的直线旋转一周,所得圆柱的体积为27πcm 3,则该圆柱的侧面积为 cm 2. 【答案】18【解析】设正方体棱长为a ,则正方形绕着它的一边所在的直线旋转一周,所得圆柱的体积为2327a a a πππ⨯==,3a =,圆柱侧面积22218S a a a πππ=⨯==.3.若圆锥的底面直径和高都与一个球的直径相等,圆锥、球的表面积分别记为, ,则12S S 的值是 .【解析】设球的直径为2R ,由题意可知,2211)S R R R πππ=+=,224S R π=,所以12S S =1S 2S )h 圆台备选题1:正三棱锥中,,D、E分别是棱SA、SB上的点,为边的中点,,则三角形CDE的面积为 .【解析】根据题意在正三棱锥中,为边的中点,故可得AB SCQ⊥平面,则AB SQ⊥,又由,故//DE AB,假设DE SQ F=,又在SCQ∆中,SC CQ SQ===CF=,故112CDES∆=⨯=.备选题2:圆锥的母线长为L,过顶点的最大截面的面积为12L2,则圆锥底面半径与母线长的比rL的取值范围是 .【答案】【解析】由题意得轴截面的顶角θ不小于π2,因为sinθ2=rL≥sinπ4=22,所以22≤rL<1.【思想方法归纳】圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.(1)找准几何体中各元素间的位置关系及数量关系.(2)注意组合体的表面积问题中重合部分的处理.类型2:空间几何体的体积例2:1.已知圆锥的母线长为5cm,侧面积为215cmπ,则此圆锥的体积为3cm.S ABC-2BC=SB=Q AB SQ CDE⊥平面S ABC-Q ABSQ CDE⊥平面【答案】12π【解析】已知圆锥的母线长为5cm ,侧面积为215cm π,所以圆锥的底面周长26cm π,底面半径是3cm ,圆锥的高是4cm ,此圆锥的体积为194123ππ⨯⨯=3cm .2.如图,在正四棱柱ABCD -A 1B 1C 1D 1中,AB =3 cm ,AA 1=1 cm ,则三棱锥D 1-A 1BD 的体积为 cm3.(例2-2)【答案】32【解析】∵在正四棱柱ABCD -A 1B 1C 1D 1中,AB =3cm ,AA 1=1 cm ,∴三棱锥11D A BD -的体积:1111113113313362D A BD B A D D A D D V V S AB cm --∆==⋅⋅=⨯⨯⨯=.3.如图,在直四棱柱1111ABCD A B C D -中,点,E F 分别在11,AA CC 上,且134AE AA =,113CF CC =,点,A C 到BD 的距离之比为3:2,则三棱锥E BCD -和F ABD -的体积比E BCDF ABDV V --= .(例2-3)【答案】32【解析】点,A C 到BD 的距离之比为3:2,所以23BCD ABD S S ∆=∆,又直四棱柱1111ABCD A B C D -中,134AE AA =,113CF CC =,所以94AE CF =, 于是1293313423BCD E BCDF ABDABD S AEV V S CF ∆--∆⋅==⨯=⋅.备选题1:在直三棱柱ABC -A 1B 1C 1中,M ,N 分别为棱A 1B 1,A 1C 1的中点,则平面BMNC 将三棱柱分成的两部分的体积比为 . 【答案】7:5【解析】设直三棱柱ABC -A 1B 1C 1高为h ,底面积为4S ,则11111B C BMNC C B MNC M B BC V V V ---=+11111111534322233A B BC B ABC h S V Sh V hS h S Sh --=⨯⨯+=+=+⨯⋅=, 所以两部分的体积比为55(4):7:533Sh Sh Sh -=.备选题2:已知一个组合体是由圆锥与圆柱组合而成,下半部分是底面半径为1,高为4的圆柱,上半部分是底面半径为2,高为2的圆锥,则该几何体的体积为 3m . 【答案】203π【解析】由于该几何体是组合体,其中下半部分是底面半径为1,高为4的圆柱,上半部分是底面半径为2,高为2的圆锥,其体积为22120142233πππ⨯⨯+⨯⨯⨯=(3m ).备选题3:《九章算术》是我国古代数学名著,它在几何学中的研究比西方早一千多年.例如堑堵指底面为直角三角形,且侧棱垂直于底面的三棱柱;阳马指底面为矩形,一侧棱垂直于底面的四棱锥.如图,在堑堵ABC -A 1B 1C 1中,AC ⊥BC ,若A 1A =AB =2,当阳马B -A 1ACC 1体积最大时,则堑堵ABC -A 1B 1C 1的体积为 .备选题3【答案】2【解析】由阳马的定义知,VB -A 1ACC 1=13×A 1A ×AC ×BC =23AC ×BC ≤13(AC 2+BC 2)=13AB 2=43,当且仅当AC =BC =2时等号成立,所以当阳马B -A 1ACC 1体积最大时,则堑堵ABC -A 1B 1C 1的体积为12×2×2×2=2.【思想方法归纳】(1)计算柱、锥、台的体积关键是根据条件找出相应的底面积和高.(2)若所给几何体的体积不能直接利用公式得出,注意求体积的一些特殊方法:分割法、补体法、等体积转化法等,它们是解决一些不规则几何体体积计算常用的方法,应熟练掌握.(3)注意组合体的组成形式及各部分几何体的特征.类型3:球内接几何体相关问题例3:1.正方体ABCD-A 1B 1C 1D 1的棱长为23,则四面体AB 1CD 1的外接球的体积为 . 【答案】36π【解析】四面体AB 1CD 1的外接球即为正方体ABCDA 1B 1C 1D 1的外接球,故正方体的外接球的直径为(23)2+(23)2+(23)2=6,故V =43πR 3=43π×(6÷2)3=36π.2.如图,在四棱锥P -ABCD 中,△PAB 为正三角形,四边形ABCD 为正方形且边长为2,平面PAB⊥平面ABCD ,四棱锥P -ABCD 的五个顶点都在一个球面上,则这个球的表面积是 .(例3-2)【答案】283π 【解析】由题意球的半径满足R 2-1+R 2-2=3⇒R 2=73,所以球的表面积是4πR 2=28π3.3.已知三棱柱ABC -A 1B 1C 1的侧棱垂直于底面,各顶点都在同一球面上,若该棱柱的体积为23,AB =2,AC =1,∠BAC =60°,则此球的表面积等于 . 【解析】20π【解析】由题意知三棱柱是直三棱柱,且底面是直角三角形,∠ACB =90°,设D ,D 1分别是AB ,A 1B 1的中点,O 是DD 1中点,可证O 就是三棱柱外接球球心,S △ABC =12×2×1×sin 60°=32,V =S △ABC ·h =32×DD 1=23,即DD 1=4,OA =AD 2+DO 2=12+22=5, 所以S =4π×OA 2=4π×(5)2=20π.备选题1:已知正三棱柱111A B C ABC -的所有棱长都为3,则该棱柱外接球的表面积为 . 【答案】21π【解析】如图,外接球的球心为上下底面中心连线1M M 的中点,连结1A O ,11A M ,所以三角形11A M O 为直角三角形, 132M O =,113A M =()()221213322AO =+ 所以该棱柱外接球的表面积为(2214π21π⨯=.备选题2:已知P -ABC 是正三棱锥,其外接球O 的表面积为16π,且∠APO =∠BPO =∠CPO =30°,则三棱锥的体积为 . 934【解析】设球的半径为R ,△ABC 的外接圆圆心为O ′,则由球的表面积为16π, 可知4πR 2=16π,所以R =2.设△ABC 的边长为2a , 因为∠APO =∠BPO =∠CPO =30°,OB =OP =2,所以BO ′=32R =3,OO ′=OB 2-BO ′2=1, PO ′=OO ′+OP =3.在△ABC 中,O ′B =23×32×2a =3, 所以a =32,所以三棱锥PABC 的体积为V =13×12×32×sin60°×3934【思想方法归纳】解决球与其他几何体的内切、外接问题,一般外接球需要求球心和半径,首先应确定球心的位置,借助于外接球的性质,球心到各顶点距离相等,这样可先确定几何体中部分点组成的多边形的外接圆的圆心,过圆心且垂直于多边形所在平面的直线上任一点到多边形的顶点的距离相等,然后同样的方法找到另一个多边形的各顶点距离相等的直线这样两条直线的交点,就是其外接球的球心,再根据半径,顶点到底面中心的距离,球心到底面中心的距离,构成勾股定理求解,有时也可利用补体法得到半径.类型4:综合应用例4:如图,四棱锥中,底面是边长为2的正方形,其它四个侧面都是侧棱长为的中点.(1)在侧棱上找一点,使∥平面,并证明你的结论;(2)在(1)的条件下求三棱锥的体积.【解析】(1)F为VC的中点,取CD的中点为H,连结BH,HF,ABCD为正方形,E为AB 的中点,//,DH DHBE BE=∴,//H DB E∴,又//VDFH,∴平面//BHF平面VDE,//BF∴平面VDE.(2)F为VC的中点,14BDE ABCDS S∆=,18E BDF F BDE V ABCDV V V---∴==,V ABCD-为正四棱锥,V∴在平面ABCD的射影为AC的中点O.5VA=AO=∴VO=2123V ABCDV-∴=⋅E BDFV-∴=【点睛】(1)为的中点,取的中点为,由三角形中位线性质得线线平行,再由线线平行证得面面平行,即得线面平行(2)因为为正四棱锥,所以可求V到底面距离,即得F到底面距离,再根据等体积法得,最后代入锥体体积公式即可.备选题1:如图,O是圆锥底面圆的圆心,圆锥的轴截面PAB为等腰直角三角形,C为底面圆周上一点.V ABCD-ABCDE ABVC F BF VDEE BDF-F VC CD HV ABCD-E BDF F BDEV V--=(1)若弧BC 的中点为D ,求证:AC ∥平面POD ; (2)如果△PAB 的面积是9,求此圆锥的表面积.【解析】(1)证明:方法一 设BC ∩OD =E ,∵D 是弧BC 的中点,∴E 是BC 的中点. 又∵O 是AB 的中点,∴AC ∥OE .又∵AC ⊄平面POD ,OE ⊂平面POD ,∴AC ∥平面POD .方法二 ∵AB 是底面圆的直径,∴AC ⊥BC .∵弧BC 的中点为D ,∴OD ⊥BC . 又AC ,OD 共面,∴AC ∥OD .又AC ⊄平面POD ,OD ⊂平面POD ,∴AC ∥平面POD . (2)解:设圆锥底面半径为r ,高为h ,母线长为l , ∵圆锥的轴截面PAB 为等腰直角三角形,∴h =r ,l =2r .由S △PAB =12×2r ×h =r 2=9,得r =3,∴S 表=πrl +πr 2=πr ×2r +πr 2=9(1+2)π.备选题2:如图,矩形ABCD 所在的平面和平面ABEF 互相垂直,等腰梯形ABEF 中,AB ∥EF ,AB =2,AD =AF =1,∠BAF =60°,O ,P 分别为AB ,CB 的中点,M 为底面△OBF 的重心.(1)求证:平面ADF ⊥平面CBF ; (2)求证:PM ∥平面AFC ; (3)求多面体CD -AFEB 的体积V .【解析】(1)证明:∵矩形ABCD 所在的平面和平面ABEF 互相垂直,且CB ⊥AB ,∴CB ⊥平面ABEF , 又AF ⊂平面ABEF ,所以CB ⊥AF ,又AB =2,AF =1,∠BAF =60°,由余弦定理知BF =3,∴AF 2+BF 2=AB 2,得AF ⊥BF , 又BF ∩CB =B ,∴AF ⊥平面CFB ,又∵AF ⊂平面ADF ,∴平面ADF ⊥平面CBF .(2)证明:连接OM 并延长交BF 于H ,则H 为BF 的中点,又P 为CB 的中点,∴PH ∥CF ,又∵CF ⊂平面AFC ,PH ⊄平面AFC ,∴PH ∥平面AFC , 连接PO ,则PO ∥AC ,又∵AC ⊂平面AFC ,PO ⊄平面AFC ,∴PO ∥平面AFC , 又∵PO ∩PH =P ,∴平面POH ∥平面AFC , 又∵PM ⊂平面POH ,∴PM ∥平面AFC .(3)解:多面体CD -AFEB 的体积可分成三棱锥C -BEF 与四棱锥F -ABCD 的体积之和. 在等腰梯形ABEF 中,计算得EF =1,两底间的距离EE 1=32. 所以V C -BEF =13S △BEF ×CB =13×12×1×32×1=312,V F -ABCD =13S 矩形ABCD ×EE 1=13×2×1×32=33,所以V =V C -BEF +V F -ABCD =5312.【课堂归纳总结】1.空间几何体表面积和体积的求法几何体的表面积是各个面的面积之和,组合体的表面积应注意重合部分的处理.空间几何体体积问题的常见类型及解题策略:(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解.(2)若所给定的几何体的体积不能直接利用公式得出,则常用等体积转换法、分割法、补形法等方法进行求解.2.多面体与球接、切问题的求解策略(1)涉及球与棱柱、棱锥的接、切问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内接、外切的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.(2)若球面上四点P,A,B,C构成的三条线段PA,PB,PC两两互相垂直,且PA=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,则4R2=a2+b2+c2求解.【课后练习】1.已知圆锥的侧面展开图是半径为3,圆心角为23π的扇形,则这个圆锥的高为 .【答案】【解析】由题知圆锥的底面圆周长为2323ππ⋅=,所以半径为1r=,由题意圆锥的侧面展开图是半径为3即为圆锥的母线3l=,所以圆锥的高为h.2.若圆锥的侧面积与过轴的截面面积之比为2π,则其母线与轴的夹角的大小为 .【答案】3π【解析】由题意得:1:(2)22rl h rππ⋅=2l h⇒=⇒母线与轴的夹角为3π.3.如图,在长方体中,,,则三棱锥的体积为.【答案】3 【解析】4.在ABC ∆中,2AB =, 1.5BC =,120ABC ∠=,若使ABC ∆绕直线BC 旋转一周,则所形成的几何体的体积是 . 【答案】32π【解析】过A 作AD 垂直BC 于点D ,则,AD =1BD =, 2.5CD =,因此所形成的几何体的体积是213(2.51)32ππ⨯⋅⋅-=.5.已知圆柱M 的底面半径为2,高为6,圆锥N 的底面直径和母线长相等,若圆柱M 和圆锥N 的体积相同,则圆锥N 的高为 . 【答案】6【解析】设圆锥N 的底面半径为r ,则它的母线长为2r ,高为3r ,由圆柱M 与圆锥N 的体积相同,得4π×6=13πr2×3r ,解得r =23,因此圆锥N 的高h =3r =6.6.现有橡皮泥制作的底面半径为5、高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥与圆柱各一个,则新的底面半径为 .【解析】由体积相等得:22221145+28=4833r r r ππππ⨯⨯⨯⨯⨯⨯⨯⨯+⨯⨯⇒=.7.如图,在正三棱柱111ABC A B C -中,已知13AB AA ==,点P 在棱1CC 上,则三棱锥1P ABA -的体积为 .(第7题)【解析】三棱锥的底面积1193322ABA S ∆=⨯⨯=,点P 到底面的距离为ABC ∆的高h =,故三棱锥的体积13V Sh ==.8.如图,圆形纸片的圆心为,半径为,该纸片上的正四边形的中心为.为圆上的点分别是以为底边的等腰三角形.沿线剪开后,别以为折痕折起,使得重合,得到四棱锥记该四棱锥的体积,表面积分别是,当,则 .(第8题)【解析】,则四棱锥的高,所以体积,所以9.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 .O 4cm ABCD O ,,,E F G H O ,,,EAB FBC GCD HDA ∆∆∆∆,,,AB BC CD DA ,,,AB BC CD DA ,,,EAB FBC GCD HDA ∆∆∆∆,,,E F G H ,V S 2AB =VS=2AB =h =13V Sh ==44316S =+⨯=V S =【答案】【解析】由图可知,该多面体为两个全等正四棱锥的组合体,正四棱锥的高为1,底面正方形的边长等于,所以该多面体的体积为【点睛】:解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.10.设直三棱柱ABC -A 1B 1C 1的所有顶点都在同一个球面上,且球的表面积是40π,AB =AC =AA 1,∠BAC =120°,则此直三棱柱的高是 . 【答案】2 2【解析】设AB =AC =AA 1=x ,在△ABC 中,∠BAC =120°,则由余弦定理可得BC =3x . 由正弦定理,可得△ABC 外接圆的半径为r =x , ∵球的表面积是40π,∴球的半径为R =10.设△ABC 外接圆的圆心为O ′,球心为O ,在Rt △OBO ′中,有221()102x x +=,解得x =22,即AA 1=22,即此直三棱柱的高是2 2.11.如图,已知四棱锥P -ABCD 的底面是边长为2的菱形,∠BCD =60°,点E 是BC 边 的中点,AC ,DE 交于点O ,PO =23,且PO ⊥平面ABCD . (1)求证:PD ⊥BC ;(2)在线段AP 上找一点F ,使得BF ∥平面PDE , 并求此时四面体PDEF 的体积.【解析】(1)由题可得△BCD 为正三角形,E 为BC 中点,故DE ⊥BC . 又PO ⊥平面ABCD ,BC ⊂平面ABCD ,则PO ⊥BC ,而DE ∩PO =O ,,DE PO ⊂平面PDE ,所以BC ⊥平面PDE .又PD ⊂平面PDE ,故PD ⊥BC . (2)取AP 中点为F ,再取PD 中点为G ,连结FG . 则FG 为△PAD 中位线,故FG =∥ 12AD , 又BE =∥ 12AD ,所以FG =∥BE ,于是四边形BFGE 为平行四边形, 因此BF ∥EG .又BF ⊄平面PDE ,EG ⊂平面PDE ,所以BF ∥平面PDE . 由(1)知,BC ⊥平面PDE .则有BC ⊥PE ,BC ⊥DE ,而BC ∥FG ,故FG ⊥PE ,FG ⊥DE ,且DE ∩PE =E ,所以FG ⊥平面PDE . 于是四面体PDEF 的体积为V=13S △PDE ·FG =13×12×23×3×1=1.另解(等体积转化):因为BF //面PDE ,则B ,F 两点到平面PDE 的距离相等, 所以四面体PDEF 的体积等于四面体PDEB , 因为PO ⊥平面ABCD ,所以V P-BDE =13·PO ·S △BDE =1.12.如图,正△ABC 的边长为4,CD 是AB 边上的高,E ,F 分别是AC 和BC 边的中点,现将△ABC 沿CD 翻折成直二面角A -DC -B .(1)试判断直线AB 与平面DEF 的位置关系,并说明理由; (2)求棱锥E -DFC 的体积;(3)在线段BC 上是否存在一点P ,使AP ⊥DE ?如果存在,求出BPBC的值;如果不存在,请说明理由.【解析】(1)AB ∥平面DEF ,理由如下:在△ABC 中,由E ,F 分别是AC ,BC 的中点,得EF ∥AB . 又AB ⊄平面DEF ,EF ⊂平面DEF .∴AB ∥平面DEF .(2)∵AD ⊥CD ,BD ⊥CD ,将△ABC 沿CD 翻折成直二面角A -DC -B ,∴AD ⊥BD ,∴AD ⊥平面BCD .取CD 的中点M ,这时EM ∥AD ,∴EM ⊥平面BCD ,EM =1.V E -DFC =13×1()2BDC S ×EM =13×12×12×2×23×1=33. (3)在线段BC 上存在点P ,使AP ⊥DE .证明如下:在线段BC 上取点P ,使BP =BC3,过P 作PQ ⊥CD 于Q .∵AD ⊥平面BCD ,PQ ⊂平面BCD ,∴AD ⊥PQ .又∵AD ∩CD =D ,∴PQ ⊥平面ACD , ∴DQ =DC 3=233,∴tan ∠DAQ =DQ AD =2332=33,∴∠DAQ =30°,在等边△ADE 中,∠DAQ =30°,∴AQ ⊥DE ,∵PQ ⊥平面ACD ,DE ⊂平面ACD ,∴PQ ⊥DE ,AQ ∩PQ =Q ,∴DE ⊥平面APQ ,∴AP ⊥DE .此时BP =BC 3,∴BP BC =13.13.如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm ,容器Ⅰ的底面对角线AC的长为cm ,容器Ⅱ的两底面对角线EG ,E 1G 1的长分别为14cm 和62cm. 分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm. 现有一根玻璃棒l ,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将l 放在容器Ⅰ中,l 的一端置于点A 处,另一端置于侧棱CC 1上,求l 没入水中部分的长度;(2)将l 放在容器Ⅱ中,l 的一端置于点E 处,另一端置于侧棱GG 1上,求l 没入水中部分的长度.【解析】(1)由正棱柱的定义,1CC ⊥平面ABCD ,所以平面11A ACC ⊥平面ABCD ,1CC AC ⊥.记玻璃棒的另一端落在1CC 上点M 处.因为40AC AM ==,所以30MC ==,从而 3sin 4MAC =∠,记AM 与水面的焦点为1P ,过1P 作P 1Q 1⊥AC , Q 1为垂足,则 P 1Q 1⊥平面 ABCD ,故P 1Q 1=12,从而 AP 1=1116sin P MACQ =∠. ( 如果将“没入水中部分冶理解为“水面以上部分冶,则结果为24cm) (2)如图,O ,O 1是正棱台的两底面中心.由正棱台的定义,OO 1⊥平面 EFGH , 所以平面E 1EGG 1⊥平面EFGH ,O 1O ⊥EG . 同理,平面 E 1EGG 1⊥平面E 1F 1G 1H 1,O 1O ⊥E 1G 1.记玻璃棒的另一端落在GG 1上点N 处. 过G 作GK ⊥E 1G ,K 为垂足, 则GK =OO 1=32. 因为EG = 14,E 1G 1= 62,所以KG 1= 6214242-=,从而140GG ===.设1,,EGG ENG αβ==∠∠则114sin sin()cos 25KGG KGG απ=+==∠∠. 因为2απ<<π,所以3cos 5α=-. 在ENG △中,由正弦定理可得4014sin sin αβ=,解得7sin 25β=. 因为02βπ<<,所以24cos 25β=. 于是,sin sin()sin()NEG αβαβ=π--=+∠42473sin cos cos sin ()53525255αβαβ=+=⨯+-⨯=.记EN 与水面的交点为P 2,过 P 2作P 2Q 2⊥EG ,Q 2为垂足,则 P 2Q 2⊥平面 EFGH ,故P 2Q 2=12,从而EP 2=2220sin P NEGQ =∠.答:(1)玻璃棒l 没入水中部分的长度为16cm.(2)玻璃棒l 没入水中部分的长度为20cm.(如果将“没入水中部分冶理解为“水面以上部分冶,则结果为20cm)【点睛】空间几何体的考察,主要集中体积、表面积的计算和空间距离的距离,其实这些计算最后都得归结为平面中基本图形中的长度的计算,因此解三角形就是必要的工具.14.如图,圆柱体木材的横截面半径为1 dm ,从该木材中截取一段圆柱体,再加工制作成直四棱柱1111A B C D ABCD -,该四棱柱的上、下底面均为等腰梯形,分别内接于圆柱的上、下底面,下底面圆的圆心O 在梯形ABCD 内部,AB ∥CD ,DAB ∠=60°,1AA AD =,设DAO θ∠=. (1)求梯形ABCD 的面积;(2)当sin θ取何值时,四棱柱1111A B C D ABCD -的体积最大?并求出最大值. (注:木材的长度足够长)【解析】(1)由条件可得,2cos AD θ=, 所以梯形的高sin 603h AD θ==. 又2cos(60)AB θ=-,2cos(120)CD θ=-, 所以梯形ABCD 的面积为12cos(60)2cos(120)3cos 2S θθθ⎡⎤=-+-⨯⎣⎦ cos(60)cos(60)3cos θθθ⎡⎤=--+⨯⎣⎦(2sin 60sin )θθ=3sin 22θ=(2dm ).(2)设四棱柱1111A B C D ABCD -的体积为V ,因为12cos AA AD θ==, 所以123sin 22cos 6sin (1sin )2A V S A θθθθ=⋅⨯==-.设sin t θ=,因为060θ︒<<,所以0t ⎛∈ ⎝,所以23()6(1)6()V t t t t t =-=-+,0t ⎛∈ ⎝.由2()6(31)18(V t t t t '=-+=-+-,令()0V t '=,得t ,()V t 与()V t '的变化情况列表如下:由上表知,()V t在t =时取得极大值,即为最大值,且最大值V =答:当sin θ=时,四棱柱1111A B C D ABCD -3dm .【备选提高题】1.各棱长都为2的正四棱锥与正四棱柱的体积之比为m ,则m 的值为 . 【答案】12【解析】法一:正四棱柱的体积为8,底面积为4,故体积为3,所6,即6m =. 方法二:设正四棱锥与正四棱柱的高分别为12,h h .因为正四棱锥与正四棱柱的底面积相同,所以体积之比为121332h h ==.2.将一个半径为2的圆分成圆心角之比为1:2的两个扇形,且将这两个扇形分别围成圆锥的侧面,则所得体积较小的圆锥与较大圆锥的体积之比为 . 【答案】1【解析】因为圆分成圆心角之比为1:2的两个扇形,所以两个扇形圆心角分别为123lπ=和243l π=.1223r ππ=和2423r ππ=,解得123r =,243r =.13h ==, 2h ==.所以21112222114313r h v v r h πππ⋅===3.已知一球与一个正三棱柱的三个侧面及两个底面都相切.若该球的体积为4π3,则该三棱柱的体积是 . 【答案】6 3【解析】由体积得球半径R =1,三棱柱的高为2,底面边长为2 3.V =34(2 3)2×2=6 3.4.在三棱锥P ABC -中,D ,E 分别为PB ,PC 的中点,记三棱锥D ABE -的体积为1V , 三棱锥P ABC -的体积为2V ,则12V V = . 【答案】14【解析】因为213C PAB PAB V V S h -∆==,121111323224E ABD DAB PAB h h V V S S V -∆∆==⋅=⨯⨯=,所以1214V V =.5.如图,四棱锥P ABCD -的底面ABCD 是矩形,PA ⊥底面ABCD ,E 为PD 上一点,且2PE ED =.设三棱锥P ACE -的体积为1V ,三棱锥P ABC -的体积为2V ,则12:V V = .【答案】23【解析】因为2PE ED =,所以三棱锥E ACD -的体积是三棱锥P ACD -体积的13,所以三棱锥P ACE -的体积是P ACD -体积的23.因为三棱锥P ABC -与三棱锥P ACD -体积相等,所以12:V V =23.6.在三棱锥D -ABC 中,AB =BC =DB =DC =1,当三棱锥体积最大时,其外接球的表面积为________. 【答案】7π3【解析】在三棱锥D -ABC 中,当且仅当AB ⊥平面BCD 时,三棱锥体积达到最大, 此时,设外接球的半径为R ,外接球的球心为O ,点F 为△BCD 的中心, 则有R 2=OB 2=OF 2+BF 2=221()2+=712,所以表面积S =4πR 2=7π3.7.已知三棱锥P -ABC 内接于球O ,PA =PB =PC =2,当三棱锥P -ABC 的三个侧面的面积之和最大时,球O 的表面积为 . 【答案】12π【解析】由于三条侧棱相等,根据三角形面积公式可知,当PA ,PB ,PC 两两垂直时,侧面积之和最大.此时PA ,PB ,PC 可看成正方体一个顶点的三条侧棱,其外接球直径为正方体的体对角线,即4R 2=3·22=12,故球的表面积为4πR 2=12π.8.已知正四面体P ABC -的棱长均为a ,O 为正四面体P ABC -的外接球的球心,过点O 作平行于底面ABC 的平面截正四面体P ABC -,得到三棱锥111P A B C -和三棱台111ABC A B C -,那么三棱锥111P A B C -的外接球的表面积为 . 【答案】22732a π 【解析】设底面ABC ∆的外接圆半径为r ,则2sin3a r π=,所以r ., 设正四面体的外接球半径为R,则222))R R =+-,∴R =.3:4=,所以三棱锥111P A B C -的外接球的表面积为2223274)()432a ππ⨯⨯=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立体几何周考(一)
一、选择题
1 .(2013年高考重庆卷(文))某几何体的三视图如题(8)所示,则该几何体的表面积为()
A.180B.200C.220D.240
2 .(2013年高考课标Ⅱ卷(文))一个四面体的顶点在空间直角坐标系中的坐标分别是
,画该四面体三视图中的正视图时,以平面为投影面,则得到正视图可以为()
A .
B .
C .
D .
3 .(2013年高考课标Ⅰ卷(文))某几何函数的三视图如图所示,则该几何的体积为
( )
A .168π+
B .88π+
C .1616π+
D .816π+
4 .(2013年高考四川卷(文))一个几何体的三视图如图所示,则该几何体可以是( )
A .棱柱
B .棱台
C .圆柱
D .圆台
5 .(2013年高考浙江卷(文))已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是
( ) A .108cm 3
B .100 cm 3
C .92cm 3
D .84cm 3
6 .(2013年高考北京卷(文))如图,在正方体1111ABCD A B C D -中,P 为对角线1BD 的三等分
点,则P 到各顶点的距离的不同取值有 ( )
A .3个
B .4个
C .5个
D .6个
7 .(2013年高考广东卷(文))某三棱锥的三视图如图2所示,则该三棱锥的体积是( )
A .16
B .13
C .23
D .1
8 .(2013年高考湖南(文))已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图
的矩形,则该正方体的正视图的面积等于( )
A B .1 C D
9.(2013年高考山东卷(文))一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如右图
所示该四棱锥侧面积和体积分别是( )
图 2
1 B
A.B.C.D.8,8
10.(2013年高考江西卷(文))一几何体的三视图如右所示,则该几何体的体积为()
A.200+9πB.200+18πC.140+9πD.140+18π
11.(2013年高考湖北卷(文))我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨
时,用一个圆台形的天池盆接雨水. 天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深
一尺八寸. 若盆中积水深九寸,则平地降雨量是__________寸.
(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸)
12.(2013年高考北京卷(文))某四棱锥的三视图如图所示,该四棱锥的体积为__________.
13.(2013年高考陕西卷(文))某几何体的三视图如图所示, 则其表面积为________.
14.(2013年高考辽宁卷(文))某几何体的三视图如图所示,则该几何体的体积是____________.。