7799-量子力学考研复习笔记
量子力学复习资料

第一章知识点:1. 黑体:能吸收射到其上的全部辐射的物体,这种物体就称为绝对黑体,简称黑体.2. 处于某一温度 T 下的腔壁,单位面积所发射出的辐射能量和它所吸收的辐射能量相等时,辐射达到热平衡状态。
3. 实验发现: 热平衡时,空腔辐射的能量密度,与辐射的波长的分布曲线,其形状和位置只与黑体的绝对温度 T 有关而与黑体的形状和材料无关。
4. 光电效应---光照射到金属上,有电子从金属上逸出的现5. 光电效应特点:1.临界频率ν0 只有当光的频率大于某一定值ν0时,才有光电子发射出来.若光频率小于该值时,则不论光强度多大,照射时间多长,都没有电子产生.光的这一频率ν0称为临界频率。
2.光电子的能量只是与照射光的频率有关,与光强无关,光强只决定电子数目的多少 (爱因斯坦对光电效应的解释)3. 当入射光的频率大于ν0时,不管光有多么的微弱,只要光一照上,立即观察到光电子(10-9s )6. 光的波粒二象性:普朗克假定a.原子的性能和谐振子一样,以给定的频率 ν 振荡;b.黑体只能以 E = h ν 为能量单位不连续的发射和吸收能量,而不是象经典理论所要求的那样可以连续的发射和吸收能量.7. 总结光子能量、动量关系式如下: 把光子的波动性和粒子性联系了起来8.波长增量 Δλ=λ′–λ 随散射角增大而增大.这一现象称为康普顿效应.散射波的波长λ′总是比入射波波长长(λ′ >λ)且随散射角θ增大而增大。
9.波尔假定:1.原子具有能量不连续的定态的概念. 2.量子跃迁的概念. 10.德布罗意:• 假定:与一定能量 E 和动量 p 的实物粒子相联系的波(他称之为“物质波”)的频率和波长分别为:E = h ν ⇒ ν= E/h • P = h/λ ⇒ λ= h/p • 该关系称为de. Broglie 关系.德布罗意波:ψde Broglie 关系:ν= E/h ⇒ω = 2π ν= 2πE/h = E/ λ= h/p ⇒k = 1/ = 2π /λ = p/n k h k n n h n C h n C E p h E ===⎪⎩⎪⎨⎧=======πλπλνων22其中波长。
量子力学复习重点

1 e 2
2 2
x
e
i Px
dx
e
1 2 x2 2
e
i Px
dx
1 2 1 2 1 2
e
1 ip p2 2 ( x 2 )2 2 2 2 2
dx
2 e
4 2 1 ( 3 2a0 a0
0
r 2 r / a0 (2r )e dr a0
2 2 a0 a0 4 2 2 ( 2 ) 4 2 4 4 2a0 2a0
(r , , )d (5) c( p) * p (r )
c( p ) 2
p2 ; 2
(3)动量的几率分布函数。
解:(1) U
1 1 2 x 2 2 2 2
x 2 e
2
x2
dx
1 1 1 2 1 1 2 2 2 2 2 2 2 2 4 2 2
1 4
(2) T
4 3 a0
0
r 3 a 2 r / a0 dr
4 3! 3 a0 3 4 2 a0 2 a 0
(2) U (
e2 e2 ) 3 r a0
0 0
2
0
1 2 r / a0 2 e r sin drd d r
e2 3 a0 4e 2 3 a0
解: U ( x)与t 无关,是定态问题。其定态 S—方程
考研物理学量子力学基础知识总结

考研物理学量子力学基础知识总结量子力学是现代物理学中的一门基础学科,它研究微观领域中物质和能量的行为。
考研中的物理学科通常包括量子力学的基础知识,下面是对考研物理学量子力学基础知识的总结。
一、波粒二象性量子力学中最基本的概念之一是波粒二象性。
它表明微观粒子既可以表现为粒子,有时又可以表现为波动。
根据不同实验条件下的观测结果,物理学家引入了波函数来描述粒子的行为。
二、波函数和薛定谔方程波函数是用来描述量子体系的数学函数,它可以通过薛定谔方程来求解。
薛定谔方程是量子力学的核心方程之一,它描述了量子体系中粒子的运动和演化。
三、量子力学的不确定性原理量子力学的不确定性原理是由海森堡提出的。
它指出,在量子体系中,不能同时准确测量粒子的位置和动量,以及能量和时间。
这意味着在微观尺度下,对粒子的测量是具有一定的不确定性的。
四、量子力学的态和算符在量子力学中,态是用来描述物理体系的状态的概念。
态矢量可以用来表示具体的态。
算符则是量子力学中非常重要的概念,它用来描述物理量的操作和测量。
五、量子力学中的量子数和量子态量子力学中的量子数是用来描述量子体系性质和状态的数字。
电子的自旋、原子的能级等都可以用量子数来描述。
量子态是由一系列量子数确定的。
六、量子力学的叠加态和纠缠态量子力学中的叠加态是多个量子态的线性组合,这意味着量子体系可以同时处于多种状态之间。
纠缠态则是指两个或多个粒子之间存在特殊的量子关联,纠缠态的测量结果是彼此相关的。
七、量子力学的量子力学动力学量子力学动力学用来描述量子体系的时间演化。
在量子力学动力学中,态矢量的演化是由薛定谔方程和哈密顿算符确定的。
八、量子力学中的定态和本征态在量子力学中,定态是永不改变的态,本征态是表示具有确定取值的物理量的态。
本征态对应的物理量取值就是相应的本征值。
九、量子力学中的量子隧穿和量子纠缠量子隧穿是指粒子在能量低于势垒的情况下仍然能够穿过势垒。
量子纠缠是指两个或多个粒子之间存在特殊的量子关联,纠缠态的测量结果是彼此相关的。
量子力学复习资料

量子力学复习资料一、基本概念1、波粒二象性这是量子力学的核心概念之一。
它表明微观粒子既具有粒子的特性,如位置和动量,又具有波动的特性,如波长和频率。
例如,电子在某些实验中表现出粒子的行为,如碰撞和散射;而在另一些实验中,如双缝干涉实验,又表现出波动的行为。
2、量子态量子态是描述微观粒子状态的方式。
与经典物理学中可以精确确定粒子的位置和动量不同,在量子力学中,粒子的状态通常用波函数来描述。
波函数的平方表示在某个位置找到粒子的概率密度。
3、不确定性原理由海森堡提出,指出对于一个微观粒子,不能同时精确地确定其位置和动量,或者能量和时间。
即:\(\Delta x \cdot \Delta p \geq \frac{\hbar}{2}\),\(\Delta E \cdot \Delta t \geq \frac{\hbar}{2}\),其中\(\hbar\)是约化普朗克常数。
二、数学工具1、薛定谔方程这是量子力学中的基本方程,类似于经典力学中的牛顿运动方程。
对于一个质量为\(m\)、势能为\(V(x)\)的粒子,其薛定谔方程为:\(i\hbar\frac{\partial \Psi(x,t)}{\partial t} =\frac{\hbar^2}{2m}\frac{\partial^2 \Psi(x,t)}{\partial x^2} + V(x)\Psi(x,t)\)。
2、算符在量子力学中,物理量通常用算符来表示。
例如,位置算符\(\hat{x}\)、动量算符\(\hat{p}\)等。
算符作用在波函数上,得到相应物理量的可能取值。
三、常见量子力学系统1、一维无限深势阱粒子被限制在一个宽度为\(a\)的区域内,势能在区域内为零,在区域外为无穷大。
其能量本征值为\(E_n =\frac{n^2\pi^2\hbar^2}{2ma^2}\),对应的本征函数为\(\Psi_n(x) =\sqrt{\frac{2}{a}}\sin(\frac{n\pi x}{a})\)。
(完整word版)量子力学知识点总结,推荐文档

1光电效应:光照射到金属上,有电子从金属上逸出的现象。
这种电子称之为光电子。
2光电效应有两个突出的特点:①存在临界频率ν0 :只有当光的频率大于一定值v 0 时,才有光电子发射出来。
若光频率小于该值时,则不论光强度多大,照射时间多长,都没有光电子产生。
②光电子的能量只与光的频率有关,与光的强度无关。
光的强度只决定光电子数目的多少。
3爱因斯坦光量子假说:光(电磁辐射)不仅在发射和吸收时以能量E= h ν的微粒形式出现,而且以这种形式在空间以光速 C 传播,这种粒子叫做光量子,或光子4康普顿效应:高频率的X 射线被轻元素如白蜡、石墨中的电子散射后出现的效应。
⒕康普顿效应的实验规律:射光中,除了原来X 光的波长λ外,增加了一个新的波长为λ'的X 光,且λ' >λ;波长增量Δλ=λ-λ随散射角增大而增大5戴维逊-革末实验证明了德布罗意波的存在6波函数的物理意义:某时刻t 在空间某一点(x,y,z)波函数模的平方与该时刻t 该地点(x,y,z)附近单位体积内发现粒子的几率密度(通常称为几率)dw(x,y,z,t)成正比。
按照这种解释,描写粒子的波是几率波7波函数的归一化条件 1),,,( 2⎰∞=ψτd t z y x8定态:微观体系处于具有确定的能量值的状态称为定态。
定态波函数:描述定态的波函数称为定态波函定态的性质:⑴由定态波函数给出的几率密度不随时间改变。
⑵粒子几率流密度不随时间改变。
⑶任何不显含时间变量的力学量的平均值不随时间改变9算符: 作用在一个函数上得出另一个函数的运算符号,量子力学中的算符是作用在波函数上的运算符号。
10厄密算符的定义:如果算符F ˆ满足下列等式() ˆ ˆdx F dx Fφψφψ**⎰⎰=,则称F ˆ为厄密算符。
式中ψ和φ为任意波函数,x 代表所有的变量,积分范围是所有变量变化的整个区域。
推论:量子力学中表示力学量的算符都是厄密算符。
11厄密算符的性质:厄密算符的本征值必是实数。
量子力学基本概念复习要点

量子力学基本概念复习要点量子力学基本概念复习要点1.波函数的性质完整描述微观粒子的状态概率密度几率流密度波函数的归一化重要例子: 德布罗意平面波能够描述自由粒子的状态2.薛定谔方程描述了状态随时间的变化3.定态概念定态的性质(定态下的概率密度和几率流密度)4.定态薛定谔方程(能量本征方程)的求解(无限深势阱问题)定解条件(波函数的三大标准条件、周期性条件)5.书上常见力学量的算符形式(在坐标或动量表象下,坐标算符、动量算符、动能算符、势能算符、角动量算符、哈密顿算符等等)不是所有算符都有经典对应(例如自旋算符)6.算符本征态、本征值的概念、物理含义(量子力学基本假定P56)7.厄米算符的定义、算符是否为厄米算符的判断证明(PPT第三章第一节相关例题)厄米算符的本征值8.熟练掌握氢原子的状态、能级的性质,三个量子数(n、l、m)的物理含义及它们之间的关系。
简并度的计算结合氢原子能级公式解决能量跃迁问题9.掌握厄米算符本征函数的正交归一性以及有关定理的证明常见本征函数的正交归一式10.厄米算符本征函数构成完备系波函数展开系数的物理含义(量子力学基本假定P84)会计算力学量的平均值、可能值和相应的概率(典型例题P102 3.6 3.9 PPT上有关例题)11.会计算两个算符之间的对易关系算符对易的物理含义(掌握有关定理并会证明)、书上常见算符的对易式不对易式和测不准关系式之间的关系(典型例题PPT 讲义例题例一、例三)12.知道表象变换的含义态的列矩阵表示知道矩阵元的含义13.算符的矩阵表示(矩阵元,厄米矩阵、自身表象下矩阵形式)14.知道幺正变换的定义及它在表象变换中所起的作用(态的变换和算符的变换),知道并会证明其性质(不改变量子力学的规律, 例如迹、本征值)15.常见本征矢封闭性和正交归一性的狄拉克符号表示法16.应用微扰论求解简单的微扰问题(典型例题P173 5.3,幻灯片例题)适用条件(以氢原子为例)数学要求:常用的简单积分公式和积分方法(分部积分法、换元法)常用的三角函数公式(倍、半、和角公式等等)。
物理学专业考研复习资料量子力学重难点解析

物理学专业考研复习资料量子力学重难点解析物理学专业考研复习资料:量子力学重难点解析量子力学是现代物理学的基石之一,也是物理学专业考研中的重要科目。
掌握量子力学的基本原理和重难点是考研复习的关键。
本文将针对量子力学考研的重难点进行解析,希望能够帮助考生更好地备考。
一、波粒二象性及波函数波粒二象性是量子力学的核心概念之一。
在量子力学中,粒子既具有粒子性带电荷,也具有波动性。
对于微观粒子,无法同时确定其粒子位置和动量,这体现了不确定性原理。
在考研复习中,需要理解和掌握波粒二象性的基本概念,如德布罗意假说和波粒对应关系等。
波函数是描述量子力学体系的基本工具,它可以用来计算各种物理量的期望值。
在考研复习中,需要熟悉波函数的表示形式、归一化条件以及波函数的解释等内容。
此外,还要了解波函数的复性质和相位因子的影响。
二、量子力学中的算符和测量算符是量子力学中非常重要的概念,用来描述各种物理量。
在考研复习中,需要了解常见算符的定义和性质,如位置算符、动量算符和角动量算符等。
此外,还要熟悉算符的本征值和本征函数,并能够运用算符进行计算。
测量是量子力学中另一个重要的概念,用来描述对量子力学体系进行观测的过程。
在考研复习中,需要理解测量对波函数的坍缩和测量结果的统计性质。
同时,还应了解不可约性原理和干涉现象在测量中的应用。
三、量子力学中的定态和定态方程定态是量子力学中一种非常重要的数学抽象,用来描述处于某一能量状态的粒子体系。
在考研复习中,需要理解定态波函数和定态方程的概念,如定态薛定谔方程等。
此外,还要了解定态能量的取值和定态波函数的特点。
定态方程是量子力学中的基本方程之一,可以用来求解粒子的波函数和能级。
在考研复习中,需要熟悉定态方程的求解方法,如无限深势阱、简谐振子和氢原子等模型的定态方程求解。
四、量子力学中的角动量角动量是量子力学中的重要物理量,也是考研复习的难点之一。
在考研复习中,需要了解轨道角动量和自旋角动量的定义和性质。
量子力学笔记

量子力学一、量子力学的实验基础1.卢瑟福实验:a 粒子的质量远大于电子,两者的质心几乎就在a 粒子上。
虽然二体系统有内部的相互作用,但它们的质心是自由运动的,故电子对a 粒子的作用不影响a 粒子的运动。
a 粒子散射时,原子的正电荷部分受到反冲力,导致薄片晶格的振动。
2.原子光谱是原子内部电子运动情态的反映。
光谱项T。
氢原子光谱的频谱是离散的,且不是连续谱亦非由基频和倍频构成的频谱,这个性质直接来源于原子中电子运动具有能级的特性以及光具有粒子性。
3.光电效应实验中无法用经典物理学解释的现象:(1)反向遏止电压和入射光强无关;(2)反向遏止电压和入射光的频率呈线性关系;(3)电子逸出相对于光的照射而言几乎无时间延迟。
4.爱因斯坦方程:φω−=ℏT ,表示金属电子吸收一份光能量而获得T 的动能逸出金属,φ为脱出功,与材料有关。
5.光子:(1)博特实验(W.Bothe experiment)表明每份光能量是集中的;(2)贾诺希实验(L.Janossy experiment)表明每份光子落在何处是偶然事件,也就是说电磁波是光子的概率幅波。
(量子力学有整体性,光子的运动受到整个环境的影响。
)6.爱因斯坦关系:ωℏℏ==E k p ,。
P 和E 描写光子,k 和ω描写单色波。
【注意:说光有波粒二象性是沿用经典物理的语言。
光有波动性,是指光的运动没有轨道;光具有粒子性,是指光与电子相互作用时像粒子那样,而不像经典的波场那般。
】7.康普顿(pton)效应应用了“静电子模型”(靶原子的外层电子)。
康普顿波长:�ℏA mc0242621.02==Λπ。
计算过程中考虑了能量守恒(相对论力学)和动量守恒(矢量力学),2sin 22θλΛ=∆。
(1)对于原子内层的“束缚电子”,由于它们与原子核束缚的紧,应作为一个整体看待,“静电子模型”不成立。
光子撞不动整个原子,只是自己改变方向。
因此实验中出现了0=∆λ的成分。
(2)对于可见光,能量和动量小,靶原子的外层电子应作束缚电子看待,“静电子模型”不成立。