高考数学分类专题复习之八 数列综合
2021年高中数学一轮复习·等比数列及数列综合:第8节 数列综合问题

第8节 数列综合问题【基础知识】1. 数列的前n 项和:12n n S a a a =++⋅⋅⋅+2.数列{}n a 的前n 项和n S 和通项n a 的关系:11(1)(2)n nn S n a S S n -=⎧=⎨-≥⎩【规律技巧】1. 数列与不等式的综合问题是近年来的高考热门问题,与不等式相关的大多是数列的前n 项和问题,对于这种问题,在解答时需要利用化归的思想将问题转化为我们较熟悉的问题来解决,要掌握常见的解决不等式的方法,以便更好地解决问题.数列与不等式的结合,一般有两类题:一是利用基本不等式求解数列中的最值;二是与数列中的求和问题相联系,证明不等式或求解参数的取值范围,此类问题通常是抓住数列通项公式的特征,多采用先求和后利用放缩法或数列的单调性证明不等式,求解参数的取值范围. 以数列为背景的不等式恒成立问题,或不等式的证明问题,多与数列求和相联系,最后利用函数的单调性求解,或利用放缩法证明.解决数列和式与不等式证明问题的关键是求和,特别是既不是等差、等比数列,也不是等差乘等比的数列求和,要利用不等式的放缩法,放缩为等比数列求和、错位相减法求和、裂项相消法求和,最终归结为有限项的数式大小比较.数列与不等式综合的问题是常见题型,常见的证明不等式的方法有:①作差法;②作商法;③综合法;④分析法;⑤放缩法.2. 数列与解析几何交汇问题主要是解析几何中的点列问题,关键是充分利用解析几何的有关性质、公式,建立数列的递推关系式,然后借助数列的知识加以解决.3. 处理探索性问题的一般方法是:假设题中的数学对象存在或结论成立或其中的一部分结论成立,然后在这个前提下进行逻辑推理.若由此导出矛盾,则否定假设,否则,给出肯定结论,其中反证法在解题中起着重要的作用.还可以根据已知条件建立恒等式,利用等式恒成立的条件求解.4. 解答数列综合问题要善于综合运用函数方程思想、化归转化思想等数学思想以及特例分析法,一般递推法,数列求和及求通项等方法来分析、解决问题.数列与解析几何的综合问题解决的策略往往是把综合问题分解成几部分,先利用解析几何的知识以及数形结合得到数列的通项公式,然后再利用数列知识和方法求解.5.数列是一种特殊的函数,故数列有着许多函数的性质.等差数列和等比数列是两种最基本、最常见的数列,它们是研究数列性质的基础,它们与函数、方程、不等式、三角等内容有着广泛的联系,等差数列和等比数列在实际生活中也有着广泛的应用,随着高考对能力要求的进一步增加,这一部分内容也将受到越来越多的关注. 数列与函数的综合问题,解决此类问题时要注意把握以下两点: (1)正确审题,深抠函数的性质与数列的定义; (2)明确等差、等比数列的通项、求和公式的特征.【典例讲解】例1 已知{a n }是等差数列,满足a 1=3,a 4=12,数列{b n }满足b 1=4,b 4=20,且{b n-a n }为等比数列.(1) 求数列{a n }和{b n }的通项公式; (2) 求数列{b n }的前n 项和.例2 已知数列{a n }的前n 项和S n =n 2+n2,n ∈N *.(1) 求数列{a n }的通项公式;(2) 设b n =2a n +(-1)n a n ,求数列{b n }的前2n 项和.例3 已知数列{a n }的前n 项和S n =-12n 2+kn(k ∈N *),且S n 的最大值为8.(1) 确定常数k ,求a n ;(2) 求数列⎩⎨⎧⎭⎬⎫9-2a n 2n 的前n 项和T n .【变式探究】已知数列{a n }和{b n }满足a 1=1,a 2=2,a n >0,b n =a n a n +1(n ∈N *),且{b n }是以q 为公比的等比数列.(1) 证明:a n +2=a n q 2;(2) 若c n =a 2n -1+2a 2n ,证明:数列{c n }是等比数列; (3) 求和:1a 1+1a 2+1a 3+1a 4+…+1a 2n -1+1a 2n.例4 将数列{a n }中的所有项按每一行比上一行多一项的规则排成如下数表: a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 a 10…记表中的第一列数a 1,a 2,a 4,a 7,…构成的数列为{b n },b 1=a 1=1,S n 为数列{b n }的前n 项和,且满足2b nb n S n -S 2n=1(n≥2).【针对训练】1、已知函数)(x f 是定义在R 上的单调增函数且为奇函数,数列{}n a 是等差数列,01007>a ,则)()()()()(20132012321a f a f a f a f a f +++++ 的值( ).A .恒为正数.B 恒为负数 C .恒为0 D .可正可负【答案】A 2、已知()[]23,0,31x f x x x+=∈+,已知数列{}n a 满足03,n a n N *<≤∈,且122010670a a a +++=,则122010()()()f a f a f a +++( )A .有最大值6030B . 有最小值6030 C.有最大值6027 D . 有最小值6027 【答案】A3、已知()()()()()()123,2,f x x x x x n n n N =++++≥∈,其导函数为()f x ',设()()20n f a f '-=,则数列{}n a 自第2项到第n 项的和S =_____________. 【答案】11n-综合点评:这些题都是数列与函数综合问题,解决此类问题要抓住一个中心——函数,两个密切联系:一是数列和函数之间的密切联系,数列的通项公式是数列问题的核心,函数的解析式是研究函数问题的基础;二是方程、不等式与函数的联系,利用它们之间的对应关系进行灵活的处理.4、已知数列{}n a ,定直线():324)90(l m x m y m +-+--=,若(),n n a 在直线上,则数列{}n a 的前13项和为( )A .10B .21C .39D .78【答案】C5、已知数列{}n a 满足0n a ≠,113a =,()1122,n n n n a a a a n n N *---=⋅≥∈. (1)求证:1n a ⎛⎫⎪⎝⎭是等差数列;(2)证明:2221214n a a a ++⋅⋅⋅+<. 【答案】(1)证明见解析;(2)证明见解析. 【解析】试题分析:(1)证明数列为等差数列只需按数列定义证明即证:当2n ≥时,111n n a a --为常数即可;(2)根据(1)可知数列1n a ⎛⎫⎪⎝⎭的通项公式,可得到: 121na n =+,由()222114421n a n nn ∴=<++利用裂项相消法证明2221214na a a ++⋅⋅⋅+<.【练习巩固】 1.在数列{}n a 中,1(1)n a n n =+,若{}n a 的前n 项和为20152016,则项数n 为_______.【答案】20152.数列}{n a 满足11=a ,且11+=-+n a a n n (*N n ∈),则数列}1{na 的前10项和为 【答案】20113.已知数列{}n a 满足()*111,2n n n a a a n +⋅∈==N ,则2015S =( ) A .20152-1 B .10092-3 C .100732-3⨯ D .10082-3【答案】B 【解析】试题分析:根据题意,22a =,由12n n n a a +⋅=,得1212n n n a a +++⋅=,两式相除得22n na a +=,所以数列{}n a 的奇数项和偶数项分别成等比数列,而数列的前2015项中有1008项奇数项和1007项偶数项,而且奇数项和偶数项所构成的数列分别是以和2为首项,以2为公比的等比数列,所以100810072015122(12)1212S --=+--100923=-,故选B .4.有一种细菌和一种病毒,每个细菌在每秒钟杀死一个病毒的同时将自身分裂为2个,现在有一个这样的细菌和100个这样的病毒(假设病毒不繁殖),问细菌将病毒全部杀死至少需要 ( ) A .6秒钟 B .7秒钟 C .8秒钟D .9秒钟【答案】B5.在数列{}n a 中,已知11a =,111n n a a +=-+,记n S 为数列{}n a 的前n 项和,则2015S = .【答案】1006-.6. 两个正数a 、b 的等差中项是52,一个等比中项是6,且a >b ,则双曲线x 2a 2-y 2b 2=1的离心率e =________.【答案】133【解析】由题有⎩⎪⎨⎪⎧a +b =5,ab =6⎩⎪⎨⎪⎧a =3,b =2或⎩⎪⎨⎪⎧a =2,b =3(舍),e =c a =32+223=133.7、 在等比数列{a n }中,前n 项和为S n ,若S m ,S m +2,S m +1成等差数列,则a m ,a m +2,a m +1成等差数列.(1) 写出这个命题的逆命题;(2) 判断逆命题是否为真,并给出证明.7. 已知等差数列{a n }满足a 3+a 6=-13,a 1·a 8=-43,a 1>a 8.(1) 求数列{a n }的通项公式;(2) 把数列{a n }的第1项、第4项、第7项、…、第3n -2项、…分别作为数列{b n }的第1项、第2项、第3项、…、第n 项、…,求数列{2b n }的前n 项之和;(3) 设数列{c n }的通项为c n =n·2b n ,试比较(n +1)(n +2)c n +n(n +1)c n +2与2n(n +2)c n +1的大小.8. 已知数列{a n }满足a n =2a n -1+2n -1(n≥2),且a 4=81. (1) 求数列{a n }的前三项a 1,a 2,a 3;(2) 求证:数列⎩⎨⎧⎭⎬⎫a n -12n 为等差数列,并求a n .9. 已知二次函数y =f(x)的图象经过坐标原点,其导函数为f′(x)=6x -2,数列{a n }的前n 项和为S n ,点(n ,S n )(n ∈N *)均在函数y =f(x)的图象上.(1) 求数列{a n }的通项公式; (2) 设b n =3a n a n +1,T n 是数列{b n }的前n 项和,求使得T n <m20对所有n ∈N *都成立的最小正整数m.【解析】 (1) 设该二次函数f(x)=ax 2+bx (a≠0),则f′(x)=2ax +b ,由于f′(x)=6x -2,得a =3,b =-2,所以f(x)=3x 2-2x.又点(n ,S n )(n ∈N *)均在函数y =f(x)的图象上,所以S n =3n 2-2n.当n≥2时,a n =S n -S n -1=(3n 2-2n)-[3(n -1)2-2(n -1)]=6n -5;当n =1时,a 1=S 1=3×12-2=6×1-5,所以a n =6n -5 (n ∈N *).(2) 由(1)得知b n =3a n a n +1=3(6n -5)[6(n +1)-5]=12⎝⎛⎭⎫16n -5-16n +1,故T n =∑n i =1b i=12[(1-17)+(17-113)+…+(16n -5-16n +1)]=12⎝⎛⎭⎫1-16n +1.因此,要使12⎝⎛⎭⎫1-16n +1<m 20(n ∈N *)成立的m ,必须且仅须满足12≤m20,即m≥10,所以满足要求的最小正整数m 为10.10.各项均为正数的数列{a n }中,设S n =a 1+a 2+…+a n ,T n =1a 1+1a 2+…+1a n,且(2-S n )(1+T n )=2,n ∈N *.(1) 设b n =2-S n ,证明数列{b n }是等比数列;(2) 设c n =12na n ,求集合{(m ,k ,r)|c m +c r =2c k ,m<k<r ,m ,k ,r ∈N *}.11. 设函数f(x)=sinxcosx -3cos(x +π)cosx(x ∈R ). (1) 求f(x)的最小正周期;(2) 若函数y =f(x)的图象向右平移π4个单位后再向上平移32个单位得到函数y =g(x)的图象,求y =g(x)在⎣⎡⎦⎤0,π4上的最大值. 12. 某公司一下属企业从事某种高科技产品的生产.该企业第一年年初有资金2 000万元,将其投入生产,到当年年底资金增长了50%.预计以后每年资金年增长率与第一年的相同.公司要求企业从第一年开始,每年年底上缴资金d 万元,并将剩余资金全部投入下一年生产.设第n 年年底企业上缴资金后的剩余资金为a n 万元.(1) 用d 表示a 1、a 2,并写出a n +1与a n 的关系式;(2) 若公司希望经过m(m≥3)年使企业的剩余资金为4 000万元,试确定企业每年上缴资金d 的值(用m 表示).。
专题08 数列-2022年高考真题和模拟题数学分类汇编(解析版)

专题08 数列1.【2022年全国乙卷】已知等比数列{a n }的前3项和为168,a 2−a 5=42,则a 6=( ) A .14 B .12 C .6 D .3【答案】D 【解析】 【分析】设等比数列{a n }的公比为q,q ≠0,易得q ≠1,根据题意求出首项与公比,再根据等比数列的通项即可得解. 【详解】解:设等比数列{a n }的公比为q,q ≠0, 若q =1,则a 2−a 5=0,与题意矛盾, 所以q ≠1,则{a 1+a 2+a 3=a 1(1−q 3)1−q =168a 2−a 5=a 1q −a 1q 4=42,解得{a 1=96q =12 , 所以a 6=a 1q 5=3. 故选:D .2.【2022年全国乙卷】嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{b n }:b 1=1+1α1,b 2=1+1α1+1α2,b 3=1+1α1+1α2+1α3,…,依此类推,其中αk ∈N ∗(k =1,2,⋯).则( ) A .b 1<b 5 B .b 3<b 8C .b 6<b 2D .b 4<b 7【答案】D 【解析】 【分析】根据αk ∈N ∗(k =1,2,…),再利用数列{b n }与αk 的关系判断{b n }中各项的大小,即可求解. 【详解】解:因为αk ∈N ∗(k =1,2,⋯),所以α1<α1+1α2,1α1>1α1+1α2,得到b 1>b 2,同理α1+1α2>α1+1α2+1α3,可得b 2<b 3,b 1>b 3又因为1α2>1α2+1α3+1α4, α1+1α2+1α3<α1+1α2+1α3+1α4,故b 2<b 4,b 3>b 4;以此类推,可得b 1>b 3>b 5>b 7>⋯,b 7>b 8,故A 错误; b 1>b 7>b 8,故B 错误;1α2>1α2+1α3+⋯1α6,得b 2<b 6,故C 错误;α1+1α2+1α3+1α4>α1+1α2+⋯1α6+1α7,得b 4<b 7,故D 正确.故选:D.3.【2022年新高考2卷】中国的古建筑不仅是挡风遮雨的住处,更是美学和哲学的体现.如图是某古建筑物的剖面图,DD 1,CC 1,BB 1,AA 1是举, OD 1,DC 1,CB 1,BA 1是相等的步,相邻桁的举步之比分别为DD 1OD 1=0.5,CC 1DC 1=k 1,BB 1CB 1=k 2,AA1BA 1=k 3,若k 1,k 2,k 3是公差为0.1的等差数列,且直线OA 的斜率为0.725,则k 3=( )A .0.75B .0.8C .0.85D .0.9【答案】D 【解析】 【分析】设OD 1=DC 1=CB 1=BA 1=1,则可得关于k 3的方程,求出其解后可得正确的选项. 【详解】设OD 1=DC 1=CB 1=BA 1=1,则CC 1=k 1,BB 1=k 2,AA 1=k 3,依题意,有k3−0.2=k1,k3−0.1=k2,且DD1+CC1+BB1+AA1OD1+DC1+CB1+BA1=0.725,所以0.5+3k3−0.34=0.725,故k3=0.9,故选:D4.【2022年北京】设{a n}是公差不为0的无穷等差数列,则“{a n}为递增数列”是“存在正整数N0,当n>N0时,a n>0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C【解析】【分析】设等差数列{a n}的公差为d,则d≠0,利用等差数列的通项公式结合充分条件、必要条件的定义判断可得出结论.【详解】设等差数列{a n}的公差为d,则d≠0,记[x]为不超过x的最大整数.若{a n}为单调递增数列,则d>0,若a1≥0,则当n≥2时,a n>a1≥0;若a1<0,则a n=a1+(n−1)d,由a n=a1+(n−1)d>0可得n>1−a1d ,取N0=[1−a1d]+1,则当n>N0时,a n>0,所以,“{a n}是递增数列”⇒“存在正整数N0,当n>N0时,a n>0”;若存在正整数N0,当n>N0时,a n>0,取k∈N∗且k>N0,a k>0,假设d<0,令a n=a k+(n−k)d<0可得n>k−a kd ,且k−a kd>k,当n>[k−a kd]+1时,a n<0,与题设矛盾,假设不成立,则d>0,即数列{a n}是递增数列.所以,“{a n}是递增数列”⇐“存在正整数N0,当n>N0时,a n>0”.所以,“{a n}是递增数列”是“存在正整数N0,当n>N0时,a n>0”的充分必要条件.故选:C.5.【2022年浙江】已知数列{a n}满足a1=1,a n+1=a n−13a n2(n∈N∗),则()A.2<100a100<52B.52<100a100<3C.3<100a100<72D.72<100a100<4【答案】B【解析】【分析】先通过递推关系式确定{a n}除去a1,其他项都在(0,1)范围内,再利用递推公式变形得到1 a n+1−1a n=13−a n>13,累加可求出1a n>13(n+2),得出100a100<3,再利用1a n+1−1a n=13−a n<1 3−3n+2=13(1+1n+1),累加可求出1a n−1<13(n−1)+13(12+13+⋯+1n),再次放缩可得出100a100>52.【详解】∵a1=1,易得a2=23∈(0,1),依次类推可得a n∈(0,1)由题意,a n+1=a n(1−13a n),即1a n+1=3a n(3−a n)=1a n+13−a n,∴1a n+1−1a n=13−a n>13,即1a2−1a1>13,1a3−1a2>13,1a4−1a3>13,…,1a n−1a n−1>13,(n≥2),累加可得1a n −1>13(n−1),即1a n>13(n+2),(n≥2),∴a n<3n+2,(n≥2),即a100<134,100a100<10034<3,又1a n+1−1a n=13−a n<13−3n+2=13(1+1n+1),(n≥2),∴1a2−1a1=13(1+12),1a3−1a2<13(1+13),1a4−1a3<13(1+14),…,1a n−1a n−1<13(1+1n),(n≥3),累加可得1a n −1<13(n−1)+13(12+13+⋯+1n),(n≥3),∴1a100−1<33+13(12+13+⋯+199)<33+13(12×4+16×94)<39,即1a100<40,∴a100>140,即100a100>52;综上:52<100a100<3.故选:B.【点睛】关键点点睛:解决本题的关键是利用递推关系进行合理变形放缩.6.【2022年全国乙卷】记S n为等差数列{a n}的前n项和.若2S3=3S2+6,则公差d=_______.【答案】2【解析】【分析】转化条件为2(a1+2d)=2a1+d+6,即可得解.【详解】由2S3=3S2+6可得2(a1+a2+a3)=3(a1+a2)+6,化简得2a3=a1+a2+6,即2(a1+2d)=2a1+d+6,解得d=2.故答案为:2.7.【2022年北京】己知数列{a n}各项均为正数,其前n项和S n满足a n⋅S n=9(n=1,2,⋯).给出下列四个结论:①{a n}的第2项小于3;②{a n}为等比数列;③{a n}为递减数列;④{a n}中存在小于1100的项.其中所有正确结论的序号是__________.【答案】①③④【解析】【分析】推导出a n=9an −9a n−1,求出a1、a2的值,可判断①;利用反证法可判断②④;利用数列单调性的定义可判断③.【详解】由题意可知,∀n∈N∗,a n>0,当n=1时,a12=9,可得a1=3;当n≥2时,由S n=9an 可得S n−1=9an−1,两式作差可得a n=9an−9a n−1,所以,9a n−1=9a n−a n,则9a2−a2=3,整理可得a22+3a2−9=0,因为a2>0,解得a2=3√5−32<3,①对;假设数列{a n}为等比数列,设其公比为q,则a22=a1a3,即(9S2)2=81S1S3,所以,S22=S1S3,可得a12(1+q)2=a12(1+q+q2),解得q=0,不合乎题意,故数列{a n}不是等比数列,②错;当n ≥2时,a n =9a n−9an−1=9(a n−1−a n )a n a n−1>0,可得a n <a n−1,所以,数列{a n }为递减数列,③对;假设对任意的n ∈N ∗,a n ≥1100,则S 100000≥100000×1100=1000, 所以,a 100000=9S100000≤91000<1100,与假设矛盾,假设不成立,④对.故答案为:①③④. 【点睛】关键点点睛:本题在推断②④的正误时,利用正面推理较为复杂时,可采用反证法来进行推导.8.【2022年全国甲卷】记S n 为数列{a n }的前n 项和.已知2S n n+n =2a n +1.(1)证明:{a n }是等差数列;(2)若a 4,a 7,a 9成等比数列,求S n 的最小值. 【答案】(1)证明见解析; (2)−78. 【解析】 【分析】(1)依题意可得2S n +n 2=2na n +n ,根据a n ={S 1,n =1S n −S n−1,n ≥2 ,作差即可得到a n −a n−1=1,从而得证;(2)由(1)及等比中项的性质求出a 1,即可得到{a n }的通项公式与前n 项和,再根据二次函数的性质计算可得. (1) 解:因为2S n n+n =2a n +1,即2S n +n 2=2na n +n ①,当n ≥2时,2S n−1+(n −1)2=2(n −1)a n−1+(n −1)②,①−②得,2S n +n 2−2S n−1−(n −1)2=2na n +n −2(n −1)a n−1−(n −1), 即2a n +2n −1=2na n −2(n −1)a n−1+1,即2(n −1)a n −2(n −1)a n−1=2(n −1),所以a n −a n−1=1,n ≥2且n ∈N*, 所以{a n }是以1为公差的等差数列. (2)解:由(1)可得a 4=a 1+3,a 7=a 1+6,a 9=a 1+8,又a 4,a 7,a 9成等比数列,所以a 72=a 4⋅a 9,即(a 1+6)2=(a 1+3)⋅(a 1+8),解得a 1=−12, 所以a n =n −13,所以S n =−12n +n(n−1)2=12n 2−252n =12(n −252)2−6258,所以,当n =12或n =13时(S n )min =−78.9.【2022年新高考1卷】记S n 为数列{a n }的前n 项和,已知a 1=1,{S na n}是公差为13的等差数列.(1)求{a n }的通项公式; (2)证明:1a 1+1a 2+⋯+1a n<2.【答案】(1)a n =n (n+1)2(2)见解析 【解析】 【分析】(1)利用等差数列的通项公式求得S na n=1+13(n −1)=n+23,得到S n =(n+2)a n3,利用和与项的关系得到当n ≥2时,a n =S n −S n−1=(n+2)a n3−(n+1)a n−13,进而得:a nan−1=n+1n−1,利用累乘法求得a n =n (n+1)2,检验对于n =1也成立,得到{a n }的通项公式a n =n (n+1)2;(2)由(1)的结论,利用裂项求和法得到1a 1+1a 2+⋯+1a n=2(1−1n+1),进而证得.(1)∵a 1=1,∴S 1=a 1=1,∴S1a 1=1,又∵{S na n}是公差为13的等差数列,∴S na n=1+13(n −1)=n+23,∴S n =(n+2)a n3,∴当n ≥2时,S n−1=(n+1)a n−13,∴a n =S n −S n−1=(n+2)a n3−(n+1)a n−13,整理得:(n −1)a n =(n +1)a n−1, 即a nan−1=n+1n−1,∴a n =a 1×a2a 1×a3a 2×…×an−1a n−2×ana n−1=1×32×43×…×nn−2×n+1n−1=n(n+1)2,显然对于n=1也成立,∴{a n}的通项公式a n=n(n+1)2;(2)1 a n =2n(n+1)=2(1n−1n+1),∴1a1+1a2+⋯+1a n=2[(1−12)+(12−13)+⋯(1n−1n+1)]=2(1−1n+1)<210.【2022年新高考2卷】已知{a n}为等差数列,{b n}是公比为2的等比数列,且a2−b2= a3−b3=b4−a4.(1)证明:a1=b1;(2)求集合{k|b k=a m+a1,1≤m≤500}中元素个数.【答案】(1)证明见解析;(2)9.【解析】【分析】(1)设数列{a n}的公差为d,根据题意列出方程组即可证出;(2)根据题意化简可得m=2k−2,即可解出.(1)设数列{a n}的公差为d,所以,{a1+d−2b1=a1+2d−4b1a1+d−2b1=8b1−(a1+3d),即可解得,b1=a1=d2,所以原命题得证.(2)由(1)知,b1=a1=d2,所以b k=a m+a1⇔b1×2k−1=a1+(m−1)d+a1,即2k−1=2m,亦即m=2k−2∈[1,500],解得2≤k≤10,所以满足等式的解k=2,3,4,⋯,10,故集合{k |b k=a m+a1,1≤m≤500}中的元素个数为10−2+1=9.11.【2022年北京】已知Q:a1,a2,⋯,a k为有穷整数数列.给定正整数m,若对任意的n∈{1, 2,⋯,m},在Q中存在a i,a i+1,a i+2,⋯,a i+j(j≥0),使得a i+a i+1+a i+2+⋯+a i+j=n,则称Q为m−连续可表数列.(1)判断Q:2,1,4是否为5−连续可表数列?是否为6−连续可表数列?说明理由;(2)若Q:a1,a2,⋯,a k为8−连续可表数列,求证:k的最小值为4;(3)若Q:a1,a2,⋯,a k为20−连续可表数列,且a1+a2+⋯+a k<20,求证:k≥7.【答案】(1)是5−连续可表数列;不是6−连续可表数列.(2)证明见解析.(3)证明见解析.【解析】【分析】(1)直接利用定义验证即可;(2)先考虑k≤3不符合,再列举一个k=4合题即可;(3)k≤5时,根据和的个数易得显然不行,再讨论k=6时,由a1+a2+⋯+a6<20可知里面必然有负数,再确定负数只能是−1,然后分类讨论验证不行即可.(1)a2=1,a1=2,a1+a2=3,a3=4,a2+a3=5,所以Q是5−连续可表数列;易知,不存在i,j使得a i+a i+1+⋯+a i+j=6,所以Q不是6−连续可表数列.(2)若k≤3,设为Q:a,b,c,则至多a+b,b+c,a+b+c,a,b,c,6个数字,没有8个,矛盾;当k=4时,数列Q:1,4,1,2,满足a1=1,a4=2,a3+a4=3,a2=4,a1+a2=5,a1+a2+ a3=6,a2+a3+a4=7,a1+a2+a3+a4=8,∴k min=4.(3)Q:a1,a2,⋯,a k,若i=j最多有k种,若i≠j,最多有C k2种,所以最多有k+C k2=k(k+1)种,2=15个数,矛盾,若k≤5,则a1,a2,…,a k至多可表5(5+1)2=21个数,从而若k<7,则k=6,a,b,c,d,e,f至多可表6(6+1)2而a+b+c+d+e+f<20,所以其中有负的,从而a,b,c,d,e,f可表1~20及那个负数(恰21个),这表明a~f中仅一个负的,没有0,且这个负的在a~f中绝对值最小,同时a~f中没有两数相同,设那个负数为−m(m≥1),则所有数之和≥m+1+m+2+⋯+m+5−m=4m+15,4m+15≤19⇒m=1,∴{a,b,c,d,e,f}={−1,2,3,4,5,6},再考虑排序,排序中不能有和相同,否则不足20个,∵1=−1+2(仅一种方式),∴−1与2相邻,若−1不在两端,则"x , −1 , 2 , __,__,__"形式,若x=6,则5=6+(−1)(有2种结果相同,方式矛盾),∴x≠6,同理x≠5,4,3,故−1在一端,不妨为"−1 ,2, A, B, C, D"形式,若A=3,则5=2+3(有2种结果相同,矛盾),A=4同理不行,A=5,则6=−1+2+5(有2种结果相同,矛盾),从而A=6,由于7=−1+2+6,由表法唯一知3,4不相邻,、故只能−1,2,6,3,5,4,①或−1,2,6,4,5,3,②这2种情形,对①:9=6+3=5+4,矛盾,对②:8=2+6=5+3,也矛盾,综上k≠6∴k≥7.【点睛】关键点睛,先理解题意,是否为m−可表数列核心就是是否存在连续的几项(可以是一项)之和能表示从1到m中间的任意一个值.本题第二问k≤3时,通过和值可能个数否定k≤3;第三问先通过和值的可能个数否定k≤5,再验证k=6时,数列中的几项如果符合必然是{−1,2,3,4,5,6}的一个排序,可验证这组数不合题.12.【2022年浙江】已知等差数列{a n}的首项a1=−1,公差d>1.记{a n}的前n项和为S n(n ∈N∗).(1)若S4−2a2a3+6=0,求S n;(2)若对于每个n∈N∗,存在实数c n,使a n+c n,a n+1+4c n,a n+2+15c n成等比数列,求d的取值范围.(n∈N∗)【答案】(1)S n=3n2−5n2(2)1<d≤2【解析】【分析】(1)利用等差数列通项公式及前n项和公式化简条件,求出d,再求S n;(2)由等比数列定义列方程,结合一元二次方程有解的条件求d的范围.(1)因为S4−2a2a3+6=0,a1=−1,所以−4+6d−2(−1+d)(−1+2d)+6=0,所以d 2−3d =0,又d >1, 所以d =3, 所以a n =3n −4, 所以S n =(a 1+a n )n2=3n 2−5n2,(2)因为a n +c n ,a n+1+4c n ,a n+2+15c n 成等比数列, 所以(a n+1+4c n )2=(a n +c n )(a n+2+15c n ),(nd −1+4c n )2=(−1+nd −d +c n )(−1+nd +d +15c n ),c n 2+(14d −8nd +8)c n +d 2=0,由已知方程c n 2+(14d −8nd +8)c n +d 2=0的判别式大于等于0,所以Δ=(14d −8nd +8)2−4d 2≥0,所以(16d −8nd +8)(12d −8nd +8)≥0对于任意的n ∈N ∗恒成立, 所以[(n −2)d −1][(2n −3)d −2]≥0对于任意的n ∈N ∗恒成立, 当n =1时,[(n −2)d −1][(2n −3)d −2]=(d +1)(d +2)≥0, 当n =2时,由(2d −2d −1)(4d −3d −2)≥0,可得d ≤2 当n ≥3时,[(n −2)d −1][(2n −3)d −2]>(n −3)(2n −5)≥0, 又d >1 所以1<d ≤21.(2022·河南·通许县第一高级中学模拟预测(文))在等差数列{}n a 中,35a =,1511109a a +=,则15a a ⋅=( )A .92B .9C .10D .12【答案】B 【解析】 【分析】将已知等式变形,由等差数列下标和计算即可得到结果. 【详解】 由1511109a a +=得:153********a a a a a a a +==,315995aa a ∴⋅==.故选:B.2.(2022·福建省德化第一中学模拟预测)设等差数列{}n a 的前n 项和为n S ,若728S =,则237a a a ++的值为( )A .8B .10C .12D .14【答案】C 【解析】 【分析】根据等差数列的求和公式,求得44a =,结合等差数列的性质,化简得到27433a a a a =++,即可求解. 【详解】因为728S =,由等差数列的性质和求和公式得17747()7282a a S a +===,即44a =, 则112374393(3)312a d a a a a a d =+=+==++. 故选:C.3.(2022·北京·北大附中三模)已知数列{}n a 满足2123n a a a a n =,其中1,2,3,n =,则数列{}n a ( ) A .有最大项,有最小项 B .有最大项,无最小项 C .无最大项,有最小项 D .无最大项,无最小项【答案】A 【解析】 【分析】求得数列{}n a 的通项公式,再分析数列的单调性即可 【详解】依题意,因为2123n a a a a n =,其中1,2,3,n =,当1n =时,2111a ==,当2n ≥时,21231(1)n a a a a n -=-,2123n a a a a n =,两式相除有22211,2(1)1n n a n n n ⎛⎫=+≥ ⎪--⎝⎭=,易得n a 随着n 的增大而减小,故24n a a ≤=,且11n a a >=,故最小项为11a =,最大项为24a = 故选:A4.(2022·辽宁实验中学模拟预测)已知数列{}()*N n a n ∈是首项为1的正项等差数列,公差不为0,若1a 、数列{}2n a 的第2项、数列{}2n a 的第5项恰好构成等比数列,则数列{}n a 的通项公式为( ) A .21n a n =- B .21n a n =+ C .1n a n =- D .1n a n =+【答案】A 【解析】 【分析】根据题意设()11n a n d =+-,所以()2121n d a n =+-,()2211n d a n =+-,所以1,13d +,124d +构成等比数列,即()()2131124d d +=⨯+,求出d 即可求解. 【详解】设等差数列{}n a 的公差为()0d d >,所以()11n a n d =+-,所以()2121n d a n =+-, ()2211n d a n =+-,又1a 、数列{}2n a 的第2项、数列{}2n a 的第5项恰好构成等比数列,即1,13d +,124d +构成等比数列,所以()()2131124d d +=⨯+, 解得2d =,0d =(舍去),所以21n a n =-. 故选:A.5.(2022·四川·绵阳中学实验学校模拟预测(文))已知数列{}n a 的前n 项和为n S ,且11a =,0n a ≠,11n n n a a S λ+=-,若存在实数λ使{}n a 是等差数列,则{}n a 的公差为( )A .1B .2C .2λD .λ【答案】B 【解析】 【分析】利用1(2)n n n S S a n --=≥得{}n a 的递推关系,从而求得λ与公差d 的关系,再由21a a d -=求得d .【详解】 设公差为d ,因为11n n n a a S λ+=-,所以2n ≥时,111n n n a a S λ--=-, 两式相减得:111()()n n n n n n a a a S S a λλ+---=-=, 因为0n a ≠,所以112n n a a d λ+--==,由1211a a S λ=-121da =-得221a d =-.从而21211a a d d -=--=,2d =, 故选:B .6.(2022·湖南·邵阳市第二中学模拟预测)已知正项等比数列{}n a 满足3212a a a =+,若存在m a 、n a ,使得2116m n a a a ⋅=,则14m n+的最小值为( ) A .83B .16C .114 D .32【答案】D 【解析】 【分析】设等比数列{}n a 的公比为q ,则0q >,根据已知条件求出q 的值,由已知条件可得出6m n +=,将代数式14m n +与()16m n +相乘,利用基本不等式可求得14m n+的最小值. 【详解】设等比数列{}n a 的公比为q ,则0q >,由3212a a a =+可得220q q --=,解得2q,因为2116m n a a a ⋅=,则2112112216m n a a --⋅⋅=,24m n ∴+-=,可得6m n +=,由已知m 、N n *∈,所以,()1411414566m n m n m n m n n m ⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭13562⎛≥+= ⎝, 当且仅当24n m ==时,等号成立, 因此,14m n +的最小值为32. 故选:D.7.(2022·浙江·三模)设数列{}n a 满足()21192,24n n n a a a n N a *+=-+∈=,记数列221n a ⎧⎫⎨⎬-⎩⎭的前n 项的和为n S ,则( ) A .10127a < B .存在k *∈N ,使1k k a a += C .1012S < D .数列{}n a 不具有单调性【答案】C 【解析】 【分析】 根据题意求得54n a ≥,进而得到132n a +-与32n a -同号,结合作差法比较法,可判定B 、D 错误;由()()11214n n n n a a a a +-=--+,得到114n n a a +-≥,利用叠加法,可判定A 错误;化简得到1111133222n n n a a a +=----,利用裂项法求和,可判定C 正确. 【详解】由于()211551,244n n a a a +=-+≥=,则54n a ≥,又由21333122422n n n n n a a a a a +⎛⎫⎛⎫-=-+=-- ⎪⎪⎝⎭⎝⎭,则132n a +-与32n a -同号. 又由12a =,则32n a >,可得221933042n n nn n a a a a a +⎛⎫-=-+=-> ⎪⎝⎭, 所以数列{}n a 单调递增,故B 、D 错误; 又因为()()11214n n n n a a a a +-=--+, 由数列{}n a 单调递增,且12a =,所以20,10n n a a ->->,所以114n n a a +-≥, 累加得1011100254a a -≥=,所以10127a ≥,故A 错误; 由21924n nn a a a +=-+可得1111133222n n n a a a +=----, 因为12n a a >=,所以101110211112333222S a a a =-<=---,故C 正确.故选:C .8.(2022·吉林·东北师大附中模拟预测(理))数列{}n a 为等差数列,前n 项的和为n S ,若10110a <,101110120a a +>,则当0n S <时,n 的最大值为( )A .1011B .1012C .2021D .2022【答案】C 【解析】 【分析】分析数列{}n a 的单调性,计算2021S 、2022S ,即可得出结论. 【详解】因为10110a <,101110120a a +>,则10120a >,故数列{}n a 为递增数列, 因为()12021202110112021202102a a S a +==<,()()120222022101110122022101102a a S a a +==+>,且当1012n ≥时,10120n a a ≥>,所以,当2022n ≥时,20220n S S ≥>, 所以,满足当0n S <时,n 的最大值为2021. 故选:C.9.(2022·辽宁·渤海大学附属高级中学模拟预测)已知等差数列{}n a 的前n 项和为n S ,且满足()552sin 2350a a +--=,()201820182sin 2370a a +--=,则下列结论正确的是( ) A .20222022S =,且52018a a > B .20222022S =-,且52018a a < C .20224044S =-,且52018a a > D .20224044S =,且52018a a <【答案】C 【解析】 【分析】根据题意构造函数()2sin 3f x x x =-,确定函数的奇偶性及单调性,进而根据()()520182,2f a f a ++的关系即可确定答案.【详解】设函数()2sin 3f x x x =-,则()f x 为奇函数,且()2cos 30f x x '=-<,所以()f x 在R 上递减,由已知可得()()552sin 2321a a +-+=-,()()201820182sin 2321a a +-+=,有()521f a +=-,()201821f a +=,所以()()5201822f a f a +<+,且()()5201822f a f a +=-+,所以520185201822a a a a +>+⇒>,且()5201822a a +=-+,所以520184a a +=-,120222022520182022()1011()40442a a S a a +==+=-.故选:C.10.(2022·全国·模拟预测)已知数列{}n a 满足对任意的*n ∈N ,总存在*m ∈N ,使得n m S a =,则n a 可能等于( ) A .2022n B .2022n C .22022n D .2022n【答案】B 【解析】 【分析】A 选项,利用等比数列求和公式列出方程,令n =2时,得到120222023m -=,m 不存在,A 错误;B 选项,利用等差数列求和公式进行求解得到方程()101112022n n m +=,取()12n n m +=即可,C 选项,利用平方和公式得到()()21216n n n m ++=,当n =2时,25m =,m 不存在;D 选项,当n =2时,1112m+=,m 不存在. 【详解】对于选项A :当2022nn a =时,则{}n a 是等比数列,因为n m S a =所以()20222022120222021n m -=,当n =2时,120222023m -=,m 不存在,A 错误;对于选项B :当2022n a n =时,{}n a 是等差数列,因为n m S a =,则()()120221*********n n n S n n m +=⨯=+=,取()12n n m +=即可,B 正确; 对于选项C :当22022n a n =时,n m S a =,则()()()2222121202212202220226n n n n S n m ++=⨯++⋅⋅⋅+=⨯=,当n =2时,25m =,m 不存在,C 错误; 对于选项D :当2022n a n =时,n m S a =,则11120222022123n m ⎛⎫+++⋅⋅⋅+= ⎪⎝⎭,当n =2时,1112m+=,m 不存在,D 错误. 故选:B .11.(2022·江苏·南京外国语学校模拟预测)已知数列{}n a 各项都不为0,121,3a a ==且满足141n n n a a S +=-,(1)求{}n a 的通项公式; (2)若114n n n a b a -=-,{}n b 的前n 项和为n T ,求n T 取得最小值时的n 的值. 【答案】(1)21n a n =-; (2)7n =. 【解析】 【分析】(1)由141n n n a a S +=-得2n ≥时,1141n n n a a S --=-, ①-②得114n n a a +--=,分奇偶项即可求出n a (2)由114n n n a b a -=-得22215n n b n -=-,当7n ≤时,0n b ≤,当7n >时,0n b > 当7n =时,n T 取得最小值 (1)141n n n a a S +=-①当2n ≥时,1141n n n a a S --=-② ①-②114n n n n n a a a a a +-⇒-=0n a ≠114n n a a +-∴-={}n a ∴的奇数项和偶数项各自成等差数列且121,3a a ==()()21141432211,21(n n a n n n a n n -∴=+-=-=--∴=-为奇数),()234141221,21n n a n n n a n =+-=-=⋅-∴=-(n 为偶数),21n a n ∴=-(2)22131215215n n b n n -==+--,当7n ≤时,0n b ≤, 当7n >时,0n b >∴当7n =时,n T 取得最小值12.(2022·福建·厦门双十中学模拟预测)等差数列{}n a 的前n 项和为n S ,已知19a =,2a 为整数,且5n S S ≤. (1)求{}n a 的通项公式; (2)设11n n n b a a +=,求数列{}n b 的前n 项和n T . 【答案】(1)112n a n =- (2)()992n nT n =-【解析】 【分析】(1)根据题意得公差d 为整数,且50a ≥,60a ≤,分析求出d 即可;(2)111292112n b n n ⎛⎫=- ⎪--⎝⎭,再利用裂项相消法求和即可.(1)由19a =,2a 为整数知,等差数列{}n a 的公差d 为整数. 又5n S S ≤,故50a ≥,60a ≤. 于是940d +≥,950d +≤,解得9945d -≤≤-, 因此2d =-,故数列{}n a 的通项公式为112n a n =-. (2)()()111111292292112n b n n n n ⎛⎫==- ⎪----⎝⎭,于是1211111112795792112n n T b b b n n ⎡⎤⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+=-+-+⋅⋅⋅+- ⎪ ⎪ ⎪⎢⎥--⎝⎭⎝⎭⎝⎭⎣⎦()1112929992n n n ⎛⎫=-= ⎪--⎝⎭. 13.(2022·宁夏·银川一中模拟预测(理))已知数列{}n a 是等差数列,{}n b 是等比数列,且22b =,34b =,11a b =,851a b +=.(1)求数列{}n a 、{}n b 的通项公式; (2)设11n n n a c b ++=,数列{}n c 的前n 项和为n S ,若不等式12n n nS λ-<+对任意的*n ∈恒成立,求实数λ的取值范围.【答案】(1)21n a n =-,12n n b -=;(2)(),2-∞. 【解析】 【分析】(1)利用等差数列()11n a a n d +-=,等比数列11n n b b q -=代入计算;(2)利用错位相减法可得1242n n n S -+=-,令2142nn c -=-,由{}n c 为递增数列,结合恒成立思想可得答案. (1)解:因为数列{}n b 是等比数列,则可得2123124b b q b b q ==⎧⎨==⎩,解得112b q =⎧⎨=⎩, 所以12n n b -=.因为数列{}n a 是等差数列,且111a b ==,8117116a a d +=++=,则公差2d =, 所以()12121n a n n =+-=-.故21n a n =-,12n n b -=;(2)解:由(1)得:1112n n n n a nc b -++==, 数列{}n c 的前n 项和为121231222n n nS -=+++⋅⋅⋅+①所以22111231222222n n n n n S --=+++⋅⋅⋅++②由①-②得:121111112121222222222n n n n n n n n n S -+⎛⎫=+++⋅⋅⋅+-=--=- ⎪⎝⎭,所以1242n n n S -+=-.不等式12n n n S λ-<+恒成立,化为不等式2142n λ-<-恒成立,令2142n n c -=-且{}n c 为递增数列,即转化为()min n c λ<当1n =时,()12min 1422n c -=-=,所以2λ<. 综上可得:实数λ的取值范围是(),2-∞.14.(2022·湖北·襄阳四中模拟预测)已知等差数列{}n a 满足11a =,且前四项和为28,数列{}n b 的前n 项和n S 满足()233n n S b R λλ=-∈.(1)求数列{}n a 的通项公式,并判断{}n b 是否为等比数列;(2)对于集合A ,B ,定义集合{}A B x x A x B -=∈∉且.若1λ=,设数列{}n a 和{}n b 中的所有项分别构成集合A ,B ,将集合A B -的所有元素按从小到大依次排列构成一个新数列{}n c ,求数列{}n c 的前30项和30T .【答案】(1)43n a n =-,判断答案见解析 (2)1926 【解析】 【分析】(1)根据等数列的前n 项和公式和通项公式可求出{}n a 的通项公式,根据等比数列的定义可判断{}n b 是否为等比数列;(2)结合等差数列的前n 项和,等差数列与等比数列的通项公式可求出结果. (1)∵{}n a 是等差数列,11a =,且前四项和为28, ∵43441282S d ⨯=⨯+⨯=,解得4d =∵()14143n a n n =+-=-.∵233n nn S b λ=-,∵当2n ≥时,11233n n S b λ--=-,两式相减得()12332n n n b b b n -=-≥, 即()132n n b b n -=≥,又11233b b λ=-∵13b λ=∵当0λ=时,数列{}n b 的通项公式为0n b =.不是等比数列当0λ≠时,数列{}n b 是首项为,公比为3的等比数列,∵3nn b λ=.(2)由(1)知3nn b =,则4581,243b b ==因为304303127a =⨯-=, 所以4305b a b <<,所以,30T 中要去掉{}n b 的项最多4项,即3,9,27,81, 其中9,81是{}n a 和{}n b 的公共项,所以数列{}n c 的前30项和30T 由{}n a 的前32项和,去掉9,81, ()()()330122321+1259+81=-90=19262a a a T ⨯=++⋅⋅⋅+-所以数列{}n c 的前30项和30T 为1926.15.(2022·浙江省江山中学模拟预测)在数列{}n a 中,121,2a a ==,且对任意的n *∈N ,都有2132n n n a a a ++=-. (1)求数列{}n a 的通项公式;(2)若{}1234A x x x x x x x =<<<<或,定义集合A 的长度为4321x x x x -+-.已知数列{}n b 的通项公式为()()()()12111n n na xb n a x a x a x *=∈+++N ,若关于x 不等式1220221b bb +++>的解集A ,求集合A 的长度. 【答案】(1)12n na(2)101121(1)34-【解析】 【分析】(1)构造等比数列结合累加法即可求通项;(2)根据不等式特点,巧用作差转换成高次不等式求解. (1)21211()322n n n n n n n a a a a a a a +++++==-⇒--,211a a -=,所以112n n n a a -+-=,12112132112()()()11221212n n n n n n a a a a a a a a -----=+-+-+⋅⋅⋅+-=+++⋅⋅⋅+=+=-,即12n na ;(2) 因为()()()()12111n n na xb n a x a x a x *=∈+++N ,1220221b bb +++>即就是2021202124211(1)(21)(1)(21)(41)(1)(21)(2+1)x x x x x x x x x x x x x +++⋅⋅⋅+>++++++++⋅⋅⋅, 2021202124211(1)(21)(1)(21)(41)(1)(21)(2+1)11x x x x x x x x x x x x x x ++⋅⋅⋅+>-=+++++++⋅⋅⋅++,2021202142121(1)(21)(41)(1)(21)(2+1)1(1)(21)(1)(21)x x x x x x x x x x x x x x +⋅⋅⋅+>-=+++++⋅⋅⋅+++++,⋅⋅⋅,202110(1)(21)(41)(2+1)x x x x >+++⋅⋅⋅,即2021(1)(21)(41)(2+1)0x x x x +++⋅⋅⋅<,根据数轴标根法可知不等式的解集为1|12A x x ⎧=-<<-⎨⎩或1148x -<<-或⋅⋅⋅或202020211122x ⎫-<<-⎬⎭,集合A 的长度为10112021101111[1()]1112124(1)12823414-++⋅⋅⋅+==--. 【点睛】数列求通项分方法有构造等比或等差数列法,累加法,累乘法等.。
高考数学数列专题

高考数学数列专题在高考数学中,数列是一个重要的知识点,也是许多同学感到头疼的部分。
但其实,只要掌握了正确的方法和思路,数列问题并不难攻克。
数列,简单来说,就是按照一定规律排列的一组数。
它可以是有限个数组成的,称为有限数列;也可以有无穷多个数,称为无穷数列。
我们先来看看等差数列。
等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列。
这个常数就叫做等差数列的公差,通常用字母 d 表示。
比如说,数列 2,4,6,8,10就是一个公差为 2 的等差数列。
在等差数列中,通项公式是非常重要的,它可以帮助我们快速求出数列中的任意一项。
通项公式为:an = a1 +(n 1)d ,其中 an 表示第 n 项,a1 表示首项,n 表示项数,d 表示公差。
等差数列的前 n 项和公式也很关键,它是:Sn = n(a1 + an) / 2 或者 Sn = na1 + n(n 1)d / 2 。
这两个公式在解题时可以根据具体情况灵活选择。
接下来是等比数列。
等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的数列,这个常数叫做公比,通常用字母 q 表示(q ≠ 0)。
例如,数列 2,4,8,16,32就是一个公比为 2 的等比数列。
等比数列的通项公式为:an = a1 × q^(n 1) 。
等比数列的前 n 项和公式则分为两种情况。
当 q = 1 时,Sn = na1 ;当q ≠ 1 时,Sn = a1(1 q^n) /(1 q) 。
在解决数列问题时,通常需要我们根据已知条件求出数列的通项公式或者前 n 项和。
这就需要我们灵活运用数列的性质和公式,通过观察、分析题目中的数据,找到规律。
比如,给出数列的前几项,让我们判断它是等差数列还是等比数列,并求出通项公式。
这时候,我们可以先计算相邻两项的差值或者比值,看是否为常数。
如果差值是常数,那就是等差数列;如果比值是常数,那就是等比数列。
再比如,已知等差数列的首项、公差和项数,求前n 项和。
数列高考专题突破数列的综合应用课件pptx

2. 在解决一些与长度相 关的几何问题时,可以 通过数列的递推关系式 得出结论,例如利用等 差数列的通项公式求出 某条线段的长度。
3. 数列还可以用于解决 一些与图形数量关系相 关的问题,例如利用等 差数列和等比数列的求 和公式可以求出某个图 形中线条的数量。
数列在经济中的应用
01
02
总结词:数列在经济中 的应用主要表现在利用 数列模型描述经济现象 的变化规律,以及求解 与经济决策相关的问题 。
04
数列的综合应用
数列在几何中的应用
01
02
总结词:数列在几何中 的应用涉及利用数列的 性质解决与几何图形相 关的问题,如求面积、 周长等。
详细描述
03
04
05
1. 利用等差数列和等比 数列的性质,可以求出 一些几何图形的面积或 周长,例如等差数列的 前n项和公式可以用于 求平行四边形的面积, 等比数列的前n项和公 式可以用于求圆的面积 。
前n项和公式
03
$S_n = \frac{a_1(1 - q^n)}{1 - q}$。
数列的极限与收敛性
极限的定义
如果当$n$趋于无穷大时,数列$a_n$的项无限接近于某个确定的数$A$,则称$A$为数 列$a_n$的极限。
收敛性的定义
如果数列$a_n$有极限,则称该数列收敛;否则称该数列发散。
极限的存在性定理
数列的应用
实际生活中的应用
如定期存款的复利计算,贷款的月还款额 计算,物价的指数上涨等都涉及到数列的 知识。
VS
数学领域中的应用
如在微积分、统计学、计算机科学等领域 中,数列的知识都起到了重要的作用。
02
等差数列与等比数列的基 本性质
等差数列的基本性质
高考数学数列知识点归纳

高考数学中的数列知识点主要包括以下内容:
1. 数列的定义与性质:
-数列的概念:数列是按照一定规律排列的数的集合。
-项数与前n项和:第n项表示数列中的第n个数,前n项和表示数列前n项的和。
-通项公式与递推公式:通项公式是指可以通过给定的项数n来直接计算某一项的公式,递推公式则是通过前一项或前几项来计算下一项的公式。
2. 常见数列:
-等差数列:数列中的每个数都与其前一个数之差相等。
-等比数列:数列中的每个数都与其前一个数之比相等。
-斐波那契数列:数列中的每个数都是前两个数之和,即第三项开始满足an = an-1 + an-2。
3. 数列的性质和运算:
-数列的有界性:数列可以是有界的(上有界、下有界)、无界的或发散的。
-数列的单调性:数列可以是递增的、递减的或保持不变。
-数列的极限:数列可能有极限(有限或无穷)或不存在极限。
4. 数列的求和:
-等差数列的求和公式:利用等差数列的性质,可以得到等差数列前n项和的通用公式。
-等比数列的求和公式:利用等比数列的性质,可以得到等比数列前n项和的通用公式。
5. 数列的应用:
-常见问题的建模与解决:通过将实际问题转化为数列的形式,利用数列的性质和公式来解决问题。
以上是高考数学中与数列相关的主要知识点。
掌握这些知识点,能够帮助学生在解答数列相关题目时更加熟练和准确。
需要注意的是,除了理论知识,还需要进行大量的练习和实践,以提高对数列概念的理解和应用能力。
数列高考大题知识点归纳

数列高考大题知识点归纳数列是高中数学中的重要内容之一,也是高考数学中常考的知识点。
通过对数列的学习和理解,可以掌握数学思维和解题方法,提高数学成绩。
下面将就数列相关知识点进行归纳和解析。
一、数列的基本概念和性质数列是按一定顺序排列的一列数,可以用一个公式来表示,常见的数列有等差数列、等比数列等。
等差数列的通项公式是an=a1+(n-1)d,其中a1是首项,d是公差。
等比数列的通项公式是an=a1*r^(n-1),其中a1是首项,r是公比。
数列有很多基本性质,我们需要掌握并运用于解题中。
例如,若数列an单调增加(减少),则其数列项an与an-1的大小关系为an>an-1(an<an-1);若数列an单调有界,则其数列项an具有极限。
二、数列的前n项和数列的前n项和是指数列前n个数之和,常用Sn表示。
对于等差数列,其前n项和Sn可以用以下公式求解:Sn=n/2(a1+an),其中a1是首项,an是第n项。
对于等比数列,其前n项和Sn可以用以下公式求解:Sn=a1(1-r^n)/(1-r),其中a1是首项,r是公比。
三、等差数列和等比数列的应用等差数列和等比数列在实际问题中有广泛的应用。
在解决一些常见问题时,我们可以通过建立等差数列或等比数列来简化问题,进而求解。
例如,可以通过建立等差数列来计算连续整数的和,通过建立等比数列来解决与指数、增长等相关的问题。
四、常见数列及其性质和应用1. 斐波那契数列斐波那契数列是指从第三项开始,每一项都等于前两项之和。
该数列具有许多有趣的性质,如黄金分割比例等。
斐波那契数列在数学和自然科学中有广泛的应用,如阿波罗尼斯的理发问题、植物的枝干生长规律等。
2. 等差数列等差数列是指数列中相邻两项之差恒定的数列。
等差数列具有简单的性质和运算规律,常用于排队问题和物体运动问题的求解。
3. 等比数列等比数列是指数列中相邻两项之比恒定的数列。
等比数列在实际问题中有重要的应用,如连续衰减的物质含量、复利利息的计算等。
高考数学二轮复习:第八讲 数列综合

第八讲 数列综合★★★高考在考什么 【考题回放】1.已知a b c d ,,,成等比数列,且曲线223y x x =-+的顶点是()b c ,,则ad 等于( B )A.3 B.2 C.1 D.2- 2.已知等差数列{}n a 的前n 项和为n S ,若1221S =,则25811a a a a +++=.73. 在等比数列{}n a 中,12a =,前n 项和为n S ,若数列{}1n a +也是等比数列,则n S 等于A .122n +- B.3n C. 2n D.31n-【解析】因数列{}n a 为等比,则12n n a q -=,因数列{}1na +也是等比数列, 则22121122212(1)(1)(1)22(12)01n n n n n n n n n n n n n a a a a a a a a a a a a a q q q +++++++++=++⇒+=++⇒+=⇒+-=⇒=即2n a =,所以2n S n =,故选择答案C 。
4.设集合{123456}M =,,,,,, 12k S S S ,,,都是M 的含两个元素的子集,且满足:对任意的{}i i i S a b =,,{}j j j S a b =,(i j ≠,{123}i j k ∈ 、,,,,),都有min min j j i i i i j j a b a b b a b a ⎧⎫⎧⎫⎪⎪≠⎨⎬⎨⎬⎪⎪⎩⎭⎩⎭,,(min{}x y ,表示两个数x y ,中的较小者),则k 的最大值是( B )A .10B .11C .12D .135. 已知正项数列{an},其前n 项和Sn 满足10Sn=an2+5an+6且a1,a3,a15成等比数列,求数列{an}的通项an . 解析:解: ∵10Sn=an2+5an+6, ① ∴10a1=a12+5a1+6,解之得a1=2或a1=3. 又10Sn -1=an -12+5an -1+6(n≥2),② 由①-②得 10an=(an2-an -12)+6(an -an -1),即(an+an -1)(an -an -1-5)=0 ∵an+an -1>0 , ∴an -an -1=5 (n≥2).当a1=3时,a3=13,a15=73. a1, a3,a15不成等比数列∴a1≠3; 当a1=2时,a3=12, a15=72, 有a32=a1a15 , ∴a1=2, ∴an=5n -3.6.已知公比为(01)q q <<的无穷等比数列{}n a 各项的和为9,无穷等比数列{}2n a 各项的和为815.(I)求数列{}n a 的首项1a 和公比q ;(II)对给定的(1,2,3,,)k k n = ,设()k T 是首项为k a ,公差为21k a -的等差数列,求(2)T 的前10项之和;解: (Ⅰ)依题意可知,⎪⎩⎪⎨⎧==⇒⎪⎪⎩⎪⎪⎨⎧=-=-32358119112121q a qa q a(Ⅱ)由(Ⅰ)知,1323-⎪⎭⎫⎝⎛⨯=n n a ,所以数列)2(T的的首项为221==a t ,公差3122=-=a d ,15539102121010=⨯⨯⨯+⨯=S ,即数列)2(T 的前10项之和为155.★★★高考要考什么本章主要涉及等差(比)数列的定义、通项公式、前n 项和及其性质,数列的极限、无穷等比数列的各项和.同时加强数学思想方法的应用,是历年的重点内容之一,近几年考查的力度有所增加,体现高考是以能力立意命题的原则.高考对本专题考查比较全面、深刻,每年都不遗漏.其中小题主要考查1()a d q 、、n n n a S 、、间相互关系,呈现“小、巧、活”的特点;大题中往往把等差(比)数列与函数、方程与不等式,解析几何 等知识结合,考查基础知识、思想方法的运用,对思维能力要求较高,注重试题的综合性,注意分类讨论.高考中常常把数列、极限与函数、方程、不等式、解析几何等等相关内容综合在 一起,再加以导数和向量等新增内容,使数列综合题新意层出不穷.常见题型:(1)由递推公式给出数列,与其他知识交汇,考查运用递推公式进行恒等变形、推理与综合能力.(2)给出Sn 与an 的关系,求通项等,考查等价转化的数学思想与解决问题能力.(3)以函数、解析几何的知识为载体,或定义新数列,考查在新情境下知识的迁移能力. 理科生需要注意数学归纳法在数列综合题中的应用,注意不等式型的递推数列. ★★ 突 破 重 难 点【范例1】已知数列{}n a ,{}n b 满足12a =,11b =,且11113114413144n n n n n n a a b b a b ----⎧=++⎪⎪⎨⎪=++⎪⎩(2n ≥)(I )令n n n c a b =+,求数列{}n c 的通项公式;(II )求数列{}n a 的通项公式及前n 项和公式n S .解:(I)由题设得11()2(2)n n n n a b a b n --+=++≥,即12n n c c -=+(2n ≥)易知{}n c 是首项为113a b +=,公差为2的等差数列,通项公式为21n c n =+.(II )解:由题设得111()(2)2n n n n a b a b n ---=-≥,令n n n d a b =-,则11(2)2n n d d n -=≥.易知{}n d 是首项为111a b -=,公比为12的等比数列,通项公式为112n n d -=. 由12112n n n n n a b n a b -+=+⎧⎪⎨-=⎪⎩,解得1122n n a n =++, 求和得21122n n n S n =-+++.【变式】在等差数列{}n a 中,11a =,前n 项和n S 满足条件242,1,2,1n n S n n S n +==+,(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)记(0)na nn b a p p =>,求数列{}n b 的前n 项和n T 。
2024年高考数学大题突破:数列综合大题归类(解析版)

数列综合大题归类目录【题型一】“函数型”裂项求和:基础型【题型二】“函数型”裂项求和:指数函数型【题型三】“函数型”裂项求和:等差裂和型【题型四】“函数型”裂项求和:指数型裂和【题型五】“函数型”裂项求和:同构仿写型【题型六】“函数型”裂项求和:三角函数裂项型【题型七】递推公式:分式型不动点【题型八】插入数型【题型九】数列跳项型【题型十】证明数列不等式【题型十一】新结构第19题型:差分密码型【题型一】“函数型”裂项求和:基础型基础原理:m pq =m q -p 1p -1q,如:12×4=14-212-14;基本题型:①1n n +1 =1n -1n +1;②12n -1 2n +1=1212n -1-12n +1 ;注意(避免掉坑)①分母分解因式:1n 2+3n=1n n +3 =131n -1n +3 ;②系数不相同就提系数:1n 2n +4=12⋅1n n +2 =12⋅121n -1n +2 ;③求和化简时,要写到“前三后二”,并且一定要强调每项加括号,这样容易观察剩余的时首尾项(或正负项)对应.(1)1n n +k=1k 1n -1n +k ;(2)1n +k +n=1k n +k -n ;(3)12n -1 2n +1=1212n -1-12n +1;(4)1n n +1 n +2 =121n n +1 -1n +1 n +2;分式型分子裂差法形如f n a n ⋅a n +1型,如果f n =λa n +1-a n ,则可以分子裂差:f n a n ⋅a n +1=λa n +1-a n a n ⋅a n +1=λ1a n -1a n +11(22·23·龙岩·二模)已知等差数列a n 的首项为1,公差d ≠0,前n 项和为S n ,且S nS 2n为常数.(1)求数列a n 的通项公式;(2)令b n =n a n a n +1-n +1a n +1a n +2,证明:b 1+b 2+b 3+⋯+b n <13.【答案】(1)a n =2n -1(2)证明见解析【分析】(1)由S nS 2n为常数,则n [1+1+(n -1)d ]22n [1+1+(2n -1)d ]2=2-d +nd4-2d +4nd为常数,即d =2,然后结合等差数列的通项公式求解即可;(2)由(1)可得b n =n a n a n +1-n +1a n +1a n +2=n (2n -1)(2n +1)-n +1(2n +1)(2n +3),然后累加求和即可得证.【详解】(1)依题意,得:S 1S 2=S 2S 4,即a 1a 1+a 2=a 1+a 2a 1+a 2+a 3+a 4所以,12+d =2+d4+6d,化简得:d (d -2)=0因为d ≠0,所以d =2所以a n =1+2(n -1)=2n -1经检验:S n S 2n =n 24n 2=14成立(2)因为a n =2n -1所以b n =n (2n -1)(2n +1)-n +1(2n +1)(2n +3)=144n (2n -1)(2n +1)-4(n +1)(2n +1)(2n +3)=1412n -1+12n +1 -12n +1+12n +3=1412n -1-12n +3 ,所以b 1+b 2+b 3+⋯+b n =14[1-15 +13-17 +15-19 +⋯+12n -5-12n -1 +12n -3-12n +1 +12n -1-12n +3 ]=141+13-12n +1-12n +3 =1443-12n +1-12n +3 <13.2(22·23·秦皇岛·模拟预测)设等比数列a n 的前n 项和为S n ,数列b n 为等差数列,且公差d ≠0,a 1=b 1=2,a 3=b 3,S 3=b 5.(1)求数列a n 的通项公式以及前n 项和S n ;(2)数列2n +1n 2b n +4 2的前n 项和为T n ,求证:T n≤19.【答案】(1)a n =2n ,S n =2n +1-2(2)证明见解析【分析】(1)利用等差数列通项公式运算、等比数列通项公式和求和公式运算即可求解.(2)利用裂项相消法求出T n =19×1-1n +1 2,而1-1n +1 2<1,从而得出证明.【详解】(1)设a n 的公比为q ,由题意,可得a 1q 2=b 1+2d a 1+a 1q +a 1q 2=b 1+4d ,解得q =2d =3 ,所以a n =2n,所以S n =2×1-2n 1-2=2n +1-2;(2)由(1)得b n =2+3n -1 =3n -1,所以2n +1n 2b n +4 2=2n +1n 2(3n +3)2=2n +19n 2(n +1)2=191n 2-1(n +1)2,所以T n =b 1+b 2+⋯+b n =19×1-122 +122-132+⋯+1n 2-1(n +1)2=19×1-1n +1 2 ,因为1-1n +12<1,所以T n ≤19,得证.3(2024下·福建·高三校联考开学考试)已知正项数列a n 中,a 1=1,a n +1=a n +2a n +1.(1)求数列a n 的通项公式;(2)记数列b n =2a n +1a n a n +1的前n 项和S n ,求满足S n <99100的正整数n 的集合.【答案】(1)a n =n 2(2)n ∈N *|1≤n ≤8【分析】(1)由题意,可得到数列a n 是公差为1的等差数列,进而得到数列a n 的通项公式;(2)由(1)可得数列b n 的通项公式,利用裂项相消法即可求出S n ,进而解不等式.【详解】(1)由a n +1=a n +2a n +1,有a n +1=a n +1 2,即a n +12=a n +1 2,因为数列a n 是正项数列,所以a n +1=a n +1,即a n +1-a n =1,可得数列a n 是首项为1,公差为1的等差数列,所以a n =a 1+n -1=n ,故数列a n 的通项公式为a n =n 2;(2)由(1)可得b n =2n +1n 2n +1 2=n +1 2-n 2n 2n +1 2=1n 2-1n +12.所以S n =1-122+122-132+⋅⋅⋅+1n 2-1n +1 2 =1-1n +12,故不等式S n <99100可化为1-1n +1 2<99100,解得0<n <9,所以满足S n <99100的正整数n 的集合为n ∈N *|1≤n ≤8 .【题型二】“函数型”裂项求和:指数函数型指数裂项法形如mq n +r +t hq n +b hq n +1+b 型,如果mq n +r +t =λhq n +b -hq n +1+b ,则可以分子裂差:mq n +r +t hq n +b hq n +1+b=λhq n +1+b -hq n +bhqn+b hq n +1+b=λ1hq n +b -1hq n +1+b1(2023·广西玉林·校联考模拟预测)记S n 为数列a n 的前n 项和,已知a 1=2,a n +1=S n +n .(1)证明:当n ≥2时,数列a n +1 是等比数列,并求数列a n 的通项公式;(2)设b n =2n +1a n +1a n +2,数列b n 的前n 项和为T n ,证明:T n <13.【答案】(1)证明见解析,a n =2,n =12n-1,n ≥2(2)证明见解析【分析】(1)令n =1可求得a 2的值,当n ≥2时,由a n +1=S n +n ,可得a n =S n -1+n -1,两式作差,结合等比数列的定义可证得结论成立,据此可求得数列a n 的通项公式;(2)b n =12n +1-1-12n +2-1,利用裂项相消法可证得结论成立.【详解】(1)证明:因为a 1=2,a n +1=S n +n ,S n 为数列a n 的前n 项和,当n =1时,a 2=S 1+1=2+1=3,当n ≥2时,由a n +1=S n +n ①,可得a n =S n -1+n -1②,①-②可得a n +1-a n =a n +1,即a n +1=2a n +1,所以,a n +1+1=2a n +1 ,又因为a 2+1=3+1=4≠2a 1+1 ,则当n ≥2时,数列a n +1 是等比数列,其公比为2,即当n ≥2时,a n +1=a 2+1 ⋅2n -2=4×2n -2=2n ,则a n =2n -1,a 1=2不满足a n =2n -1,所以,a n =2,n =12n -1,n ≥2.(2)证明:b n =2n +1a n +1a n +2=2n +12n +1-1 2n +2-1=12n +1-1-12n +2-1,则T n =b 1+b 2+⋯+b n =122-1-123-1 +123-1-124-1 +124-1-125-1 +⋯+12n +1-1-12n +2-1=13-12n +2-1<13.综上,对任意的n ∈N ∗,T n <13.2(2023上·海南海口·高三校考阶段练习)在数列a n a n ≠0 和b n 中,a 1=1,b 1=2,且a n +1b n 是a n a n +1和a n b n +1的等差中项.(1)设c n =b na n,求证:数列c n -1 为等比数列;(2)若b n =3×2n2n +1,a n 的前n 项和为S n ,求证:S n <3.【答案】(1)证明见解析(2)证明见解析【分析】(1)由等差中项整理得a n b n +1=2a n +1b n -a n a n +1,两边同时除以a n a n +1,得c n +1-1=2(c n -1)即可证明;(2)应用裂项相消法即可求解.【详解】(1)依题a n +1b n 是a n a n +1和a n b n +1的等差中项,则2a n +1b n =a n a n +1+a n b n +1,即a n b n +1=2a n +1b n -a n a n +1,两边同时除以a n a n+1a n≠0,得b n+1a n+1=2⋅b na n-1,即c n+1=2c n-1,则c n+1-1=2(c n-1),由c1-1=b1a1-1=1≠0,所以数列c n-1是以1为首项,2为公比的等比数列.(2)由(1)得c n-1=2n-1,则c n=2n-1+1,则a n=b nc n=3×2n(2n-1+1)(2n+1)=612n-1+1-12n+1,则S n=612-13+13-15+⋯+12n-2+1-12n-1+1+12n-1+1-12n+1=612-1 2n+1=3-62n+1,因为n∈N∗,则62n+1>0,故S n<3.3(2023上·湖南长沙·高二长沙一中校考阶段练习)已知数列a n的首项a1=4,且满足a n+1=3a n -2n∈N*.(1)求证:数列a n-1为等比数列;(2)记b n=3na n⋅a n+1,求数列b n的前n项和S n.【答案】(1)证明见解析(2)S n=18-12⋅3n+1+2【分析】(1)由题设递推式可得a n+1-1=3a n-1n∈N*,根据等比数列的定义,结合已知条件,即可证a n-1为等比数列;(2)由(1)有a n=3n+1,进而求b n,利用裂项相消法求S n.【详解】(1)由a n+1=3a n-2n∈N*得a n+1-1=3a n-1n∈N*,又a1-1=3,所以a n-1是首项为3,公比为3的等比数列.(2)由(1)知,a n-1=3×3n-1=3n,所以a n=3n+1所以b n=3n3n+1⋅3n+1+1=12×13n+1-13n+1+1,S n=b1+b2+b3+⋯+b n=12×131+1-132+1+132+1-133+1+⋯+13n+1-13n+1+1=12×131+1-13n+1+1=18-12⋅3n+1+2.【题型三】“函数型”裂项求和:等差裂和型正负型:等差裂和型形如-1n⋅f na n⋅a n+1型,如果f n =λa n+1-a n,则可以分子裂差:-1 n⋅f na n⋅a n+1=-1n⋅λa n+1-a na n⋅a n+1=-1n⋅λ1a n-1a n+11(2023·河北唐山·三模)设S n 为数列a n 的前n 项和,a n >0,a 2n +2a n +1=4S n .(1)求数列a n 的通项公式;(2)求数列-1n4na n a n +1的前n 项和T n.【答案】(1)a n =2n -1(2)T n =-1+(-1)n12n +1【分析】(1)利用S n 与a n 的关系计算求通项;(2)结合(1)的结论,利用裂项相消法计算即可.【详解】(1)已知a 2n +2a n +1=4S n ①,当n =1时,a 1=1.当n ≥2时,a 2n -1+2a n -1+1=4S n -1②①-②得:a 2n +2a n -a 2n -1-2a n -1=4a n ,即a n +a n -1 a n -a n -1-2 =0.又a n >0,所以a n +a n -1≠0,a n -a n -1=2.所以数列a n 是以1为首项,2为公差的等差数列.所以a n =2n -1.(2)设b n =(-1)n 4n a n a n +1=(-1)n 4n 2n -1 2n +1=(-1)n 12n -1+12n +1 .T n =-1+13 +13+15 -15+17 +⋯+(-1)n 12n -1+12n +1 =-1+(-1)n 12n +1.2(2023·江苏镇江·二模)已知数列a n 满足:a 1=14,a n +1=nn +2a n.(1)求数列a n 的通项公式;(2)若b n =(-1)n (2n +1)a n ,求数列b n 的前n 项和S n .【答案】(1)a n =12n n +1(2)S n =-12+-1 n ⋅12n +2【分析】(1)运用累乘法计算;(2)运用裂项相消法求和.【详解】(1)由题意:a 2a 1=13,a 3a 2=24,a 4a 3=35,a 5a 4=46,⋯,a n +1a n =nn +2 ,∴a 2a 1×a 3a 2×a 4a 3×a 5a 4×⋯×a n +1a n =13×24×35×46×⋯×n n +2=2n +1 n +2,a n +1a 1=2n +1 n +2 ,a n +1=a 1×2n +1 n +2 =12n +1 n +2 ,a n =12n n +1 ,将n =1代入上式也成立,∴a n =12n n +1;(2)b n =-1 n 2n +1 a n =-1 n 2n +12n n +1=-1 n 1n +1n +1 ⋅12,S n =b 1+b 2+b 3+b 4+b 5+⋯+b n =12-1-12+12+13-13-14+⋅⋅⋅+-1 n ⋅1n +-1 n ⋅1n +1=12-1+-1 n ⋅1n +1 =-12+-1 n⋅12n +2.3(2023·湖南永州·三模)记正项数列a n 的前n 项积为T n ,且1=1-4.(1)证明:数列T n 是等差数列;(2)记b n =-1 n ⋅8n +6T n ⋅T n +1,求数列b n 的前2n 项和S 2n .【答案】(1)证明见解析(2)-8n 40n +25【分析】(1)根据题意得到T n T n -1=a n ,由1a n =1-4T n,化简得到T n -T n -1=4,求得T 1=5,结合等差数列的定义,即可求解;(2)由(1)可得T n =4n +1,得到b n =-1 n ⋅14n +1+14n +5,结合裂项法,即可求解.【详解】(1)证明:由题意得T n =a 1a 2⋯a n ,当n ≥2时,可得T n -1=a 1a 2⋯a n -1,可得Tn T n -1=a n ,(n ≥2),因为1a n =1-4T n ,所以T n -1T n =1-4T n,(n ≥2),即T n -1=T n -4(n ≥2),即T n -T n -1=4,(n ≥2),当n =1时,可得T 1=a 1,所以1T 1=1-4T 1,解得T 1=5,所以数列T n 是以5为首项,4为公差的等差数列.(2)解:由(1)可得T n =5+(n -1)×4=4n +1,所以b n =-1 n ⋅8n +6T n ⋅T n +1=-1 n ⋅8n +6(4n +1)(4n +5)=-1 n ⋅14n +1+14n +5 ,所以S 2n =-15+19+19+113 -113+117+⋯-18n -3+18n +1 +18n +1+18n +5 =-15+18n +5=-8n 40n +25.【题型四】“函数型”裂项求和:指数型裂和正负型:指数裂和型形如-1 n⋅mq n +r +t hq n +b hq n +1+b型,如果mq n +r +t =λhq n +b +hq n +1+b ,则可以分子裂和:-1 n ⋅mq n +r +t hq n +b hq n +1+b =-1 n ⋅λhq n +1+b +hq n +b hq n +b hq n +1+b=-1 n ⋅λ1hq n +b +1hq n +1+b1(23·24上·湖北·期中)已知{a n }为等比数列,且a 2+a 3+a 4=14,a 2,a 3+1,a 4成等差数列.(1)求数列{a n }的通项公式;(2)当{a n }为递增数列时,b n =(-1)n 6a n +22n +1 2n +1+1 ,数列{b n }的前n 项和为T n ,若存在n ∈N ∗,m ≥T n ,求m 的取值范围.【答案】(1)a n =2n -1或a n =25-n (2)m ≥-815【分析】(1)运用等差中项的性质和等比数列通项公式基本量运算,解方程即可得到{a n }通项.(2)由{a n }递增可得a n =2n -1,对b n 通项进行裂项展开,当n 为偶数、奇数时分别求出T n 表达式,然后再分别求出T n的范围,由存在n∈N∗,m≥T n,即可求出m的取值范围.【详解】(1)设等比数列{a n}公比为q,由a2+a3+a4=14a2+a4=2a3+1⇒a3=4q=2或a3=4q=12,∴a n=2n-1或a n=25-n.(2)当{a n}为递增数列时,a n=2n-1所以b n=(-1)n3⋅2n+22n+12n+1+1=(-1)n12n+1+12n+1+1当n为偶数时,T n=-12+1+122+1+122+1+123+1+⋯+12n+1+12n+1+1=-13+12n+1+1在n∈N*上单调递减,∴T n∈-13,-29,当n为奇数时,T n=-12+1+122+1+122+1+123+1+⋯-12n+1+12n+1+1=-13-12n+1+1在n∈N*上单调递增,∴T n∈-815,-13,∴m≥-815.2(23·24上·黔东南·阶段练习)已知数列a n满足:a1=1,a n=2a n-1+1n≥2.(1)证明:a n+1是等比数列,并求a n的通项公式;(2)令b n=(-1)n(3n+2)n(n+1)a n+1+1,求b n的前n项和S n.【答案】(1)证明见解析,a n=2n-1(2)S n=(-1)n(n+1)∙2n+1-12【分析】(1)通过构造可证a n+1为等比数列,根据等比数列通项公式可得a n+1,然后可得a n;(2)将数列b n通项公式变形为b n=(-1)n1n∙2n+1(n+1)∙2n+1,直接求和可得.【详解】(1)证明:由a n=2a n-1+1(n≥2),所以a n+1=2a n-1+2=2(a n-1+1),所以{a n+1}是以a1+1=2为首项,公比为2的等比数列,所以a n+1=2n,即a n=2n-1(2)由(1)知:a n+1+1=2n+1,所以b n=(-1)n(3n+2)n(n+1)∙2n+1.又b n=(-1)n1n∙2n+1(n+1)∙2n+1,所以S n=-12+12·22+12·22+13·23-13·23+14·24+⋯+-1 n1n·2n+1n+1·2n+1=(-1)n(n+1)∙2n+1-123(22·23高二下·黑龙江哈尔滨·期中)已知数列a n满足a1=14,a n+1=3a n-4.(1)求a n的通项公式;(2)设b n=(-1)n a n3n+13n+1+1,数列b n的前n项和为T n,若存在n∈N*,使m≥T n,求m的取值范围.【答案】(1)a n=4×3n+2(2)-720,+∞【分析】(1)依题意可得a n+1-2=3a n-2,再结合等比数列的定义即可证明;(2)由(1)可得b n=(-1)n13n+1+1 3n+1+1,再分n为偶数和奇数两类情况并结合裂项求和法讨论即可.【详解】(1)证明:因为a n+1=3a n-4,所以a n+1-2=3a n-2,即a n+1-2a n-2=3n∈N*,因为a1=14,所以a1-2=12,故数列a n-2是以12为首项,3为公比的等比数列,所以a n-2=12×3n-1=4×3n,则a n=4×3n+2.(2)解:由(1)知a n=4×3n+2,所以b n=(-1)n a n3n+13n+1+1=(-1)n4×3n+23n+13n+1+1=(-1)n13n+1+13n+1+1.当n为偶数时,T n=-13+1-1 32+1+132+1+133+1+L+-13n++113n+1+13n+1+13n++1=-13+1+13n+1+1=-14+13n+1+1,因为T n=-14+13n+1+1是单调递减的,所以-14<T n≤-314.当n为奇数时,T n=-13+1-1 32+1+132+1+133+1+⋯+13n++1+13n+1+-13n+113n+1+1=-13+1-13n+1+1=-14-13n+1+1,又T n=-14-13n+1+1是单调递增的,因为13n+1+1>0,所以-720≤T n<-14.要使存在n∈N*,使m≥T n,只需m≥T nmin,即m≥-720,故m的取值范围是-720,+∞.【题型五】“函数型”裂项求和:同构仿写型 仿写规律:t>1①b na n⋅a n+1⋅t n⇒1a n⋅t n-1-1a n+1⋅t n=λb na n⋅a n+1⋅t n(可通分反解λ);②b n⋅t na n⋅a n+1⇒t n+1a n+1-t na n=λb n⋅t na n⋅a n+1(可通分反解λ)1(23·24上·甘南·期中)在数列a n中,a1=2且∀n∈N*,a n+1=3a n+2×3n.(1)求a n的通项公式;(2)设b n=a n+3na n a n+1,若b n的前n项和为S n,证明:S n<14.【答案】(1)a n=2n⋅3n-1,n∈N∗(2)证明见解析【分析】(1)根据题意,化简得到a n+13n+1-a n3n=23,得出数列a n3n为等差数列,结合等差数列的通项公式,进而求得数列a n的通项公式;(2)由a n=2n⋅3n-1,得到b n=121a n-1a n+1,结合裂项法求和,求得S n=14-14(n+1)⋅3n,进而证得S n<1 4.【详解】(1)解:由a n+1=3a n+2×3n,两边同除以3n+1,可得a n+13n+1=a n3n+23,即a n+13n+1-a n3n=23,因为a1=2,可得a13=23,所以数列a n3n是首项为23,公差为23的等差数列,可得a n3n=23+(n-1)×23=2n3,所以a n=2n3×3n=2n⋅3n-1,即数列a n的通项公式为a n=2n⋅3n-1,n∈N∗.(2)解:由a n=2n⋅3n-1,可得b n=a n+3na n a n+1=2n⋅3n-1+3n2n⋅3n-1⋅2(n+1)⋅3n=(2n+3)⋅3n-12n⋅3n-1⋅2(n+1)⋅3n=1212n⋅3n-1-12(n+1)⋅3n=121a n-1a n+1,所以数列b n的前n项和为S n=121a1-1a2+1a2-1a3+⋯+1an-1a n+1=121a1-1a n+1=1212-12(n+1)⋅3n=14-14(n+1)⋅3n,因为4(n+1)⋅3n>0,可得14-14(n+1)⋅3n<14,即S n<14.2(23·24上·合肥·阶段练习)在数1和3之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积记作T n,令a n=log3T n.(1)求数列a n的通项公式;(2)若b n=n+1⋅2n-1a n a n+1,求数列b n的前n项和S n.【答案】(1)a n=n+22(2)S n=2n+2n+3-43【分析】(1)利用等比数列的基本性质结合倒序相乘法可求得T n,结合对数的运算可得出数列a n的通项公式;(2)计算得出b n=-2n+1n+2+2n+2n+3,利用裂项相消法可求得S n.【详解】(1)解:在数1和3之间插入n个实数,使得这n+2个数构成递增的等比数列,设插入的这n个数分别为c1、c2、⋯、c n,由等比数列的性质可得c1c n=c2c n-1=⋯=c n c1=1×3=3,所以,T n=1⋅c1c2⋯c n⋅3 T n=3⋅c n c n-1⋯c1⋅1,所以,T2n =1⋅3⋅c1c n⋅c2c n-1⋅⋯⋅c n c1⋅1⋅3=3n+2,易知T n>0,所以,T n=3n+22,则an=log3T n=log33n+22=n+22.(2)解:b n =n +1 ⋅2n -1a n a n +1=n +1 ⋅2n -1n +2 n +34=n +1 ⋅2n +1n +2 n +3=2n +2 -n +3 ⋅2n +1n +2 n +3=-2n +1n +2+2n +2n +3,所以,S n =-223+234 +-234+245+⋯+-2n +1n +2+2n +2n +3 =2n +2n +3-43.3(23·24上·昆明·阶段练习)已知数列a n 满足a 1=2,a n +1=2n +1a n n ∈N * .(1)求数列a n 的通项公式;(2)设b n =log 2a 2n -n 2,数列b n +22n +1b n ⋅b n +1 的前n 项和为S n ,求证:38≤S n<12.【答案】(1)a n =2n n +12(2)证明见解析【分析】(1)运用累乘法求出a n 的通项公式;(2)先运用裂项法求出S n 的解析式,再运用缩放法证明.【详解】(1)由已知a 1=2,a n +1a n=2n +1n ∈N * ,所以a n =a n a n -1⋅a n -1a n -2⋯⋯a 2a 1⋅a 1=2n ⋅2n -1⋯⋯22⋅2=2n n +12n ≥2 ,当n =1时,a 1=2满足条件,所以a n =2n n +12;(2)由于b n =log 2a 2n -n 2=n ,所以b n +22n +1b n ⋅b n +1=n +22n +1n n +1 =1n ⋅2n -1n +1 2n +1,所以S n =11×2-12×22+12×22-13×23 +13×23-14×24+⋯+1n ⋅2n 1n +1 2n +,所以S n =11×2-1n +1 2n +1,显然S n 在N *上为增函数,S 1=11×2-12×22=38,∴S n ≥S 1=38,又S n =11×2-1n +12n +1<11×2=12,所以38≤S n <12;综上,a n =2n n +12.【题型六】“函数型”裂项求和:三角函数裂项型常见的三角函数裂项:1.正切型裂项:若a n +1-a n =α,tan α=m (特殊角),则tan α=tan a n +1-a n =tan a n +1-tan a n1+tan a n +1tan a n=m ,b n =tan a n +1tan a n =1mtan a n +1-tan a n -1;2.正余弦和与差公式应用裂项型:b n =sin1cos n cos (n -1)=sin [n -(n -1)]cos n cos (n -1)=sin n cos (n -1)-cos n sin (n -1)cos n cos (n -1)=tan n -tan (n -1)1(2023·山东威海·二模)已知2n +2个数排列构成以q n q n >1 为公比的等比数列,其中第1个数为1,第2n +2个数为8,设a n =log 2q n .(1)证明:数列1a n是等差数列;(2)设b n =tanπa n tan πa n +1,求数列b n 的前100项和S 100.【答案】(1)数列1a n是以公差为23的等差数列.1a n +1-1a n =23(2)-99【分析】(1)根据等比数列的性质分析可得a n =32n +1,再结合等差数列的定义分析证明;(2)根据两角差的正切公式整理得b n =-33tan πa n +1-tan πa n-1,结合裂项相消法运算求解.【详解】(1)由题意可得:q 2n +1n=81=8,且q n >1,可得q n =232n +1,所以a n =log 2232n +1=32n +1,可得1a n =2n +13,则1a n +1-1a n =2n +1 +13-2n +13=23,所以数列1a n是以公差为23的等差数列.(2)由(1)可得πa n +1-πa n =2π3,则tan 2π3=tan πa n +1-πa n=tan πa n +1-tan πan 1+tan πa n +1tan πan=-3,整理得b n =tanπa n tan πa n +1=-33tan πa n +1-tan πa n-1,则S 100=b 1+b 2+⋅⋅⋅+b 100=-33tan πa 2-tan πa 1 -1+-33tan πa 3-tan πa 2-1 +⋅⋅⋅+-33tan πa 101-tan πa 100-1=-33tanπa 2-tan πa 1 +tan πa 3-tan πa 2 +⋅⋅⋅+tan πa 101-tan πa 100-100=-33tan πa 101-tan πa 1-100=-33tan 203π3-tanπ -100=-33tan 68π-π3 -100=33tan π3-100=-99,所以数列b n 的前100项和S 100=-99.2(22·23高三上·山东济宁·期中)已知n ∈N *,抛物线y =-x 2+n 与x 轴正半轴相交于点A ,在点A 处的切线在y 轴上的截距为a n (1)求数列a n 的通项公式;(2)若b n =4n cos n πa n -1 a n +1,求数列b n 的前项和S n .【答案】(1)a n =2n ;(2)S n =-2n +22n +1,n =2k -1-2n 2n +1,n =2k,k ∈N ∗ .【分析】(1)利用导数的几何意义求出切线方程,再求出纵截距作答.(2)由(1)的结论求出b n,再分奇偶利用裂项相消法求解作答.【详解】(1)n∈N∗,抛物线与x轴正半轴的交点坐标为(n,0),由y=-x2+n求导得:y =-2x,因此抛物线在点A处的切线的斜率为-2n,切线方程为y=-2n(x-n),当x=0时,y=2n,所以a n=2n.(2)由(1)知,a n=2n,则b n=4n cos nπ(2n-1)(2n+1)=12n-1+12n+1cos nπ,当n为偶数时,S n=-1+1 3+13+15-15+17+17+19-⋯-12n-3+12n-1+1 2n-1+1 2n+1=-1+12n+1=-2n2n+1,当n为奇数时,S n=S n+1-b n+1=-1+12n+3-12n+1+12n+3=-1-12n+1=-2n+22n+1,S n=-2n+22n+1,n=2k-1-2n2n+1,n=2k,k∈N∗.3(22·23上·芜湖·期末)已知S n是数列a n的前n项和,2S n=n+1a n.且a1=1(1)求a n的通项公式;(2)设a0=0,已知数列b n满足b n=sin1cos a n cos a n-1,求b n的前n项的和T n【答案】(1)a n=n;(2)tan n.【分析】(1)利用给定的递推公式,结合a n=S n-S n-1,n≥2变形,构造数列求解作答.(2)由(1)的结论,利用差角的正弦公式变形,再利用错位相减法求解作答.【详解】(1)因为n∈N*,2S n=n+1a n,当n≥2时,2S n-1=na n-1,两式相减得:2a n=(n+1)a n-na n-1,即(n-1)a n=na n-1,变形得a nn=a n-1n-1,于是得数列a nn是常数列,因此a nn=a11=1,即a n=n,所以数列a n的通项公式是a n=n.(2)由(1)知,a n=n,b n=sin1cos n cos(n-1)=sin[n-(n-1)]cos n cos(n-1)=sin n cos(n-1)-cos n sin(n-1)cos n cos(n-1)=tan n-tan(n-1),所以T n=(tan1-tan0)+(tan2-tan1)+(tan3-tan2)+⋅⋅⋅+[tan n-tan(n-1)]=tan n-tan0=tan n.【题型七】递推公式:分式型不动点已知分式一次型数列递推关系a n+1=Ca n+DAa n+B求通项的问题解法:法一,化归法.当D=0时,递推关系两边取倒数,再裂项构造即可;当D≠0时,为了保持取倒数后分母一致性,通常可以令a n+1+x=Ca n+DAa n+B+x=C+xAa n+D+BxAa n+B,可由1x=C+AxD+Bx解得x的值,即可得到构造方向b n+1=tb nAa n+B,通过这样的转化将问题又化归为D=0的情形再求解.法二,特征根法求解.先构造特征方程x=Cx+DAx+B,解方程得根x1,x2,若x1≠x2,则a n-x2a n-x1为等比数列;若x1=x2,则1a n-x1为等差数列.1(22-23高三·河南·阶段练习)已知数列a n满足a1=0,a n+1=-a n-22a n+3,n∈N∗.(1)证明:数列1a n+1是等差数列;(2)证明:a2 ⋅a3 ⋅a4 ⋅⋅⋅⋅⋅a n+1>12n+1.【答案】(1)证明见解析.(2)证明见解析.【分析】(1)根据条件a1=0,a n+1=-a n-22a n+3,n∈N∗可得1a n+1+1=2+1a n+1,利用等差数列的定义即可证明结论;(2)利用(1)的结论可得a n=-2n+22n-1,即得|a n |=2n-22n-1,(n≥2,n∈N∗),利用作差法可得|a n|=2n-22n-1>2n-32n-2,由此可设S=a2 ⋅a3 ⋅a4 ⋅⋅⋅⋅⋅a n+1,即得S=23⋅45⋅67⋅⋅⋅⋅⋅2n2n+1,且S>12⋅34⋅56⋅⋅⋅⋅⋅2n-12n,两式相乘可证明结论.【详解】(1)证明:根据题意a1=0,a n+1=-a n-22a n+3,n∈N∗,可得a n+1+1=a n+12a n+3,则1a n+1+1=2a n+3a n+1=2+1a n+1,故1a n+1+1-1a n+1=2,1a1+1=10+1=1故数列1a n+1是以1为首项,2为公差的等差数列.(2)由(1)知,1a n+1=1+2(n-1)=2n-1,则a n=12n-1-1=-2n+22n-1,则|a n|=2n-22n-1,(n≥2,n∈N∗),由于2n-22n-1-2n-32n-2=(2n-2)2-(2n-3)(2n-1)(2n-1)(2n-2)=1(2n-1)(2n-2)>0,故|a n|=2n-22n-1>2n-32n-2,(n≥2,n∈N∗)设S=a2⋅a3 ⋅a4 ⋅⋅⋅⋅⋅a n+1,则S=23⋅45⋅67⋅⋅⋅⋅⋅2n2n+1,且S>12⋅34⋅56⋅⋅⋅⋅⋅2n-12n,则S2>23⋅45⋅67⋅⋅⋅⋅⋅2n2n+1⋅12⋅34⋅56⋅⋅⋅⋅⋅2n-12n=12n+1,故S>12n+1,∴a2 ⋅a3 ⋅a4 ⋅⋅⋅⋅⋅a n+1>12n+1.2(2024高三·全国·专题练习)在数列{a n}中,a1=4且a n+1=3a n+2a n+4,求数列{a n}的通项公式.【答案】a n=2n-1+5n-1 5n-1-2n-2【分析】法一,由a n+1+x=3a n+2a n+4+x=(x+3)a n+4x+2a n+4,令1x=x+34x+2,解得x1=-1,x2=2,即在等式两边同减去1,可构造出形式a n+1-1=2(a n-1)a n+4,从而两边再同取倒数可得1a n+1-1=12+52⋅1a n-1,由此配凑常数,可构造等比数列1a n-1+13进而求得等比数列通项,解an可得;法二,利用特征方程x=3x+2x+4有两个不等式根:x1=1,x2=-2,确定构造方向,先构造两个等式,再作比即可构造特殊数列,即可求得特殊数列的通项,再解出a n即可.【详解】法一,由a n+1=3a n+2a n+4两边减去1得,a n+1-1=3a n+2a n+4-1=2(a n-1)a n+4,两边取倒数得,1a n+1-1=a n+42(a n-1)=a n-1+52(a n-1)=12+52⋅1a n-1,两边同加13得,1a n+1-1+13=56+52⋅1a n-1=52⋅1a n-1+13,由a1=4,则1a1-1+13=23≠0,所以有1a n+1-1+131a n-1+13=52,故1a n-1+13是以23为首项,52为公比的等比数列.所以1a n-1+13=23⋅52n-1,故a n-1=3⋅2n-12⋅5n-1+2n-1,解得a n=2n-1+5n-15n-1-2n-2.法二:因为a n+1=3a n+2a n+4,两边同减去1得a n+1-1=3a n+2a n+4-1=2a n-2a n+4①,两边同加上2得a n+1+2=3a n+2a n+4+2=5a n+10a n+4②,由已知a1=4,则a1-1=3≠0,a1+2=6≠0,①②两式相除得,a n+1-1 a n+1+2=2a n-15(a n+2),且a1-1a1+2=12≠0,所以,数列a n-1a n+2是以12为首项,25为公比的等比数列,∴a n-1a n+2=a1-1a1+2·25n-1=12⋅25 n-1,∴a n=2n-1+5n-15n-1-2n-2.3(2023高三·全国·专题练习)已知数列a n满足性质:对于n∈N,a n-1=a n+42a n+3,且a1=3,求{a n}的通项公式.【答案】a n =(-5)n -42+(-5)n【分析】根据特征方程的根,构造数列c n 的通项公式,再得到数列a n 的通项公式.【详解】依定理作特征方程x =x +42x +3,变形得2x 2+2x -4=0,其根为λ1=1,λ2=-2.故特征方程有两个相异的根,使用定理2的第(2)部分,则有c n =a 1-λ1a 1-λ2⋅p -λ1r p -λ2rn -1=3-13+2⋅1-1⋅21+2⋅2n -1,n ∈N ∴c n =25-15n -1,n ∈N .∴a n =λ2c n -λ1c n -1=-2⋅25-15 n -1-125-15n -1-1,n ∈N .即a n =(-5)n -42+(-5)n,n ∈N .【题型八】插入数型插入数型1.插入数构成等差数列在a n 和a n +1之间插入n 个数,使这n +2个数构成等差数列,可通过构造新数列{b n }来求解d nn +2个数构成等差数列,公差记为d n ,所以:b n +2=b 1+(n +2-1)d n ⇔d n =b n +2-b 1(n +2-1)2.插入数构成等比数列在a n 和a n +1之间插入n 个数,使这n +2个数构成等比数列,可通过构造新数列{b n }来求解d nn +2个数构成等比数列,公差记为d n ,所以:b n +2=b 1∙q n (n +2-1)⇔q n (n +2-1)=b n +2b 1⇔ln b n +2b 1=ln q n (n +2-1)=(n +2-1)ln q n3.插入数混合型混合型插入数列,其突破口在于:在插入这些数中,数列a n 提供了多少项,其余都是插入进来的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八讲 数列综合★★★高考在考什么 【考题回放】1.已知a b c d ,,,成等比数列,且曲线223y x x =-+的顶点是()b c ,,则ad 等于( B ) A.3 B.2 C.1 D.2-2.已知等差数列{}n a 的前n 项和为n S ,若1221S =,则25811a a a a +++=.73. 在等比数列{}n a 中,12a =,前n 项和为n S ,若数列{}1n a +也是等比数列,则n S 等于 A .122n +- B.3n C. 2n D.31n -【解析】因数列{}n a 为等比,则12n n a q -=,因数列{}1n a +也是等比数列, 则22121122212(1)(1)(1)22(12)01n n n n n n n n n n n n n a a a a a a a a a a a a a q q q +++++++++=++⇒+=++⇒+=⇒+-=⇒=即2n a =,所以2n S n =,故选择答案C 。
4.设集合{123456}M =,,,,,, 12k S S S ,,,都是M 的含两个元素的子集,且满足:对任意的{}i i i S a b =,,{}j j j S a b =,(i j ≠,{123}i j k ∈ 、,,,,),都有min min j j i i i i j j a b a b b a b a ⎧⎫⎧⎫⎪⎪≠⎨⎬⎨⎬⎪⎪⎩⎭⎩⎭,,(min{}x y ,表示两个数x y ,中的较小者),则k 的最大值是( B ) A .10 B .11 C .12 D .135. 已知正项数列{a n },其前n 项和S n 满足10S n =a n 2+5a n +6且a 1,a 3,a 15成等比数列,求数列{a n }的通项a n .解析:解: ∵10S n =a n 2+5a n +6, ① ∴10a 1=a 12+5a 1+6,解之得a 1=2或a 1=3.又10S n -1=a n -12+5a n -1+6(n ≥2),②由①-②得 10a n =(a n 2-a n -12)+6(a n -a n -1),即(a n +a n -1)(a n -a n -1-5)=0 ∵a n +a n -1>0 , ∴a n -a n -1=5 (n ≥2).当a 1=3时,a 3=13,a 15=73. a 1, a 3,a 15不成等比数列∴a 1≠3;当a 1=2时,a 3=12, a 15=72, 有a 32=a 1a 15 , ∴a 1=2, ∴a n =5n -3.6.已知公比为(01)q q <<的无穷等比数列{}n a 各项的和为9,无穷等比数列{}2n a 各项的和为815. (I)求数列{}n a 的首项1a 和公比q ;(II)对给定的(1,2,3,,)k k n = ,设()k T 是首项为k a ,公差为21k a -的等差数列,求(2)T 的前10项之和;解: (Ⅰ)依题意可知,⎪⎩⎪⎨⎧==⇒⎪⎪⎩⎪⎪⎨⎧=-=-32358119112121q a q a q a(Ⅱ)由(Ⅰ)知,1323-⎪⎭⎫⎝⎛⨯=n n a ,所以数列)2(T的的首项为221==a t ,公差3122=-=a d ,15539102121010=⨯⨯⨯+⨯=S ,即数列)2(T 的前10项之和为155. ★★★高考要考什么本章主要涉及等差(比)数列的定义、通项公式、前n 项和及其性质,数列的极限、无穷等比数列的各项和.同时加强数学思想方法的应用,是历年的重点内容之一,近几年考查的力度有所增加,体现高考是以能力立意命题的原则.高考对本专题考查比较全面、深刻,每年都不遗漏.其中小题主要考查1()a d q 、、n n n a S 、、间相互关系,呈现“小、巧、活”的特点;大题中往往把等差(比)数列与函数、方程与不等式,解析几何 等知识结合,考查基础知识、思想方法的运用,对思维能力要求较高,注重试题的综合性,注意分类讨论.高考中常常把数列、极限与函数、方程、不等式、解析几何等等相关内容综合在 一起,再加以导数和向量等新增内容,使数列综合题新意层出不穷.常见题型:(1)由递推公式给出数列,与其他知识交汇,考查运用递推公式进行恒等变形、推理与综合能力. (2)给出S n 与a n 的关系,求通项等,考查等价转化的数学思想与解决问题能力.(3)以函数、解析几何的知识为载体,或定义新数列,考查在新情境下知识的迁移能力. 理科生需要注意数学归纳法在数列综合题中的应用,注意不等式型的递推数列.★ ★★ 突 破 重 难 点【范例1】已知数列{}n a ,{}n b 满足12a =,11b =,且11113114413144n n n n n n a a b b a b ----⎧=++⎪⎪⎨⎪=++⎪⎩(2n ≥)(I )令n n n c a b =+,求数列{}n c 的通项公式; (II )求数列{}n a 的通项公式及前n 项和公式n S .解:(I)由题设得11()2(2)n n n n a b a b n --+=++≥,即12n n c c -=+(2n ≥) 易知{}n c 是首项为113a b +=,公差为2的等差数列,通项公式为21n c n =+. (II )解:由题设得111()(2)2n n n n a b a b n ---=-≥,令n n n d a b =-,则11(2)2n n d d n -=≥. 易知{}n d 是首项为111a b -=,公比为12的等比数列,通项公式为112n n d -=. 由12112n n n n n a b n a b -+=+⎧⎪⎨-=⎪⎩,解得1122n n a n =++, 求和得21122n n n S n =-+++.【变式】在等差数列{}n a 中,11a =,前n 项和n S 满足条件242,1,2,1n n S n n S n +==+ , (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)记(0)n a n n b a p p =>,求数列{}n b 的前n 项和n T 。
解:(Ⅰ)设等差数列{}n a 的公差为d ,由2421n n S n S n +=+得:1213a a a +=,所以22a =,即211d a a =-=,又1211122()42212n n n n n n a nd a n S a nd a n a a n S a a n ++⨯+++===+++⨯=2(1)1n n a n a +++,所以n a n =。
(Ⅱ)由n a n n b a p =,得nn b np =。
所以23123(1)n n n T p p p n p np -=++++-+ ,当1p =时,12n n T +=;当1p ≠时,234123(1)n n n pT p p p n p np +=++++-+ , 23111(1)(1)1n n n n n n p p P T p p p pp npnp p-++--=+++++-=--即11,12(1),11n nn n p T p p np p p++⎧=⎪⎪=⎨-⎪-≠⎪-⎩。
(理)已知二次函数()y f x =的图像经过坐标原点,其导函数为'()62f x x =-,数列{}n a 的前n 项和为n S ,点(,)()n n S n N *∈均在函数()y f x =的图像上。
(Ⅰ)、求数列{}n a 的通项公式;(Ⅱ)、设11n n n b a a +=,n T 是数列{}n b 的前n 项和,求使得20n m T <对所有n N *∈都成立的最小正整数m ;解:(Ⅰ)设这二次函数f(x)=ax 2+bx (a ≠0) ,则 f`(x)=2ax+b,由于f`(x)=6x -2,得a=3 , b=-2, 所以 f(x)=3x 2-2x.又因为点(,)()n n S n N *∈均在函数()y f x =的图像上,所以n S =3n 2-2n.当n ≥2时,a n =S n -S n -1=(3n 2-2n )-[])1(2)132---n n (=6n -5.当n =1时,a 1=S 1=3×12-2=6×1-5,所以,a n =6n -5 (n N *∈)(Ⅱ)由(Ⅰ)得知13+=n n n a a b =[]5)1(6)56(3---n n =)161561(21+--n n , 故T n =∑=ni i b 1=21⎥⎦⎤⎢⎣⎡+--++-+-)161561(...)13171()711(n n =21(1-161+n ). 因此,要使21(1-161+n )<20m (n N *∈)成立的m,必须且仅须满足21≤20m,即m ≥10,所以满足要求的最小正整数m 为10.【范例2】已知函数2()1f x x x =+-,,αβ是方程f (x)=0的两个根()αβ>,'()f x 是f (x)的导数;设11a =,1()'()n n n n f a a a f a +=-(n=1,2,……) (1)求,αβ的值;(2)证明:对任意的正整数n ,都有n a >a ; (3)记lnn n n a b a aβ-=-(n=1,2,……),求数列{b n }的前n 项和S n 。
解析:(1)∵2()1f x x x =+-,,αβ是方程f (x)=0的两个根()αβ>,∴αβ=; (2)'()21f x x =+,21115(21)(21)12442121n n n nn n n n n n a a a a a a a a a a ++++-+-=-=-++ =5114(21)4212n n a a ++-+,∵11a =,∴有基本不等式可知20a >(当且仅当1a =时取等号),∴20a >>同,样3a,……,n a α=(n=1,2,……), (3)1()()(1)2121nn n n n n n n a a a a a a a a αββββα+----=--=++++,而1αβ+=-,即1αβ+=-, 21()21n n n a a a ββ+--=+,同理21()21n n n a a a αα+--=+,12n n b b +=,又11ln 1b βα-===-2(2n n S =-【文】已知函数2()1f x x x =+-,α、β是方程()0f x =的两个根(αβ>),()f x '是的导数设11a =,1()()n n n n f a a a f a +=-',(1,2,)n = . (1)求α、β的值;(2)已知对任意的正整数n 有n a α>,记lnn n n a b a βα-=-,(1,2,)n = .求数列{n b }的前n 项和n S .解、(1) 由 210x x +-=得12x -±=12α-+∴=12β--=(2) ()21f x x '=+ 221112121n n n n n n n a a a a a a a ++-+=-=++(22221111n n n n n nn n n a a a a a a a a ββαα+++⎛⎫++ ⎪⎛⎫--==== ⎪--⎝⎭ ∴ 12n n b b += 又111lnln 4lna b a βα-===-∴数列{}n b 是一个首项为 14ln2,公比为2的等比数列; ∴)()1212421ln 122n n n S -+==-- 【变式】对任意函数f (x ),x ∈D ,可按图示3—2构造一个数列发生器,其工作原理如下: ①输入数据x 0∈D ,经数列发生器输出x 1=f (x 0);②若x 1∉D ,则数列发生器结束工作;若x 1∈D ,则将x 1反馈回输入端,再输出x 2=f (x 1),并依此规律继续下去. 现定义f (x )=124+-x x . (Ⅰ)若输入x 0=6549,则由数列发生器产生数列{x n }.请写出数列{x n }的所有项; (Ⅱ)若要数列发生器产生一个无穷的常数列,试求输入的初始数据x 0的值; (Ⅲ)(理)若输入x 0时,产生的无穷数列{x n }满足:对任意正整数n ,均有x n <x n +1,求x 0的取值范围. 解:(Ⅰ)∵f (x )的定义域D =(-∞ -1)∪(-1,+∞) ∴数列{x n }只有三项x 1=1911,x 2=51,x 3=-1 (Ⅱ)∵f (x )=124+-x x =x 即x 2-3x +2=0,∴x =1或x =2 即x 0=1或2时,x n +1=124+-n n x x =x n ,故当x 0=1时,x 0=1;当x 0=2时,x n =2(n ∈N )(Ⅲ)解不等式x <124+-x x ,得x <-1或1<x <2,要使x 1<x 2,则x 2<-1或1<x 1<2 对于函数f (x )=164124+-=+-x x x 。