中科院量子力学个人笔记 01

合集下载

中科院量子力学超详细笔记 第四章 中心场束缚态问题

中科院量子力学超详细笔记 第四章 中心场束缚态问题

两个粒子的坐标,体现了它们运动之间的动力学关联。和经典力学十 分相似,量子力学中的两体问题也可以通过引入它们的质心坐标和相 对坐标1,把它们(作为整个体系)的质心运动和彼此相对运动这两部 分运动分离开。也即令(“Jacobi 坐标”的特例)
v v v m1r v v v 1 + m2 r2 R= ,r = r2 − r1 m1 + m2
v v V = V (r1 − r2 )
最后,孤立体系本来并没有绝对方向(或优先方向),在没有外场破 坏空间各向同性的情况下,势再简化成为只与粒子间连线长度有关,
v v V = V (| r1 − r2 |) ≡ V ( r )
有关分析详见§6.2 节。 v v 回到两体相互作用为 V = V (r 1 − r2 ) 的一般情况。这时量子力学中的 两体问题由下面哈密顿量决定
见郭敦仁 “数学物理方法” , 第 279、 286、 287 页, 人民教育出版社, 1979 年。 此处的
Ylm (θ , ϕ ) 还有另一定义,与此处相差一个因子 ( − )
|m|− m l 2
i
,见朗道《量子力学》,第 112 页。பைடு நூலகம்79
⎛ l = 0, 1, 2,L ⎞ ⎜ ⎜ m = −l , L,−1, 0, 1, L , l.⎟ ⎟ ⎝ ⎠
77
v 许多常见的,如库仑势和各向同性谐振子情况下, V (r ) 可以简化 成相对于坐标原点为各向同性的中心势 V (r ) 。 将方程(4.4)中描述相对运 v 动 ψ (r ) 的方程中 E − E R 改记为 E 并略去 Δ(r ) 顶标,相对运动方程成为
h2 v v Hψ (r ) = Eψ (r ), H = − Δ + V (r ) (4.5) 2μ v v 在绕原点的转动变换下, 正如 r 2 = r ⋅ r 一样, Δ = ∇ ⋅ ∇ 也表现为一个标量,

811《量子力学》 - 中国科学院

811《量子力学》 - 中国科学院

811《量子力学》中科院研究生院硕士研究生入学考试《量子力学》考试大纲本《量子力学》考试大纲适用于中国科学院研究生院物理学相关各专业(包括理论与实验类)硕士研究生的入学考试。

本科目考试的重点是要求熟练掌握波函数的物理解释,薛定谔方程的建立、基本性质和精确的以及一些重要的近似求解方法,理解这些解的物理意义,熟悉其实际的应用。

掌握量子力学中一些特殊的现象和问题的处理方法,包括力学量的算符表示、对易关系、不确定度关系、态和力学量的表象、电子的自旋、粒子的全同性、泡利原理、量子跃迁及光的发射与吸收的半经典处理方法等,并具有综合运用所学知识分析问题和解决问题的能力。

一.考试内容:(一)波函数和薛定谔方程波粒二象性,量子现象的实验证实。

波函数及其统计解释,薛定谔方程,连续性方程,波包的演化,薛定谔方程的定态解,态叠加原理。

(二)一维势场中的粒子一维势场中粒子能量本征态的一般性质,一维方势阱的束缚态,方势垒的穿透,方势阱中的反射、透射与共振,d--函数和d-势阱中的束缚态,一维简谐振子。

(三)力学量用算符表示坐标及坐标函数的平均值,动量算符及动量值的分布概率,算符的运算规则及其一般性质,厄米算符的本征值与本征函数,共同本征函数,不确定度关系,角动量算符。

连续本征函数的归一化,力学量的完全集。

力学量平均值随时间的演化,量子力学的守恒量。

(四)中心力场两体问题化为单体问题,球对称势和径向方程,自由粒子和球形方势阱,三维各向同性谐振子,氢原子及类氢离子。

(五)量子力学的矩阵表示与表象变换态和算符的矩阵表示,表象变换,狄拉克符号,谢振子的占有数表象。

(六)自旋电子自旋态与自旋算符,总角动量的本征态,碱金属原子光谱的双线结构与反常塞曼效应,电磁场中的薛定谔方程,自旋单态与三重态,光谱线的精细和超精细结构,自旋纠缠态。

(七)定态问题的近似方法定态非简并微扰轮,定态简并微扰轮,变分法。

(八)量子跃迁量子态随时间的演化,突发微扰与绝热微扰,周期微扰和有限时间内的常微扰,光的吸收与辐射的半经典理论。

量子力学知识点小结

量子力学知识点小结

量子力学知识总结认真、努力、坚持、反思、总结…量子力学知识点小结一、绪论1.光的粒子性是由黑体辐射、光电效应和康普顿效应(散射)三个实验最终确定的。

2.德布罗意假设是任何物质都具有波粒二象性,其德布罗意关系为E h ν=和h p n κλ==3.波尔的三个基本假设是定态条件假设、n mE E h ν-=频率条件假设、化条件)(索末菲等推广的量子21或量子化条件假设⎰⎰+==h n pdq nh pdq )(4.自由粒子的波函数()ip r Et Aeψ⋅-=5.戴维孙革末的电子在晶体上衍射实验证明了电子具有波动性。

二、波函数及薛定谔方程(一)波函数的统计解释(物理意义)A.波函数(,)r t ψ的统计解释2(,)r t d t r ψτ表示时刻在点位置处单位体积内找2sin d r drd d τθϕθ=到粒子的几率(注:)。

B. 波函数(,,,)x y z t ψ的统计解释2(,,,),,x y z t dxdydz t x y z ψ表示时刻在点()位置处单位体积没找到粒子的几率。

例:已知体系处于波函数(,,)x y z ψ所描写的状态,则在区间[,]x x dx +内找到粒子的概率是2(,,)x y z dydz dx ψ+∞+∞-∞-∞⎡⎤⎢⎥⎣⎦⎰⎰.已知体系处于波函数(,,)r ψθϕ所描写的状态,则在球壳r r dr →+内找到粒子的概率是22200(,,)sin r d d r dr ππψθϕθϕθ⎡⎤⎢⎥⎣⎦⎰⎰,在立体角d Ω内找到粒子的概率是220(,,)r r dr d ψθϕ∞⎡⎤Ω⎢⎥⎣⎦⎰.(注:sin d d d θϕθΩ=) (二)态叠加原理:如果1ψ和2ψ是体系的可能状态,那么它们的线性叠加1122c c ψψψ=+(12c c 、为复数)也是这个体系可能的状态。

含义:当体系处于1ψ和2ψ的线性叠加态1122c c ψψψ=+(12c c 、为复数) 时,体系既处于1ψ态又处于态2ψ,对应的概率为21c 和22c .(三)概率密度(分布)函数2()()x x x ψωψ=若波函数为,则其概率密度函数为()(四)薛定谔方程:22()2i U r t m∂ψ=-∇ψ+ψ∂ 22222222222222222()21cos 1 ()sin sin x y zr r r r r θθθθθϕ∂∂∂∇=+∂∂∂⎛⎫∂∂∂∂∂∇=+++ ⎪∂∂∂∂∂⎝⎭拉普拉斯算符直角坐标球坐标问题:1.描写粒子(如电子)运动状态的波函数对粒子(如电子)的描述是统计性的.2. 薛定谔方程是量子力学的一个基本假设,不是通过严格的数学推导而来的(五)连续性方程:()**0( )2J tiJ mω∂+∇⋅=∂≡ψ∇ψ-ψ∇ψ注:问题:波函数的标准条件单值、连续、有界。

量子力学笔记

量子力学笔记

量子力学笔记量子力学是研究微观粒子行为的物理学分支之一,它描述了微观世界的规律和现象。

本文将介绍量子力学的基本概念、原理和应用。

一、波粒二象性在量子力学中,微观粒子既表现出粒子的特点,也表现出波动的特点,这被称为波粒二象性。

根据量子力学原理,微观粒子的性质可以用波函数来描述。

波函数是描述微观粒子状态和运动规律的数学函数。

二、不确定性原理不确定性原理是量子力学的重要原理之一,由海森堡提出。

该原理指出,当我们测量微观粒子的某个性质时,例如位置和动量,我们不能同时精确地知道它们的数值。

精确地测量其中一个性质会导致对另一个性质的测量结果存在不确定性。

三、量子态和量子叠加在量子力学中,微观粒子的状态用量子态表示。

一个量子态可以是一个波函数或由多个波函数组成的线性叠加态。

量子叠加使得微观粒子可以同时处于多个状态,直到被观测或测量之前。

四、观测和测量量子力学认为,当我们观测或测量微观粒子时,它的量子态会坍缩到一个确定的态。

这个过程被称为波函数坍缩。

观测结果是由量子态坍缩到一个确定态而得到的。

五、量子纠缠和量子隐形传态量子纠缠是量子力学中一个特殊而奇妙的现象。

当两个或多个微观粒子发生相互作用后,它们的量子态相互依赖,无论它们之间的距离有多远,任一粒子的态发生变化,其他纠缠粒子的态也会相应变化。

这种相互依赖的关系被称为量子纠缠。

六、量子计算和量子通信量子力学的发展也催生了量子计算和量子通信的研究领域。

量子计算利用量子叠加和纠缠的特性,可以在某些问题上具有更高的计算效率。

量子通信利用量子纠缠实现量子隐形传态和量子加密,具有更高的安全性和可靠性。

总结:量子力学是一门复杂而精密的学科,它的发展和应用正不断推动着科学和技术的进步。

通过对量子力学的研究,我们可以更深入地理解微观世界的奥秘,并且在诸多领域取得令人瞩目的成果。

量子力学的理论框架为现代科学研究提供了重要的基础,也为人类认识世界的边界提供了新的视角。

考研《量子力学教程》周世勋版2021量子力学考研复习笔记

考研《量子力学教程》周世勋版2021量子力学考研复习笔记

考研《量子力学教程》周世勋版2021量子力学考研复习笔记第1章绪论1.1 复习笔记在十九世纪末、二十世纪初,经典物理取得了巨大的成功,牛顿定律、麦克斯韦方程、热力学和统计力学相继建立并成功应用于物理学研究和工程,但在物理大厦落成的同时,物理学家中的有识之士也意识到了天空中漂浮的乌云。

黑体辐射、光电效应和固体的比热等一系类问题是经典物理无法解释的。

之后的旧量子论包括玻尔理论、爱因斯坦的光量子和德布罗意波粒二象性假说给物理学的发展带来了希望,它们也为量子力学的发展奠定了基础。

现代物理学中的两大支柱(量子力学、相对论)逐步验证并解释物理实验中的现象的同时,量子力学自身也在不断完善,并发展出了电磁场量子化理论、解释光子原子相互作用的量子电动力学、应用于原子中核子相互作用的量子色动力学理论,以及当下试图对引力场解释的超弦理论。

所以,不论是为了备考还是为了将来的物理学科研,学习好量子力学是十分重要的。

量子力学是现代物理学的基石,也是物理科研必备的工具。

【本章重难点】1.了解经典物理的成功和所面临的危机,以及量子力学的发展历史;2.掌握德布罗意波粒二象性关系;3.熟练运用玻尔-索末菲量子化条件。

一、波粒二象性(见表1-1-1)表1-1-1 波粒二象性相关概念图1-1-1 康普顿散射二、原子结构的玻尔理论1经典理论在解释原子结构上的困难(1)经典理论不能建立一个稳定的原子模型(运动的带电粒子发射电磁场);(2)经典理论得出的频率是连续分布的,而实验中的原子光谱是分立的。

2玻尔假设表1-1-2 玻尔假设3索末菲量子化条件的推广式中,q 是电子的一个广义坐标;p 是对应的广义动量,回路积分是沿运动轨道积一圈;n 是0和正整数,称为量子数。

该推广后的量子化条件可应用于多自由度的情况。

4玻尔理论缺陷(1)当理论应用到结构稍复杂于氢原子的其他原子比如氦原子时,结果与实验不符;(2)只能求出谱线的频率,而不能求出谱线的强度。

量子力学笔记(冷轩)

量子力学笔记(冷轩)
x) 函数表达式及其傅里叶变换 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.10 以两能级系统为例 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.11 幺正算符 3.12 幺正变换 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
约化密度矩阵 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 刘维尔方程——密度算符的演化 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 统计物理中的多粒子状态 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

量子力学笔记

量子力学笔记

量子力学一、量子力学的实验基础1.卢瑟福实验:a 粒子的质量远大于电子,两者的质心几乎就在a 粒子上。

虽然二体系统有内部的相互作用,但它们的质心是自由运动的,故电子对a 粒子的作用不影响a 粒子的运动。

a 粒子散射时,原子的正电荷部分受到反冲力,导致薄片晶格的振动。

2.原子光谱是原子内部电子运动情态的反映。

光谱项T。

氢原子光谱的频谱是离散的,且不是连续谱亦非由基频和倍频构成的频谱,这个性质直接来源于原子中电子运动具有能级的特性以及光具有粒子性。

3.光电效应实验中无法用经典物理学解释的现象:(1)反向遏止电压和入射光强无关;(2)反向遏止电压和入射光的频率呈线性关系;(3)电子逸出相对于光的照射而言几乎无时间延迟。

4.爱因斯坦方程:φω−=ℏT ,表示金属电子吸收一份光能量而获得T 的动能逸出金属,φ为脱出功,与材料有关。

5.光子:(1)博特实验(W.Bothe experiment)表明每份光能量是集中的;(2)贾诺希实验(L.Janossy experiment)表明每份光子落在何处是偶然事件,也就是说电磁波是光子的概率幅波。

(量子力学有整体性,光子的运动受到整个环境的影响。

)6.爱因斯坦关系:ωℏℏ==E k p ,。

P 和E 描写光子,k 和ω描写单色波。

【注意:说光有波粒二象性是沿用经典物理的语言。

光有波动性,是指光的运动没有轨道;光具有粒子性,是指光与电子相互作用时像粒子那样,而不像经典的波场那般。

】7.康普顿(pton)效应应用了“静电子模型”(靶原子的外层电子)。

康普顿波长:�ℏA mc0242621.02==Λπ。

计算过程中考虑了能量守恒(相对论力学)和动量守恒(矢量力学),2sin 22θλΛ=∆。

(1)对于原子内层的“束缚电子”,由于它们与原子核束缚的紧,应作为一个整体看待,“静电子模型”不成立。

光子撞不动整个原子,只是自己改变方向。

因此实验中出现了0=∆λ的成分。

(2)对于可见光,能量和动量小,靶原子的外层电子应作束缚电子看待,“静电子模型”不成立。

量子力学(1) 总结

量子力学(1) 总结


⎪⎩
( ) ⎧ R (δϕ ) = exp − i δϕ n • l / ℏ

( ) ⎪

R
ψ

(r ) =
⎢⎣⎡1 −
i ℏ
δ
n • l ⎥⎦⎤ψ (r )
⎪ ⎩
l
=

p
=
− iℏr
×∇
( ) ⎧ R (δϕ ) = exp − i δϕ n • j / ℏ

( ) [ ] ⎪

RA

(r ) =
d dt
A
=
1 iℏ
[A,
H]
+
∂A ∂t
当A不显时间,则d dt
A
=
1 iℏ
[ A,
H]
位力定理
2T = r • ∇V
⎪⎧当保守力F = -∇V时,2T = −r • F
⎨ ⎪⎩当V

r n时,2T
=
nV
波包的艾伦菲斯特关系:
m
d2 dr 2
r
=
F (r )
力学量随时间演变的三种图像
⎪⎧薛定谔图像: ⎪
[
1 2µ
⎛ ⎜⎜ ⎝
Pr2
+
l2 r2
⎞ ⎟⎟ ⎠
+
V

(r)
=

(r)
其中Pr2
=


2
⎛ ⎜⎜ ⎝
∂2 ∂r 2
+
2 r
∂ ∂r
⎞ ⎟⎟ ⎠
=
−ℏ2
1 r
∂2 ∂r 2
r
设ψ
(r)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档