一元二次方程应用题分类讲练
一元二次方程应用题总结归类及典型例题

一元二次方程应用题总结分类及经典例题1、列一元二次方程解应用题的特点列一元二次方程解应用题是列一元一次方程解应用题的继续和发展,从xx 解应用题的方法来讲,列出一元二次方程解应用题与列出一元一次方程解应用题是非常相似的,由于一元一次方程未知数是一次,因此这类问题大部分都可通过算术方法来解决.如果未知数出现二次,用算术方法就很困难了,正由于未知数是二次的,所以可以用一元二次方程解决有关面积问题,经过两次增长的平均增长率问题,数学问题中涉及积的一些问题,经营决策问题等等.2、列一元二次方程解应用题的一般步骤和列一元一次方程解应用题一样,列一元二次方程解应用题的一般步骤是:“审、设、列、解、答”.(1)“审”指读懂题目、审清题意,明确已知和未知,以及它们之间的数量关系.这一步是解决问题的基础;(2)“设”是指设元,设元分直接设元和间接设元,所谓直接设元就是问什么设什么,间接设元虽然所设未知数不是我们所要求的,但由于对xx有利,因此间接设元也十分重要.恰当灵活设元直接影响着xx与xx的难易;(3)“列”是xx,这是非常重要的步骤,xx就是找出题目中的等量关系,再根据这个相等关系列出含有未知数的等式,即方程.找出相等关系xx是解决问题的关键;(4)“解”就是求出所xx的解;(5)“答”就是书写答案,应注意的是一元二次方程的解,有可能不符合题意,如线段的xx不能为负数,降低率不能大于100%等等.因此,解出方程的根后,一定要进行检验.3、数与数字的关系两位数=(十位数字)×10+个位数字三位数=(百位数字)×100+(十位数字)×10+个位数字4、翻一番翻一番即表示为原量的2倍,翻两番即表示为原量的4倍.5、增长率问题(1)增长率问题的有关公式:增长数=基数×增长率实际数=基数+增长数(2)两次增长,且增长率相等的问题的基本等量关系式为:原来的×(1+增长率)增长期数=后来的说明:(1)上述相等关系仅适用增长率相同的情形;(2)如果是下降率,则上述关系式为:原来的×(1-增长率)下降期数=后来的6、利用一元二次方程解几何图形中的有关计算问题的一般步骤(1)整体地、系统地审读题意;(2)寻求问题中的等量关系(依据几何图形的性质);(3)设未知数,并依据等量关系列出方程;(4)正确地求解方程并检验解的合理性;(5)写出答案.7、xx解应用题的关键(1)审题是设未知数、xx的基础,所谓审题,就是要善于理解题意,弄清题中的已知量和未知数,分清它们之间的数量关系,寻求隐含的相等关系;(2)设未知数分直接设未知数和间接设未知数,这就需根据题目中的数量关系正确选择设未知数的方法和正确地设出未知数.8、xx解应用题应注意:(1)要充分利用题设中的已知条件,善于分析题中隐含的条件,挖掘其隐含关系;(2)由于一元二次方程通常有两个根,为此要根据题意对两根加以检验.即判断或确定方程的根与实际背景和题意是否相符,并将不符合题意和实际意义的(一)传播问题1.市政府为了解决市民看病难的问题,决定下调药品的价格。
一元二次方程应用题分类讲练

开启 智慧
销售问题
2.某商店从厂家以每件21元的价格购进一批商品,
若每件商品售价为x元,则每天可卖出(350-10x)件, 但物价局限定每件商品加价不能超过进价的20%. 商店要想每天赚400元,需要卖出多少年来件商品? 每件商品的售价应为多少元?
一元二次方程应用
有关“动点”的面积问题
例1 在矩形ABCD中,AB=6cm,BC=12cm,点P从点A开始以1cm/s的
2
单循环比赛的场数=队数乘以队数减1再除以2
1、要组织一场篮球联赛,赛制为单循环形式,即每两队之间比赛一场, 计划安排15场比赛,应邀请多少个球队参加比赛?
解:设应邀请x个球队参加比赛,列式得:
单循环比赛场数
=15
单循环比赛的场数=队数乘以队数减1再除以2
xx 1 15
2
x2 x 30 0
解:设每轮传染中平均一个人传染了x个人.
1+x+x(1+x)=121
x x 解方程,得
__1_0__,
1
2 __-1_2___(.不合题意,舍去)
答:平均一个人传染了____1_0___个人.
一元二次方程应用(3)
几何与方程
快乐学习 1
几何与方程
例1:一块四周镶有宽度相等的花边的镜框如下图, 它的长为8cm,宽为5cm.如果镜框中央长方形图案的
x
当x102时,352x15. 符合题意.
答:自行车棚的长和宽分别为15米和10米.
常见的图形有下列几种:
练习:
3. (2003年,舟山)如图,有长为24米的篱笆,一面利 用墙(墙的最大可用长度a为10米),围成中间隔有 一道篱笆的长方形花圃。设花圃的宽AB为x米,面积 为S米2, (1)求S与x的函数关系式;(2)如果要围成面积为 45米2的花圃,AB的长是多少米?
一元二次方程的应用题分类练习(超全)

一元二次方程的应用类型一:增长率☞考点说明:平均增长率是指在上一个时间点的基础上增加的量占上一个时间点总量的百分之几,在利用平均增长率处理一元二次方程问题时,要注意单位“1”的变化.【易】1.某农机厂4月份生产零件50万个,第二季度共生产零件182万个.设该厂5,6月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)2=182B.50+50(1+x)+50(1+x)2=182C.50(1+2x)=182D.50+50(1+x)+50(1+2x)=182【易】2.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A.20%B.25%C.50%D.62.5%【易】3.某工厂计划用两个月把产量提高21%,如果每月比上月提高的百分数相同,求这个百分数.若设每月提高的百分数为x,原产量为a,可列方程为a(1+x)2=a(1+21%),那么解此方程后依题意作答,正确的是()A.这个百分数为2.1%或10%B.x1=2.1,x2=0.1C.x1=﹣2.1,x2=0.1D.这个百分数为10%【易】4.红光机械厂九月份生产零件50万个,十一月份生产零件72万个,设该机械厂九、十月份生产零件数量的月平均增长率为x,则可列方程为()A.50(1+x)2=72B.50(1﹣x)2=72C.72(1﹣x)2=50D.50×2(1+x)=72【中】5.据统计,某小区2011年底拥有私家车125辆,2013年底私家车的拥有量达到180辆.(1)若该小区2011年底到2014年底私家车拥有量的年平均增长率相同,则该小区到2014年底私家车将达到多少辆?(2)为了缓解停车矛盾,该小区决定投资3万元再建若干个停车位,据测算,建造费用分别为室内车位1000元/个,露天车位200元/个.考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,则该小区最多可建两种车位各多少个?试写出所有可能的方案.类型二:降低率☞考点说明:平均降低率是指在上一个时间点的基础上减少的量占上一个时间点总量的百分之几,在利用平均降低率处理一元二次方程问题时,要注意单位“1”的变化.【易】1.兰州市政府为解决老百姓看病难的问题,决定下调药品的价格,某种药品经过两次降价,由每盒72元调至56元.若每次平均降价的百分率为x,由题意可列方程为______.【易】2.某厂改进工艺降低了某种产品的成本,两个月内从每件产品250元,降低到了每件160元,平均每月降低率为()A.15%B.20%C.5%D.25%【易】3.某药品原价每盒25元,两次降价后,每盒降为16元,则平均每次降价的百分率是()A.10%B.20%C.25%D.40%【易】4.某制药厂两年前生产1吨某种药品的成本是100万元,随着生产技术的进步,现在生产1吨这种药品的成本为81万元.设这种药品成本的年平均下降率为x,则x为()A.3%B.6%C.8%D.10%一元二次方程的应用——数字问题类型一:位值原理的应用☞考点说明:常见的数字问题有两类:一类是应用位值原理表示数字的大小,并列出方程;另一类只需要用到数字之间的关系,比较直观.【易】1.有一个三位数,它的个位数字比十位数字大3,十位数字比百位数字小2,三个数字的平方和的9倍比这个三位数小20,求这个三位数.【易】2.已知某两位数,个位数字与十位数字之和为12,个位数字与十位数字之积为32,求这个两位数.类型二:数字关系的直接应用☞考点说明:若在数字问题中不涉及到各个数位上的数字的特征,而只已知某几个数之间的关系时,一般不需要用到位值原理,此时只需要直接设未知数表示出各个数字之间的关系即可.【易】1.两连续偶数的积是120,求这两个数.【中】2.五个连续整数,前三个数的平方和等于后两个数的平方和,求这五个整数.一元二次方程的应用——几何问题类型一:面积公式的直接应用☞考点说明:在处理面积问题时常会用到一些典型图形的面积公式.【易】1.某学校准备修建一个面积为200m2的矩形花圃,它的长比宽多10m,设花圃的宽为xm,则可列方程为()A.x(x-10)=200B.2x+2(x-10)=200C.x(x+10)=200D.2x+2(x+10)=200【易】2.如图(1),在宽为20m,长为32m的矩形耕地上修建同样宽的三条道路(横向与纵向垂直),把耕地分成若干小矩形块,作为小麦试验田,假设试验田面积为570m2,求道路宽为多少?设宽为xm,从图(2)的思考方式出发列出的方程是__________.【易】3.如图,在一块长为22m.宽为17m的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形一边平行),剩余部分种上草坪,使草坪面积为300m2.若设道路宽为xm,则根据题意可列方程为________.A.17B.26C.30D.13【易】5.从正方形铁片上截去2cm宽的一条长方形,余下的面积是48cm2,则原来的正方形铁片的面积是()A.8cm B.64cm C.8cm2D.64cm2【易】6.要用一根铁丝围成一个面积为120cm2的长方形,并使长比宽多2cm,则长方形的长是______cm.【易】7.如图,一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m.如果梯子的顶端下滑1m,那么梯子的底端滑动__________m.【易】8.若一直角三角形的三条边长为三个连续偶数,且面积为24cm2,则此三角形的三条边长分别为__________.【易】9.把一块长与宽之比为2∶1的铁皮的四角各剪去一个边长为10cm的小正方形,折起四边,可以做成一个无盖的盒子.如果这个盒子的容积是1500cm3,那么铁皮的长和宽各是多少?若设铁皮的宽为x cm,则正确的方程是()A.(2x-20)(x-20)=1500B.(2x-10)(x-20)=1500C.10(2x-20)(x-20)=1500D.10(x-10)(x-20)=1500【易】10.如图,某农场有一块长40m,宽32m的矩形种植地,为方便管理,准备沿平行于两边的方向纵、横各修建一条等宽的小路,要使种植面积为1140m2,求小路的宽.设小路的宽为x,则可列方程为()A.(40﹣2x)(32﹣x)=1140B.(40﹣x)(32﹣x)=1140C.(40﹣x)(32﹣2x)=1140D.(40﹣2x)(32﹣2x)=1140【中】11.一幅长20cm、宽12cm的图案,如图,其中有一横两竖的彩条,横、竖彩条的宽度比为3:2.若图案中三条彩条所占面积是图案面积的,求横、竖彩条的宽度.类型二:动点问题☞考点说明:动点问题是与几何相关的类型题中的难点问题,一般需要列出动点运动相关的表达式,在根据方程的解法解出所需的值即可.【难】1.已知:如图,△ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(s),解答问题:当t为何值时,△PBQ是直角三角形?【难】2.已知:如图所示,在△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.(1)如果P,Q分别从A,B同时出发,那么几秒后,△PBQ的面积等于4cm2?(2)如果P,Q分别从A,B同时出发,那么几秒后,PQ的长度等于2cm?(3)在(1)中,△PQB的面积能否等于7cm2?说明理由.【难】3.如图,已知A、B、C、D为长方形的四个顶点,AB=16cm,AD=6cm,动点P、Q 分别从点A、C同时出发,点P以3cm/s的速度沿AB至BC移动,一直到点C为止,点Q 以2cm/s的速度向点D移动.问:(1)P、Q两点从出发开始几秒时,四边形PBCQ的面积是33平方厘米?(2)P、Q两点从出发开始几秒时,AP+DQ等于长方形ABCD周长的?一元二次方程的应用——销售问题☞考点说明:最重要的是两种利润公式的应用及折扣公式(即降价公式)的应用.【易】1.某商场礼品柜台春节期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元.为了尽快减少库存,商场决定采取适当的降价措施.调查发现,如果这种贺年卡的售价每降低0.1元,那么平均每天可多售出100张.商场要想平均每天盈利120元,则每张贺年卡应降价__________元.【易】2.某商品原价200元,连续两次降价a%后,售价为148元,下列所列方程正确的是() A.200(1+a%)2=148B.200(1-a%)2=148C.200(1-2a%)=148D.200(1-a2%)=148【易】3.某商店出售一种商品,若每件10元,则每天可销售50件,售价每降低1元,可多买6件,要使该商品每天的销售额(总售价)为504元,设每件降低x元,则可列方程为()A.(50+x)(10﹣x)=504B.50(10﹣x)=504C.(10﹣x)(50+6x)=504D.(10﹣6x)(50+x)=504【易】4.某服装店原计划按每套200元的价格销售一批保暖内衣,但上市后销售不佳,为减少库存积压,两次连续降价打折处理,最后价格调整为每套128元.若两次降价折扣率相同,则每次降价率为()A.8%B.18%C.20%D.25%【中】5.某超市将进价为40元的商品按50元出售,每天可卖500件.如果这种商品每涨价1元,那么其销售量就减少10件.超市若靠卖这种商品每天赚得8000元的利润,应把这种商品的售价定为每件多少元?【中】6.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件,若商场平均每天要盈利1200元,每件衬衫应降价多少元?【中】7.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?【中】8.某玩具厂生产一种玩具,按照控制固定成本降价促销的原则,使生产的玩具能够及时售出,据市场调查:每个玩具按480元销售时,每天可销售160个;若销售单价每降低1元,每天可多售出2个,已知每个玩具的固定成本为360元,问这种玩具的销售单价为多少元时,厂家每天可获利润20000元?一元二次方程的应用——握手问题类型一:握手类问题☞考点说明:握手问题是一类问题,要注意其本质特点的分析,其典型特点是总体中的其中一个个体与其他的个体都有一次活动.【易】1.新年里,一个小组有若干人,若每人给小组的其它成员赠送一张贺年卡,则全组送贺卡共72张,此小组人数为()A.7B.8C.9D.10【易】2.新年来临之际,某班同学向班上其他同学互赠新年贺卡,全班共互赠贺卡2980张,设全班有x名学生,那么根据题意可列方程()A.x(x﹣1)=2980B.x(x﹣1)=2980C.x(x﹣1)=2980D.x(x+1)=2980【易】3.一个QQ群里有若干个好友,每个好友都分别给群里其他好友发送了一条消息,这样共有870条消息,求该群共有多少个好友.类型二:比赛问题中的“握手”模型☞考点说明:比赛中的循环赛是典型的“握手问题”.【易】1.某市工会组织了一次篮球比赛,赛制为单循环形式(每两队之间都赛一场),共进行了45场比赛.这次参赛队的数目为()A.12B.11C.9D.10【易】2.某市要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?【易】3.周口体育局要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,应邀请多少支球队参加比赛?一元二次方程的应用——传播问题☞考点说明:病毒传播的特点是每次增长的基数都在发生变化.【易】1.某种植物的主干长出若干数目的枝干,每个枝干又长出同样数目的小分支,主干、枝干和小分支的总数是91.设每个枝干长出x个小分支,则x满足的关系式为()A.x+x2=91B.1+x2=91C.1+x+x2=91D.1+x(x﹣1)=91【易】2.有一个人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?如果按照这样的传染速度,经过三轮传染后共有多少人患流感?【中】3.2014年西非埃博拉病毒疫情是自2014年2月开始爆发于西非的大规模病毒疫情,截至2014年12月02日,世界卫生组织关于埃博拉疫情报告称,几内亚、利比里亚、塞拉利昂、马里、美国以及已结束疫情的尼日利亚、塞内加尔与西班牙累计出现埃博拉确诊、疑似和可能感染病例17290例,其中6128人死亡.感染人数已经超过一万,死亡人数上升趋势正在减缓,在病毒传播中,每轮平均1人会感染x个人,若1个人患病,则经过两轮感染就共有81人患病.(1)求x的值;(2)若病毒得不到有效控制,三轮感染后,患病的人数会不会超过700人?一元二次方程的应用——存款利息问题☞考点说明:注意利息的计算公式及计算利息的方式.【易】1.孙老师前年存了5000元一年期的定期储蓄,到期后自动转存,今年到期后,共取得5300元,求这种储蓄的年利率.(精确到0.1%).【易】2.小红的妈妈前年存了5000元一年期的定期储蓄、到期后自动转存、今年到期扣除利息税(利息税为利息的20%)共得5145元,求这种储蓄的年利率.(精确到0.1%)【中】3.某公司向工商银行贷款30万元,这种贷款要求公司在两年到期时,一次性还清本息,利息是本金的12%,该公司用这笔贷款经营,两年到期时,除还清贷款的本金和利息外,还盈余9.6万元,若经营期间每年与上一年相比资金增长的百分数相同,求这个百分数.。
九年级上第04讲 一元二次方程的应用 讲义+练习

类型三利润问题
某批发商以每件50元的价格购进800件T恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓时单价为40元,设第二个月单价降低x元.
当3<x≤4时,S= ×2×(12-3x)=12-3x= ,∴x= (舍去),∴此时不存在.
综上所述,x= 或2+ 时,S= .
(3)当△AQP为锐角三角形时,2<x<6-2 .
1.受“减少税收,适当补贴”政策的影响,某市居民购房热情大幅提高.据调查,2017年1月该市宏鑫房地产公司的住房销售量为100套,3月份的住房销售量为169套.假设该公司这两个月住房销售量的增长率为x,根据题意所列方程为_____.
(1)若苗圃园的面积为72平方米,求x;
(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;
(3)当这个苗圃园的面积不小于100平方米时,直接写出x的取值范围.
【答案】(1)苗圃园与墙平行的一边长为(30-2x)米.依题意可列方程
(1)填表:(不需化简)
时间
第一个月
第二个月
清仓时
单价(元)
80
40
销售量(件)
200
(2)如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少元?
【答案】
(1)80-x,200+10x,800-200-(200+10x);
(2)根据题意,得80×200+(80-x)(200+10x)+40[800-200-(200+10x)]-50×800=9000,
一元二次方程应用题总结归类及典型例题库

一元二次方程应用题总结分类及经典例题1、列一元二次方程解应用题的特点列一元二次方程解应用题是列一元一次方程解应用题的继续和发展,从列方程解应用题的方法来讲,列出一元二次方程解应用题与列出一元一次方程解应用题是非常相似的,由于一元一次方程未知数是一次,因此这类问题大部分都可通过算术方法来解决.如果未知数出现二次,用算术方法就很困难了,正由于未知数是二次的,所以可以用一元二次方程解决有关面积问题,经过两次增长的平均增长率问题,数学问题中涉及积的一些问题,经营决策问题等等.2、列一元二次方程解应用题的一般步骤和列一元一次方程解应用题一样,列一元二次方程解应用题的一般步骤是:“审、设、列、解、答”.1“审”指读懂题目、审清题意,明确已知和未知,以及它们之间的数量关系.这一步是解决问题的基础;2“设”是指设元,设元分直接设元和间接设元,所谓直接设元就是问什么设什么,间接设元虽然所设未知数不是我们所要求的,但由于对列方程有利,因此间接设元也十分重要.恰当灵活设元直接影响着列方程与解方程的难易;3“列”是列方程,这是非常重要的步骤,列方程就是找出题目中的等量关系,再根据这个相等关系列出含有未知数的等式,即方程.找出相等关系列方程是解决问题的关键;4“解”就是求出所列方程的解;5“答”就是书写答案,应注意的是一元二次方程的解,有可能不符合题意,如线段的长度不能为负数,降低率不能大于100%等等.因此,解出方程的根后,一定要进行检验.3、数与数字的关系两位数=十位数字×10+个位数字三位数=百位数字×100+十位数字×10+个位数字4、翻一番翻一番即表示为原量的2倍,翻两番即表示为原量的4倍.5、增长率问题1增长率问题的有关公式:增长数=基数×增长率实际数=基数+增长数2两次增长,且增长率相等的问题的基本等量关系式为:原来的×1+增长率增长期数=后来的说明:1上述相等关系仅适用增长率相同的情形;2如果是下降率,则上述关系式为:原来的×1-增长率下降期数=后来的6、利用一元二次方程解几何图形中的有关计算问题的一般步骤1整体地、系统地审读题意;2寻求问题中的等量关系依据几何图形的性质;3设未知数,并依据等量关系列出方程;4正确地求解方程并检验解的合理性;5写出答案.7、列方程解应用题的关键1审题是设未知数、列方程的基础,所谓审题,就是要善于理解题意,弄清题中的已知量和未知数,分清它们之间的数量关系,寻求隐含的相等关系;2设未知数分直接设未知数和间接设未知数,这就需根据题目中的数量关系正确选择设未知数的方法和正确地设出未知数.8、列方程解应用题应注意:1要充分利用题设中的已知条件,善于分析题中隐含的条件,挖掘其隐含关系;2由于一元二次方程通常有两个根,为此要根据题意对两根加以检验.即判断或确定方程的根与实际背景和题意是否相符,并将不符合题意和实际意义的一传播问题1.市政府为了解决市民看病难的问题,决定下调药品的价格;某种药品经过连续两次降价后,由每盒200元下调至128元,则这种药品平均每次降价的百分率为2.有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了个人;3.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出小分支;4.参加一次足球联赛的每两队之间都进行一场比赛,共比赛45场比赛,共有个队参加比赛;5.参加一次足球联赛的每两队之间都进行两次比赛,共比赛90场比赛,共有个队参加比赛;6.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,这个小组共有多少名同学7.一个小组有若干人,新年互送贺卡,若全组共送贺卡72张,这个小组共有多少人8.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台二平均增长率问题变化前数量×1 x n=变化后数量1.青山村种的水稻2001年平均每公顷产7200公斤,2003年平均每公顷产8450公斤,水稻每公顷产量的年平均增长率为;2.某种商品经过两次连续降价,每件售价由原来的90元降到了40元,求平均每次降价率是;3.周嘉忠同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的60%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.利息税为20%,只需要列式子;4.某种商品,原价50元,受金融危机影响,1月份降价10%,从2月份开始涨价,3月份的售价为元,求2、3月份价格的平均增长率;5.某药品经两次降价,零售价降为原来的一半,已知两次降价的百分率相同,求每次降价的百分率6.为了绿化校园,某中学在2007年植树400棵,计划到2009年底使这三年的植树总数达到1324棵,求该校植树平均每年增长的百分数;7.王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.假设不计利息税三商品销售问题售价—进价=利润单件利润×销售量=总利润单价×销售量=销售额1.某商店购进一种商品,进价30元.试销中发现这种商品每天的销售量P件与每件的销售价X元满足关系:P=100-2X销售量P,若商店每天销售这种商品要获得200元的利润,那么每件商品的售价应定为多少元每天要售出这种商品多少件2.某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日产出的产品全部售出,已知生产ⅹ只熊猫的成本为R元,售价每只为P元,且R、P与x的关系式分别为R=500+30X,P=170—2X;1当日产量为多少时每日获得的利润为1750元2若可获得的最大利润为1950元,问日产量应为多少3.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克;现该商品要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元4. 服装柜在销售中发现某品牌童装平均每天可售出20件,每件盈利40元;为了迎接“六一”儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存;经市场调查发现,如果每件童装每降价4元,那么平均每天就可多售出8件;要想平均每天在销售这种童装上盈利1200元,那么每件童装应降价多少元5. 西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克;为了促销,该经营户决定降价销售;经调查发现,这种小型西瓜每降价元/千克,每天可多售出40千克;另外,每天的房租等固定成本共24元;该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元6. 益群精品店以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品售价a 元,则可卖出350-10a 件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400元,需要进货多少件每件商品应定价多少7. 利达经销店为某工厂代销一种建筑材料这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理;当每吨售价为260元时,月销售量为45吨;该经销店为提高经营利润,准备采取降价的方式进行促销;经市场调查发现:当每吨售价每下降10元时,月销售量就会增加吨;综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元;1当每吨售价是240元时,计算此时的月销售量;2在遵循“薄利多销”的原则下,问每吨材料售价为多少时,该经销店的月利润为9000元;3小静说:“当月利润最大时,月销售额也最大;”你认为对吗请说明理由;8. 国家为了加强对香烟产销的宏观管理,对销售香烟实行征收附加税政策. 现在知道某种品牌的香烟每条的市场价格为70元,不加收附加税时, 每年产销100万条,若国家征收附加税,每销售100元征税x 元叫做税率x%, 则每年的产销量将减少10x 万条.要使每年对此项经营所收取附加税金为168万元,并使香烟的产销量得到宏观控制,年产销量不超过50万条,问税率应确定为多少9. 春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如图1对话中收费标准.某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元.请问该单位这次共有多少员工去天水湾风景区旅游四面积问题判断清楚要设什么是关键1. 一个直角三角形的两条直角边的和是14cm,面积是24cm 2,两条直角边的长分别是;2.一个直角三角形的两条直角边相差5㎝,面积是7㎝2,斜边的长是; 3.一个菱形两条对角线长的和是10㎝,面积是12㎝2,菱形的周长是;结果保留小数点后一位 4. 为了绿化学校,需移植草皮到操场,若矩形操场的长比宽多14米,面积是3200平方米则操场的长为米,宽为米;5. 若把一个正方形的一边增加2cm,另一边增加1cm,得到的矩形面积的2 倍比正方形的面积多11cm 2,则原正方形的边长为cm.6. 如图,在长为10cm,宽为8cm 的矩形的四个角上截去四个全等的正方形,使得留下的图形图中阴影部分面积是原矩形面积的80%,所截去的小正方形的边长是;7. 张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15立方米的无盖长方体箱子,且此长方体箱子的底面长比宽多2米,现已购买这种铁皮每平方米需20元如果人数超过25人,每增加1人,人均旅游费用降低20元,但人均旅游费用不得低700元. 如果人数不超过25人,人均旅游费用为1000元.钱,问张大叔购买这张铁皮共花了是元钱8.如图,在宽为20m ,长为30m ,的矩形地面上修建两条同样宽且互相垂直的道路,余分作为耕地为551㎡;则道路的宽为是;9.如图某农场要建一个长方形的养鸡场,鸡场的一边靠墙墙长18m,另三边用木栏围成,木栏长35m;①鸡场的面积能达到150m2吗②鸡场的面积能达到180m2吗如果能,请你给出设计方案;如果不能,请说明理由;3若墙长为a m,另三边用竹篱笆围成,题中的墙长度a m对题目的解起着怎样的作用五工程问题1.某公司需在一个月31天内完成新建办公楼的装修工程.如果由甲、乙两个工程队合做,12天可完成;如果由甲、乙两队单独做,甲队比乙队少用10天完成.1求甲、乙两工程队单独完成此项工程所需的天数.2如果请甲工程队施工,公司每日需付费用2000元;如果请乙队施工,公司每日需付费用1400元.在规定时间内:A.请甲队单独完成此项工程出.B请乙队单独完成此项工程;C.请甲、乙两队合作完成此项工程.以上三种方案哪一种花钱最少2.搬运一个仓库的货物,如果单独搬空,甲需10小时完成,乙需12小时完成,丙需15小时完成,有货物存量相的两个仓库A和B,甲在A仓库,乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙,最后两个仓库的货物同时搬完,丙帮助甲乙各多少时间列式子3.乙两人都以不变的速度在环形路上跑步,相向而行,每隔2分钟相遇一次;同向而行,每隔6分钟相遇一次,已知甲比乙跑得快,求甲、乙每分钟各跑几圈4.某油库的储油罐有甲、乙两个注油管,单独开放甲管注满油罐比单独开放乙管注满油罐少用4小时,两管同时开放3小时后,甲管因发生故障停止注油,乙管继续注油9小时后注满油罐,求甲、乙两管单独开放注满油罐时各需多少小时六行程问题1、A、B两地相距82km,甲骑车由A向B驶去,9分钟后,乙骑自行车由B出发以每小时比甲快2km的速度向A驶去,两人在相距B点40km处相遇;问甲、乙的速度各是多少甲、乙二人分别从相距20千米的A、B两地以相同的速度同时相向而行,相遇后,二人继续前进,乙的速度不变,甲每小时比原来多走1千米,结果甲到达B地后乙还需30分钟才能到达A地,求乙每小时走多少千米.3、甲、乙两个城市间的铁路路程为1600公里,经过技术改造,列车实施了提速,提速后比提速前速度增加20公里/小时,列车从甲城到乙城行驶时间减少4小时,这条铁路在现有的安全条件下安全行驶速度不得超过140公里/小时.请你用学过的数学知识说明在这条铁路现有的条件下列车还可以再次提速.4、甲、乙两人分别骑车从A,B两地相向而行,甲先行1小时后,乙才出发,又经过4小时两人在途中的C地相遇,相遇后两人按原来的方向继续前进;乙在由C地到达A地的途中因故停了20分钟,结果乙由C地到达A地时比甲由C地到达B地还提前了40分钟,已知乙比甲每小时多行驶4千米,求甲、乙两人骑车的速度;七、增长率问题:1、恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了万元,求这两个月的平均增长率.2、某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台3、王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.假设不计利息税4、周嘉忠同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的60%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.利息税为20%,只需要列式子5、市政府为了解决市民看病难的问题,决定下调药品的价格;某种药品经过连续两次降价后,由每盒200元下调至128元,则这种药品平均每次降价的百分率为七、动态几何:1、已知:如图3-9-3所示,在△ 中, .点从点开始沿边向点以1cm/s的速度移动,点从点开始沿边向点以2cm/s的速度移动.1如果分别从同时出发,那么几秒后,△ 的面积等于4cm22如果分别从同时出发,那么几秒后, 的长度等于5cm3在1中,△ 的面积能否等于7cm2说明理由.八、其他类型题:1、象棋比赛中,每个选手都与其他选手恰好比赛一局,每局赢者记2分,输者记0分.如果平局,两个选手各记1分,领司有四个同学统计了中全部选手的得分总数,分别是1979,1980,1984,1985.经核实,有一位同学统计无误.试计算这次比赛共有多少个选手参加.2、机械加工需要用油进行润滑以减少摩擦,某企业加工一台大型机械设备润滑用油量为90千克,用油的重复利用率为60%,按此计算,加工一台大型机械设备的实际耗油量为36千克.为了建设节约型社会,减少油耗,该企业的甲、•乙两个车间都组织了人员为减少实际耗油量进行攻关.1甲车间通过技术革新后,加工一台大型机械设备润滑油用油量下降到70千克,用油的重复利用率仍然为60%.问甲车间技术革新后,加工一台大型机械设备的实际耗油量是多少千克2乙车间通过技术革新后,不仅降低了润滑用油量,•同时也提高了用油的重复利用率,并且发现在技术革新的基础上,润滑用油量每减少1千克,用油量的重复利用率将增加%.这样乙车间加工一台大型机械设备的实际耗油量下降到12千克.问乙车间技术革新后,加工一台大型机械设备润滑用油量是多少千克用油的重复利用率是多少。
一元二次方程应用题分类讲解

一元二次方程的应用(一)传播问题①审题;②设未知数;③列方程;④解方程;⑤检验根是否符合实际情况;⑥作答。
1.有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?2.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出多少小分支?3.参加一次足球联赛的每两队之间都进行一场比赛,共比赛45场比赛,共有多少个队参加比赛?4.参加一次足球联赛的每两队之间都进行两次比赛,共比赛90场比赛,共有多少个队参加比赛?5.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,这个小组共有多少名同学?6.一个小组有若干人,新年互送贺卡,若全组共送贺卡72张,这个小组共有多少人?(二)平均增长率问题变化前数量×(1 x)n=变化后数量1.青山村种的水稻2001年平均每公顷产7200公斤,2003年平均每公顷产8450公斤,求水稻每公顷产量的年平均增长率。
2.某种商品经过两次连续降价,每件售价由原来的90元降到了40元,求平均每次降价率是多少?3.某种商品,原价50元,受金融危机影响,1月份降价10%,从2月份开始涨价,3月份的售价为64.8元,求2、3月份价格的平均增长率。
4.某药品经两次降价,零售价降为原来的一半,已知两次降价的百分率相同,求每次降价的百分率?5.为了绿化校园,某中学在2007年植树400棵,计划到2009年底使这三年的植树总数达到1324棵,求该校植树平均每年增长的百分数。
1、恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率.2、某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?3、王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.(假设不计利息税)4、周嘉忠同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的60%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.(利息税为20%,只需要列式子)5、市政府为了解决市民看病难的问题,决定下调药品的价格。
一元二次方程应用题分类

一元二次方程应用题分类变式1】某超市购进了大量饮料,一种饮料平均每天可售出100瓶,每瓶盈利0.5元,为了尽快减少库存,超市决定采取适当的降价措施,调查发现,如果这种饮料的售价每降低0.2元,那么超市平均每天可多售出50瓶,超市要想平均每天盈利150元,每瓶饮料应降价多少元?变式2】某电商平台购进了大量手机,一种手机平均每天可售出50台,每台盈利200元,为了尽快减少库存,电商平台决定采取适当的促销措施,调查发现,如果这种手机的售价每降低100元,那么平均每天可多售出20台,电商平台要想平均每天盈利8000元,每台手机应降价多少元?2.某商场在618购物节期间推出了一款电饭煲,原售价为299元,活动期间降价20元,销售量比平时增加了50%,求活动期间该电饭煲的销售额和销售量的增长率。
变式1】某商场在双11购物节期间推出了一款智能手表,原售价为999元,活动期间降价200元,销售量比平时增加了80%,求活动期间该智能手表的销售额和销售量的增长率。
变式2】某家餐厅在圣诞节期间推出了一款特色套餐,原售价为88元,活动期间降价10元,销售量比平时增加了30%,求活动期间该特色套餐的销售额和销售量的增长率。
变式1:某超市以进货单价40元的商品售价50元,每天可卖出500件。
每涨价1元,销售量减少10件。
如果超市想要每天赚取8000元利润,那么商品的售价应该是多少?改写:某超市以40元进货的商品定价为50元,每天销售量为500件。
每涨价1元,销售量减少10件。
为了每天赚取8000元利润,该商品应该定价为多少?变式2:某种服装每天平均销售20件,每件盈利44元。
每降价1元,每天可多销售5件。
如果要每天盈利1600元,那么每件服装应该降价多少元?改写:某种服装每天平均销售20件,每件盈利44元。
每降价1元,每天可多销售5件。
为了每天盈利1600元,该服装应该降价多少元?变式3:某种新产品进价为120元,试销发现每件售价与产品的日销量存在下表中的数量关系:请根据上表所给数据表述每件售价提高的数量与日销量减少的数量之间的关系。
(完整版)一元二次方程应用题经典题型汇总含答案

z 一元二次方程应用题经典题型汇总一、增长率问题例 1 恒利商厦九月份的销售额为200 万元,十月份的销售额下降了20% ,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6 万元,求这两个月的平均增长率.解设这两个月的平均增长率是X.,则根据题意,得200(1 —20%)(1+ x)2= 193.6 ,即(1+x)2= 1.21,解这个方程,得x i = 0.1 , X2=— 2.1 (舍去).答这两个月的平均增长率是10%.说明这是一道正增长率问题,对于正的增长率问题,在弄清楚增长的次数和问题中每一个数据的意义,即可利用公式m(1+x)2= n求解,其中m v n.对于负的增长率问题,若经过两次相等下降后,则有公式m(1 —x)2= n即可求解,其中m >n.二、商品定价例2 益群精品店以每件21 元的价格购进一批商品, 该商品可以自行定价, 若每件商品售价a元,则可卖出(350 —10a)件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400 元,需要进货多少件?每件商品应定价多少?解根据题意,得(a—21)(350 —10a) = 400,整理,得a2—56a+775 = 0 ,解这个方程,得a1 = 25 , a2 = 31.因为21 p+20%) = 25.2,所以a2=31不合题意,舍去.所以350 —10 a= 350 —10 X25 = 100 (件).答需要进货100 件,每件商品应定价25元.说明商品的定价问题是商品交易中的重要问题,也是各种考试的热点例3 王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率•(假设不计利息税)解设第一次存款时的年利率为X.则根据题意,得[1000(1+ x)- 500](1+0.9 x) = 530.整理,得90X2+145 x —3 = 0.解这个方程,得X i~0.0204 = 2.04% , X21.63.由于存款利率不能为负数,所以将X2~—1.63 舍去.答第一次存款的年利率约是 2.04%.说明这里是按教育储蓄求解的,应注意不计利息税四、趣味问题例4 一个醉汉拿着一根竹竿进城,横着怎么也拿不进去,量竹竿长比城门宽4米,旁边一个醉汉嘲笑他,你没看城门高吗,竖着拿就可以进去啦,结果竖着比城门高2米,二人没办法,只好请教聪明人,聪明人教他们二人沿着门的对角斜着拿,二人一试,不多不少刚好进城,你知道竹竿有多长吗?解设渠道的深度为x m,那么渠底宽为(x+0.1)m,上口宽为(x+0.1+1.4)m.则根据题意,得2(x+0.1+ x+1.4+0.1) x= 1.8,整理,得x2+0.8 x—1.8 = 0.解这个方程,得X1 = — 1.8 (舍去),X2= 1.所以x+1.4+0.1 = 1 + 1.4+0.1 = 2.5.答渠道的上口宽2.5m,渠深1m.说明求解本题开始时好象无从下笔,但只要能仔细地阅读和口味,就能从中找到等量关系,列出方程求解例5 读诗词解题:(通过列方程式,算出周瑜去世时的年龄)大江东去浪淘尽,千古风流数人物;而立之年督东吴,早逝英年两位数;十位恰小个位三,个位平方与寿符;哪位学子算得快,多少年华属周瑜?解设周瑜逝世时的年龄的个位数字为X,则十位数字为x - 3.则根据题意,得x2= 10(x —3)+ x,即X2-11X+30 = 0,解这个方程,得x= 5或x= 6.当x = 5时,周瑜的年龄25岁,非而立之年,不合题意,舍去;当x = 6时,周瑜年龄为36岁,完全符合题意.答周瑜去世的年龄为36岁.六、象棋比赛例6 象棋比赛中,每个选手都与其他选手恰好比赛一局,每局赢者记2分,输者记0分.如果平局,两个选手各记1分,领司有四个同学统计了中全部选手的得分总数,分别是1979 , 1980 , 1984 , 1985.经核实,有一位同学统计无误•试计算这次比赛共有多少个选手参加•解设共有n个选手参加比赛,每个选手都要与(n —1)个选手比赛一局,共计n(n —1)1局,但两个选手的对局从每个选手的角度各自统计了一次,因此实际比赛总局数应为2 n(n —1)局由于每局共计2分,所以全部选手得分总共为n(n —1)分•显然(n—1)与n为相邻的自然数,容易验证,相邻两自然数乘积的末位数字只能是0, 2 , 6,故总分不可能是1979 , 1984 , 1985,因此总分只能是1980,于是由n(n —1) = 1980,得n2—n —1980 = 0 ,解得n1 = 45 , n2=—44 (舍去).答参加比赛的选手共有45人.说明类似于本题中的象棋比赛的其它体育比赛或互赠贺年片等问题, 法求解• 七、情景对话例7 春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如图1对话中收费标准. 某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元•请问该单位 这次共有多少员工去天水湾风景区旅游?解设该单位这次共有 x 名员工去天水湾风景区旅游 •因为1000 >25 = 25000 V 27000,所以员工人数一定超过 25人.则根据题意,得[1000 — 20(x — 25)] x = 27000.整理,得 x 2 — 75X +1350 = 0,解这个方程,得 x i = 45 , X 2= 30.当 x = 45 时,1000 — 20( x — 25) = 600 V 700,故舍去 x i ;当 X 2= 30 时,1000 — 20(x — 25) = 900 >700,符合题意.答:该单位这次共有30名员工去天水湾风景区旅游说明 求解本题要时刻注意对话框中的数量关系,求得的解还要注意分类讨论,从中找出符合题意的结论都可以仿照些如果人数不超过25人 如果人数超过25人,每増加1 人人均放游费用降低20元 旦人均册费用不得低于700人均旅游费用海1000元.八、等积变形例8 将一块长18米,宽15米的矩形荒地修建成一个花园(阴影部分)所占的面积为 原来荒地面积的三分之二•(精确到0.1m )(1 )设计方案1 (如图2)花园中修两条互相垂直且宽度相等的小路(2)设计方案2 (如图3)花园中每个角的扇形都相同 .以上两种方案是否都能符合条件?若能,请计算出图2中的小路的宽和图3中扇形的半径;若不能符合条件,请说明理由 解 都能.(1)设小路宽为 X ,则 18x +16x — x 2=^ X18 X15,即 x 2— 34X +180 = 0 ,解这个方程,得x = 2 ,即x ~ 6.6.(2)设扇形半径为 r ,则 3.14 r 2 =X18 X15 ,即卩 r 2疋 57.32,所以 r ~7.6.明 等积变形一般都是涉及的是常见图形的体积,面积公式;其原则是形变积不变; 积也变,但重量不变,等等九、动态几何问题例9 如图 4所示,在△ ABC 中,/ C = 90?/SPAN> , AC = 6cm , BC = 8cm ,点 P 从 点A 出发沿边AC 向点C 以1cm/s 的速度移动,点Q 从C 点出发沿CB 边向点B 以2cm/s 的速度移动(1)如果P 、Q 同时出发,几秒钟后,可使△ PCQ 的面积为8平方厘米?X ,或形变(2)点P 、Q 在移动过程中,是否存在某一时刻,使得△ PCQ 的面积等于△ ABC 的面积的一半•若存在,求出运动的时间;若不存在,说明理由(1 )设 x s 后,可使△ PCQ 的面积为 8cm 2,所以 AP = x cm , PC = (6 — x )cm , CQ =2x cm.则根据题意,得(6 — x ) 2x = 8.整理,得X 2— 6x +8 = 0,解这个方程,得 x i = 2, X 2=4. 所以P 、Q 同时出发,2s 或4s 后可使△ PCQ 的面积为8cm 2.(2)设点P 出发x 秒后,△ PCQ 的面积等于△ ABC 面积的一半•1 1 1则根据题意,得 2(6 — x ) 2x =2 x2 x6 X8.整理,得 x 2— 6x +12 = 0.由于此方程没有实数根,所以不存在使厶 PCQ 的面积等于ABC 面积一半的时刻•说明 本题虽然是一道动态型应用题,但它又要运用到行程的知识,求解时必须依据路程=速度x 时间.十、梯子问题例10 一个长为10m 的梯子斜靠在墙上,梯子的底端距墙角6m.(1) 若梯子的顶端下滑1m ,求梯子的底端水平滑动多少米? (2) 若梯子的底端水平向外滑动 1m ,梯子的顶端滑动多少米?(3 )如果梯子顶端向下滑动的距离等于底端向外滑动的距离,那么滑动的距离是多少米?解 依题意,梯子的顶端距墙角 =8 (m ).(1 )若梯子顶端下滑1m ,则顶端距地面7m.设梯子底端滑动x m.因为/ C = 90?/SPAN>,所以AB ="汙\取匸=用卜『=10(cm )(2)点P、Q在移动过程中,是否存在某一时刻,使得△PCQ的面积等于△ ABC的则根据勾股定理,列方程72+(6+ x)2= 102,整理,得x2+12 x—15 = 0 ,解这个方程,得X i~ 1.14 , X213.14 (舍去),所以梯子顶端下滑1m,底端水平滑动约1.14m.(2)当梯子底端水平向外滑动1m时,设梯子顶端向下滑动x m.则根据勾股定理,列方程(8 —X)2+(6+1)2= 100.整理,得X2—16X+13 = 0.解这个方程,得X1~ 0.86 , X2 ~ 15.14 (舍去).所以若梯子底端水平向外滑动1m,则顶端下滑约0.86m.(3)设梯子顶端向下滑动x m时,底端向外也滑动x m.则根据勾股定理,列方程(8 —X)2+(6+X)2= 102,整理,得2x2—4x = 0,解这个方程,得X1 = 0 (舍去),X2= 2.所以梯子顶端向下滑动2m时,底端向外也滑动2m.说明求解时应注意无论梯子沿墙如何上下滑动,梯子始终与墙上、地面构成直角三角形.十一、航海问题例11如图5所示,我海军基地位于A处,在其正南方向200 海里处有一重要目标B,在B的正东方向200海里处有一重要目标C,小岛D恰好位于AC 的中点,岛上有一补给码头;小岛F位于BC上且恰好处于小岛D的正南方向,一艘军舰从A出发,经B到C匀速巡航•一艘补给船同时从D出发,沿南偏西方向匀速直线航行,欲将一批物品送往军舰.(1)小岛D和小岛F相距多少海里?(2)已知军舰的速度是补给船的2倍,军舰在由B到C的途中与补给船相遇于E处,那么相遇时补给船航行了多少海里?(精确到0.1海里)解(1) F位于D的正南方向,贝U DF丄BC•因为AB丄BC, D为AC的中点,所以DF =2 AB = 100海里,所以,小岛D与小岛F相距100海里.(2 )设相遇时补给船航行了x海里,那么DE = x海里,AB+BE= 2x海里,EF= AB+BC -(AB+ BE)—CF= (300 - 2x)海里.在Rt△ DEF中,根据勾股定理可得方程x2= 100 2+(300 - 2x)2,整理,得3x2-1200 x+100000 = 0.lOtK/6 10(K/6解这个方程,得X1 = 200 —孑 ~ 118.4 , X2 = 200+3 (不合题意,舍去)•所以,相遇时补给船大约航行了118.4海里.说明求解本题时,一定要认真地分析题意,及时发现题目中的等量关系,并能从图形中寻找直角三角形,以便正确运用勾股定理布列一元二次方程十二、图表信息例12 如图6所示,正方形ABCD的边长为12,划分成12 X12个小正方形格,将边长为n (n 为整数,且2w n< 11 )的黑白两色正方形纸片按图中的方式,黑白相间地摆放,第一张n Xi的纸片正好盖住正方形ABCD左上角的n刈个小正方形格,第二张纸片盖住第一张纸片的部分恰好为(n - 1) X n —1)个小正方形.如此摆放下去,直到纸片盖住正方形ABCD的右下角为止.请你认真观察思考后回答下列问题:(1)由于正方形纸片边长n的取值不同,冼成摆放时所使用正方形纸片的张数也不同,请填写下表:纸片的边长n23456使用的纸片张数(2 )设正方形ABCD被纸片盖住的面积(重合部分只计一次)为S i,未被盖住的面积为S2.①当n = 2时,求S i : S2的值;解(1 )依题意可依次填表为: 11、10、9、8、7.②是否存在使得S i = S2的n值?若存在,请求出来;若不存在,请说明理由(2) S1 = n2+(12 - n)[n2—(n - 1)2] = - n2+25 n - 12.①当n = 2 时,S1 = - 22+25 X2 - 12 = 34 , S2= 12 X12 - 34 = 110.所以S1 : S2 = 34 : 110 = 17 : 55.1②若S1 = S2,则有—n2+25 n —12 =? X122,即n2—25 n +84 = 0 ,解这个方程,得n1 = 4 , n2= 21 (舍去).所以当n = 4时,S1= S2.所以这样的n值是存在的.说明求解本题时要通过阅读题设条件及提供的图表,及时挖掘其中的隐含条件,对于求解第(3)小题,可以先假定问题的存在,进而构造一元二次方程,看得到的一元二次方程是否有实数根来加以判断.十三、探索在在问题例13 将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm 2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于 12cm 2吗?若能,求出两段铁丝的长度; 若不能, 请说明理由解(1)设剪成两段后其中一段为 x cm ,则另一段为(20 — x ) cm.当 x = 16 时,20 — x = 4,当 x = 4时,20 — x = 16 , 答 这段铁丝剪成两段后的长度分别是4cm 和16cm.(2)不能.理由是:不妨设剪成两段后其中一段为 y cm ,则另一段为(20 — y ) cm.则由题意得I 4丿+1 4丿=12,整理,得 y 2— 20 y +104 = 0,移项并配方,得(y — 10) 2 =—4v 0,所以此方程无解,即不能剪成两段使得面积和为12cm 2.说明 本题的第(2 )小问也可以运用求根公式中的 b 2 — 4ac 来判定 若b 2 — 4ac >0,方程有两个实数根,若 b 2— 4ac v 0,方程没有实数根,本题中的b 2 — 4ac =— 16 v 0即无解.十四、平分几何图形的周长与面积问题例14 如图7,在等腰梯形 ABCD 中,AB = DC = 5 , AD = 4 , BC = 10.点E?^下底边BC 上,点F 在腰AB 上.(1 )若EF 平分等腰梯形 ABCD 的周长,设BE 长为X ,试用含x 的代数式表示 △ BEF 的面积; (2) 是否存在线段 EF 将等腰梯形ABCD 的周长和面积同时平分?若存在,求出此时BE 的长;若不存在,请说明理由;(3) 是否存在线段 EF 将等腰梯形ABCD 的周长和面积同时分成1 : 2的两部分?若存在,求此时BE 的长;若不存在,请说明理由则根据题意,得 =17,解得 X i = 16X 2 = 4 ,Be K解(1 )由已知条件得,梯形周长为12,高4,面积为28.过点F作FG丄BC于G,过点A作AK丄BC于K.12 - K则可得,FG= 总,込24所以S A BEF=BEFG=—§ x2+ x (7 < x < 10).2 24(2)存在.由 (1 )得—5 x2+ 5 x = 14,解这个方程,得x i = 7, X2 = 5 (不合题意,舍去),所以存在线段EF将等腰梯形ABCD的周长与面积同时平分,此时BE= 7.(3)不存在•假设存在,显然有S A BEF : S多边形AFECD = 1 : 2,2 16 28即(BE+BF):(AF+AD + DC) = 1 : 2.则有一5 x2+ 5 x =3 ,整理,得3x2—24x+70 = 0,此时的求根公式中的b2—4ac = 576 —840 V 0,所以不存在这样的实数X.即不存在线段EF将等腰梯形ABCD的周长和面积同时分成1 : 2的两部分.说明求解本题时应注意:一是要能正确确定x的取值范围;二是在求得X2 = 5时,并不属于7 < X W 10,应及时地舍去;三是处理第(3)个问题时的实质是利用一元二次方程来探索问题的存在性.十五、利用图形探索规律例15 在如图8中,每个正方形有边长为1的小正方形组成:(1 )观察图形,请填写下列表格:正方形边长 13黑色小正方形个数 正方形边长 24黑色小正方形个数(2 )在边长为n (n > 1)的正方形中,设黑色小正方形的个数为个数为P 2,问是否存在偶数.n ,使P 2= 5P i ?若存在,请写出 n 的值;若不存在,请说明 理由.解(1)观察分析图案可知正方形的边长为 1、3、5、7、…、n 时,黑色正方形的个 数为1、5、9、13、2n — 1 (奇数);正方形的边长为2、4、6、8、…、n 时,黑色正方形 的个数为4、& 12、16、2n (偶数)•(2 )由(1 )可知n 为偶数时P 1 = 2 n ,所以P 2= n 2— 2n .根据题意,得n 2 — 2 n = 5 x 2n ,即n 2 —12 n = 0,解得n 1= 12 , n 2 = 0 (不合题意,舍去).所以存在偶数n = 12,使得P 2 =5P 1.n (奇数)n (偶数)P i ,白色小正方形的说明本题的第(2)小问是属于存在性问题,求解时,可以先假设结论存在,进而从中找到数量关系,使问题获解综上所言,列一元二次方程解应用题是列一元一次方程、二元一次方程组解应用题的延续和发展,列方程解应用题就是先把实际问题抽象为方程模型,然后通过解方程获得对实际问题的解决.列一元二次方程解应用题的关键是:找出未知量与已知量之间的联系,从而将实际问题转化为方程模型,要善于将普通语言转化为代数式,在审题时,要特别注意关键词语,如“多少、快、慢、和、差、倍、分、超过、剩余、增加、减少”等等,此外,还要掌握一些常用的公式或特殊的等量关系,如特殊图形的面积公式、行程问题、工程问题、增长率问题中的一些特殊关系等等.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
40 - 2 x 厘米 宽等于_________
60 2 x 厘米, 则图中虚线部分长等于______
解:设截去正方形的边长x厘米,
依题意得: 60- 2x 40- 2x 800
x 10
解得:x1 10, x2 40 经检验, x2 40不合题意,应舍去.
练习:
4.如图,用长为18m的篱笆(虚线部分),两面靠 墙围成矩形的苗圃.要围成苗圃的面积为81m2,应该 怎么设计? 解:设苗圃的一边长为xm, 则
x(18 x) 81 化简得,x2 18 x 81 0 2 ( x9) 0 x x 9
1 2
答:应围成一个边长为9米的正方形.
一元二次方程应用(3)
列一元二次方程解应题
1、如图,有一面积是150平方米的长方形鸡场,鸡场的 一边靠墙(墙长18米),墙对面有一个2米宽的门,另三 边(门除外)用竹篱笆围成,篱笆总长33米.求鸡场的 长和宽各多少米?
18米
2米
练习:
2.某厂今年一月的总产量为500吨,三月的总产量
为720吨,平均每月增长率是x,列方程( A.500(1+2x)=720 C.500(1+x2)=720
1+x+x(1+x)=121 -12 (. 解方程,得 10 _____, ______ 不合题意,舍去) 1 2
x
x
10 个人. 答:平均一个人传染了________
如果按照这样的传染速度, 三轮传染后有多少人患流感?
121+121×10= 1331人
1.某种植物的主干长出若干数目的支干,每个支干 又长出同样数目的小分支,主干,支干和小分支的 总数是91,每个支干长出多少小分支? 解:设每个支干长出x 小 小 小 小 个小分支, 分 …… 分 分 分 支 支 支 支 则1+x+x x=91
开启
智慧
美满生活与方程
1.一次会议上,每两个参加会议的人都互相握了一次 手,有人统计一共握了66次手.这次会议到会的人数是 多少? 解 : 设 这 次 到 会 的 人 数 为 x,根 据 题 意 , 得
整理得 : 解得 :
x 2 x 132 0.
x x 1 66 . 2
开启
智慧
增长率与方程
14.某公司计划经过两年把某种商品的生产成本降低 19%,那么平均每年需降低百分之几?
解 : 设 每 年 平 均 需 降 低 的 百 分 数 为 x, 根 据 题 意 , 得
(1 x ) 2 1 19 % .
解这个方程 : (1 x ) 2 0 . 8 1, (1 x ) 0 . 9 , x 1 0 .9 , x 1 1 0 . 9 1 0 % ; x 2 1 0 . 9 ( 不 合 题 意 , 舍 去 ). 答 : 每 年 平 均 需 降 低 的 百 分 数 为10% .
40 (1 x ) 2 48 . 4 .
解这个方程 : (1 x ) 2 1 . 2 1, (1 x ) 1 . 1 , x 1 1 . 1, x 1 1 1 . 1 1 0 % ; x 2 1 1 . 1 0 ( 不 合 题 意 , 舍 去 ). 答 : 每 年 的 平 均 增 长 率 为10% .
(8-2x)
快乐学习 1
几何与方程
x
18m2
x
例1.镜框有多宽? 一块四周镶有宽度相等的花边的镜框如下图,它的长 为8cm,宽为5cm.如果镜框中央长方形图案的面积为 18cm2 ,则镜框多宽? 解:设镜框的宽为xcm ,则镜框中央长方形 审 (5-2x) (8-2x) 图案的长为 cm, 宽为 cm,得
解:设与教学楼后墙垂直的一条边长为x米,则与教学 楼后墙平行的那条边长为
(352x)米,根据题意,得
x(352x)150 解得
当
当x102 时,352x15. 符合题意. 答:自行车棚的长和宽分别为15米和10米.
x
15 x1 , x2 10. 2 352x2018不合题意,舍去; 15时,
解 得 x1 5 , x 2 6 .
x 3 5 3 2, 或 x 3 6 3 3.
答 : 这 个 两 位 数 为 2 5, 或 3 6 .
快乐学习 2
数字与方程
3.有一个两位数,它的十位数字与个位数字的和是5.把这个 两位数的十位数字与个位数字互换后得到另一个两位数, 两个两位数的积为736.求原来的两位数.
25 x 2 25 x 6 0.
整理得 : 解得 :
25 1225 5 7 x , 50 10 57 57 x1 0 . 2 20 %; x 2 1 . 2 0 (不 合 题 意 , 舍 去 ). 10 10 答 : 该 厂 今 年 产 量 的 月 平 均 增 长 率 为 20% .
解 : 设 这 个 两 位 数 的 个 位 数 字 为 x,根 据 题 意 , 得
1 0 5 x x 1 0 x 5 x 7 3 6 .
整 理 得 x 2 5 x 6 0. 解 得 x1 2 , x 2 3 . 5 x 5 2 3, 或 5 x 5 3 2 .
…… ……
●
x
x
解得, x1=9,x2=-10(不合题意,舍去) 主 干 1 答:每个支干长出9个小分支.
x x 90 0
2
即
支干
……
支干
x
2.(P58-6)要组织一场篮球联赛,赛制为单循环形式, 即每两队之间都赛一场,计划安排15场比赛,应邀请 多少个球队参加比赛? 3.要组织一场篮球联赛, 每两队之间都赛2场,计划 安排90场比赛,应邀请多少个球队参加比赛? 4.(P34-7)参加一次聚会的每两人都握了一次手,所 有人共握手10次,有多少人参加聚会?
B )
B.500(1+x)2=720 D.720(1+x)2=500
3.某校去年对实验器材的投资为2万元,预计今明 两年的投资总额为8万元,若设该校今明两年在 实验器材投资上的平均增长率是x,则可列方程
为
.
快乐学习 2
数字与方程
1. 两个数的差等于4,积等于45,求这两个数.
解 : 设 其 中 一 个 数 为 x, 根 据 题 意 , 得 xx 4 45. 整 理 得 x 2 4 x 45 0. 解 得 x1 5 , x 2 9 . x 4 5 4 9, 或 x 4 9 4 5. 答 : 这 两 个 数 为 5 ,9 或 9 , 5 .
答:截去正方形的边长为10厘米。
例3. 如图,在长为40米,宽为22米的 矩形地面上,修筑两条同样宽的互相垂 直的道路,余下的铺上草坪,要使草坪 的面积为760平方米,道路的宽应为多 少?
40米
22米
[例4] 学校要建一个面积为150平方米的长方形自
行车棚,为节约经费,一边利用18米长的教学楼 后墙,另三边利用总长为35米的铁围栏围成,求 自行车棚的长和宽.
回顾练习: ① x2+2x+1=0 ② 3t(t+2)=2(t+2)
③ (1-2t)2-t2=2
④ (x+1)2-4(x+1)+4=0
一元二次方程应用(1)
例1:一块四周镶有宽度相等的花边的镜框如下图, 它的长为8cm,宽为5cm.如果镜框中央长方形图案的 面积为18cm2 ,则花边多宽? 解:设镜框的宽为xcm ,则镜框中央长方形图案的长 (8-2x) (5-2x) cm,得 为 cm, 宽为 8 x x 5
1 529 1 23 x , 2 2 1 23 1 23 x1 12 ; x 2 0 (不 合 题 意 , 舍 去 ). 2 2 答 : 这 次 到 会 的 人 数 为12人 .
开启
智慧
美满生活与方程
2.小明将勤工助学挣得的500元钱按一年定期存入银行,到期后取出 50元用来购买学习用品 剩下的450元连同应得的税后利息又全部按 一年定期存入银行如果存款的年利率保持不变,且到期后可得税后 本息约461元,那么这种存款的年利率大约是多少? (精确到0.01%) .
答 : 这 两 个 数 为 32或 23.
4.三个连续偶数,已知最大数与最小数的平方和比中
间一个数的平方大332,求这三个连续偶数. 1 、偶数个连续偶数(或奇数),一般可设中间两个为 (x1)和(x 1).
2、奇数个连续偶数(或奇数,自然数),一般可设中间
一个为x.如三个连续偶数,可设中间一个偶数为x,则其 余两个偶数分别为(x2)和(x+2)又如三个连续自然数,可 设中间一个自然数为 x ,则其余两个自然数分别为 (x1) 和(x 1).
列一元二次方程解应题
小结:解决这类问题的关键是掌握常见 几何图形的面积体积公式,并能熟练计 算由基本图形构成的组合图形的面积.
一元二次方程应用(2)
开启
智慧
增长率与方程
13.甲公司前年缴税40万元,今年缴税48.4万元.该公 司缴税的年平均增长率为多少? 解 : 设 每 年 平 均 增 长 率 为 x,根 据 题 意 , 得
常见的图形有下列几种:
练习:
3. (2003年,舟山)如图,有长为24米的篱笆,一面利 用墙(墙的最大可用长度a为10米),围成中间隔有 一道篱笆的长方形花圃。设花圃的宽AB为x米,面积 为S米2, (1)求S与x的函数关系式;(2)如果要围成面积为 45米2的花圃,AB的长是多少米?
【解析】(1)设宽AB为x米, 则BC为(24-3x)米,这时面积 S=x(24-3x)=-3x2+24x (2)由条件-3x2+24x=45 化为:x2-8x+15=0解得x1=5,x2=3 ∵0<24-3x≤10得14/3≤x<8 ∴x2不合题意,AB=5,即花圃的宽AB为5米