中科院量子力学历年详解(phileas)
中科院量子力学超详细笔记 第四章 中心场束缚态问题

两个粒子的坐标,体现了它们运动之间的动力学关联。和经典力学十 分相似,量子力学中的两体问题也可以通过引入它们的质心坐标和相 对坐标1,把它们(作为整个体系)的质心运动和彼此相对运动这两部 分运动分离开。也即令(“Jacobi 坐标”的特例)
v v v m1r v v v 1 + m2 r2 R= ,r = r2 − r1 m1 + m2
v v V = V (r1 − r2 )
最后,孤立体系本来并没有绝对方向(或优先方向),在没有外场破 坏空间各向同性的情况下,势再简化成为只与粒子间连线长度有关,
v v V = V (| r1 − r2 |) ≡ V ( r )
有关分析详见§6.2 节。 v v 回到两体相互作用为 V = V (r 1 − r2 ) 的一般情况。这时量子力学中的 两体问题由下面哈密顿量决定
见郭敦仁 “数学物理方法” , 第 279、 286、 287 页, 人民教育出版社, 1979 年。 此处的
Ylm (θ , ϕ ) 还有另一定义,与此处相差一个因子 ( − )
|m|− m l 2
i
,见朗道《量子力学》,第 112 页。பைடு நூலகம்79
⎛ l = 0, 1, 2,L ⎞ ⎜ ⎜ m = −l , L,−1, 0, 1, L , l.⎟ ⎟ ⎝ ⎠
77
v 许多常见的,如库仑势和各向同性谐振子情况下, V (r ) 可以简化 成相对于坐标原点为各向同性的中心势 V (r ) 。 将方程(4.4)中描述相对运 v 动 ψ (r ) 的方程中 E − E R 改记为 E 并略去 Δ(r ) 顶标,相对运动方程成为
h2 v v Hψ (r ) = Eψ (r ), H = − Δ + V (r ) (4.5) 2μ v v 在绕原点的转动变换下, 正如 r 2 = r ⋅ r 一样, Δ = ∇ ⋅ ∇ 也表现为一个标量,
中科院量子力学超详细笔记

+ (hν )2 + (
′)2 − 2h2νν ′ = m2c4 hν ′)2 − 2h2νν ′ cosθ
+ m02c4 = m2c4
− 2mm0c − m02c4
4
后者减前者,得
( ) 2h2νν ′(1− cosθ ) = 2mm0c4 − 2m02c4 = 2m0c2 mc2 − m0c2
的。即必须假定,对所有频率相应的能量都是量子化的。
《光电效应问题》 自 1887 年 Hertz 起,到 1916 年 Millikan 为止,光电效应的实验 规律被逐步地揭示出来。其中,无法为经典物理学所理解的实验事实 有: 反向遏止电压(和逸出电子的最大动能成正比)和入射光强无关; 反向遏止电压和入射光的频率呈线性关系; 电子逸出相对于光的照射而言几乎无时间延迟。 它们难于理解是因为,按经典观念,入射光的电磁场使金属表面电子
射在金属表面的波场是一种微粒集合。沿着这一思路前进,人们甚至
可以引入光子的“有效”质量 m∗ ,即
m∗ = ε = hν c2 c2
于是,若在重力场中,一个光子垂直向上飞行了 H 距离,其频率要由
原来的ν 0 减小为ν :
hν 0
=
hν
+
hν c2
gH
,从而 ν
<
ν0
这说明垂直向上飞行的光子,其频率会产生红移1。这一现象在 1960
样的动能需要一定的时间。然而,实验却表明,这个弛豫时间很短,
它不大于10−9 秒。为了解决这些矛盾,1905 年,Einstein 在 Planck 的 能量子概念基础上,再大胆地前进一步,提出了光量子概念,并指出
光量子和电子碰撞并被电子吸收从而导致电子的逸出。他的光电效应
量子力学经典八十题(推荐版本)【含答案】

ψ
nxnynz
(x,
y,
z)
=
⎧ ⎪ ⎨ ⎪⎩0
8 abc ,
sin
nxπx a
sin
nyπ b
y
sin
nzπ c
z
, 0 < x < a,0 其余区域
<
y
<
b
,
0
<
z
<
c
n = 1, 2,3,""
9. 粒子在一维 δ 势阱
V (x) = −γ δ (x) (γ > 0)
中运动,波函数为ψ (x) ,写出ψ ′(x) 的跃变条件。
8. 写出三维无限深势阱
V (x,
y, z)
=
⎧0 , 0 < x < a , 0 ⎩⎨∞ , 其余区域
<
y
<
b
,
0
<
z
<
c
1
量子力学复习题答案(安徽大学)
中粒子的能级和波函数。
解:能量本征值和本征波函数为
+ + Enxnynz
=
= 2π 2 2m
⎜⎛ ⎜⎝
n
2 x
a2
n
2 y
b2
n
2 z
⎟⎞
c 2 ⎟⎠
∑ ψ (x) = cnψ n (x) , n
写出展开式系数 cn 的表达式。
解:
∫ cn = (ψ n (x) ,ψ (x)) =
ψ
* n
(
x)ψ
(
x)
dx
。
29.
一个电子运动的旋量波函数为
中科院量子力学历年详解(phileas)

v v vi 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17
1.10 2006 乙 A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.11 2006 乙 B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.12 2005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.13 2004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.14 2001 理论型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 详解 2.1 2011 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
2.10 2006 乙 A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.11 2006 乙 B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.12 2005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.13 2004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.14 2001 理论型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A 四川大学量子力学入学试题 A.1 2010 试题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.2 2009 试题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.3 2010 解答 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.4 2009 解答 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
中科院量子力学超详细笔记_第五章_量子力学的表象与表示

第五章 量子力学的表象与表示§5.1 幺正变换和反幺正变换1, 幺正算符定义对任意两个波函数)(r v ϕ、)(r vψ,定义内积r d r r vv v )()(),(ψϕψϕ∗∫=(5.1)按第一章中所说,(5.1)式的含义是:当微观粒子处在状态()r vψ时,找到粒子处在状态()r vϕ的几率幅。
依据内积概念,可以定义幺正算符如下:“对任意两个波函数ϕ、ψ,如果算符$U恒使下式成立 ),()ˆ,ˆ(ψϕψϕ=U U(5.2) 而且有逆算符1ˆ−U存在,使得I U U U U ==−−11ˆˆˆˆ1,称这个算符U ˆ为幺正算符。
”任一算符Aˆ的厄米算符+A ˆ定义为:+A ˆ在任意ϕ、ψ中的矩阵元恒由下式左边决定),ˆ()ˆ,(ψϕψϕ+=A A(5.3) 由此,幺正算符Uˆ有另一个等价的定义: “算符Uˆ为幺正算符的充要条件是 I U U U U==++ˆˆˆˆ (5.4a) 或者说1ˆˆ−+=U U 。
” (5.4b)证明:若),()ˆ,ˆ(ψϕψϕ=U U成立,则按+U ˆ定义, ),ˆˆ()ˆ,ˆ(),(ψϕψϕψϕU U U U+== 由于ϕ、ψ任意,所以I U U=+ˆˆ 又因为Uˆ有唯一的逆算符1ˆ−U 存在,假定取ψψϕϕ11ˆ,ˆ−−=′=′U U ,则有 ()),ˆ)ˆ((ˆ,ˆ),()ˆ,ˆ(),(1111ψϕψϕψϕψϕψϕ−+−−−==′′=′′=U U U U U U所以I U U=−+−11ˆ)ˆ( 由于11)ˆ()ˆ(−++−=U U,上式即 I U U=+ˆˆ 这就从第一种定义导出了第二种定义。
类似,也能从第二种定义导出第一种定义。
从而,幺正算符的这两种定义是等价的。
1这里强调了$U−1既是对$U右乘的逆又是对$U 左乘的逆。
和有限维空间情况不同,无限维空间情况下,任一算符$U有逆算符的三种情况:1)有一个左逆算符和无穷多个右逆算符;2)有一个右逆算符和无穷多个左逆算符;3)有一个左逆算符和一个右逆算符,并且它俩相等,唯有此时可简单地写为$U−1。
2020年中科院811量子力学考研真题解析讲义

(3) 用升降算符和基态波函数描述第一激发态;
(4)对于三维谐振子,第一激发态三重简并,此时受微扰 H bxˆyˆ ,微扰矩阵可写成
H
b 2m 2
0 1 0
1 0 0
0 0 ,写出能级分裂. 0
中国科学院大学
2020 年招收攻读硕士学位研究生入学统一考试试题
科目名称:811 量子力学
考生须知: 1.本试卷满分为 150 分,全部考试时间总计 180 分钟。 2.所有答案必须写在答题纸上,写在试题纸上或草稿纸上一律无效。
一.考虑一维束缚态,
(1)证明 (x, t) (x, t) 不随时间变化,此时的 不必是定态;
(球谐函数: Y00
1, 4
Y10
3 4
cos
,
Y11
3 sin ei 8
)
1
(1) 求粒子的总角动量;
(2) 求角动量 Lˆz 的期望值及测得 Lz 的概率;
(3) 求发现粒子在 ( ,) 方向上 d 立体角内的概率.
四 . (1) 一 个 电 子 在
H aˆ1z bˆ2z c0ˆ1 ˆ2 ,其中 a, b, c0 为常数,ˆi 为泡利算符,前两项为粒子处于磁场
中的势能,最后一项为两粒子自旋-自旋相互作用能,求系统能级.
五.考虑一维谐振子的哈密顿量为 Hˆ pˆ 2 1 k xˆ2 : 2m 2
(1)用不确定关系计算体系能量下限;
20 同样插入完备性公式:
eipˆ / x eipˆ / p dp p x
1 2
ei( x) p /
(NEW)中国科学技术大学《828量子力学》历年考研真题汇编(含部分答案)

(a)请考察A的厄米性;
(b)请写出A用 阵;
展开的表达式,其中
为著名的Pauli矩
(c)请求解A的本征方程,得出本征值和相应本征态。
5.(30分)假设自由空间中有两个质量为m、自旋为 /2的粒子,它们 按如下自旋相关势
相互作用,其中r为两粒子之间的距离,g>0为常量,而 (i=l,2)为 分别作用于第1个粒子自旋的Pauli矩阵。
。算符 , 与升降算符之间的关系为:
其中
。对于体系基态,相关的平均值为:
所以,
,
最终得到:
。 4.(20分〉设有2维空间中的如下矩阵
(a)请考察A的厄米性;
(b)请写出A用 阵;
展开的表达式,其中
为著名的Pauli矩
(c)请求解A的本征方程,得出本征值和相应本征态。
解:(a)矩阵A的转置共轭为:
因此,矩阵A为厄米矩阵。 (b)Pauli矩阵分别为:
令
,则 , 与哈密顿量对易。对于 ,此结果是显然的。对
于,
体系的角动量 显然也与哈密顿量及自旋对易。因此力学量组 即为体系的一组可对易力学量完全集。
(b)为考虑体系的束缚态,需要在质心系中考查,哈密顿量可改写 为:
其中 为质心动量。由于质心的运动相当于一自由粒子,体系的波函数 首先可分离为空间部分和自旋部分,空间部分可以进一步分解为质心部 分和与体系内部结构相关的部分。略去质心部分,将波函数写成力学量 完全集的本征函数:
目 录
2014年中国科学技术大学828量子力学 考研真题
2013年中国科学技术大学828量子力学 考研真题
2012年中国科学技术大学828量子力学 考研真题
2011年中国科学技术大学809量子力学 考研真题
量子力学真题

中国科学院量子力学真题一、回答下列各问题(共30分)1.计算对易关系ˆ,L μν⎡⎤⎣⎦,其中,,,x y z μν=。
(4分) 2.分别说明什么样的状态是束缚态、简并态和负宇称态(3分)3.粒子自旋处于/2z s =的本征态10α⎡⎤=⎢⎥⎣⎦,试求x s 和y s 的不确定关系:?=。
(5分) 4.粒子在宽为a 的无限深方势阱中运动,估算其基态能量。
(3分)5.写出电子自旋z s 的二本征值和对应的本征态。
(2分)6.设粒子处于(,)lm Y θϕ状态下,求2()x L ∆和2()y L ∆(6分)7.计算下列对易式2(1),?(2),?d d x x dx dx ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦。
(4分) 8.何谓光的吸收?何谓光的受激辐射?何谓光的自发辐射?给出光学定理的表达式并说明它的意义。
(3分)二、(共10分)两个自旋1/2、质量为m 的无相互作用的全同费米子同处线性谐振子场中,写出基态和第一激发态的能量本征值和本征函数,并指出简并度。
三、(共20分)已知氢原子在0t =时处于状态21311112(,0)()()()000333r r r r ψψψ⎛⎫⎛⎫⎛⎫ψ=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭其中,()n r ψ为氢原子的第n 个能量本征态。
求能量及自旋z 分量的取值概率与平均值,写出0t >的波函数。
四、(共20分)一个一维无限深方势阱如图所示,在x =0和x =L 处有两个无限高壁,两个宽为a ,高为0V 的小微扰势垒中心位于/4x L =和3/4x L =处,a 是小量(例如/100a L )。
试用一级微扰论计算修正后的基态能量值及2n =和4n =的能级差。
五、(共20分)在0t =时,处于势2212V x m x ω=()中的粒子,由波函数,0()n n x x ψψ∑n ()=A描述,n ψ是能量本征态,()n n nn ψψδ''=,求(1) 归一化常数A ;(2) 给出0t >时,,x t ψ()的表达式;(3) 证明2,x t ψ()是一个周期函数,求出其最长的周期;(4) 求出0t =时,体系能量的平均值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.10 2006 乙 A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.11 2006 乙 B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.12 2005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.13 2004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.14 2001 理论型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A 四川大学量子力学入学试题 A.1 2010 试题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.2 2009 试题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.3 2010 解答 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.4 2009 解答 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
17
目
录
2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9
中科院量子力学历年试题详解 23 29 33 37 42 46 51 55 59 62 65 69 71 73 73 75 77 83
2010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2008 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2007A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2007B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2006 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2006 甲 A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2006 甲 B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
这份文档里还有很多问题和错误,因为现在空余时间不多,故先发 布给大家。欢迎交流学习!
参考资料
• 1990-2010 量子力学试题及参考答案集 -中国科学院(使用版)–Schrödinger’s Kitten 【主要试题来源,及参考,感谢无私奉献! 】 • 陈鄂生量子力学习题与解答 【是“量子力学基础教程” (陈鄂生,山东大学出版社,2007)的配套书。也绝版了,淘宝 有卖。收录了很多大学研究生入学考试的题目。是主要试题来源,及参考! 】 • 物理学大题典(卷 6 量子力学)/张永德主编.–北京:科学出版社;合肥:中国科学技术 大学出版社,2005 【内容丰富!前身是,美国物理试题与解答 量子力学第六卷,这个早就绝版了,不必苦苦 寻找这个了,看《题典》就行了。 】 • 量子力学习题精选与剖析(第三版)/钱伯初,曾谨言著.–3 版. 北京:科学出版社,2008 【简称《曾题集》 】 • 量子力学学习指导 /张鹏飞,阮图南,朱栋培,吴强编著.–合肥:中国科学技术大学出版 社,2008.4(2009.8 重印) 【简称《指导》 】 • 量子力学 卷 I/曾谨言 著.—4 版. –北京:科学出版社,2007 【简称《曾书》 】 phileaslean@ v 目录 返回
目
录
中科院量子力学历年试题详解
致谢
• 感谢我的堂兄,是他在我电脑被偷后送给我电脑!
A • 感谢 Clerk Ma,是他在我的 L TEX 的使用上提供了许多帮助!
• 感谢 Schrödinger’s Kitten 无私发布其文档,他的文档是本文档的重 要来源、参考、动力! • 感谢 Dirac chen 提供他自己的 11 解答! • 感谢 Ubuntu,TEX 2011,TEX works,文鼎字体,文泉字体;没有这 些开源免费项目,本文档也是很难实施的。
献给我的父母和我的妹妹
phileaslean@
vi
目录 返回
CHAPTER
1
试题
• 数学形式(或表述、符号)也重要 数学上选好何种形式对问题的简化也是挺重要的。好的数学形式,能突出问题的重点, 在繁杂的数学公式中,能提供好的思路。所以证明过程中,在步骤上应以突出重点与思 路为主,其他的旁支的结论可以另外证明后,直接引用。例如,在位力定理的证明过程 中, [r · p, p2 ] , [r · p, V (r)] ,这种步骤中小证明应该单独拿出。另一个比较鲜明的例子 见:2006 年甲 B 第二题。就符号而言,狄拉克符号堪称经典。
1
1.1. 2011
中科院量子力学历年试题详解
ቤተ መጻሕፍቲ ባይዱ
1.1
一、
2011
(1)氢原子基态的能量为 −13.6V ,那么第一激发态的氢原子电离能为: () A.13.6eV B.3.9eV C.7.8eV D.2.5eV
中科院量子力学历年试题详解
phileas May 2, 2012
中科院量子力学历年试题详解
phileaslean@
ii
目录 返回
目
录
说明 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 参考资料 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 致谢 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 试题 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2011 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2008 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2007A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2007B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2006 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2006 甲 A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2006 甲 B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
phileaslean@
iv
目录 返回
目
录
中科院量子力学历年试题详解
说明
• 大部分都是自己解过的,难免有误,欢迎批评指正! • 我的 E-mail:phileaslean@。 • 为了把问题说清楚,解得有些复杂,考试不必这样。 • 文档又下角的“返回”键有些阅读器不支持,一般用 Adobe 阅读器打开有效! • 曾书和曾题集是出题宝典,各个旮旯都要清楚,最经典的例子就是 2009 年第三题。 • 我未经授权擅自使用了方正徐静蕾字体,如要求,我会立即删除! • 生成本文档用的操作系统是 Ubuntu,软件是 TEX 2011、TEXworks,字体是文鼎、文泉 的。 • 本文档是双页模式。所以有空白页,方便打印看。 •