2015年中考总复习图形与几何模块《四边形》复习测试题及答案

合集下载

2015年中考一轮复习专题测试卷(五)四边形(含答案)

2015年中考一轮复习专题测试卷(五)四边形(含答案)

2015年中考数学一轮复习专题卷(五)四边形(满分:150分时间:120分钟)一、选择题(本大题共10小题,每小题4分,满分40分)1.多边形的边数增加1时,其内角和将()A.增加90°B.增加180°C.减少180°D.增加360°2.在四边形ABCD中对角线AC、BD相交于点O,给出下列四个条件:①AB∥CD;②AD∥BC;③OA=OC;④OB=OD,从中任选2个条件能判断四边形ABCD是平行四边形的选法有()A.3种B.4种C. 5种D.6种3.如图,□ABCD中,AB=2BC,AE平分∠DAB,EC=2,则AB= ()A.4B.3C.2D.14.如图,矩形ABCD的对角线AC、BD相交于点O,∠BCO︰∠OCD=2︰1,AB=3,则BC 的长为()A.2 D.4第3题ED CBAO第4题D CBA第5题DCBA第8题EDC BA5.如图,AC、BD是菱形ABCD的两条对角线,下列结论不正确的是()A.△ABC与△ABD的周长相等B.△BCD与△ACD的面积相等C.菱形的周长等于边长的4倍D.菱形的面积等于两条对角线的乘积的一半6.已知正方形ABCD的对角线BD ABCD的周长为()A.4B.6C.8D.107.一个多边形截去一个角后所得的多边形内角和为720°,则原多边形的边数是()A.5或6B.5或7C.6或7D. 5或6或78.如图,在△ABC中∠C=90°,AC=3,BC=4,点D在AC上,以AB为对角线的所有□ADBE中,DE 的最小值为 ( ) A.2 B.3 C.4 D.59.如图,矩形ABCD 中,AB点E 、F 分别在AB 、CD 上,四边形AECF 为菱形,EF =2FD ,则AD 的长为 ( ) A.1C.D. 210.已知:四边形ABCD 是平行四边形,从下列四个条件:①AB =BC ;②∠ABC =90°;③AC =BD ;④AC ⊥BD 中选取2个条件就能判定四边形ABCD 是正方形的选法共有( )A.3种B.4种C.5种D.6种O F 第9题ED C BAF第12题E DCBA O 第13题EDC BA第14题M FE D CBA二、填空题(本大题共4小题,每小题5分,满分20分) 11.顺次连接矩形四边的中点所得的四边形是_______________.12.如图,将矩形ABCD 沿CE 折叠,使点B 落在AD 边上的F 点处,AE ︰EB =2︰3,若FC =6,则矩形的宽AB =__________.13.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,AC =6,BD =8,E 为AB 的中点,△OBE 的周长=_________.14.如图,正方形ABCD 中,E 、F 分别为AD 、CD 上的点,△BEF 是等边三角形,连接BD 交EF 于点M ,下列结论:①AE =CF ;②∠ABE =15°,③AE =EM ;④EM =FM ;⑤图中共有5个等腰直角三角形.其中正确的结论有______________________(填序号). 三、(本大题共2小题,每小题8分,满分16分)15.已知:如图,在□ABCD 中,E 为AB 上一点,DE 同时平分∠AEC 和∠ADF . 求证:(1)△DEC 是等腰三角形;(2)CF =BE .FDCBA16.如图,四边形ABCD 中,∠A =60°,∠B =∠D =90°,AB =2,CD =1,求四边形ABCD 的面积.60°D CBA四、(本大题共2小题,每小题8分,满分16分)17.如图,□ABCD 的对角线AC 与BD 相交于点O ,F 为BC 的中点,延长AB 至E ,使AB =2BE ,连接EF 、OE . 求证:OE 与BF 互相平分.OD CF EBA18. 如图,在□ABCD 中,∠A =60°,E 、F 分别为AB 、CD 的中点,AB =2AD ,试问:BD 与EF 有怎样的数量关系?请证明你的结论.FEDCBA五、(本大题共2小题,每小题10分,满分20分)19.如图,分别以Rt △ABC 的直角边AC 与斜边AB 向外作等边△ACD 、等边△ABE ,已知∠BAC =30°,EF ⊥AB 于点F ,连接DF .求证:四边形ADFE 是平行四边形.F EDCBA20.已知:如图,BD 是△ABC 的角平分线,E 、F 分别在BC 、AB 上,DE ∥AB ,EF ∥AC ,∠ABC =60°,BD =6,求四边形ADEF 的面积.FD CBA六、(本题满分12分)21.如图,矩形ABCD 中,将△ADF 沿AF 翻折,使点D 落在AC 上的G 点,将△CBE 沿CE 翻折,使点B 落在AC 上的H 点,BC =3,若四边形AECF 是菱形,求这个菱形的面积.H GFEDCB A七、(本题满分12分)22.如图,在Rt △ABC 中,∠ACB =90°,先把△ABC 绕点C 顺时针旋转90°,得到Rt △CDE 再把△ABC 沿射线AC 平移,得到Rt △DFG ,连接BF , (1)求证:四边形BCDF 是正方形. (2)判断DE 与FG 的关系,并说明理由.GE DC B A八、(本题满分14分)23. 菱形ABCD 中,对角线AC 、BD 交于点O ,过点O 作直线分别交DA 、BC 的延长线于点E 、F ,连接BE 、DF .(1)求证:四边形BFDE 是平行四边形; (2)若EF ⊥AB 于点G ,tan ∠GBO =12,求FC ︰CB 的值. G FE DCBA O参考答案1.B2.D3.A4.B5.A6.C7.D8.C9.A 10.B11.菱形 12. 13.9 14.①②④⑤15.证明: (1)∵AB ∥CD ,∴∠AED =∠CDE ,∵∠AED =∠FED ,∴∠FED =∠CDE ,∴CD =CE ,∴△DEC 是等腰三角形 (2)由△ADE ≌△FDE (ASA )得AE =FE ,∵AB =CD =CE ,∴BE =CF16.分别延长BC 、AD 交于点E ,则BE =DE S四边形ABCD =S △ABE -S △CDE=112122⨯⨯⨯=17.证明:∵四边形ABCD 为平行四边形,∴AO =CO ,∵F 为BC 中点,∴OF ∥AB ,AB =2OF ,∵AB =2BE ,∴OF =BE ,OF ∥BE ,∴四边形BEFO 为平行四边形,∴OE 与BF 互相平分18. BD ,证明:∵四边形ABCD 为平行四边形,E 、F 分别为AB 、CD 中点,∴四边形EBCF 为平行四边形,∴EF =BC ,∵AB =2AD ,∴DC =2BC ,∴FC =BC ,∵∠A =∠C =60°,∴△FCB 为等边三角形,∴DF =BF =CF,∴∠DBC =90°,∴tan ∠C =DBBC=,∴DB 19.∵△ABE 为等边三角形,EF ⊥AB ,∴AB =2AF ,∵Rt △ABC 中,∠BAC =30°,∴AB =2BC ,∴AF =BC ,∴Rt △ABC ≌Rt △EAF (HL ),∴EF =AC ,∵AC =AD ,∴EF =AD ,∵∠DAC =60°,∴∠DAF =∠EF A =90°,∴EF ∥AD ,∴四边形ADFE 是平行四边形20.∵DE ∥AB ,EF ∥AC ,∴四边形ADEF 是平行四边形,∠ABD =∠BDE ,∵∠ABD =∠EBD ,∴∠BDE =∠EBD ,∴BE =DE ,过点D 作DG ⊥AB 于点G ,过点E 作EH ⊥BD 于点H ,∵∠ABC =60°,∴DG =BDsin 30°=3,ED =cos30HD=︒,∴S四边形ADEF =DE ×DG =3×21. ∵四边形ABCD 为矩形,∴BC =AD =3,∠DAB =90°,由翻折可得∠DAF =∠GAF ,又∵四边形AECF 上菱形,∴∠GAF =∠HAE ,∴∠DAF =30°,∴AF =cos30ADAE ==︒,∴菱形AECF 的面积=AE ×BC =3=22.(1)由平移得BC =FD ,BC ∥FD ,∴四边形BCDF 是平行四边形,由旋转得∠BCD =90°,∴四边形BCDF 是矩形,又BC =DC ,∴四边形BCDF 是正方形;(2)ED =FG ,ED ⊥FG ,理由:由旋转、平移得AB=ED,AB=FG,∴ED=FG,由旋转得∠ABC=∠EDC,由平移得∠BAC=∠FGD,∵∠BAC+∠ABC=90°,∴∠EDC+∠FGD=90°,∴ED⊥FG 23. (1)由△AEO≌△CFO(AAS)得OE=OF,又OB=OD∴四边形BFDE是平行四边形;(2)设OG=x,∵EF⊥AB,tan∠GBO=12,∴BG=2x,又AC⊥BD,∴△AOG∽△OBG,∴AG=12x,又△AEG∽△BFG,∴EA︰FB=AG︰BG=12x︰x=1︰4,又EA=FC,∴FC︰CB=1︰3。

中考数学复习《四边形》经典题型及测试题(含答案)

中考数学复习《四边形》经典题型及测试题(含答案)

中考数学复习《四边形》经典题型及测试题(含答案)命题点分类集训命题点1 平行四边形的判定与计算【命题规律】1.考查内容:①平行四边形的性质及其相关计算;②平行四边形的判定.2.考查形式:①根据平行四边形的性质考查结论判断;②利用平行四边形的性质求角度、线段或面积;③添加条件使四边形为平行四边形.3.考查题型:性质在选择和填空题中考查居多,判定题近年来多在解答题中考查,有时会在二次函数压轴题中探究平行四边形的存在问题.【命题预测】平行四边形是四边形中主要的图形之一,性质与判定常常考查,是近年命题的重点. 1. 已知四边形ABCD 是平行四边形,对角线AC 、BD 交于点O ,E 是BC 的中点,以下说法错误的是( )A . OE =12DC B . OA =OC C . ∠BOE =∠OBA D . ∠OBE =∠OCE1. D第1题图 第2题图2. 如图,在▱ABCD 中,BM 是∠ABC 的平分线交CD 于点M ,且MC =2,▱ABCD 的周长是14,则DM 等于( )A . 1B . 2C . 3D . 42. C 【解析】∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠ABM =∠CMB ,∵BM 平分∠ABC ,∴∠ABM =∠CBM ,∴∠CBM =∠CMB ,∴CB =MC =2,∴AD =BC =2,∵▱ABCD 的周长是14,∴AB =CD =5,∴DM =DC -MC =3.3. 如图所示,四边形ABCD 的对角线相交于点O ,若AB ∥CD ,请添加一个条件________(写一个即可),使四边形ABCD 是平行四边形. 3. AD ∥BC (答案不唯一)第3题图 第4题图 第5题图 4. 如图,▱ABCD 中,AC =8,BD =6,AD =a ,则a 的取值范围是________.4. 1<a <7 【解析】如解图,对角线AC ,BD 相交于点O ,则OA =12AC =4,OD =12BD =3,在△OAD中,OA -OD <AD <OA +OD ,即1<a <7.5. 如图所示,在▱ABCD 中,∠C =40°,过点D 作AD 的垂线,交AB 于点E ,交CB 的延长线于点F ,则∠BEF 的度数为__________. 5. 50°6. 如图,将▱ABCD 的AD 边延长至点E ,使DE =12AD ,连接CE ,F 是BC 边的中点,连接FD.(1)求证:四边形CEDF 是平行四边形; (2)若AB =3,AD =4,∠A =60°,求CE 的长.6. (1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD =BC , ∴DE ∥FC.∵F 是BC 的中点, ∴FC =12BC =12AD ,∵DE =12AD ,∴FC =DE ,∴四边形CEDF 是平行四边形. (2)解:如解图,过点D 作DH ⊥BC 于点H. 由(1)知四边形DECF 是平行四边形,∴DF =CE.∵四边形ABCD 是平行四边形,∠A =60°,AB =3,AD =4, ∴BC =4,CD =3,∠BCD =60°, 在Rt △DHC 中,HC =DC·cos ∠HCD =32,DH =DC ·sin ∠HCD =332,∵F 是BC 的中点, ∴FC =2,∴FH =FC -HC =2-32=12,在Rt △DFH 中,由勾股定理得DF =DH 2+FH 2=(332)2+(12)2=7,∴CE =7.命题点2 矩形的判定与计算【命题规律】考查形式:①利用矩形性质,结合勾股定理求线段长或面积;②矩形的判定,一般在解答题中考查,也常在二次函数综合题中考查矩形的存在性问题;③矩形折叠的相关计算与证明(见命题点6:图形折叠的相关计算).【命题预测】矩形性质将勾股定理、全等、相似等重要知识综合考查,是全国命题趋势之一. 7. 如图,在矩形ABCD 中(AD >AB),点E 是BC 上一点,且DE =DA ,AF ⊥DE ,垂足为点F.在下列结论中,不一定正确的是( )A . △AFD ≌△DCEB . AF =12AD C . AB =AF D . BE =AD -DF7. B 【解析】逐项分析如下表:选项逐项分析正误A∵四边形ABCD 是矩形,AF ⊥DE ,∴∠C =90°=∠AFD ,AD ∥BC ,∴∠ADF =∠CED ,∵AD =DE ,∴△AFD ≌△DCE (AAS)√B只有当∠ADF =30°时,才有AF =12AD 成立×C由△AFD ≌△DCE 可知,AF =DC ,∵矩形ABCD 中,AB =DC ,∴AB =AF√D∵△AFD ≌△DCE ,∴DF =CE ,∴BE =BC -CE =AD -DF √8. 已知矩形的对角线AC 与BD 相交于点O ,若AO =1,那么BD =________. 8. 2第7题图 第8题图 第9题图 9. 如图,矩形ABCD 的面积是15,边AB 的长比AD 的长大2,则AD 的长是________.9. 3 【解析】本题主要考查了一元二次方程的实际应用问题. 设AD =x ,由题知,AB =x +2,又∵矩形ABCD 的面积为15,则x(x +2)=15,得到x 2+2x -15=0,解得,x 1=-5(舍) , x 2=3,∴AD =3. 10. 如图所示,△ABC 中,D 是BC 边上一点,E 是AD 的中点,过点A 作BC 的平行线AF 交CE 的延长线于F ,且AF =BD ,连接BF. (1)求证:D 是BC 的中点;(2)若AB =AC ,试判断四边形AFBD 的形状,并证明你的结论.10. (1)证明:∵点E 是AD 的中点, ∴AE =DE. ∵AF ∥BC ,∴∠AFE =∠DCE ,∠FAE =∠CDE , ∴△EAF ≌△EDC(AAS ), ∴AF =DC. ∵AF =BD , ∴BD =DC ,即D 是BC 的中点.(2)解:四边形AFBD 是矩形.证明如下: ∵AF ∥BD ,AF =BD ,∴四边形AFBD 是平行四边形.∵AB =AC ,又由(1)可知D 是BC 的中点, ∴AD ⊥BC ,∴四边形AFBD 是矩形.11. 如图,点P 在矩形ABCD 的对角线AC 上,且不与点A ,C 重合,过点P 分别作边AB ,AD 的平行线,交两组对边于点E ,F 和点G ,H. (1)求证:△PHC≌△CFP;(2)证明四边形PEDH 和四边形PFBG 都是矩形,并直接写出它们面积之间的关系.11. (1)证明:∵四边形ABCD 是矩形,∴DC ∥AB ,AD ∥BC ,∠DCB =90°.∵EF ∥AB ,GH ∥AD ,∴EF ∥CD ,GH ∥BC , ∴四边形PFCH 是矩形, ∴∠PHC =∠PFC =90°,PH =CF ,HC =PF , ∴△PHC ≌△CFP(SAS ).(2)证明:由(1)知AB ∥EF ∥CD , AD ∥GH ∥BC ,∴四边形PEDH 和四边形PGBF 都是平行四边形, ∵四边形ABCD 是矩形, ∴∠D =∠B =90°,∴四边形PEDH 和四边形PGBF 都是矩形, ∴S 矩形PEDH =S 矩形PGBF .命题点3 菱形的判定与计算【命题规律】1.考查内容和形式:①根据菱形性质判断结论正误;②菱形的判定;③根据菱形的性质求角度、周长和面积;④与二次函数压轴题结合考查菱形的存在性问题.2.三大题型均会出现.【命题预测】菱形是特殊平行四边形中的重要内容,是中考常考知识,对菱形的性质与判定应做到牢固掌握.12. 如图,在▱ABCD 中,对角线AC 与BD 交于点O.若增加一个条件,使▱ABCD 成为菱形,下列给出的条件不正确...的是( ) A . AB =AD B . AC ⊥BD C . AC =BD D . ∠BAC =∠DAC12. C 【解析】邻边相等的平行四边形是菱形,所以A 正确;对角线互相垂直的平行四边形是菱形,所以B 正确;对角线相等的平行四边形是矩形,所以C 错误;由∠BAC =∠DAC 可得对角线是角平分线,所以D 正确.第12题图 第13题图13. 已知菱形OABC 在平面直角坐标系的位置如图所示,顶点A(5,0),OB =45,点P 是对角线OB 上的一个动点,D(0,1),当CP +DP 最短时,点P 的坐标为( )A . (0,0)B . (1,12) C . (65,35) D . (107,57)13. D 【解析】如解图,连接CA 、AD ,CA 与OB 相交于点E ,过点E 作EF ⊥OA ,交OA 于点F .由题知点C 关于OB 的对称点是点A ,AD 与BO 的交点即为点P .根据菱形的性质,菱形的对角线互相垂直且平分两组对角,可知△COE ∽△EOF ,∴CO EO =EO OF ,∵OC =OA =5,OE =OB 2=25,∴OF =OE 2CO =(25)25=4,根据勾股定理可得EF =OE 2-OF 2=(25)2-42=2,点E 的坐标为(4,2),易得直线OE 的函数解析式为y =12x ,直线AD 的函数解析式是y =-15x +1,联立得:⎩⎨⎧y =12x y =-15x +1,解得⎩⎨⎧x =107y =57,∴点P 的坐标为(107,57).14. 如图,在菱形ABCD 中,E 、F 分别是AD 、BD 的中点,若EF =2,则菱形ABCD 的周长为________. 14. 16 【解析】∵E ,F 分别是AD ,BD 的中点,∴AB =2EF =4,∴菱形ABCD 周长是4AB =16.第14题图 第15题图15. 如图,在菱形ABCD 中,AB =5,AC =8,则菱形的面积是________.15. 24 【解析】如解图,连接BD 交AC 于点O ,∵四边形ABCD 是菱形,AB =5,AC =8,且菱形的对角线互相垂直平分,∴OA =4,在Rt △AOB 中,由勾股定理得OB =3,∴BD =6,∴S 菱形ABCD =12AC ·BD=12×8×6=24. 16. 在菱形ABCD 中,∠A =30°,在同一平面内,以对角线BD 为底边作顶角为120°的等腰三角形BDE ,则∠EBC 的度数为________.16. 105°或45° 【解析】如解图,∵四边形ABCD 是菱形,∠A =30°,∴∠ABC =150°,∠ABD =∠DBC =75°,且顶角为120°的等腰三角形的底角是30°.分为以下两种情况:(1)当点E 在△ABD 内时,∠E 1BC =∠E 1BD +∠DBC =30°+75°=105°;(2)当点E 在△DBC 内时,∠E 2BC =∠DBC -∠E 2BD =75°-30°=45°.综上所述,∠EBC 的度数为105°或45°.17. 如图,在Rt △ABC 中,∠B =90°,点E 是AC 的中点,AC =2AB ,∠BAC 的平分线AD 交BC 于点D ,作AF∥BC,连接DE 并延长交AF 于点F ,连接FC. 求证:四边形ADCF 是菱形.17. 证明:∵∠B =90°,AC =2AB , ∴sin ∠ACB =12,∴∠ACB =30°, ∴∠CAB =60°, ∵AD 平分∠CAB ,∴∠CAD =12∠CAB =30°,∠CAD =∠ACD ,∴AD =CD , ∵AF ∥CD ,∴∠DCE =∠FAE ,∠AFE =∠CDE , 又∵AE =CE ,∴△AFE ≌△CDE(AAS ), ∴AF =CD , 又AF ∥CD ,∴四边形ADCF 是平行四边形, 又AD =CD ,∴四边形ADCF 是菱形.命题点4 正方形的判定与计算【命题规律】正方形的考查相对比较综合,难度较大,常在选择或填空的压轴题位置出现,考查知识点综合性强,涉及到正方形面积、边长和周长的计算.【命题预测】正方形综合了所有特殊四边形的性质,因此以正方形为背景出题更具有对知识的检验性,倍受命题人青睐,考生应加以关注.18. 如图,正方形ABCD 的面积为1,则以相邻两边中点连线EF 为边的正方形EFGH 的周长为( )A . 2B . 2 2C . 2+1D . 22+118. B 【解析】∵正方形ABCD 的面积为1,∴BC =CD =1,∵E 、F 是边的中点,∴CE =CF =12,∴EF=(12)2+(12)2=22,则正方形EFGH 的周长为4×22=2 2. 19. ▱ABCD 的对角线AC 与BD 相交于点O ,且AC⊥BD,请添加一个条件:________,使得▱ABCD 为正方形. 19. ∠BAD =90°(答案不唯一)20. 如图,在正方形ABCD 中,点E ,N ,P ,G 分别在边AB ,BC ,CD ,DA 上,点M ,F ,Q 都在对角线BD 上,且四边形MNPQ 和AEFG 均为正方形,则S 正方形MNPQS 正方形AEFG的值等于________.20. 89【解析】设BD =3a ,∠CDB =∠CBD =45°,且四边形PQMN 为正方形,∴DQ =PQ =QM =NM=MB ,∴正方形MNPQ 的边长为a ,正方形AEFG 的对角线AF =12BD =32a ,∵正方形对角线互相垂直,∴S 正方形AEFG =12×32a ×32a =98a 2,∴S 正方形MNPQ S 正方形AEFG =a 298a 2=89.第20题图 第21题图21. 如图,正方形ABCD 的边长为22,对角线AC ,BD 相交于点O ,E 是OC 的中点,连接BE ,过点A 作AM⊥BE 于点M ,交BD 于点F ,则FM 的长为________. 21.55【解析】∵四边形ABCD 为正方形,∴AO =BO ,∠AOF =∠BOE =90°,∵AM ⊥BE ,∠AFO =∠BFM ,∴∠FAO =∠EBO ,在△AFO 和△BEO 中,⎩⎪⎨⎪⎧∠AOF =∠BOE AO =BO ∠FAO =∠EBO ,∴△AFO ≌△BEO(ASA ),∴FO =EO ,∵正方形ABCD 的边长为22,E 是OC 的中点,∴FO =EO =1=BF ,BO =2,∴在Rt △BOE 中,BE =12+22=5,由∠FBM =∠EBO ,∠FMB =∠EOB ,可得△BFM ∽△BEO ,∴FM EO =BF BE ,即FM1=15,∴FM =55.22. 如图,已知四边形ABCD 和四边形DEFG 为正方形,点E 在线段DC 上,点A ,D ,G 在同一条直线上,且AD =3,DE =1,连接AC ,CG ,AE ,并延长AE 交CG 于点H. (1)求sin ∠EAC 的值; (2)求线段AH 的长.22.解:(1)由题意知EC =2,AE =10,如解图,过点E 作EM ⊥AC 于点M , ∴∠EMC =90°,易知∠ACD =45°, ∴△EMC 是等腰直角三角形, ∴EM =2,∴sin ∠EAC =EM AE =55.(2)在△GDC 与△EDA 中,⎩⎪⎨⎪⎧DG =DE ∠GDC =∠EDA DC =DA, ∴△GDC ≌△EDA(SAS ),∴∠GCD =∠EAD , 又∵∠HEC =∠DEA ,∴∠EHC =∠EDA =90°, ∴AH ⊥GC ,∵S △AGC =12×AG ×DC =12×GC ×AH ,∴12×4×3=12×10×AH , ∴AH =6510.命题点5 多边形及其性质【命题规律】1.考查内容:①多边形的内外角和公式;②正多边形的有关计算.2.考查形式:①已知正多边形一个内角或外角的度数或内角之间的关系求边数;②已知正多边形的边数求内角度数;③求多边形的内外角和.【命题预测】多边形是三角形和四边形的延伸拓展,也是中考命题不容忽视的知识点. 23. 六边形的内角和是( )A . 540°B . 720°C . 900°D . 1080°23. B24. 一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为( )A . 7B . 7或8C . 8或9D . 7或8或924. D 【解析】分类讨论:(1)切去一个角,减少一条边,设减少一条边后的边数是n ,则180°(n -2)=1080°,得出n =8,所以原多边形的边数是9;(2)切去一个角,增加一条边,设增加一条边后的边数是n ,则180°(n -2)=1080°,得出n =8,所以原多边形的边数是7;(3)切去一个角,边数无改变,设边数没有改变时的边数是n ,则180°(n -2)=1080°,得出n =8,所以原多边形的边数是8,综上所述,原多边形的边数是9,7,8都符合题意,答案选择D.25. 若一个多边形的内角和是它的外角和的2倍,则这个多边形的边数是________.25. 6 【解析】设这个多边形的边数为n ,则内角和为(n -2)·180°,外角和为360°,则根据题意有:(n -2)·180°=2×360°,解得n =6. 26. 一个正多边形的一个外角为45°,则这个正多边形的边数是________.26. 8 【解析】由正多边形的每一个外角都是45°,其外角和为360°,可得这个正多边形的边数是360°45°=8.方法指导设正多边形的边数为n ,正多边形的外角和为360°,内角和为(n -2)×180°,每个内角的度数为180°×(n -2)n.命题点6 图形折叠的相关证明与计算【命题规律】考查内容和形式:图形折叠计算以矩形折叠考查居多,常考查:①图形的折叠计算角度;②图形的折叠计算线段长或边长;③图形折叠的证明和计算结合;④图形折叠的操作探究.【命题预测】图形折叠将原有图形变得可操作化,且又很好地引入了对称知识,使问题升华,有效地考查学生的知识迁移能力和掌握程度,是全国命题的主流趋势之一,值得每位考生关注.27. 如图,把一张矩形纸片ABCD 沿对角线AC 折叠,点B 的对应点为B′,AB ′与DC 相交于点E ,则下列结论一定正确的是( )A .∠DAB ′=∠CAB′ B .∠ACD =∠B′CDC .AD =AE D .AE =CE27. D28. 如图,把正方形纸片ABCD 沿对边中点所在的直线对折后展开,折痕为MN ,再过点B 折叠纸片,使点A 落在MN 上的点F 处,折痕为BE.若AB 的长为2,则FM 的长为( )A . 2B . 3C . 2D . 128. B第28题图 第29题图29. 如图,把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A′处,点B 落在点B′处.若∠2=40°,则图中∠1的度数为( )A . 115°B . 120°C . 130°D . 140°29. A 【解析】由折叠的性质知∠EA ′B ′=∠A =90°,∵∠2=40°,∴∠B ′A ′C =50°,∴∠EA ′D =40°,∠DEA ′=50°,∴∠AEA ′=130°,∴∠AEF =∠FEA ′=12∠AEA ′=65°,∵AD ∥BC ,∴∠1=180°-65°=115°.30. 如图,将▱ABCD 沿对角线AC 折叠,使点B 落在点B′处.若∠1=∠2=44°,则∠B 为( )A . 66°B . 104°C . 114°D . 124°30. C 【解析】设∠ACD =x ,∠B =y ,则根据题意可列方程组⎩⎪⎨⎪⎧x +y +44°=180°180°-y -(44°-x )=44°,解得y =114°.第30题图 第31题图 第32题图31. 如图,将△ABC 沿直线DE 折叠,使点C 与点A 重合,已知AB =7,BC =6,则△BCD 的周长为________. 31. 13 【解析】由折叠的性质可得:CD =AD ,∴△BCD 的周长=BC +CD +BD =BC +AD +BD =BC +BA =6+7=13.32. 如图,在▱ABCD 中,E 为边CD 上一点,将△ADE 沿AE 折叠至△AD′E 处,A D′与CE 交于点F ,若∠B =52°,∠DAE =20°,则∠FED′的大小为________.32. 36° 【解析】∵在▱ABCD 中,∠D =∠B =52°,∴∠AEF =∠DAE +∠D =20°+52°=72°,∴∠AED=180°-∠AEF =108°,由折叠的性质得,∠AED ′=∠AED =108°,∴∠FED ′=∠AED′-∠AEF =108°-72°=36°.33.如图,将矩形纸片ABCD(AD >AB)折叠,使点C 刚好落在线段AD 上,且折痕分别与边BC ,AD 相交.设折叠后点C,D的对应点分别为点G,H,折痕分别与边BC,AD相交于点E,F.(1)判断四边形CEGF的形状,并证明你的结论;(2)若AB=3,BC=9,求线段CE的取值范围.33. 解:(1)四边形CEGF是菱形,理由如下:∵四边形ABCD是矩形,∴AD∥BC,∴∠GFE=∠FEC,∵图形翻折后点G与点C重合,EF为折痕,∴∠GEF=∠FEC,∴∠GFE=∠GEF,∴GF=GE,∵图形翻折后EC与GE完全重合,FC与FG重合,∴GE=EC=GF=FC,∴四边形CEGF为菱形.(2)如解图①,当点F与点D重合时,四边形CEGF是正方形,此时CE最小,且CE=CD=3;如解图②,当点G与点A重合时,CE最大.设EC=x,则BE=9-x,由折叠性质知,AE=CE=x,在Rt△ABE中,AB2+BE2=AE2,即9+(9-x)2=x2,解得x=5,∴CE=5,所以,线段CE的取值范围为3≤CE≤5.34.如图,▱ABCD中,AB=2,AD=1,∠ADC=60°,将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,折痕交CD边于点E.(1)求证:四边形BCED′是菱形;(2)若点P是直线l上的一个动点,请计算PD′+PB的最小值.34. (1)证明:∵四边形ABCD是平行四边形,∴∠B=∠D=60°,由折叠性质可知,∠D=∠AD′E=60°,∴∠AD′E=∠B=60°,∴ED′∥BC,又∵EC∥D′B,∴四边形BCED′是平行四边形,∴ED′=BC=AD=1,∴DE=ED′=1,又DC=AB=2,∴EC =1, ∴EC =ED′,∴四边形BCED′是菱形. (2)解:如解图所示,由折叠性质PD′=PD ,BD 之长即为所求, 作DG ⊥BA 的延长线于点G , ∵∠DAB =120°, ∴∠DAG =60°, ∵∠G =90°, ∴∠ADG =30°,在Rt △ADG 中,AD =1, ∴AG =12,DG =32,∵AB =2, ∴BG =52,在Rt △BDG 中,由勾股定理得:BD 2=BG 2+DG 2=7, ∴BD =7,即PD′+PB 的最小值为7.方法指导“将军饮马”模型:直线同侧两定点,在直线上确定一点使该点到两定点的距离和最小.作法:作其中一点关于直线的对称点,连接另一点和对称点的线段即是最短距离和;最短距离计算方法:构造以最短距离线段为斜边的直角三角形,利用勾股定理求解.中考冲刺集训一、选择题1.关于▱ABCD 的叙述,正确的是( )A . 若A B⊥BC,则▱ABCD 是菱形B . 若AC⊥BD,则▱ABCD 是正方形C . 若AC =BD ,则▱ABCD 是矩形 D . 若AB =AD ,则▱ABCD 是正方形2.设四边形的内角和等于a ,五边形的外角和等于b ,则a 与b 的关系是( )A . a >bB . a =bC . a <bD . b =a +180°3.如图,正五边形ABCDE 放入某平面直角坐标系后,若顶点A ,B ,C ,D 的坐标分别是(0,a),(-3,2),(b ,m),(c ,m).则点E 的坐标是( )A . (2,-3)B . (2,3)C . (3,2)D . (3,-2)第3题图 第4题图4.如图,▱ABCD 的对角线AC 、BD 相交于点O ,且AC +BD =16,CD =6,则△ABO 的周长是( )A . 10B . 14C . 20D . 225.菱形ABCD 的对角线AC ,BD 相交于点O ,E ,F 分别是AD ,CD 边上的中点,连接EF.若EF =2,BD =2,则菱形ABCD 的面积为( )A . 2 2B . 4 2C . 6 2D . 8 2第5题图 第6题图 第7题图6.如图,平行四边形ABCD 的周长是26 cm ,对角线AC 与BD 交于点O ,AC ⊥AB ,E 是BC 中点,△AOD 的周长比△AOB 的周长多3 cm ,则AE 的长度为( )A . 3 cmB . 4 cmC . 5 cmD . 8 cm7.如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH ,若BE∶EC =2∶1,则线段CH 的长是( )A . 3B . 4C . 5D . 68.如图,在正方形ABCD 中,AC 为对角线,E 为AB 上一点,过点E 作EF∥AD,与AC 、DC 分别交于点G 、F2H 为CG 的中点,连接DE 、EH 、DH 、FH.下列结论:①EG =DF ;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若AE AB =23,则3S △EDH =13S △DHC ,其中结论正确的有( )A . 1个B . 2个C . 3个D . 4个二、填空题9.如图,在▱ABCD 中,BE ⊥AB 交对角线AC 于点E ,若∠1=20°,则∠2的度数为________.10.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,且AC =8,BD =6,则菱形ABCD 的高DH =________.第9题图 第10题图 第11题图11.如图,延长矩形ABCD 的边BC 至点E ,使CE =BD ,连接AE.如果∠ADB=30°,则∠E=________度. 12.如图,正方形ABCO 的顶点C ,A 分别在x 轴,y 轴上,BC 是菱形BDCE 的对角线,若∠D=60°,BC =2,则点D 的坐标是________.第12题图 第13题图 第14题图 13.如图,正十二边形A 1A 2…A 12,连接A 3A 7,A 7A 10,则∠A 3A 7A 10=________°.14.如图,菱形ABCD 的面积为120 cm 2,正方形AECF 的面积为50 cm 2,则菱形的边长为________cm . 15.如图,在矩形纸片ABCD 中,AB =6,BC =10.点E 在CD 上,将△BCE 沿BE 折叠,点C 恰落在边AD 上的点F 处;点G 在AF 上,将△ABG 沿BG 折叠,点A 恰落在线段BF 上的点H 处.有下列结论: ①∠EBG =45°;②△DEF∽△ABG;③S △ABG =32S △FGH ;④AG +DF =FG.其中正确的是______________.(把所有正确结论的序号都选上)第15题图 第16题图16.如图,正方形ABCD 的面积为3 cm 2,E 为BC 边上一点,∠BAE =30°,F 为AE 的中点,过点F 作直线分别与AB ,DC 相交于点M ,N.若MN =AE ,则AM 的长等于________cm . 三、解答题17.如图,在▱ABCD 中,连接BD ,在BD 的延长线上取一点E ,在DB 的延长线上取一点F ,使BF =DE ,连接AF 、CE. 求证:AF∥CE.18.如图,菱形ABCD的对角线AC与BD交于点O,∠ABC∶∠BAD=1∶2,BE∥AC,CE∥BD.(1)求tan∠DBC的值;(2)求证:四边形OBEC是矩形.19.如图,▱ABCD中,BD是它的一条对角线,过A、C两点作AE⊥BD,CF⊥BD,垂足分别为E、F,延长AE、CF分别交CD、AB于点M、N.(1)求证:四边形CMAN是平行四边形;(2)已知DE=4,FN=3,求BN的长.20.如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1)∠CEB=∠CBE;(2)四边形BCED是菱形.21.已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ长.22.已知正方形ABCD中,BC=3,点E、F分别是CB、CD延长线上的点,DF=BE,连接AE、AF,过点A作AH⊥ED于H点.(1)求证:△ADF≌△ABE;(2)若BE=1,求tan∠AED的值.23.如图,已知△ABC 中,AB =AC ,把△ABC 绕A 点沿顺时针方向旋转得到△ADE,连接BD 、CE 交于点F. (1)求证:△AEC≌△ADB;(2)若AB =2,∠BAC =45°,当四边形ADFC 是菱形时,求BF 的长.24.如图,将矩形ABCD 沿AF 折叠,使点D 落在BC 边的点E 处,过点E 作EG∥CD 交AF 于点G ,连接DG. (1)求证:四边形EFDG 是菱形;(2)探究线段EG 、GF 、AF 之间的数量关系,并说明理由; (3)若AG =6,EG =25,求BE 的长.答案与解析:1. C2. B3. C4. B5. A 【解析】∵E ,F 分别是 AD ,CD 边上的中点,即EF 是△ACD 的中位线,∴AC =2EF =22,则菱形ABCD 的面积=12AC ·BD =12×22×2=2 2.6. B 【解析】在▱ABCD 中,AD =BC ,AB =CD ,BO =DO ,∵平行四边形ABCD 的周长为26 cm ,∴AB +BC =13 cm ,又∵△AOD 的周长比△AOB 的周长多3 cm ,∴AD -AB =BC -AB =3 cm ,解得AB =5 cm ,BC =8 cm ,又AB ⊥AC ,E 是BC 的中点,∴AE =BE =CE =12BC =4 cm.7. B 【解析】设CH =x ,∵BE ∶EC =2∶1,BC =9,∴EC =3,由折叠可知,EH =DH =9-x ,在Rt △ECH 中,由勾股定理得:(9-x )2=32+x 2,解得:x =4.8. D 【解析】逐项分析如下表:序号逐项分析正误难点突破对于多选项判断正误性的题目,几乎每个选项之间都是紧密联系的,单独判断其中每个的正误或跳跃式判断往往使题目变得复杂而无法求解,本题目难点在于④中,需将S △FDH 与已知条件AE AB =23联系起来,并用含相同未知数的代数式分别表示出S △EDH 和S △DHC ,继而求解.9. 110° 【解析】 ∵四边形ABCD 是平行四边形,∴CD ∥AB ,∴∠CAB =∠1=20°,∵BE ⊥AB 交对角线AC 于点E ,∴∠ABE =90°,∴∠2=∠CAB +∠ABE =20°+90°=110°.10. 4.8 【解析】∵S =1AC·BD =2AB·DH ,∴AC ·BD =2AB·DH.∵四边形ABCD 是菱形,∴∠AOB =90°,AO =12AC =4,BO =12BD =3,∴在Rt △AOB 中,AB =42+32=5,∴DH =8×62×5=4.8.第11题解图11. 15 【解析】如解图,连接AC.∵四边形ABCD 是矩形,∴AD =BC ,AC =BD ,又∵AB =BA ,∴△DAB ≌△CBA(SSS ),∴∠ACB =∠ADB =30°,∵CE =BD ,∴AC =CE ,∴∠E =∠CAE =12∠ACB=15°.第12题解图12. (3+2,1) 【解析】如解图,过点D 作DG ⊥BC 于G ,DF ⊥x 轴于F ,∵在菱形BDCE 中,BD =CD ,∠BDC =60°,∴△BCD 是等边三角形,∴DF =CG =12BC =1,CF =DG =3,∴OF =3+2,∴D(3+2,1).13. 75 【解析】∵多边形A 1A 2…A 12是正十二边形,作它的外接圆⊙O ,∴劣弧A 10A 3的度数=5×360°12=150°,∴∠A 3A 7A 10=12×150°=75°.第14题解图14. 13 【解析】如解图,连接AC 、BD 交于O ,则有12AC·BD =120,∴AC ·BD =240,又∵菱形对角线互相垂直平分,∴2OA ·2OB =240,∴ OA ·OB =60,∵AE 2=50, OA 2+OE 2= AE 2,OA =OE ,∴OA =5,∴OB =12,∴AB =OA 2+OB 2=122+52=13.15. ①③④ 【解析】由折叠的性质得,∠CBE =∠FBE ,∠ABG =∠FBG ,∴∠EBG =∠FBE +∠FBG =12×90°=45°,故①正确;由折叠的性质得,BF =BC =10,BA =BH =6,∴HF =BF -BH =4,AF =BF 2-BA 2=102-62=8,设GH =x ,则GF =8-x ,在Rt △GHF 中,x 2+42=(8-x)2,∴x =3,∴GF =5,∴AG =3,同理在Rt △FDE 中,由FD 2=EF 2-ED 2,得ED =83,EF =103,∴ED FD =43≠ABAG =2,∴△DEF 与△ABG 不相似,故②不正确;S △ABG =12×3×6=9,S △FGH =12×3×4=6,∴S △ABG S =96=32,故③正确;∵AG =3,DF =AD -AF =2,∴FG =5,∴AG +DF =FG =5,故④正确.综上,答案是①③④.第16题解图16.233或33【解析】如解图,过N 作NG ⊥AB ,交AB 于点G ,∵四边形ABCD 为正方形,∴AB =AD =NG = 3 cm ,在Rt △ABE 中,∠BAE =30°,AB = 3 cm ,∴BE =1 cm ,AE =2 cm ,∵F 为AE 的中点,∴AF =12AE =1 cm ,在Rt △ABE 和Rt △NGM 中,⎩⎪⎨⎪⎧AB =NG AE =NM ,∴Rt △ABE ≌Rt △NGM(HL ),∴BE =GM ,∠BAE =∠MNG =30°,∠AEB =∠NMG =60°,∴∠AFM =90°,即MN ⊥AE ,在Rt △AMF 中,∠FAM =30°,AF =1 cm ,∴AM =AF cos 30°=132=233 cm ,由对称性得到AM′=BM =AB -AM =3-233=33 cm ,综上,AM 的长等于233或33 cm . 17. 证明:∵四边形ABCD 是平行四边形,第17题解图∴AD ∥BC ,AD =BC , ∴∠1=∠2, 又∵BF =DE ,∴BF +BD =DE +BD , 即DF =BE.∴△ADF ≌△CBE(SAS ). ∴∠AFD =∠CEB ,∴AF ∥CE.18. (1)【思路分析】根据四边形ABCD 是菱形,∠ABC ∶∠BAD =1∶2,可求出∠DBC 的度数,其正切值可求出.解:∵四边形ABCD 是菱形,∴AD ∥BC ,∠DBC =12∠ABC ,∴∠ABC +∠BAD =180°, 又∵∠ABC ∶∠BAD =1∶2, ∴∠ABC =60°, ∴∠DBC =12∠ABC =30°,∴tan ∠DBC =tan 30°=33. (2)【思路分析】由BE ∥AC ,CE ∥BD 可知四边形BOCE 是平行四边形,再结合菱形对角线垂直的性质即可证明四边形BOCE 是矩形.证明:∵四边形ABCD 是菱形, ∴AC ⊥BD ,即∠BOC =90°, ∵BE ∥AC ,CE ∥BD , ∴BE ∥OC ,CE ∥OB ,∴四边形OBEC 是平行四边形,且∠BOC =90°,∴四边形OBEC 是矩形.19. (1)证明:∵AE ⊥BD ,CF ⊥BD , ∴AM ∥CN ,又∵四边形ABCD 是平行四边形, ∴MC ∥AN ,∴四边形CMAN 是平行四边形.(2)解:∵四边形ABCD 是平行四边形, ∴∠ADE =∠CBF ,AD =CB , 又∵∠AED =∠CFB =90°, ∴△AED ≌△CFB(AAS ), ∴DE =BF =4,∴在Rt △BFN 中,BN =32+42=5.20. (1)【思路分析】要证∠CEB =∠CBE ,结合CE ∥DB ,可得到∠CEB =∠DBE ,从而只需证明∠CBE =∠DBE ,结合△ABC ≌△ABD 即可得证.证明:∵△ABC ≌△ABD , ∴∠ABC =∠ABD , ∵CE ∥BD ,∴∠CEB =∠DBE ,∴∠CEB =∠CBE.(2)证明:∵△ABC ≌△ABD ,∴BC =BD , 由(1)得∠CEB =∠CBE , ∴CE =CB , ∴CE =BD , ∵CE ∥BD ,∴四边形BCED 是平行四边形, ∵BC =BD ,∴四边形BCED 是菱形.21. (1)证明:∵四边形ABCD 是正方形, ∴AB =AD, ∠BAQ +∠DAP =90°=∠DAB , ∵DP ⊥AQ ,∴∠DAP +∠ADP =90°, ∴∠BAQ =∠ADP.在△DAP 和△ABQ 中, ⎨⎪⎧∠APD =∠AQB =90°∠ADP =∠BAQ ,∴△DAP ≌△ABQ(AAS ),∴AP =BQ.(2)解:①AQ 和AP ;②DP 和AP ;③AQ 和BQ ;④DP 和BQ.【解法提示】①由题图直接得:AQ -AP =PQ ;②∵△ABQ ≌△DAP ,∴AQ =DP ,∴DP -AP = AQ -AP =PQ ;③∵△ABQ ≌△DAP ,∴BQ =AP ,∴AQ -BQ =AQ -AP =PQ ;④∵△ABQ ≌△DAP ,∴DP =AQ ,BQ =AP ,∴DP -BQ =AQ -AP =PQ.22. (1)证明:在△ADF 和△ABE 中,⎩⎪⎨⎪⎧AB =AD ∠ABE =∠ADF =90°EB =FD, ∴△ADF ≌△ABE(SAS ).(2)解:∵AB =3,BE =1,∴AE =10,EC =4,∴ED =CD 2+EC 2=5,设AH =x ,EH =y ,在Rt △AHE 和Rt △AHD 中,⎩⎪⎨⎪⎧x 2+y 2=10x 2+(5-y )2=9, 解得,x =1.8,y =2.6,∴tan ∠AED =AH EH =x y =1.82.6=913. 23. (1)证明:∵△ADE 是由△ABC 绕点A 沿顺时针方向旋转而得,∴AD =AB ,AE =AC ,∠BAC =∠DAE ,∵AB =AC ,∴AD =AB =AE =AC ,∠EAC =∠DAB ,在△AEC 和△ADB 中∵⎩⎪⎨⎪⎧AD = AE ∠EAC =∠DAB AB =AC, ∴△AEC ≌△ADB(SAS ).(2)解:当四边形ADFC 是菱形时,AC =DF ,AC ∥DF ,∴∠BAC =∠ABD ,又∵∠BAC =45°,∴∠ABD =45°,又∵△ADE 是由△ABC 绕点A 沿顺时针方向旋转而得,∴AD =AB ,∴∠DAB =90°,又∵AB =2,由勾股定理可得:BD =AD 2+AB 2=2AB =22,在菱形ADFC 中,DF =AD =AB =2,∴BF =BD -DF =22-2.24. (1)【思路分析】根据折叠的性质,易得DF =EF ,DG =EG ,∠AFD =∠AFE ,再由EG ∥DC ,可得∠EGF =∠AFD ,从而得出EG =EF.根据四条边都相等的四边形是菱形得证;证明:由折叠的性质可得,EF =FD ,∠AEF =∠ADF =90°,第24题解图∠EFA =∠DFA ,EG =GD.∵EG ∥DC ,∴∠DFA =∠EGF ,∴∠EFA =∠EGF ,∴EF =EG =FD =GD ,∴四边形EFDG 是菱形.(2)【思路分析】由(1)可知EG =EF ,连接DE ,则DE 与GF 相互垂直平分,证得Rt △FHE ∽Rt △FEA ,列比例式,结合FH =12GF 得到EG 、GF 、AF 的关系; 解:如解图,连接ED ,交AF 于点H ,∵四边形EFDG 是菱形,∴DE ⊥AF ,FH =GH =12GF ,EH =DH =12DE. ∵∠FEH =∠FAE =90°-∠EFA ,∴Rt △FEH ∽Rt △FAE ,∴EF FH =AF EF,即EF 2=FH·AF , ∴EG 2=12GF·AF. (3)【思路分析】把AG ,EG 代入(2)中的关系式,求得GF ,AF 的值,根据勾股定理求得AD ,DE ,再证Rt △ADF ∽Rt △DCE ,可求出EC ,从而可求出BE 的值.解:∵AG =6,EG =25,EG 2=12GF·AF , ∴(25)2=12(6+GF)·GF ,∴GF =4, ∴AF =10.∵DF =EG =25,∴AD =BC =AF 2-DF 2=45,DE =2EH =2EG 2-(12GF )2=8. ∵∠CDE +∠DFA =90°,∠DAF +∠DFA =90°,∴∠CDE =∠DAF ,∴Rt △ADF ∽Rt △DCE ,∴EC DF =DE AF ,即EC 25=810, ∴EC =855, ∴BE =BC -EC =AD -EC =45-855=1255.。

2015届中考数学专项复习之《四边形》基础测试(含答案)

2015届中考数学专项复习之《四边形》基础测试(含答案)

\(一)选择题(每小题3分,共30分)1.内角和与外角和相等的多边形是……………………………………………………( )(A )三角形 (B )四边形 (C )五边形 (D )六边形【答案】B . 2.顺次连结等腰梯形各边中点所得的四边形一定是…………………………………( )(A )菱形 (B )矩形(C )梯形 (D )两条对角线相等的四边形【答案】A .3.观察下列四个平面图形,其中中心对称图形有…………………………………( )(A )2个 (B )1个 (C )4个 (D )3个【提示】第一个图形不是中心对称图形.【答案】D .4.已知下列四个命题:(1)对角线互相垂直平分的四边形是正方形;(2)对角线垂直相等的四边形是菱形;(3)对角线相等且互相平分的四边形是矩形; (4)四边都相等的四边形是正方形.其中真命题的个数是………………( ) (A )1 (B )2 (C )3 (D )0【提示】(3)正确.【答案】A . 5.菱形的一条对角线与它的边相等,则它的锐角等于………………………………( )(A )30° (B )45° (C )60° (D )75°【答案】C .6.下列命题中的真命题是………………………………………………………………( )(A )一组对边平行,另一组对边相等的四边形是平行四边形 (B )有一组对边和一组对角分别相等的四边形是平行四边形 (C )两组对角分别相等的四边形是平行四边形(D )两条对角线互相垂直且相等的四边形是正方形【答案】C .7.如图,DE 是△ABC 的中位线,若AD =4,AE =5,BC =12,则△ADE 的周长是………………………………………………( )(A )7.5 (B )30 (C )15 (D )24【答案】C .8.矩形的边长为10 cm 和15 cm ,其中一内角平分线分长边为两部分,这两部分的长为………………………………………………………………………………………( ) (A )6 cm 和9 cm (B )5 cm 和10 cm (C )4 cm 和11 cm (D )7 cm 和8 cm【提示】长边被分成的两部分之中,有一部分与矩形短边相等.【答案】B . 9.如图,在等腰梯形ABCD 中,AD ∥BC ,AC 、BD 相交于点O ,则图中全等三角形共有……………………………………………………………………………………( ) (A )1对 (B )3对 (C )2对 (D )4对【提示】以AB 和CD 为对应边的两个三角形.【答案】B .10.菱形周长为20 cm ,它的一条对角线长6 cm ,则菱形的面积为…………………( )(A )6 (B )12 (C )18 (D )24 【提示】若菱形两对角线为a 和b ,则S 菱形=2ab .【答案】D .(二)填空题(每小题3分,共24分)11.如图,在□ABCD 中,则对角线AC 、BD 相交于O ,图中全等的三角形共有____对.【提示】考察以AB 、CD 为对应边的三角形,有3对全等三角形;抹去AB 、CD 两边,又有1对全等三角形.【答案】4.12.如果一个多边形的每个内角都等于108°,那么这个多边形是_____边形. 【提示】360°÷每个外角的度数.【答案】5.13.梯形的上底边长为5,下底边长为9,中位线把梯形分成上、下两部分,则这两部分的面积的比为_______.【提示】先算出中位线的长,然后用梯形面积公式计算.【答案】43.14.如图,等腰梯形ABCD 中,AD ∥BC ,∠B =45°,AE ⊥BC 于点E ,AE =AD =2 cm ,则这个梯形的中位线长为_____cm .【提示】BC =6 cm .【答案】4.15.请画出把下列矩形的面积二等分的直线,并填空(一个矩形只画一条直线,不写画法).在一个矩形中,把此矩形面积二等分的直线最多有_____条,这些直线都必须经过此矩形的_____点.【答案】无数;对称中心(或两条对角线的交点).16.如图,在梯形ABCD 中,AD ∥BC ,中位线EF 分别与BD 、AC 交于点G 、H .若AD =6,BC =10,则GH 的长是______.【答案】2.17.如图,矩形ABCD 中,O 是两对角线的交点AE ⊥BD ,垂足为E .若OD =2 OE ,AE =3,则DE 的长为______.【提示】OA =OD =2 OE ,用勾股定理求出OE 和OA 的长. 【答案】3.18.如图,在□ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F ,若AE =4,AF =6,□ABCD的周长为40,则S □ABCD 为______.【提示】在□ABCD 中,AE ·BC =AF ·CD =S □ABCD ,BC +CD =20,求BC 或CD . 【答案】48.(三)证明题(每小题5分,共20分)19.已知:如图,在梯形ABCD 中,AD ∥BC ,AB =DC ,P 是AD 中点.求证:BP =PC .【提示】证明△ABP ≌△DCP .【答案】在梯形ABCD 中,AD ∥BC ,∵ AB =DC , ∴ ∠A =∠D . ∵ P 是AD 中点, ∴ AP =DP .在△ABP 和△DCP 中,⎪⎩⎪⎨⎧=∠=∠=.,,DP AP D A DC AB ∴ △ABP ≌△DCP . ∴ PB =PC .20.已知:如图,AD ∥BC ,ED ∥BF ,且AF =CE .求证:四边形ABCD 是平行四边形.【提示】证明△ADE ≌△CBF ,得到AD =BC 即可. 【答案】在△ADE 和△CBF 中,∵ AD ∥BC ,∴ ∠DAE =∠BCF . ∵ ED ∥BF ,∴ ∠DEF =∠BFE . ∴ ∠DEA =∠BFC . ∵ AF =CE , ∴ AE =CF .∴ △ADE ≌△CBF . ∴ AD =BC . 又 AD ∥BC ,∴ 四边形ABCD 是平行四边形.21.已知:如图,矩形ABCD 中,E 、F 是AB 上的两点,且AF =BE .求证:∠ADE =∠BCF .【提示】证明Rt△ADE≌Rt△BCF.【答案】在矩形ABCD中,∠A=∠B=90°,AD=BC.又AF=BE,∴AF-EF=BE-EF,即AE=BF.∴Rt△ADE≌Rt△BCF.∴∠ADE=∠BCF.22.证明等腰梯形判定定理:在同一底上的两个角相等的梯形是等腰梯形.(要求:画出图形,写出已知、求证、证明.)【提示】作辅助线,构造等腰三角形.【答案】已知:在梯形ABCD中,AD∥BC,∠B=∠C(图(1)).求证:AB=DC.【证法一】如图(1),过点D作DE∥AB,交BC于E.图(1)∴∠B=∠1.又∠B=∠C,∴∠C=1.∴DE=DC.又AB∥DE,AD∥BE,∴四边形ABED为平行四边形,∴AB=DE.∴AB=DC.【证法二】如图(2),分别延长BA、CD,交于点E.图(2)∵∠B=∠C,∴BE=CE.∵AD∥BC,∴∠B=∠1,∠C=∠2.∴∠1=∠2.∴AE=DE.∴BE-AE=CE-DE,即AB=DC.(四)计算题(每小题6分,共12分)23.已知:如图,在□ABCD中,BE、CE分别平分∠ABC、∠BCD,E在AD上,BE=12 cm,CE=5 cm.求□ABCD的周长和面积.【提示】证明BE⊥EC和E为AD中点.【答案】在□ABCD 中,∵ AB ∥CD ,∴ ∠ABC +∠BCD =180°.∵ ∠ABE =∠EBC ,∠BCE =∠ECD ,∴ ∠EBC +∠BCE =21(∠ABC +∠BCD )=90°.∴ ∠BEC =90°.∴ BC 2=BE 2+CE 2=122+52=132. ∴ BC =13. ∵ AD ∥BC ,∴ ∠AEB =∠EBC . ∴ ∠AEB =∠ABE . ∴ AB =AE . 同理 CD =ED . ∵ AB =CD , ∴ AB =AE =CD =ED =21BC =6.5. ∴ □ABCD 的周长=2(AB +BC )=2(6.5+13)=39. S □ABCD =2 S △BCE =2·21BE ·EC =12×5=60.24.如图,在梯形ABCD 中,AD ∥BC ,AB =DC ,BD ⊥DC 于D ,且∠C =60°,若AD =5 cm ,求梯形的腰长.【提示】求出∠CBD ,∠ABD 和∠ADC 的度数,证明AB =AD ,或者过D 点作DE ⊥BC 于E ,CE 为下底与上底的差的一半,又是CD 的一半,CD 又是BC 的一半.从中找出CD 与AD 的关系. 【解法一】∵ BD ⊥CD ,∠C =60°,∴ ∠CBD =30°.在等腰梯形ABCD 中,∠ABC =∠C =60°, ∴ ∠ABD =∠CBD =30°. ∵ AD ∥BC ,∴ ∠ADB =∠CBD . ∴ ∠ABD =∠ADB . ∴ AB =AD =5(cm ).【解法二】过D 点作DE ⊥BC ,垂足为E 点.∵ 在Rt △CDE 中,∠CDE =30°,∴ CE =21CD . 又 CE =21(BC -AD ),∴ CD =BC -AD . 即 BC =CD +AD .又 在Rt △BCD 中,∠CBD =30°, ∴ CD =21BC . ∴ CD =2 CD -AD . 即 CD =AD =5(cm ).(五)解答题(每小题7分,共14分)25.如图,在正方形ABCD 中,点E 、F 分别在BC 、CD 上移动,但A 到EF 的距离AH 始终保持与AB 长相等,问在E 、F 移动过程中: (1)∠EAF 的大小是否有变化?请说明理由.(2)△ECF 的周长是否有变化?请说明理由.【提示】证明△EAH ≌△EAB ,△FAH ≌△FAD . 【答案】(1)∠EAF 始终等于45°.证明如下:在△EAH 和△EAB 中,∵ AH ⊥EF ,∴ ∠AHE =90°=∠B .又 AH =AB ,AE =AE ,∴ Rt △EAH ≌Rt △EAB . ∴ ∠EAH =∠EAB .同理 ∠HAF =∠DAF .∴ ∠EAF =∠EAH +∠FAH=∠EAB +∠FAD=21∠BAD =45°.因此,当EF 在移动过程中,∠EAF 始终为45°角. (2)△ECF 的周长不变.证明如下: ∵ △EAH ≌△EAB , ∴ EH =EB . 同理 FH =FD .∴△ECF 周长=EC +CF +EH +HF=EC +CF +BE +DF =BC +CD =定长.26.已知:如图,在四边形ABCD 中,E 为AB 上一点,△ADE 和△BCE 都是等边三角形,AB 、BC 、CD 、DA 的中点分别为P 、Q 、M 、N ,试判断四边形PQMN 为怎样的四边形,并证明你的结论.【提示】连结AC 和CD ,首先利用中位线定理和平行四边形判定定理,证明四边形PQMN 为平行四边形,然后证明△AEC ≌△DEB ,得到AC =BD ,再证明□PQMN 为菱形. 【答案】四边形PQMN 为菱形.证明如下:如图,连结AC 、BD .∵ PQ为△ABC 的中位线,∴ PQ21AC . 同理 MN 21AC .∴ MN PQ ,∴ 四边形PQMN 为平行四边形. 在△AEC 和△DEB 中,AE =DE ,EC =EB ,∠AED =60°=∠CEB , 即 ∠AEC =∠DEB . ∴ △AEC ≌△DEB . ∴ AC =BD . ∴ PQ =21AC =21BD =PN . ∴ □PQMN 为菱形.。

中考数学复习《四边形》专题综合训练题含答案试卷分析解析

中考数学复习《四边形》专题综合训练题含答案试卷分析解析

届初三数学中考复习 四边形 专题复习综合训练题1. 如图,在正方形ABCD 中,O 是对角线AC 与BD 的交点,M 是BC 边上的动点(点M 不与B 、C 重合),CN ⊥DM ,CN 与AB 交于点N ,连结OM 、ON 、MN .下列五个结论:①△CNB ≌△DMC ;②△CON ≌△DOM ;③△OMN ∽△OAD ;④AN 2+CM 2=MN 2;⑤若AB =2,则S △OMN 的最小值是12,其中正确结论的个数是( )A .2B .3C .4D .52. 矩形具有而菱形不具有的性质是( )A .两组对边分别平行B .对角线相等C .对角线互相平分D .两组对角分别相等A .一个四边形如果既是矩形又是菱形,那么它一定是正方形B .有一个角是直角,并且有一组邻边相等的平行四边形是正方形C .对角线相等的菱形是正方形D .对角线互相垂直的平行四边形是正方形4.若顺次连结四边形ABCD 各边的中点所得四边形是矩形,则四边形ABCD 一定是( )A .矩形B .菱形C .对角线互相垂直的四边形D .对角线相等的四边形5. 如图,菱形ABCD 的对角线AC ,BD 相交于O 点,E ,F 分别是AB ,BC 边上的中点,连结EF.若EF =3,BD =4,则菱形ABCD 的周长为( )A .4B .4 6C .47D .286.如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连结EF,则△AEF的面积是( )A.4 3 B.3 3 C.2 3 D.37. 如图,矩形纸片ABCD中,AB=4,BC=8,将纸片沿EF折叠,使点C与点A重合,则下列结论错误的是( D )A.AF=AE B.△ABE≌△AGF C.EF=2 5 D.AF=EF8. 在菱形ABCD中,对角线AC,BD的长分别是6和8,则菱形的周长是____,面积是____.9. 如图,已知矩形ABCD的对角线长为8 cm,E,F,G,H分别是AB,BC,CD,DA的中点,则四边形EFGH的周长等于____cm.10. 如图,正方形ABCD的边长为4,E是BC边的中点,P是对角线BC上一动点,则PE+PC的最小值是____.11. 如图,平行四边形ABCD中,AD=5 cm,AB⊥BD,点O是两条对角线的交点,OD=2,则AB=____cm.12. 如图:在ABCD中,E,F是对角线AC上的两个点;G,H是对角线B,D上的两点.已知AE=CF,DG=BH,求证:四边形EHFG是平行四边形.13. 已知:如图,E,F分别是平行四边形ABCD 的边AD,BC的中点。

中考数学总复习《四边形》专题训练(附带答案)

中考数学总复习《四边形》专题训练(附带答案)

中考数学总复习《四边形》专题训练(附带答案)学校:___________班级:___________姓名:___________考号:___________一、解答题:1.如图,在▱ABCD中AB=5,AD=3√ 2,∠A=45°.(1)求出对角线BD的长;(2)尺规作图:将四边形ABCD沿着经过A点的某条直线翻折,使点B落在CD边上的点E处,请作出折痕.(不写作法,保留作图痕迹)2.如图,B是AC的中点,点D、E在AC同侧AE=BD,BE=CD.(1)求证:△ABE≌△BCD;(2)连接DE,求证:四边形BCDE为平行四边形.3.如图,在矩形ABCD中BE⊥AC,DF⊥AC垂足分别为E、F.求证:AF=CE.4.如图,点E、F、G、H分别是平行四边形ABCD各边的中点,连接AF、CE相交于点M,连接AG、CH相交于点N.(1)求证:四边形AMCN是平行四边形;(2)若▱AMCN的面积为4,求▱ABCD的面积.5.如图,在▱ABCD中,点E,F分别是边AB,CD的中点.求证:AF=CE.6.如图A、D、B、F在一条直线上,DE//CB,BC=DE,AD=BF.(1)求证:△ABC≌△FDE;(2)连接AE、CF,求证四边形AEFC为平行四边形.7.如图,在▱ABCD中,点E、F在对角线BD上,且BE=DF.求证:(1)△ABE≌△CDF;(2)四边形AECF是平行四边形.8.操作:第一步:如图1,对折长方形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开.第二步:如图2,再一次折叠纸片,使点A落在EF上的N处,并使折痕经过点B,得到折痕BM,同时得到线段BN.连结AN,易知△ABN的形状是______.论证:如图3,若延长MN交BC于点P,试判定△BMP的形状,请说明理由.9.如图,点E、F、G、H分别是平行四边形ABCD各边的中点,连接AF,CE相交于点M,连接AG、CH相交于点N.(1)求证:四边形AMCN是平行四边形;(2)若□AMCN的面积为4,求□ABCD的面积.10.如图,矩形ABCD是一张A4纸,其中AD=√ 2AB,小天用该A4纸玩折纸游戏.游戏1折出对角线BD,将点B翻折到BD上的点E处,折痕AF交BD于点G.展开后得到图①,发现点F恰为BC 的中点.游戏2在游戏1的基础上,将点C翻折到BD上,折痕为BP;展开后将点B沿过点F的直线翻折到BP上的点H 处;再展开并连接GH后得到图②,发现∠AGH是一个特定的角.(1)请你证明游戏1中发现的结论;(2)请你猜想游戏2中∠AGH的度数,并说明理由.11.如图,在□ABCD中,点E,F在对角线BD上,且BE=DF.求证:(1)△ABE≌△CDF;(2)四边形AECF是平行四边形.12.如图,在▱ABCD中BE、DG分别平分∠ABC、∠ADC,交AC于点E、G.(1)求证:BE//DG,BE=DG;(2)过点E作EF⊥AB,垂足为F.若▱ABCD的周长为56,EF=6,求△ABC的面积.13.如图,线段DE与AF分别为△ABC的中位线与中线.(1)当线段AF与BC满足怎样的数量关系时,四边形ADFE为矩形?请说明理由.14.某农场计划建造一个矩形养殖场,为充分利用现有资源,该矩形养殖场一面靠墙(墙的长度为10m),另外三面用栅栏围成,中间再用栅栏把它分成两个面积为1∶2的矩形,已知栅栏的总长度为24m,设较小矩形的宽为x m(如图).(1)若矩形养殖场的总面积为36m2,求此时x的值;(2)当x为多少时,矩形养殖场的总面积最大?最大值为多少?15.如图,矩形ABCD中AB=4,AD=3点E在折线BCD上运动,将AE绕点A顺时针旋转得到AF,旋转角等于∠BAC,连接CF.(1)当点E在BC上时,作FM⊥AC,垂足为M,求证:AM=AB;(2)当AE=3√ 2时,求CF的长;(3)连接DF,点E从点B运动到点D的过程中,试探究DF的最小值.16.如图,将矩形ABCD沿对角线AC折叠,点B的对应点为点E,AE与CD交于点F.(1)求证:△DAF≌△ECF;(2)若∠FCE=40°,求∠CAB的度数.17.在四边形ABCD中,O是边BC上的一点.若△OAB≌△OCD,则点O叫做该四边形的“等形点”.(1)正方形______“等形点”(填“存在”或“不存在”);(2)如图在四边形ABCD中边BC上的点O是四边形ABCD的“等形点”.已知CD=4√ 2OA=5BC=12连接AC求AC的长;(3)在四边形EFGH中EH//FG.若边FG上的点O是四边形EFGH的“等形点”求OF的值.OG18.如图1矩形ABCD中AB=5AD=3将△ABC绕点A旋转到△AB′C′位置设AC′交直线CD于点M.(1)当点B′恰好落在DC边上时求△AB′C′与矩形ABCD重叠部分的面积;(2)如图2当点C B′C′恰好在一直线上时求DM的长度.19.操作:第一步:如图1对折长方形纸片ABCD使AD与BC重合得到折痕EF把纸片展开.第二步:如图2再一次折叠纸片使点A落在EF上的N处并使折痕经过点B得到折痕BM同时得到线段BN.连接AN(1)易知△ABN的形状是______.(2)论证:如图3若延长MN交BC于点P试判定△BMP的形状请说明理由.答案和解析1.【答案】解:(1)如图所示连接BD过D作DH⊥AB于H∵∠A=45°∠AHD=90°∴∠ADH=45°=∠A∴△ADH是等腰直角三角形又∵AD=3√ 2∴AH=DH=3∴BH=AB−AH=5−3=2∴Rt△BDH中BD=√ 32+22=√ 13;(2)如图所示AG即为所求.【解析】(1)连接BD过D作DH⊥AB于H依据等腰直角三角形以及勾股定理即可得到BD的长;(2)以A为圆心AB的长为半径画弧交CD于E;分别以B E为圆心适当的长为半径画弧两弧交于点F;作射线AF交BC于G则AG即为折痕.本题主要考查了平行四边形的性质以及轴对称变换掌握平行四边形的性质以及轴对称的性质是解决问题的关键.2.【答案】证明:(1)∵B是AC的中点∴AB=BC在△ABE与△BCD中{AE=BD BE=CD AB=BC,∴△ABE≌△BCD(SSS);(2)∵△ABE≌△BCD∴∠ABE=∠BCD∴BE//CD∵BE=CD∴四边形BCDE为平行四边形.【解析】(1)根据线段中点的定义得到AB=BC根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到∠ABE=∠BCD根据平行线的判定定理得到BE//CD根据平行四边形的判定定理即可得到结论.本题考查了全等三角形的判定和性质平行四边形的判定熟练掌握全等三角形的判定和性质定理是解题的关键.3.【答案】证明:∵四边形ABCD是矩形∴AB=CD AB//CD∴∠BAE=∠DCF.又BE⊥AC DF⊥AC∴∠AEB=∠CFD=90°.在△ABE与△CDF中{∠AEB=∠CFD ∠BAE=∠DCF AB=CD∴△ABE≌△CDF(AAS)∴AE=CF∴AE+EF=CF+EF即AF=CE.【解析】由全等三角形的判定定理AAS证得△ABE≌△CDF可得AE=CF即可解决问题.本题考查了全等三角形的判定与性质熟练掌握三角形全等的判定方法并准确识图是解题的关键.4.【答案】解:(1)∵点E F G H分别是平行四边形ABCD各边的中点∴AH//CF AH=CF∴四边形AFCH是平行四边形∴AM//CN同理可得四边形AECG是平行四边形∴AN//CM∴四边形AMCN是平行四边形;(2)如图所示连接AC∵H G分别是AD CD的中点∴点N是△ACD的重心∴CN=2HN∴S△ACN=23S△ACH又∵CH是△ACD的中线∴S△ACN=13S△ACD又∵AC是平行四边形AMCN和平行四边形ABCD的对角线∴S平行四边形AMCN =13S平行四边形ABCD又∵▱AMCN的面积为4∴▱ABCD的面积为12.【解析】(1)依据四边形AFCH是平行四边形可得AM//CN依据四边形AECG是平行四边形可得AN//CM进而得出四边形AMCN是平行四边形;(2)连接AC依据三角形重心的性质即可得到S△ACN=23S△ACH再根据CH是△ACD的中线即可得出S△ACN=13S△ACD进而得到S平行四边形AMCN=13S平行四边形ABCD依据▱AMCN的面积为4即可得出结论.本题主要考查了平行四边形的判定与性质以及三角形重心性质的运用解决问题的关键是掌握平行四边形的判定方法以及三角形重心性质.5.【答案】证明:∵四边形ABCD是平行四边形∴AB//CD AB=CD∵点E F分别是边AB CD的中点∴AE=CF又∵AE//CF∴四边形AECF是平行四边形∴AF=CE.【解析】本题考查了平行四边形的判定和性质灵活运用平行四边形的判定是解题的关键.由平行四边形的性质可得AB//CD AB=CD由中点的定义可得AE=CF即可证四边形AECF是平行四边形进而可证明AF=CE.6.【答案】证明:(1)∵AD=BF∴AD+DB=DB+BF∴AB=FD∵DE//CB∴∠ABC=∠FDE∵BC=DE∴△ABC≌△FDE(SAS)(2)如图:由(1)知△ABC≌△FDE∴∠CAB=∠EFD AC=EF∴AC//EF∴四边形ABCD为平行四边形.【解析】(1)由SAS可证△ABC≌△FDE;(2)结合(1)用一组对边平行且相等的四边形是平行四边形可解答.本题考查全等三角形判定与性质和平行四边形判定解题的关键是掌握全等三角形判定定理和平行四边形判定定理.7.【答案】证明:(1)∵四边形ABCD为平行四边形∴AB=CD AB//CD∴∠ABD=∠CDB在△ABE和△CDF中{AB=CD∠ABE=∠CDF BE=DF∴△ABE≌△CDF(SAS);(2)由(1)可知△ABE≌△CDF∴AE=CF∠AEB=∠CFD∴∠AEF=∠CFE∴AE//CF∵AE=CF AE//CF∴四边形AECF是平行四边形.【解析】本题考查的是平行四边形的判定和性质全等三角形的判定和性质掌握平行四边形的对边平行且相等一组对边平行且相等的四边形是平行四边形是解题的关键.(1)根据平行四边形的性质得到AB=CD AB//CD根据平行线的性质得到∠ABD=∠CDB利用SAS 证明△ABE≌△CDF;(2)根据全等三角形的性质得到AE=CF∠AEB=∠CFD推出∠AEF=∠CFE根据平行线的判定定理证明AE//CF再根据平行四边形的判定定理证明结论.8.【答案】解:操作:如图2∵直线EF是AB的垂直平分线∴NA=NB由折叠可知BN=AB∠NBM=∠ABM∠BAM=∠BNM=90°∴AB=BN=AN∴△ABN是等边三角形故答案为:等边三角形;论证:△BMP是等边三角形理由如下:如图3∵△ABN是等边三角形∴∠ABN=60°∴∠NBM=∠ABM=12∠ABN=30°∵∠NBP=∠ABP−∠ABN=30°∠BNP=90°∴∠BPM=∠MBP=60°∴△BMP是等边三角形.【解析】本题考查了翻折变换等边三角形的性质矩形的性质直角三角形的性质灵活运用这些性质解决问题是解题的关键.操作:由折叠的性质可得NA=NB=AB可得△ABN是等边三角形;论证:由直角三角形的性质可求∠BPM=∠MBP=60°可得△BMP是等边三角形.9.【答案】(1)证明:∵点E F G H分别是平行四边形ABCD各边的中点∴AH//CF AH=CF ∴四边形AFCH是平行四边形∴AM//CN同理可得四边形AECG是平行四边形∴AN//CM∴四边形AMCN是平行四边形;(2)解:如图所示连接AC∵H G分别是AD CD的中点∴点N是△ACD的重心∴CN=2HN∴S△ACN=23S△ACH又∵CH是△ACD的中线∴S△ACN=13S△ACD又∵AC是□AMCN和□ABCD的对角线∴S▫AMCN=13S▫ABCD又∵□AMCN的面积为4∴□ABCD的面积为12.10.【答案】(1)证明:由折叠的性质可得AF⊥BD∴∠AGB=90°∵四边形ABCD是矩形∴∠BAD=∠ABC=90°∴∠BAG=∠ADB=∠GBF∵AD=√ 2AB设AB=a则AD=√ 2a BD=√ 3a∴sin∠BAG=sin∠ADB即BGAB =ABBD∴BGa=√ 3a解得BG=√ 33a根据勾股定理可得AG=√ 63acos∠GBF=cos∠BAG即BGBF =AGAB∴√ 33aBF=√ 63aa.解得BF=√ 22a∵BC=AD=√ 2a∴BF=12BC∴点F为BC的中点.(2)解:∠AGH=120°理由如下:连接HF如图:由折叠的性质可知∠GBH=∠FBH BF=HF∴∠FBH=∠FHB∴∠GBH=∠BHF∴BD//HF∴∠DGH=∠GHF 由(1)知AF⊥BD可得AF⊥HF∴∠AGD=90°设AB=a则AD=√ 2a=BC BF=HF=√ 22a∴BG=√ 3 3a∴GF=√ 6 6a在Rt△GFH中tan∠GHF=GFHF=√ 66a√ 22a=√ 33∴∠GHF=30°∵BD//HF∴∠DGH=30°∴∠AGH=∠AGD+∠DGH=90°+30°=120°.【解析】(1)由折叠的性质可得AF⊥BD根据题意可得∠BAG=∠ADB=∠GBF再设AB=a然后表示出AD BD再由锐角三角函数求出BF即可;(2)由折叠的性质可知∠GBH=∠FBH BF=HF从而可得出∠GBH=∠BHF进而得到BD//HF∠DGH=∠GHF由(1)知AF⊥BD可得AF⊥HF在Rt△GFH中求出∠GHF的正切值即可解答.本题考查矩形的性质折叠的性质勾股定理锐角三角函数熟练掌握以上知识是解题关键.11.【答案】证明:(1)∵四边形ABCD为平行四边形∴AB=CD AB//CD∴∠ABD=∠CDB在△ABE和△CDF中{AB=CD∠ABE=∠CDF BE=DF∴△ABE≌△CDF(SAS);(2)由(1)可知△ABE≌△CDF∴AE=CF∠AEB=∠CFD∴∠AEF=∠CFE∴AE//CF∵AE=CF AE//CF∴四边形AECF是平行四边形.【解析】本题考查的是平行四边形的判定和性质全等三角形的判定和性质掌握平行四边形的对边平行且相等一组对边平行且相等的四边形是平行四边形是解题的关键.(1)根据平行四边形的性质得到AB=CD AB//CD根据平行线的性质得到∠ABD=∠CDB利用SAS 证明△ABE≌△CDF;(2)根据全等三角形的性质得到AE=CF∠AEB=∠CFD推出∠AEF=∠CFE根据平行线的判定定理证明AE//CF再根据平行四边形的判定定理证明结论.12.【答案】(1)证明:在▱ABCD中AD//BC∠ABC=∠ADC∴∠DAC=∠BCA AD=BC∵BE DG分别平分∠ABC∠ADC∴∠ADG=∠CBE∵∠DGE=∠DAC+∠ADG∠BEG=∠BCA+∠CBE∴∠DGE=∠BEG∴BE//DG;在△ADG和△CBE中{∠DAG=∠BCE AD=CB∠ADG=∠CBE,∴△ADG≌△CBE(ASA)∴BE=DG;(2)解:过E点作EH⊥BC于H∵BE平分∠ABC EF⊥AB∴EH=EF=6∵▱ABCD的周长为56∴AB+BC=28∴S△ABC=12AB⋅EF+12BC⋅EH=12EF(AB+BC)=12×6×28=84.【解析】本题主要考查平行四边形的性质角平分线的定义与性质三角形的面积全等三角形的判定与性质掌握平行四边形的性质是解题的关键.(1)根据平行四边形的性质可得∠DAC=∠BCA AD=BC由角平分线的定义及三角形外角的性质可得∠DGE=∠BEG进而可证明BE//DG;利用ASA证明△ADG≌△CBE可得BE=DG;(2)过E点作EH⊥BC于H由角平分线的性质可求解EH=EF=6根据平行四边形的性质可求解AB+ BC=28再利用三角形的面积公式计算可求解.13.【答案】(1)AF=12BC.14.【答案】【小题1】解:根据题意知较大矩形的宽为2x m 长为24−x−2x3=(8−x )m∴(x +2x)(8−x)=36 解得x 1=2 x 2=6 又∵0<3x ≤10∴0<x ≤103∴x =2.答:此时x 的值为2; 【小题2】设矩形养殖场的总面积是y m 2则y =(x +2x)(8−x)=−3(x −4)2+48 ∵−3<0 对称轴为x =4 ∴当x <4时 y 随x 的增大而增大∵0<x ≤103∴当x =103时 y 取最大值 最大值为−3×(103−4)2+48=1403. 答:当x =103时 矩形养殖场的总面积最大 最大值为1403m 2.15.【答案】(1)证明:如图1中 作FM ⊥AC 垂足为M∵四边形ABCD 是矩形∴∠B =90° ∵FM ⊥AC∴∠B=∠AMF=90°由旋转可得∠BAC=∠EAF∴∠BAE=∠MAF 在△ABE和△AMF中{∠B=∠AMF ∠BAE=∠MAF AE=AF∴△ABE≌△AMF∴AB=AM;(2)解:当点E在BC上在Rt△ABE中AB=4AE=3√ 2∴BE=√ AE2−AB2=√ (3√ 2)2−42=√ 2∵△ABE≌△AMF∴AB=AM=4FM=BE=√ 2在Rt△ABC中AB=4BC=3∴AC=√ AB2+BC2=√ 42+32=5∴CM=AC−AM=5−4=1∵∠CMF=90∘∴CF=√ CM2+FM2=√ 12+(√ 2)2=√ 3.当点E在CD上时作FH⊥AC于点H∵AE=AF=3√ 2AD=3由勾股定理易得DE=AD=AH=FH=3∵AC=5∴CH=5−3=2在Rt△CHF中CF=√ FH2+CH2=√ 32+22=√ 13.综上所述CF的值为√ 3或√ 13;(3)解:当点E在BC上时如图2中过点D作DH⊥FM于点H.∵△ABE≌△AMF∴AM=AB=4∵∠AMF=90°∴点F在射线FM上运动当点F与H重合时DF的值最小∵∠CMJ=∠ADC=90°∠MCJ=∠ACD∴△CMJ∽△CDA∴CMCD=MJAD=CJAC ∴14=MJ3=CJ5∴MJ=34CJ=54∴DJ=CD−CJ=4−54=114∵∠CMJ=∠DHJ=90°∠CJM=∠DJH ∴△CMJ∽△DHJ∴CMDH=CJDJ∴1DH=54114∴DH=11 5∴DF的最小值为115.当点E在线段CD上时如图3中将线段AD绕点A顺时针旋转旋转角为∠BAC得到线段AR连接FR过点D作DQ⊥AR于点Q DK⊥FR于点K.∵∠EAF=∠BAC∠DAR=∠BAC∴∠EAF=∠DAR∴∠DAE=∠RAF∵AE=AF AD=AR∴△ADE≌△ARF∴∠ADE=∠ARF=90°∴点F在直线RF上运动当点D与K重合时DF的值最小∵DQ⊥AR DK⊥RF∴∠R=∠DQR=∠DKR=90°∴四边形DKRQ是矩形∴DK=QR∴AQ=AD⋅cos∠BAC=3×45=125∵AR=AD=3∴DK=QR=AR−AQ=3 5∴DF的最小值为35∵35<115∴DF的最小值为35.【解析】本题属于四边形综合题考查了矩形的判定和性质旋转的性质全等三角形的判定和性质解直角三角形等知识解题的关键是学会添加常用辅助线构造全等三角形解决问题属于中考压轴题.(1)作FM⊥AC垂足为M证明△ABE≌△AMF可得结论;(2)分两种情况:当点E在BC上时利用勾股定理求出BE=√ 2利用全等三角形的性质推出AB=AM=4FM=BE=√ 2再利用勾股定理求出CF即可;当点E在CD上时作FH⊥AC于点H易得DE=AD=AH=FH=3在Rt△CHF中利用勾股定理求CF即可;(3)分两种情形:当点E在BC上时过点D作DH⊥FM于点H.证明点F在射线FM上运动当点F与H重合时DH的值最小求出DH即可;当点E在线段CD上时将线段AD绕点A顺时针旋转旋转角为∠BAC得到线段AR连接FR过点D作DQ⊥AR于点Q DK⊥FR于点K.证明△ADE≌△ARF推出∠ADE=∠ARF=90°推出点F在直线RF上运动当点D与K重合时DF的值最小可得结论.16.【答案】解:(1)证明:已知矩形ABCD沿对角线AC折叠则AD=BC=EC∠D=∠B=∠E=90°在△DAF和△ECF中{∠DFA=∠EFC ∠D=∠EDA=EC∴△DAF≌△ECF(AAS);(2)∵△DAF≌△ECF∴∠DAF=∠ECF=40°∵四边形ABCD是矩形∴∠DAB=90°∴∠EAB=∠DAB−∠DAF=90°−40°=50°∵∠EAC=∠CAB∴∠CAB=25°.【解析】本题考查矩形的性质全等三角形的判定和性质翻折变换等知识解题的关键是正确寻找全等三角形解决问题属于中考常考题型.(1)根据AAS证明三角形全等即可;(2)利用全等三角形的性质求解即可.17.【答案】解:(1)不存在;(2)作AH⊥BO于H∵边BC上的点O是四边形ABCD的“等形点”∴△OAB≌△OCD∴AB=CD=4√ 2OA=OC=5∵BC=12∴BO=7设OH=x则BH=7−x由勾股定理得(4√ 2)2−(7−x)2=52−x2解得x=3∴OH=3∴AH=4∴CH=8在Rt△CHA中AC=√ AH2+CH2=√ 42+82=4√ 5;(3)如图∵边FG上的点O是四边形EFGH的“等形点”∴△OEF≌△OGH∴∠EOF=∠HOG OE=OG∠OGH=∠OEF∵EH//FG∴∠HEO=∠EOF∠EHO=∠HOG∴∠HEO=∠EHO∴OE=OH∴OH=OG∴OE=OF∴OFOG=1.【解析】本题是新定义题主要考查了全等三角形的性质正方形的性质勾股定理平行线的性质等知识理解新定义并能熟练掌握全等三角形的性质是解题的关键.(1)根据“等形点”的定义可知△OAB≌△OCD则∠OAB=∠C=90°而O是边BC上的一点.从而得出正方形不存在“等形点”;(2)作AH⊥BO于H由△OAB≌△OCD得AB=CD=4√ 2OA=OC=5设OH=x则BH= 7−x由勾股定理得(4√ 2)2−(7−x)2=52−x2求出x的值再利用勾股定理求出AC的长即可;(3)根据“等形点”的定义可得△OEF≌△OGH则∠EOF=∠HOG OE=OG∠OGH=∠OEF再由平行线性质得OE=OH从而推出OE=OH=OG从而解决问题.18.【答案】解:(1)作C′H⊥DC于H如图:∵△ABC绕点A旋转到△AB′C′∴AB′=AB=5B′C′=BC=3∴DB′=√ AB′2−AD2=√ 52−32=4∵∠C′B′H=90°−∠DB′A=∠DAB′∠CHB′=90°=∠D∴△C′HB′∽△B′DA∴C′H DB′=B′C′AB′即C′H4=35∴C′H=125∴S△B′C′MS△AB′M=C′HAD=1253=45∵S△AB′C′=S△B′C′M+S△AB′M=12AB′⋅B′C′=152∴S△AB′M=59S△AB′C′=256;∴△AB′C′与矩形ABCD重叠部分的面积是256;(2)作CN⊥AC′如图:∵△ABC绕点A旋转到△AB′C′∴AB′=AB=5AC′=AC=√ AB2+BC2=√ 34∠AB′C′=∠B=90°=∠AB′C B′C′=BC=3∴CC′=2B′C′=6∵2S△ACC′=CC′⋅AB′=AC′⋅CN∴CN=CC′⋅AB′AC′=√ 34=√ 34∵∠CMN=∠AMD∠CNM=∠ADM=90°∴△CMN∽△AMD∴CNAD=CMAM∴CN 2AD2=CM2AM2即CN2⋅AM2=AD2⋅CM2设DM=x∴(√ 34)2×(x2+32)=32(x+5)2化简得:33x2−170x+25=0解得:x=5(舍去)或x=533答:DM的长度为533.【解析】(1)作C′H⊥DC于H证明△C′HB′∽△B′DA可得C′H4=35C′H=125即得S△B′C′MS△AB′M=C′HAD=125 3=45而S△AB′C′=12AB′⋅B′C′=152故S△AB′M=59S△AB′C′=256;(2)作CN⊥AC′由△ABC绕点A旋转到△AB′C′得AB′=AB=5AC′=AC=√ AB2+BC2=√ 34∠AB′C′=∠B=90°=∠AB′C B′C′=BC=3用面积法可得CN=CC′⋅AB′AC′=√ 34证明△CMN∽△AMD有CNAD =CMAM故C N2⋅AM2=AD2⋅CM2设DM=x故(√ 34)2×(x2+32)=32(x+5)2即可得DM的长度为533.本题考查矩形的性质涉及旋转变换相似三角形的判定与旋转解题的关键是掌握旋转的旋转能熟练应用相似三角形判定定理.19.【答案】(1)等边三角形;(2)△BMP是等边三角形理由如下:如图3∵直线EF是AB的垂直平分线∴NA=NB由折叠可知BN=AB∠NBM=∠ABM∠BAM=∠BNM=90°∴AB=BN=AN∠BNP=90°∴△ABN是等边三角形∴∠ABN=60°∴∠NBM=∠ABM=12∠ABN=30°∵∠NBP=∠ABP−∠ABN=30°∠BNP=90°∴∠BPM=∠MBP=60°∴△BMP是等边三角形.【解析】【分析】本题考查了翻折变换,等边三角形的判定,矩形的性质,直角三角形的性质,灵活运用这些性质解决问题是解题的关键.(1)操作:由折叠的性质可得NA=NB=AB,可得△ABN是等边三角形;(2)论证:由直角三角形的性质可求∠BPM=∠MBP=60°,可得△BMP是等边三角形.【解答】解:(1)△ABN是等边三角形操作:如图2∵直线EF是AB的垂直平分线∴NA=NB由折叠可知:BN=AB∴AB=BN=AN∴△ABN是等边三角形故答案为:等边三角形;(2)论证见答案.。

中考数学一轮复习《四边形》综合复习练习题(含答案)

中考数学一轮复习《四边形》综合复习练习题(含答案)

中考数学一轮复习《四边形》综合复习练习题(含答案)一、单选题1.一个多边形的内角和为900°,则这个多边形是( )A .七边形B .八边形C .九边形D .十边形 2.如图,将三角形纸片剪掉一角得四边形,设△ABC 与四边形BCDE 的外角和的度数分别为α,β,则正确的是( )A .0αβ-=B .0αβ-<C .0αβ->D .无法比较α与β的大小3.如图,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D ′、C ′的位置,若∠EFB =65°,则∠AED ′等于( )A .50°B .55°C .60°D .65°4.若一个正多边形的一个外角是60°,则这个正多边形的边数是( )A .10B .9C .8D .65.如图,四边形ABCD 是平行四边形,下列结论中正确的是( )A .当ABCD 是矩形时,90BAC ∠=︒B .当ABCD 是菱形时,AB BC ⊥ C .当ABCD 是正方形时,AC BD = D .当ABCD 是菱形时,AB AC =6.如图,在正方形ABCD 中,AE 平分BAC ∠交BC 于点E ,点F 是边AB 上一点,连接DF ,若BE AF =,则CDF ∠的度数为( )A .45︒B .60︒C .67.5︒D .775︒.7.如图,要拧开一个边长为()=6mm a a 的正六边形,扳手张开的开口b 至少为( )A .43mmB .63mmC . 42mmD . 12mm8.如图,菱形ABCD 中,∠BAD = 60°,AB = 6,点E ,F 分别在边AB ,AD 上,将△AEF 沿EF 翻折得到△GEF ,若点G 恰好为CD 边的中点,则AE 的长为( )A .34B .214C 3154D .39.以下说法不正确的是( )A .平行四边形是抽对称图形B .矩形对角线相等C .正方形对角线互相垂直平分D .菱形四条边相等10.陈师傅应客户要求加工4个长为4cm 、宽为3cm 的矩形零件.在交付客户之前,陈师傅需要对4个零件进行检测.根据零件的检测结果,图中有可能不合格的零件是( )A.B.C.D.11.如图,AB是半圆O的直径,以弦AC为折痕折叠AC后,恰好经过点O,则AOC∠等于()A.120°B.125°C.130°D.145°12.如图,在平面直角坐标系中,矩形ABCD的对角线AC经过坐标原点O,矩形的边分别平行于坐标轴,点B在函数kyx=(k≠0,x>0)的图像上,点D的坐标为(﹣3,1),则k的值为()A.53B.3-C.3D.53-二、填空题13.如果一个多边形的每一个外角都是60︒,那么这个多边形的边数是_______.14.如图,在矩形ABCD中,E是AD边上一点,且2AE DE=,BD与CE相交于点F,若DEF 的面积是3,则BCF △的面积是______.15.如果正多边形的一个外角是45︒,则这个正多边形的内角和是________︒.16.巧板是我国古代劳动人民的一项发明,被誉为“东方魔板”,它由五块等腰直角三角形、一块正方形和一块平行四边形组成.如图是利用七巧板拼成的正方形,随机向该图形内抛一枚小针,则针尖落在阴影部分的概率为 _____.17.如图,四边形ABCD 是菱形,42BD =,26AD =,点E 是CD 边上的一动点,过点E 作EF ⊥OC 于点F ,EG ⊥OD 于点G ,连接FG ,则FG 的最小值为_________.18.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,过点O 作OE AC ⊥交AD 于点E ,若4AB =,8BC =,则DE 的长为______.19.已知ABC 中,65A ∠=︒,将B C ∠∠、按照如图所示折叠,若35ADB '∠=︒,则123∠+∠+∠=_____︒.CE ,F 20.如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,5为DE的中点.若CEF△的周长为18,则OF的长为______.三、解答题21.如图,一组正多边形,观察每个正多边形中a的变化情况,解答下列问题.(1)将表格补充完整.正多边形的边数 3 4 5 6α的度数(2)观察上面表格中α的变化规律,角α与边数n的关系为.(3)根据规律,当α=18°时,多边形边数n=.22.如图,在ABCD中,AC=BC,M、N分别是AB和CD的中点.(1)求证:四边形AMCN是矩形;(2)若∠B=60°,BC=8,求ABCD的面积.23.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD 的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.24.如图,矩形ABCD中,点E在边CD上,将△BCE沿BE折叠,点C落在AD边上的点F处,过点F作FG∥CD交BE于点G,连接CG.(1)求证:四边形CEFG是菱形;(2)若AB=6,AD=10,求四边形CEFG的面积.25.如图,点E为矩形ABCD外一点,AE = DE.求证:△ABE≌△DCE26.如图,已知四边形ABCD为正方形,AB=2,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE,交BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:①CE与CG有怎样的位置关系?请说明理由.②CE+CG的值为.27.某数学兴趣小组在数学课外活动中,对多边形内两条互相垂直的线段做了如下探究:【现察与猜想】(1)如图1,在正方形ABCD中,点E,F分别是AB,AD上的两点,连接DE,CF,DE⊥CF,则DECF的值为______.(2)如图2,在矩形ABCD中,AD=7,CD=4,点E是AD上的一点,连接CE,BD,且CE⊥BD,则CEBD的值______.【类比探究】(3)如图3,在四边形ABCD中,∠A=∠B=90°,点E为AB上一点,连接DE,过点C作DE 的垂线交ED的延长线于点G,交AD的延长线于点F,求证:DE•AB=CF•AD.28.在矩形ABCD中,AB=6,AD=4,点M为AB边上一个动点,连接DM,过点M作MN⊥DM,且MN=32DM,连接DN.(1)如图1,连接BD与BN,BD交MN于点E.①求证:△ABD∽△MND;②求证:∠CBN=∠DNM.(2)如图2,当AM=4BM时,求证:A,C,N三点在同一条直线上.参考答案1.A2.A3.A4.D5.C6.C7.B8.B9.A10.C11.A12.B13.614.2715.108016.381718.319.265︒20.7221.(1)正多边形每个内角的度数为180(2)n n -. 1803,603n α===; 904,452n α===; 正五边形的内角180(52)1085-=,1801085,362n α-===; 正五边形的内角180(62)1206-=,1801206,302n α-===.(2)观察(1)中结论,1803,603n == 1804,454n == 1805,365n == 1806,306n == 总结规律,则有180n α=. (3)借助(2)中公式,有180n α=,即18018n= 解得10n =.22.(1)证明:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AB =CD ,∵M 、N 分别是AB 和CD 的中点, ∴AM =BM ,AM ∥CN ,AM =CN , ∴四边形AMCN 是平行四边形,又∵AC =BC ,AM =BM ,∴CM ⊥AB ,∴∠CMA =90°,∴四边形AMCN 是矩形;(2)解:∵∠B =60°,BC =8,∠BMC =90°, ∴∠BCM =30°,∴Rt △BCM 中,BM =12BC =4,CM∵AC =BC ,CM ⊥AB ,∴AB =2BM =8,∴ABCD 的面积为AB ×CM23.(1)证明:∵四边形ABCD 是平行四边形, ∴AB =CD ,AB ∥CD ,OB =OD ,OA =OC , ∴∠ABE =∠CDF ,∵点E ,F 分别为OB ,OD 的中点, ∴BE =12OB ,DF =12OD ,∴BE =DF ,在△ABE 和△CDF 中,AB CD ABE CDF BE DF ⎧⎪∠∠⎨⎪⎩===,∴△ABE ≌△CDF (SAS ) .(2)当AB =12AC 时,四边形EGCF 是矩形;理由如下: 当AB =12AC 时,∵AC =2OA ,AC =2AB ,∴AB =OA ,∵E 是OB 的中点,∴AG⊥OB,∴∠OEG=90°,同理:CF⊥OD,∴AG∥CF,∴EG∥CF,由(1)得:△ABE≌△CDF,∴AE=CF,∵EG=AE,∴EG=CF,∴四边形EGCF是平行四边形,∵∠OEG=90°,∴四边形EGCF是矩形.24.(1)证明:由题意可得,△BCE≌△BFE,∴∠BEC=∠BEF,FE=CE,∵FG∥CE,∴∠FGE=∠CEB,∴∠FGE=∠FEG,∴FG=FE,∴FG=EC,∴四边形CEFG是平行四边形,又∵CE=FE,∴四边形CEFG是菱形;(2)解:∵矩形ABCD 中,AB =6,AD =10,BC =BF ,∴∠BAF =90°,AD =BC =BF =10,∴AF =8,∴DF =2,设EF =x ,则CE =x ,DE =6-x ,∵∠FDE =90°,∴22+(6-x )2=x 2,解得,x =103, ∴CE =103, ∴四边形CEFG 的面积是:CE •DF =103×2=203. 25.解:四边形ABCD 是矩形,AB DC ∴=,90BAD CDA ∠=∠=︒,AE DE =,EAD EDA ∴∠=∠,EAB BAD EAD CDA EDA EDC ∴∠=∠+∠=∠+=∠, 在ABE ∆和DCE ∆中,AE DE EAB EDC AB DC =⎧⎪∠=∠⎨⎪=⎩()ABE DCE SAS ∴∆∆≌.26.(1)如图,作EM ⊥BC 于M ,EN ⊥CD 于N ,又∠BCD =90°,∴∠MEN =90°,∵点E 是正方形ABCD 对角线上的点,∴EM =EN ,∵∠DEF =90°,∴∠DEN =∠MEF =90°﹣∠FEN ,∵∠DNE =∠FME =90°,在△DEN 和△FEM 中,DNE FME EN EMDEN FEM ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△DEN ≌△FEM (ASA ),∴EF =DE ,∵四边形DEFG 是矩形,∴矩形DEFG 是正方形;(2)①CE ⊥CG ,理由如下:∵正方形DEFG 和正方形ABCD ,∴DE =DG ,AD =DC ,∵∠CDG +∠CDE =∠ADE +∠CDE =90°,∴∠CDG =∠ADE ,在△ADE 和△CDG 中,AD CD ADE CDG DE DG =⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△CDG (SAS ),∴∠DAE =∠DCG ,∵∠ACD +∠CAD +∠ADC =180°,∠ADC =90°,∴∠ACG =∠ACD +∠DCG =∠ACD +∠CAD =90°, ∴CE ⊥CG ;②由①知,△ADE ≌△CDG ,∴AE =CG ,∴CE +CG =CE +AE =ACAB=2,故答案为:2.27.(1)解:设DE与CF的交点为G,∵四边形ABCD是正方形,∴∠A=∠FDC=90°,AD=CD,∵DE⊥CF,∴∠DGF=90°,∴∠ADE+∠CFD=90°,∠ADE+∠AED=90°,∴∠CFD=∠AED,在△AED与△DFC中,A FDCCFD AEDAD CD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AED≌△DFC(AAS),∴DE=CF,∴DECF=1,故答案为:1;(2)解:如图,设DB与CE交于点G,∵四边形ABCD是矩形,∴∠A=∠EDC=90°,∵CE⊥BD,∴∠DGC=90°,∴∠CDG +∠ECD =90°,∠ADB +∠CDG =90°,∴∠ECD =∠ADB ,∵∠CDE =∠A ,∴△DEC ∽△ABD , ∴47CE DC BD AD ==, 故答案为:47; (3)证明:如图,过点C 作CH ⊥AF 交AF 的延长线于点H ,∵CG ⊥EG ,∴∠G =∠H =∠A =∠B =90°,∴四边形ABCH 为矩形,∴AB =CH ,∠FCH +∠CFH =∠DFG +∠FDG =90°,∴∠FCH =∠FDG =∠ADE ,∠A =∠H =90°,∴△AED ∽△HFC ,∴DE AD CF CH =, ∴DE AD CF AB=, ∴DE •AB =CF •AD .28.(1)①证明:∵四边形ABCD 是矩形,DM ⊥MN ∴∠A =∠DMN =90°∵AB =6,AD =4,MN =32DM ∴23AD DM AB MN == ∴△ABD ∽△MND .②证明:∵四边形ABCD 是矩形,DM ⊥MN ∴∠ABC =∠DMN =90°∴∠ABD +∠CBD =90°由①得△ABD ∽△MND∴∠ABD =∠DNM又∵∠MEB =∠DEN∴△MBE ∽△DNE ∴ME BE DE NE = ∴ME DE BE NE= 又∠MED =∠BEN∴△DME ∽△NBE∴∠NBE =∠DME =90°∴∠CBN +∠CBD =90°又∠ABD +∠CBD =90°,∠ABD =∠DNM ∴∠CBN =∠DNM .(2) 如图②,过点N 作NF ⊥AB 于点F ,连接AC ,AN ∴∠NF A =90°∵四边形ABCD 是矩形,AD =4,AB =6 ∴∠A =∠ABC =90°,BC =AD =4∴23BC AB =,∠ADM +∠AMD =90° ∵AM =4BM ,AB =6∴42455AM AB ==又DM ⊥MN∴∠AMD +∠FMN =90° ∴∠ADM =∠FMN∴△ADM ∽△FMN ∴AD AM DM MF FN MN== 又MN =32DM ∴24425=3DM MF FN MN == ∴MF =6,FN =365∴AF =AM +MF =2454655+= ∴23NF AF = ∴NF BC AF AB = ∵∠ABC =∠AFN =90° ∴△ABC ∽△AFN∴∠BAC =∠F AN∴A ,C ,N 三点在同一条直线.。

中考数学总复习《四边形的综合题》练习题附带答案

中考数学总复习《四边形的综合题》练习题附带答案

中考数学总复习《四边形的综合题》练习题附带答案一、单选题1.如图,两个平行四边形的面积分别为18、12,两阴影部分的面积分别为a、b (a>b),则(a−b)等于()A.3B.4C.5D.6 2.如图,在矩形ABCD中,对角线AC、BD相交于点O,∠ABD=60°,则∠BOC的大小为()A.30°B.60°C.90°D.120°3.若一个多边形的内角和是外角和的2.5倍,则该多边形为()A.五边形B.六边形C.七边形D.八边形4.如图,矩形ABCD对角线相交于点O,∠AOB=60°,AB=4,则矩形的对角线AC 为()A.4 B.8 C.4√3D.10 5.一个长方形的周长为28厘米,长的2倍比宽的3倍多3厘米,则这个长方形的面积是()A.45平方厘米B.35平方厘米C.25平方厘米D.20平方厘米6.如图,在矩形ABCD中,对角线AC,BD相交于点O,AE垂直平分BO,AE=√3cm,则OD=()A.1cm B.1.5cm C.2cm D.3cm 7.如图,矩形纸片ABCD中,AB=4,AD=8 ,将纸片沿EF折叠使点B与点D 重合,折痕EF与BD相交于点O,则DF的长为()A.3B.4C.5D.6 8.如图,⊙O的半径为4,点P是⊙O外的一点PO=10,点A是⊙O上的一个动点,连接PA,直线l垂直平分PA,当直线l与⊙O相切时PA的长度为()A.10B.212C.11D.434 9.已知平行四边形一边长为8,一条对角线长为6,则另一条对角线α满足()A.10<α<22B.4<α<20C.4<α<28D.2<α<1410.如图,两张等宽的纸条交又重叠在一起,重叠的部分为四边形ABCD,若测得A,C之间的距离为6cm,点B,D之间的距离为8cm,则线段AB的长为()A.a2B.5cm C.2√7cm D.6cm 11.如图,E、F分别是正方形ABCD的边AB、BC上的点,BE=CF,连接CE、DF,将∠BCE绕着正方形的中心O按逆时针方向旋转到∠CDF的位置,则旋转角是( )A .45°B .60°C .90°D .120°12.Rt∠ABC 两直角边的长分别为6cm 和8cm ,则连接这两条直角边中点的线段长为( ) A .10cmB .3cmC .4cmD .5cm二、填空题13.如图,点E 在边长为2的正方形ABCD 内,满足∠AEB =90°,若∠DAE =30°,则图中阴影部分的面积为 .14.把一把直尺和一块三角板如图放置,若∠1=42°,则∠2的度数为 °.15.已知 ▱ABCD 中一条对角线分 ∠A 为35°和45°,则 ∠B = 度. 16.如图,在一块长AB =26m ,宽BC =18m 的长方形草地上,修建三条宽均为3m 的长方形小路,则这块草地的绿地面积(图中空白部分)为 m 217.如图,在∠ABC 中,∠ABC =90°,E 为AC 的中点,AD∠BE 交BC 于D ,若AD=152,BE =5,则BD = .18.如图,在四边形ABCD中,∠A=90°,AB=12,AD=5.点M、N分别为线段BC、AB上的动点(含端点,但点M不与点B重合),点E、F分别为DM、MN的中点,则EF长度的最大值是.三、综合题19.如果抛物线C1:y=ax2+bx+c与抛物线C2:y=−ax2+dx+e的开口方向相反,顶点相同,我们称抛物线C2是C1的“对顶”抛物线.(1)求抛物线y=x2−4x+7的“对顶”抛物线的表达式;(2)将抛物线y=x2−4x+7的“对顶”抛物线沿其对称轴平移,使所得抛物线与原抛物线y=x2−4x+7形成两个交点M、N,记平移前后两抛物线的顶点分别为A、B,当四边形AMBN是正方形时求正方形AMBN的面积.(3)某同学在探究“对顶”抛物线时发现:如果抛物线C1与C2的顶点位于x轴上,那么系数b与d,c与e之间的关系是确定的,请写出它们之间的关系.20.解答题(1)如图1,在平行四边形ABCD 中,已知点E 在AB 上,点F 在CD 上,且AE=CF .求证:DE=BF ;(2)如图2,AB 是∠O 的直径,点C 在AB 的延长线上,CD 与∠O 相切于点D ,若∠C=20°,求∠CDA 的度数.21.如图,▱ABCD 放置在平面直角坐标系申,已知点A (-2,0)、B (-6,0)、D(0,3).点C 在反比例函数y=k x的图象上。

中考数学总复习《四边形的综合题》专项练习及答案

中考数学总复习《四边形的综合题》专项练习及答案

中考数学总复习《四边形的综合题》专项练习及答案班级:___________姓名:___________考号:____________一、单选题1.若某多边形的内角和等于外角和的3倍,则这个多边形的边数是()A.6B.8C.10D.122.如图,正方形ABCD的边长为4,点P从点A出发,沿正方形的边顺时针方向运动一周,则△APC 的面积y与点P运动的路程x间的函数关系图象大致是()A.B.C.D.3.若一个多边形截去一个角后变成了六边形,则原来多边形的边数可能是()A.5或6B.6或7C.5或6或7D.6或7或84.如图,将边长相等的正方形、正五边形和正六边形摆放在平面上,则∠1为()A.32∘B.36∘C.40∘D.42∘5.在菱形ABCD中,AC与BD相交于点O,AO=4,BO=3,则菱形的边长AB等于()A.10B.8C.6D.56.下列各组图形中,不一定相似的是()A.任意两个等腰直角三角形B.任意两个等边三角形C.任意两个矩形D.任意两个正方形7.如图,▱ABCD的对角线AC,BD交于点O,DE平分∠ADC交BC于点E,∠BCD=60°,AD=2AB,连接OE.下列结论:①S▱ABCD=AB⋅BD;②DB平分∠ADE;③AB=DE;④S△CDE=S△BOC,其中正确的有()A.1个B.2个C.3个D.4个8.如图,在Rt△ABC中,△C=90°,AC=6,BC=8,将它绕着BC中点D顺时针旋转一定角度(小于90°)后得到△A′B′C′,恰好使B′C′△AB,A'C′与AB交于点E,则A′E的长为()A.3B.3.2C.3.5D.3.69.下列角度中,是多边形内角和的只有()A.270°B.560°C.630°D.1 800°10.如图,EF过平行四边形ABCD对角线的交点O,交AD于点E,交BC于点F,若平行四边形ABCD的周长为36,OE=3,则四边形EFCD的周长为()A.28B.26C.24D.2011.如图,菱形ABCD中,AC交BD于O,DE△BC于E,连接OE,若△ABC=140°,则△OED的度数为()A.15°B.20°C.25°D.30°12.如图,在平面直角坐标系内,四边形OABC是矩形,四边形ADEF是正方形,点A,D在x轴的负半轴上,点F在AB上,点B,E均在反比例函数y=kx(x<0)的图象上,若点B的坐标为(−1,6),则正方形ADEF的周长为()A.4B.6C.8D.10二、填空题13.矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE△△DBC,若△APD是等腰三角形,则PE的长为数.14.如图,在一块长AB=26m,宽BC=18m的长方形草地上,修建三条宽均为3m的长方形小路,则这块草地的绿地面积(图中空白部分)为m215.如图,点E、F分别在矩形ABCD的边BC、CD上,DE与AF相交于点P.已知DF=6,AP=5√6.若将矩形ABCD沿AF折叠后,点D恰好与点E重合,则PF=;△ABE的面积为.16.如图,已知BE和CF是△ABC的两条高,△ABC=48°,△ACB=76°,则△FDE=.17.正方形的对角线长为2,则正方形的边长为cm.面积为cm2.18.如图,PA,PB分别切△ O于点A,B,若∠P=700,点C为△ O上任一动点,则∠C的大小为°.三、综合题19.如图,AB△CD,AB=CD,点E,F在BC上,且BE=CF.(1)求证:△ABE△△DCF;(2)试证明:以A,F,D,E为顶点的四边形是平行四边形.20.如图,四边形ABCD是菱形,△ABC=60°,AB=10,连接BD,点P是BC上的点,连接AP,交BD于点E,连接EC(1)求证:△ABE△△CBE;(2)求菱形ABCD的面积;(3)当点P在线段BC的延长线上时是否存在点P,使得△PEC是直角三角形?若存在,求出BP 的长;若不存在,请说明理由.21.已知,平行四边形ABCD的对角线BD向两个方向延长,分别至点E和点F,且使BE=DF,连接AE、EC、FC、AF.(1)如图1,求证:四边形AECF 是平行四边形.(2)如图2,当EF =2BD 时在不添加任何辅助线情况下,请直接写出图2中的四个三角形,使写出的每个三角形面积都等于三角形ABD 面积的32.22.综合与实践(1)问题发现如图1,已知△ACB 和△DCE 均为等边三角形,点A ,D ,E 在同一直线上,连接BE ,求△AEB 的度数及线段AD ,BE 之间的数量关系; (2)类比探究如图2,若△ACB 和△DCE 均为等腰直角三角形,△ACB=△DCE=90°,点A 、D 、E 在同一直线上,CM 为△DCE 中DE 边上的高,连接BE填空:①△AEB 的度数为 ;②线段CM ,AE ,BE 之间的数量关系为 . (3)拓展延伸在(2)的条件下,若BE=4,CM=3,则四边形ABEC 的面积为 .23.如图,若 △A 1B 1C 1 是由ABC 平移后得到的,且 △ABC 中任意一点 P(x,y) 经过平移后的对应点为 P 1(x −5,y +2)(1)求点小A1,B1,C1的坐标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年中考总复习图形与几何模块《四边形》复习测试题时间:90分钟总分:120分 2015、3、17一、选择题(每小题4分,共40分)1.当多边形的边数增加1时,它的内角和与外角和( )A.都不变B.内角和增加180°,外角和不变C.内角和增加180°,外角和减少180°D.都增加180°2.李明设计了下面四种正多边形的瓷砖图案,用同一种瓷砖可以平面密铺的是( )A.①②④B.②③④C.①③④D.①②③3.如图,在平行四边形ABCD中,AB=3cm,BC=5cm,对角线AC,BD相交于点O,则OA的取值范围是( )A.3cm<OA<5cmB.2cm<OA<8cmC.1cm<OA<4cmD.3cm<OA<8cm3题图 4题图 5题图 6题图4.如图,矩形ABCD的周长为20cm,两条对角线相交于点O,过点O作AC的垂线EF,分别交AD,BC于点E,F,连接CE,则△CDE的周长为( )A.10cmB.9cmC.8cmD.5cm5.如图,在等腰梯形ABCD中,AB∥DC,AC⊥BC,点E是AB的中点,EC∥AD,则∠ABC等于( )A.75°B.70°C.60°D.30°6.如图,在正方形ABCD中,E为AB的中点,AF⊥DE于点O,则AO等于( )DOA.253B.13C.23D.127.如图,在菱形ABCD中,∠B=60°,AB=2,E,F分别是BC,CD的中点,连接AE,EF,AF,则△AEF的周长为( )A.23B.33C.43D.37题图 8题图 9题图 10题图8.如图,菱形ABCD由6个腰长为2,且全等的等腰梯形镶嵌而成,则线段AC的长为( )A.3B.6C.33D.639.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为( )A.16B.17C.18D.1910.正方形ABCD、正方形BEFG和正方形RKPF的位置如图所示,点G在线段DK上,正方形BEFG的边长为4,则△DEK的面积为( )A.10B.12C.14D.16二、填空题(每小题4分,共24分)11.如图,在四边形ABCD中,对角线AC,BD交于点O,OA=OC,OB=OD,添加一个条件使四边形ABCD是菱形,那么所添加的条件可以是(写出一个即可).11题图 12题图 13题图 14题图12.已知正六边形的边长为1cm,分别以它的三个不相邻的顶点为圆心,1cm长为半径画弧(如图),则所得到的三条弧的长度之和为cm.(结果保留π)13.如图所示,两个全等菱形的边长为1米,一个微型机器人由A点开始按ABCDEFCGA的顺序沿菱形的边循环运动,行走2015米停下,则这个微型机器人停在点.14.如图,边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A顺时针旋转45°,则这两个正方形重叠部分的面积是.15.如图,在梯形ABCD中,AB∥DC,∠ADC+∠BCD=90°,且DC=2AB,分别以DA,AB,BC为边向梯形外作正方形,其面积分别为S1,S2,S3,则S1,S2,S3之间的关系是.15题图 16题图16.如图,在边长为2cm的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点,连接PB,PQ,则△PBQ周长的最小值为cm.(结果不取近似值)三、解答题(56分)17.(6分)已知,如图,E,F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE.(1)求证:△AFD≌△CEB;(2)四边形ABCD是平行四边形吗?请说明理由.18.(8分)如图,在▱ABCD中,E,F分别为边AB,CD的中点,连接DE,BF,BD.(1)求证:△ADE≌△CBF;(2)若AD⊥BD,则四边形BFDE是什么特殊四边形?请证明你的结论.19.(10分)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD、等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.20.(10分)如图,把正方形ABCD绕点C按顺时针方向旋转45°得到正方形A'B'CD'(此时,点B'落在对角线AC上,点A'落在CD的延长线上),A'B'交AD于点E,连接AA',CE.求证:(1)△ADA'≌△CDE;(2)直线CE是线段AA'的垂直平分线.21.(10分)如图,△ADC,△ABE,△BCF均为直线BC同侧的等边三角形.(1)当AB≠AC时,证明四边形ADFE为平行四边形;(2)当AB=AC时,顺次连接A,D,F,E四点所构成的图形有哪几类?直接写出构成图形的类型和相应的条件.22.(12分)如图是小红设计的钻石形商标,△ABC是边长为2的等边三角形,四边形ACDE是等腰梯形,AC∥ED,∠EAC=60°,AE=CD=1.(1)求证:△ABE≌△CBD;(2)图中存在多对相似三角形,请你找出一对进行证明,并求出其相似比(不添加辅助线,不找全等的相似三角形);(3)小红发现AM=MN=NC,请证明此结论;(4)求线段BD的长.一、选择题(每小题4分,共40分)1.B 多边形的外角和为360°,与边数无关;由内角和公式(n-2)180°得n增加1,内角和增加180°,故选B.2.A ③是正五边形,几个正五边形的内角绕着一点不能拼成一个周角,所以正五边形不可以密铺.3.C 在△ABC中,BC-AB<AC<AB+BC,所以2cm<AC<8cm,所以1cm<OA<4cm.4.A ∵四边形ABCD为矩形,∴AD=BC,AB=CD,OA=OC.∵EF⊥AC,∴AE=CE.∴CE+CD+ED=AE+ED+CD=AD+CD=12(AB+BC+CD+AD)=12×20=10(cm).5.C 由题知:CE=12AB=BE,∵CE∥AD,DC∥AB,∴AECD为平行四边形.∴CE=AD=BC.∴CE=BE=BC.∴△BCE为等边三角形.∴∠ABC=60°.故选C.6.D ∵E为AB的中点,∴AE=12AB.∵四边形ABCD是正方形,∴AB=AD.∴AE=12AD.由△OAE∽△ODA得AODO =AEAD,则AODO =AEAD=12.7.B 由对称性知,AE=AF.如图,连接AC,由题意可得,AE,AF分别是等边△ABC,△ADC顶角的平分线,∴∠1=∠2=∠3=∠4=30°,∴∠EAF=60°.∴△AEF是等边三角形.在Rt△ABE中,由勾股定理可得,AE=AB2-B E2=3,∴△AEF的周长为33,故选B.8.D ∵菱形ABCD由6个腰长为2,且全等的等腰梯形镶嵌而成,∴分析图形可得,这个菱形的边长为6,且较小的内角为60°.连接AC,BD交于点O,则AC⊥BD,AC=2AO,∠CAB=12∠DAB=30°.在Rt△AOB中,∠CAB=30°,AB=6,∴AO=AB cos∠CAB=6×32=33.∴AC=2AO=63.故选D.9.B 如图,由正方形的性质可知,∠FAE=∠AFE=45°.∴AE=EF.又∵EF=EB,∴AE=EF=EB.∴EF=12AB=3.∴S1=3×3=9.设DN=x,则由勾股定理得MN=2x.∴NK=KC=MN=2x.由勾股定理得NC=2NK=2x.∴DC=DN+NC=3x.∴3x=6.∴x=2.∴NK=2x=22.∴S2=(22)2=8.∴S1+S2=9+8=17.故选B.10.D 设正方形ABCD的边长为a,正方形RKPF的边长为c,可得S△DEK=S正方形ABCD+S正方形BEFG +S正方形RKPF+S△REK-S△DCG-S△GKP-S△ADE=a2+42+c2+12c(4-c)-12a(a-4)-12c(4+c)-1 2a(4+a)=a2+16+c2+2c-12c2-12a2+2a-2c-12c2-2a-12a2=16.故选D.二、填空题(每小题4分,共24分)11.AB=AD(答案不唯一) ∵OA=OC,OB=OD,∴四边形ABCD是平行四边形.∵邻边相等的平行四边形是菱形,∴添加的条件可以是AB=AD(答案不唯一).12.2π∵正六边形的内角为120°,∴每条弧的长度为圆周长的13.∴三条弧的长度之和为圆的周长,等于2πcm.13.G机器人从A点开始循环运动一次经过9个点运动8米,而运动1米一个点,所以2015÷8=251余7,即循环运动251次余7米,故到点G停止.14.2-1 在Rt△ABC中,∵AB=BC=1,∠CAB=45°,∴AC=2.又∵AD'=1,∴CD'=2-1.在Rt△CD'E中,∵∠D'CE=45°,∴CD'=D'E=2-1.∴这两个正方形重叠部分的面积是S△ABC -S△CD'E=12×1×1-12×(2-1)2=2-1.15.S2=S1+S3如图,过点B作BE∥AD,交BC于点E,则∠BEC=∠ADC.∵∠ADC+∠BCD=90°,∴∠BEC+∠BCD=90°.∴△BEC为直角三角形.∵其面积为S1,S2,S3的正方形的边长为DA=1AB=2,BC=3, 又∵DC=2AB,AB=DE,DA=BE,∴EC=2,BE=1.在Rt△BEC中,BE2+BC2=EC2,∴S2=S1+S3.16.(5+1) 如图,连接QD交AC于点P,连接BP,BD.∵点D是点B关于直线AC的对称点,而AC垂直平分BD,∴PB=PD.∴PB+PQ=PD+PQ=QD最小.在Rt△DCQ中,QC=1,DC=2,∴QD=5.∴△PBQ周长的最小值为(5+1)cm.三、解答题(56分)17.解:(1)证明:∵DF∥BE,∴∠DFA=∠BEC.∵在△AFD和△CEB中,DF=BE,∠DFA=∠BEC,AF=CE,∴△AFD≌△CEB(SAS).(2)四边形ABCD是平行四边形,理由如下:∵△AFD≌△CEB,∴AD=CB,∠DAF=∠BCE.∴AD∥CB.∴四边形ABCD是平行四边形.18.解:(1)证明:在▱ABCD中,∠A=∠C,AD=CB,AB=CD,∵E,F分别是AB,CD的中点,∴AE=CF.在△AED和△CFB中,AD=CB,∠A=∠C, AE=CF,∴△ADE≌△CBF(SAS).(2)若AD⊥BD,则四边形BFDE是菱形.∵AD⊥BD,∴△ABD是直角三角形,且AB是斜边.∵E是AB的中点,∴DE=12AB=BE.由题意知EB∥DF,且EB=DF,∴四边形BFDE是平行四边形.∵DE=BE,∴四边形BFDE是菱形.19.解:(1)∵△ABE是等边三角形,FE⊥AB于点F, ∴∠AEF=30°,AB=AE,∠EFA=90°.在Rt△AEF和Rt△BAC中,∠AEF=∠BAC,∠EFA=∠ACB,AE=AB,∴△AEF≌△BAC(AAS).∴AC=EF.(2)∵△ACD是等边三角形,∴∠DAC=60°,AC=AD.∴∠DAB=60°+30°=90°.又EF⊥AB,∴∠EFA=90°=∠DAB.∴AD∥EF.又∵AC=EF(已证),AC=AD,∴AD=EF.∴四边形ADFE是平行四边形.20.解:证明:(1)∵四边形ABCD是正方形, ∴AD=CD,∠ADC=90°.∴∠A'DE=90°,根据旋转的方法可得,∠EA'D=45°.∴∠A'ED=45°.∴A'D=DE.在△AA'D和△CED中,AD=CD,∠ADA'=∠EDC, A'D=ED,∴△AA'D≌△CED.(2)∵AC=A'C,∴点C在AA'的垂直平分线上.∵AC是正方形ABCD的对角线, ∴∠CAE=45°.∵AC=A'C,CD=CB',∴AB'=A'D.在△AEB'和△A'ED中,∠EAB'=∠EA'D,∠AEB'=∠A'ED, AB'=A'D,∴△AEB'≌△A'ED,∴AE=A'E.∴点E也在AA'的垂直平分线上.∴直线CE是线段AA'的垂直平分线.21.解:(1)证明:∵△ABE,△BCF为等边三角形,∴AB=BE=AE,BC=CF=FB,∠ABE=∠CBF=60°.∴∠FBE=∠CBA.∴△FBE≌△CBA.∴EF=AC.又△ADC为等边三角形,∴CD=AD=AC.∴EF=AD.同理可得AE=DF.∴四边形AEFD是平行四边形.(2)构成的图形有两类,一类是菱形,一类是线段.当图形为菱形时,∠BAC≠60°(或A与F不重合、△ABC不为正三角形); 当图形为线段时,∠BAC=60°(或A与F重合、△ABC为正三角形).22.解:(1)证明:∵△ABC是等边三角形,∴AB=BC,∠BAC=∠BCA=60°.∵四边形ACDE是等腰梯形,∠EAC=60°, ∴∠ACD=∠CAE=60°.∴∠BAC+∠CAE=120°=∠BCA+∠ACD,即∠BAE=∠BCD.在△ABE和△CBD中,AB=CB,∠BAE=∠BCD, AE=CD,∴△ABE≌△CBD.(2)答案不唯一.如△ABN∽△CDN.∵∠BAN=60°=∠DCN,∠ANB=∠DNC, ∴△ANB∽△CND.其相似比为ABDC =21=2.(3)由(2)得ANCN =ABCD=2,∴CN=12AN=13AC.同理AM=13AC.∴AM=MN=NC.(4)如图,作DF⊥BC交BC的延长线于点F,∵∠BCD=120°,∴∠DCF=60°.在Rt△CDF中,∴∠CDF=30°.∴CF=12CD=12.∴DF=CD2-C F2=12-122=32.在Rt△BDF中,BF=BC+CF=2+12=52,DF=32,∴BD=2+D F2=522+322=7.11。

相关文档
最新文档